i82557.c revision 1.19
1/*	$NetBSD: i82557.c,v 1.19 2000/02/12 03:55:49 enami Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice unmodified, this list of conditions, and the following
49 *    disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69/*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74#include "opt_inet.h"
75#include "opt_ns.h"
76#include "bpfilter.h"
77#include "rnd.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/mbuf.h>
82#include <sys/malloc.h>
83#include <sys/kernel.h>
84#include <sys/socket.h>
85#include <sys/ioctl.h>
86#include <sys/errno.h>
87#include <sys/device.h>
88
89#include <machine/endian.h>
90
91#include <vm/vm.h>		/* for PAGE_SIZE */
92
93#if NRND > 0
94#include <sys/rnd.h>
95#endif
96
97#include <net/if.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_ether.h>
101
102#if NBPFILTER > 0
103#include <net/bpf.h>
104#endif
105
106#ifdef INET
107#include <netinet/in.h>
108#include <netinet/if_inarp.h>
109#endif
110
111#ifdef NS
112#include <netns/ns.h>
113#include <netns/ns_if.h>
114#endif
115
116#include <machine/bus.h>
117#include <machine/intr.h>
118
119#include <dev/mii/miivar.h>
120
121#include <dev/ic/i82557reg.h>
122#include <dev/ic/i82557var.h>
123
124/*
125 * NOTE!  On the Alpha, we have an alignment constraint.  The
126 * card DMAs the packet immediately following the RFA.  However,
127 * the first thing in the packet is a 14-byte Ethernet header.
128 * This means that the packet is misaligned.  To compensate,
129 * we actually offset the RFA 2 bytes into the cluster.  This
130 * alignes the packet after the Ethernet header at a 32-bit
131 * boundary.  HOWEVER!  This means that the RFA is misaligned!
132 */
133#define	RFA_ALIGNMENT_FUDGE	2
134
135/*
136 * Template for default configuration parameters.
137 * See struct fxp_cb_config for the bit definitions.
138 */
139u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x80, 0x2,		/* cb_command */
142	0xff, 0xff, 0xff, 0xff,	/* link_addr */
143	0x16,	/*  0 */
144	0x8,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x80,	/*  5 */
149	0xb2,	/*  6 */
150	0x3,	/*  7 */
151	0x1,	/*  8 */
152	0x0,	/*  9 */
153	0x26,	/* 10 */
154	0x0,	/* 11 */
155	0x60,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf3,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5	/* 21 */
165};
166
167void	fxp_mii_initmedia __P((struct fxp_softc *));
168int	fxp_mii_mediachange __P((struct ifnet *));
169void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
170
171void	fxp_80c24_initmedia __P((struct fxp_softc *));
172int	fxp_80c24_mediachange __P((struct ifnet *));
173void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
174
175inline void fxp_scb_wait __P((struct fxp_softc *));
176
177void	fxp_start __P((struct ifnet *));
178int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
179int	fxp_init __P((struct fxp_softc *));
180void	fxp_rxdrain __P((struct fxp_softc *));
181void	fxp_stop __P((struct fxp_softc *, int));
182void	fxp_watchdog __P((struct ifnet *));
183int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
184int	fxp_mdi_read __P((struct device *, int, int));
185void	fxp_statchg __P((struct device *));
186void	fxp_mdi_write __P((struct device *, int, int, int));
187void	fxp_autosize_eeprom __P((struct fxp_softc*));
188void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
189void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
190void	fxp_tick __P((void *));
191void	fxp_mc_setup __P((struct fxp_softc *));
192
193void	fxp_shutdown __P((void *));
194void	fxp_power __P((int, void *));
195
196int	fxp_copy_small = 0;
197
198int	fxp_enable __P((struct fxp_softc*));
199void	fxp_disable __P((struct fxp_softc*));
200
201struct fxp_phytype {
202	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
203	void	(*fp_init) __P((struct fxp_softc *));
204} fxp_phytype_table[] = {
205	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
206	{ -1,				fxp_mii_initmedia },
207};
208
209/*
210 * Set initial transmit threshold at 64 (512 bytes). This is
211 * increased by 64 (512 bytes) at a time, to maximum of 192
212 * (1536 bytes), if an underrun occurs.
213 */
214static int tx_threshold = 64;
215
216/*
217 * Wait for the previous command to be accepted (but not necessarily
218 * completed).
219 */
220inline void
221fxp_scb_wait(sc)
222	struct fxp_softc *sc;
223{
224	int i = 10000;
225
226	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
227		delay(2);
228	if (i == 0)
229		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
230}
231
232/*
233 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
234 */
235void
236fxp_attach(sc)
237	struct fxp_softc *sc;
238{
239	u_int8_t enaddr[6];
240	struct ifnet *ifp;
241	bus_dma_segment_t seg;
242	int rseg, i, error;
243	struct fxp_phytype *fp;
244
245	/*
246	 * Allocate the control data structures, and create and load the
247	 * DMA map for it.
248	 */
249	if ((error = bus_dmamem_alloc(sc->sc_dmat,
250	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251	    0)) != 0) {
252		printf("%s: unable to allocate control data, error = %d\n",
253		    sc->sc_dev.dv_xname, error);
254		goto fail_0;
255	}
256
257	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259	    BUS_DMA_COHERENT)) != 0) {
260		printf("%s: unable to map control data, error = %d\n",
261		    sc->sc_dev.dv_xname, error);
262		goto fail_1;
263	}
264	sc->sc_cdseg = seg;
265	sc->sc_cdnseg = rseg;
266
267	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269	if ((error = bus_dmamap_create(sc->sc_dmat,
270	    sizeof(struct fxp_control_data), 1,
271	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272		printf("%s: unable to create control data DMA map, "
273		    "error = %d\n", sc->sc_dev.dv_xname, error);
274		goto fail_2;
275	}
276
277	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279	    0)) != 0) {
280		printf("%s: can't load control data DMA map, error = %d\n",
281		    sc->sc_dev.dv_xname, error);
282		goto fail_3;
283	}
284
285	/*
286	 * Create the transmit buffer DMA maps.
287	 */
288	for (i = 0; i < FXP_NTXCB; i++) {
289		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290		    FXP_NTXSEG, MCLBYTES, 0, 0,
291		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292			printf("%s: unable to create tx DMA map %d, "
293			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
294			goto fail_4;
295		}
296	}
297
298	/*
299	 * Create the receive buffer DMA maps.
300	 */
301	for (i = 0; i < FXP_NRFABUFS; i++) {
302		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304			printf("%s: unable to create rx DMA map %d, "
305			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
306			goto fail_5;
307		}
308	}
309
310	/* Initialize MAC address and media structures. */
311	fxp_get_info(sc, enaddr);
312
313	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316	ifp = &sc->sc_ethercom.ec_if;
317
318	/*
319	 * Get info about our media interface, and initialize it.  Note
320	 * the table terminates itself with a phy of -1, indicating
321	 * that we're using MII.
322	 */
323	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324		if (fp->fp_phy == sc->phy_primary_device)
325			break;
326	(*fp->fp_init)(sc);
327
328	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329	ifp->if_softc = sc;
330	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331	ifp->if_ioctl = fxp_ioctl;
332	ifp->if_start = fxp_start;
333	ifp->if_watchdog = fxp_watchdog;
334
335	/*
336	 * Attach the interface.
337	 */
338	if_attach(ifp);
339	ether_ifattach(ifp, enaddr);
340#if NBPFILTER > 0
341	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342	    sizeof(struct ether_header));
343#endif
344#if NRND > 0
345	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346	    RND_TYPE_NET, 0);
347#endif
348
349	/*
350	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351	 * doing do could allow DMA to corrupt kernel memory during the
352	 * reboot before the driver initializes.
353	 */
354	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355	if (sc->sc_sdhook == NULL)
356		printf("%s: WARNING: unable to establish shutdown hook\n",
357		    sc->sc_dev.dv_xname);
358	/*
359  	 * Add suspend hook, for similar reasons..
360	 */
361	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362	if (sc->sc_powerhook == NULL)
363		printf("%s: WARNING: unable to establish power hook\n",
364		    sc->sc_dev.dv_xname);
365	return;
366
367	/*
368	 * Free any resources we've allocated during the failed attach
369	 * attempt.  Do this in reverse order and fall though.
370	 */
371 fail_5:
372	for (i = 0; i < FXP_NRFABUFS; i++) {
373		if (sc->sc_rxmaps[i] != NULL)
374			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
375	}
376 fail_4:
377	for (i = 0; i < FXP_NTXCB; i++) {
378		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
379			bus_dmamap_destroy(sc->sc_dmat,
380			    FXP_DSTX(sc, i)->txs_dmamap);
381	}
382	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
383 fail_3:
384	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
385 fail_2:
386	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
387	    sizeof(struct fxp_control_data));
388 fail_1:
389	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
390 fail_0:
391	return;
392}
393
394void
395fxp_mii_initmedia(sc)
396	struct fxp_softc *sc;
397{
398
399	sc->sc_flags |= FXPF_MII;
400
401	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
402	sc->sc_mii.mii_readreg = fxp_mdi_read;
403	sc->sc_mii.mii_writereg = fxp_mdi_write;
404	sc->sc_mii.mii_statchg = fxp_statchg;
405	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
406	    fxp_mii_mediastatus);
407	/*
408	 * The i82557 wedges if all of its PHYs are isolated!
409	 */
410	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
411	    MII_OFFSET_ANY, MIIF_NOISOLATE);
412	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
413		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
414		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
415	} else
416		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
417}
418
419void
420fxp_80c24_initmedia(sc)
421	struct fxp_softc *sc;
422{
423
424	/*
425	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
426	 * doesn't have a programming interface of any sort.  The
427	 * media is sensed automatically based on how the link partner
428	 * is configured.  This is, in essence, manual configuration.
429	 */
430	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
431	    sc->sc_dev.dv_xname);
432	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
433	    fxp_80c24_mediastatus);
434	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
435	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
436}
437
438/*
439 * Device shutdown routine. Called at system shutdown after sync. The
440 * main purpose of this routine is to shut off receiver DMA so that
441 * kernel memory doesn't get clobbered during warmboot.
442 */
443void
444fxp_shutdown(arg)
445	void *arg;
446{
447	struct fxp_softc *sc = arg;
448
449	/*
450	 * Since the system's going to halt shortly, don't bother
451	 * freeing mbufs.
452	 */
453	fxp_stop(sc, 0);
454}
455/*
456 * Power handler routine. Called when the system is transitioning
457 * into/out of power save modes.  As with fxp_shutdown, the main
458 * purpose of this routine is to shut off receiver DMA so it doesn't
459 * clobber kernel memory at the wrong time.
460 */
461void
462fxp_power(why, arg)
463	int why;
464	void *arg;
465{
466	struct fxp_softc *sc = arg;
467	struct ifnet *ifp;
468	int s;
469
470	s = splnet();
471	if (why != PWR_RESUME)
472		fxp_stop(sc, 0);
473	else {
474		ifp = &sc->sc_ethercom.ec_if;
475		if (ifp->if_flags & IFF_UP)
476			fxp_init(sc);
477	}
478	splx(s);
479}
480
481/*
482 * Initialize the interface media.
483 */
484void
485fxp_get_info(sc, enaddr)
486	struct fxp_softc *sc;
487	u_int8_t *enaddr;
488{
489	u_int16_t data, myea[3];
490
491	/*
492	 * Reset to a stable state.
493	 */
494	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495	DELAY(10);
496
497	sc->sc_eeprom_size = 0;
498	fxp_autosize_eeprom(sc);
499	if(sc->sc_eeprom_size == 0) {
500	    printf("%s: failed to detect EEPROM size", sc->sc_dev.dv_xname);
501	    sc->sc_eeprom_size = 6; /* XXX panic here? */
502	}
503#ifdef DEBUG
504	printf("%s: detected %d word EEPROM\n",
505	       sc->sc_dev.dv_xname,
506	       1 << sc->sc_eeprom_size);
507#endif
508
509	/*
510	 * Get info about the primary PHY
511	 */
512	fxp_read_eeprom(sc, &data, 6, 1);
513	sc->phy_primary_addr = data & 0xff;
514	sc->phy_primary_device = (data >> 8) & 0x3f;
515	sc->phy_10Mbps_only = data >> 15;
516
517	/*
518	 * Read MAC address.
519	 */
520	fxp_read_eeprom(sc, myea, 0, 3);
521	bcopy(myea, enaddr, ETHER_ADDR_LEN);
522}
523
524/*
525 * Figure out EEPROM size.
526 *
527 * 559's can have either 64-word or 256-word EEPROMs, the 558
528 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
529 * talks about the existance of 16 to 256 word EEPROMs.
530 *
531 * The only known sizes are 64 and 256, where the 256 version is used
532 * by CardBus cards to store CIS information.
533 *
534 * The address is shifted in msb-to-lsb, and after the last
535 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
536 * after which follows the actual data. We try to detect this zero, by
537 * probing the data-out bit in the EEPROM control register just after
538 * having shifted in a bit. If the bit is zero, we assume we've
539 * shifted enough address bits. The data-out should be tri-state,
540 * before this, which should translate to a logical one.
541 *
542 * Other ways to do this would be to try to read a register with known
543 * contents with a varying number of address bits, but no such
544 * register seem to be available. The high bits of register 10 are 01
545 * on the 558 and 559, but apparently not on the 557.
546 *
547 * The Linux driver computes a checksum on the EEPROM data, but the
548 * value of this checksum is not very well documented.
549 */
550
551void
552fxp_autosize_eeprom(sc)
553	struct fxp_softc *sc;
554{
555	u_int16_t reg;
556	int x;
557
558	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
559	/*
560	 * Shift in read opcode.
561	 */
562	for (x = 3; x > 0; x--) {
563		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
564			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
565		} else {
566			reg = FXP_EEPROM_EECS;
567		}
568		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
569		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
570			    reg | FXP_EEPROM_EESK);
571		DELAY(1);
572		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
573		DELAY(1);
574	}
575	/*
576	 * Shift in address, wait for the dummy zero following a correct
577	 * address shift.
578	 */
579	for (x = 1; x <=  8; x++) {
580		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
581		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
582		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
583		DELAY(1);
584		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
585		    FXP_EEPROM_EEDO) == 0)
586			break;
587		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
588		DELAY(1);
589	}
590	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
591	DELAY(1);
592	if(x != 6 && x != 8) {
593#ifdef DEBUG
594		printf("%s: strange EEPROM size (%d)\n",
595		       sc->sc_dev.dv_xname, 1 << x);
596#endif
597	} else
598		sc->sc_eeprom_size = x;
599}
600
601/*
602 * Read from the serial EEPROM. Basically, you manually shift in
603 * the read opcode (one bit at a time) and then shift in the address,
604 * and then you shift out the data (all of this one bit at a time).
605 * The word size is 16 bits, so you have to provide the address for
606 * every 16 bits of data.
607 */
608void
609fxp_read_eeprom(sc, data, offset, words)
610	struct fxp_softc *sc;
611	u_int16_t *data;
612	int offset;
613	int words;
614{
615	u_int16_t reg;
616	int i, x;
617
618	for (i = 0; i < words; i++) {
619		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
620		/*
621		 * Shift in read opcode.
622		 */
623		for (x = 3; x > 0; x--) {
624			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
625				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
626			} else {
627				reg = FXP_EEPROM_EECS;
628			}
629			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
630			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
631			    reg | FXP_EEPROM_EESK);
632			DELAY(1);
633			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
634			DELAY(1);
635		}
636		/*
637		 * Shift in address.
638		 */
639		for (x = sc->sc_eeprom_size; x > 0; x--) {
640			if ((i + offset) & (1 << (x - 1))) {
641			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
642			} else {
643			    reg = FXP_EEPROM_EECS;
644			}
645			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
646			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
647			    reg | FXP_EEPROM_EESK);
648			DELAY(1);
649			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
650			DELAY(1);
651		}
652		reg = FXP_EEPROM_EECS;
653		data[i] = 0;
654		/*
655		 * Shift out data.
656		 */
657		for (x = 16; x > 0; x--) {
658			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
659			    reg | FXP_EEPROM_EESK);
660			DELAY(1);
661			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
662			    FXP_EEPROM_EEDO)
663				data[i] |= (1 << (x - 1));
664			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
665			DELAY(1);
666		}
667		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
668		DELAY(1);
669	}
670}
671
672/*
673 * Start packet transmission on the interface.
674 */
675void
676fxp_start(ifp)
677	struct ifnet *ifp;
678{
679	struct fxp_softc *sc = ifp->if_softc;
680	struct mbuf *m0, *m;
681	struct fxp_cb_tx *txd;
682	struct fxp_txsoft *txs;
683	struct fxp_tbdlist *tbd;
684	bus_dmamap_t dmamap;
685	int error, lasttx, nexttx, opending, seg;
686
687	/*
688	 * If we want a re-init, bail out now.
689	 */
690	if (sc->sc_flags & FXPF_WANTINIT) {
691		ifp->if_flags |= IFF_OACTIVE;
692		return;
693	}
694
695	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
696		return;
697
698	/*
699	 * Remember the previous txpending and the current lasttx.
700	 */
701	opending = sc->sc_txpending;
702	lasttx = sc->sc_txlast;
703
704	/*
705	 * Loop through the send queue, setting up transmit descriptors
706	 * until we drain the queue, or use up all available transmit
707	 * descriptors.
708	 */
709	while (sc->sc_txpending < FXP_NTXCB) {
710		/*
711		 * Grab a packet off the queue.
712		 */
713		IF_DEQUEUE(&ifp->if_snd, m0);
714		if (m0 == NULL)
715			break;
716
717		/*
718		 * Get the next available transmit descriptor.
719		 */
720		nexttx = FXP_NEXTTX(sc->sc_txlast);
721		txd = FXP_CDTX(sc, nexttx);
722		tbd = FXP_CDTBD(sc, nexttx);
723		txs = FXP_DSTX(sc, nexttx);
724		dmamap = txs->txs_dmamap;
725
726		/*
727		 * Load the DMA map.  If this fails, the packet either
728		 * didn't fit in the allotted number of frags, or we were
729		 * short on resources.  In this case, we'll copy and try
730		 * again.
731		 */
732		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
733		    BUS_DMA_NOWAIT) != 0) {
734			MGETHDR(m, M_DONTWAIT, MT_DATA);
735			if (m == NULL) {
736				printf("%s: unable to allocate Tx mbuf\n",
737				    sc->sc_dev.dv_xname);
738				IF_PREPEND(&ifp->if_snd, m0);
739				break;
740			}
741			if (m0->m_pkthdr.len > MHLEN) {
742				MCLGET(m, M_DONTWAIT);
743				if ((m->m_flags & M_EXT) == 0) {
744					printf("%s: unable to allocate Tx "
745					    "cluster\n", sc->sc_dev.dv_xname);
746					m_freem(m);
747					IF_PREPEND(&ifp->if_snd, m0);
748					break;
749				}
750			}
751			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
752			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
753			m_freem(m0);
754			m0 = m;
755			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
756			    m0, BUS_DMA_NOWAIT);
757			if (error) {
758				printf("%s: unable to load Tx buffer, "
759				    "error = %d\n", sc->sc_dev.dv_xname, error);
760				IF_PREPEND(&ifp->if_snd, m0);
761				break;
762			}
763		}
764
765		/* Initialize the fraglist. */
766		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
767			tbd->tbd_d[seg].tb_addr =
768			    htole32(dmamap->dm_segs[seg].ds_addr);
769			tbd->tbd_d[seg].tb_size =
770			    htole32(dmamap->dm_segs[seg].ds_len);
771		}
772
773		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
774
775		/* Sync the DMA map. */
776		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
777		    BUS_DMASYNC_PREWRITE);
778
779		/*
780		 * Store a pointer to the packet so we can free it later.
781		 */
782		txs->txs_mbuf = m0;
783
784		/*
785		 * Initialize the transmit descriptor.
786		 */
787		/* BIG_ENDIAN: no need to swap to store 0 */
788		txd->cb_status = 0;
789		txd->cb_command =
790		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
791		txd->tx_threshold = tx_threshold;
792		txd->tbd_number = dmamap->dm_nsegs;
793
794		FXP_CDTXSYNC(sc, nexttx,
795		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
796
797		/* Advance the tx pointer. */
798		sc->sc_txpending++;
799		sc->sc_txlast = nexttx;
800
801#if NBPFILTER > 0
802		/*
803		 * Pass packet to bpf if there is a listener.
804		 */
805		if (ifp->if_bpf)
806			bpf_mtap(ifp->if_bpf, m0);
807#endif
808	}
809
810	if (sc->sc_txpending == FXP_NTXCB) {
811		/* No more slots; notify upper layer. */
812		ifp->if_flags |= IFF_OACTIVE;
813	}
814
815	if (sc->sc_txpending != opending) {
816		/*
817		 * We enqueued packets.  If the transmitter was idle,
818		 * reset the txdirty pointer.
819		 */
820		if (opending == 0)
821			sc->sc_txdirty = FXP_NEXTTX(lasttx);
822
823		/*
824		 * Cause the chip to interrupt and suspend command
825		 * processing once the last packet we've enqueued
826		 * has been transmitted.
827		 */
828		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
829		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
830		FXP_CDTXSYNC(sc, sc->sc_txlast,
831		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
832
833		/*
834		 * The entire packet chain is set up.  Clear the suspend bit
835		 * on the command prior to the first packet we set up.
836		 */
837		FXP_CDTXSYNC(sc, lasttx,
838		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
839		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
840		FXP_CDTXSYNC(sc, lasttx,
841		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
842
843		/*
844		 * Issue a Resume command in case the chip was suspended.
845		 */
846		fxp_scb_wait(sc);
847		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
848
849		/* Set a watchdog timer in case the chip flakes out. */
850		ifp->if_timer = 5;
851	}
852}
853
854/*
855 * Process interface interrupts.
856 */
857int
858fxp_intr(arg)
859	void *arg;
860{
861	struct fxp_softc *sc = arg;
862	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863	struct fxp_cb_tx *txd;
864	struct fxp_txsoft *txs;
865	struct mbuf *m, *m0;
866	bus_dmamap_t rxmap;
867	struct fxp_rfa *rfa;
868	struct ether_header *eh;
869	int i, claimed = 0;
870	u_int16_t len, rxstat, txstat;
871	u_int8_t statack;
872
873	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
874		return 0;
875	/*
876	 * If the interface isn't running, don't try to
877	 * service the interrupt.. just ack it and bail.
878	 */
879	if ((ifp->if_flags & IFF_RUNNING) == 0) {
880		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
881		if (statack) {
882			claimed = 1;
883			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
884		}
885		return claimed;
886	}
887
888	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
889		claimed = 1;
890
891		/*
892		 * First ACK all the interrupts in this pass.
893		 */
894		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
895
896		/*
897		 * Process receiver interrupts. If a no-resource (RNR)
898		 * condition exists, get whatever packets we can and
899		 * re-start the receiver.
900		 */
901		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
902 rcvloop:
903			m = sc->sc_rxq.ifq_head;
904			rfa = FXP_MTORFA(m);
905			rxmap = M_GETCTX(m, bus_dmamap_t);
906
907			FXP_RFASYNC(sc, m,
908			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
909
910			rxstat = le16toh(rfa->rfa_status);
911
912			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
913				/*
914				 * We have processed all of the
915				 * receive buffers.
916				 */
917				goto do_transmit;
918			}
919
920			IF_DEQUEUE(&sc->sc_rxq, m);
921
922			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
923
924			len = le16toh(rfa->actual_size) &
925			    (m->m_ext.ext_size - 1);
926
927			if (len < sizeof(struct ether_header)) {
928				/*
929				 * Runt packet; drop it now.
930				 */
931				FXP_INIT_RFABUF(sc, m);
932				goto rcvloop;
933			}
934
935			/*
936			 * If the packet is small enough to fit in a
937			 * single header mbuf, allocate one and copy
938			 * the data into it.  This greatly reduces
939			 * memory consumption when we receive lots
940			 * of small packets.
941			 *
942			 * Otherwise, we add a new buffer to the receive
943			 * chain.  If this fails, we drop the packet and
944			 * recycle the old buffer.
945			 */
946			if (fxp_copy_small != 0 && len <= MHLEN) {
947				MGETHDR(m0, M_DONTWAIT, MT_DATA);
948				if (m == NULL)
949					goto dropit;
950				memcpy(mtod(m0, caddr_t),
951				    mtod(m, caddr_t), len);
952				FXP_INIT_RFABUF(sc, m);
953				m = m0;
954			} else {
955				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
956 dropit:
957					ifp->if_ierrors++;
958					FXP_INIT_RFABUF(sc, m);
959					goto rcvloop;
960				}
961			}
962
963			m->m_pkthdr.rcvif = ifp;
964			m->m_pkthdr.len = m->m_len = len;
965			eh = mtod(m, struct ether_header *);
966
967#if NBPFILTER > 0
968			/*
969			 * Pass this up to any BPF listeners, but only
970			 * pass it up the stack it its for us.
971			 */
972			if (ifp->if_bpf) {
973				bpf_mtap(ifp->if_bpf, m);
974
975				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
976				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
977				    (eh->ether_dhost[0] & 1) == 0) {
978					m_freem(m);
979					goto rcvloop;
980				}
981			}
982#endif /* NBPFILTER > 0 */
983
984			/* Pass it on. */
985			(*ifp->if_input)(ifp, m);
986			goto rcvloop;
987		}
988
989 do_transmit:
990		if (statack & FXP_SCB_STATACK_RNR) {
991			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
992			fxp_scb_wait(sc);
993			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
994			    rxmap->dm_segs[0].ds_addr +
995			    RFA_ALIGNMENT_FUDGE);
996			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
997			    FXP_SCB_COMMAND_RU_START);
998		}
999
1000		/*
1001		 * Free any finished transmit mbuf chains.
1002		 */
1003		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1004			ifp->if_flags &= ~IFF_OACTIVE;
1005			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1006			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
1007				txd = FXP_CDTX(sc, i);
1008				txs = FXP_DSTX(sc, i);
1009
1010				FXP_CDTXSYNC(sc, i,
1011				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012
1013				txstat = le16toh(txd->cb_status);
1014
1015				if ((txstat & FXP_CB_STATUS_C) == 0)
1016					break;
1017
1018				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1019
1020				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1021				    0, txs->txs_dmamap->dm_mapsize,
1022				    BUS_DMASYNC_POSTWRITE);
1023				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1024				m_freem(txs->txs_mbuf);
1025				txs->txs_mbuf = NULL;
1026			}
1027
1028			/* Update the dirty transmit buffer pointer. */
1029			sc->sc_txdirty = i;
1030
1031			/*
1032			 * Cancel the watchdog timer if there are no pending
1033			 * transmissions.
1034			 */
1035			if (sc->sc_txpending == 0) {
1036				ifp->if_timer = 0;
1037
1038				/*
1039				 * If we want a re-init, do that now.
1040				 */
1041				if (sc->sc_flags & FXPF_WANTINIT)
1042					(void) fxp_init(sc);
1043			}
1044
1045			/*
1046			 * Try to get more packets going.
1047			 */
1048			fxp_start(ifp);
1049		}
1050	}
1051
1052#if NRND > 0
1053	if (claimed)
1054		rnd_add_uint32(&sc->rnd_source, statack);
1055#endif
1056	return (claimed);
1057}
1058
1059/*
1060 * Update packet in/out/collision statistics. The i82557 doesn't
1061 * allow you to access these counters without doing a fairly
1062 * expensive DMA to get _all_ of the statistics it maintains, so
1063 * we do this operation here only once per second. The statistics
1064 * counters in the kernel are updated from the previous dump-stats
1065 * DMA and then a new dump-stats DMA is started. The on-chip
1066 * counters are zeroed when the DMA completes. If we can't start
1067 * the DMA immediately, we don't wait - we just prepare to read
1068 * them again next time.
1069 */
1070void
1071fxp_tick(arg)
1072	void *arg;
1073{
1074	struct fxp_softc *sc = arg;
1075	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1076	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1077	int s;
1078
1079	s = splnet();
1080
1081	ifp->if_opackets += le32toh(sp->tx_good);
1082	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1083	if (sp->rx_good) {
1084		ifp->if_ipackets += le32toh(sp->rx_good);
1085		sc->sc_rxidle = 0;
1086	} else {
1087		sc->sc_rxidle++;
1088	}
1089	ifp->if_ierrors +=
1090	    le32toh(sp->rx_crc_errors) +
1091	    le32toh(sp->rx_alignment_errors) +
1092	    le32toh(sp->rx_rnr_errors) +
1093	    le32toh(sp->rx_overrun_errors);
1094	/*
1095	 * If any transmit underruns occured, bump up the transmit
1096	 * threshold by another 512 bytes (64 * 8).
1097	 */
1098	if (sp->tx_underruns) {
1099		ifp->if_oerrors += le32toh(sp->tx_underruns);
1100		if (tx_threshold < 192)
1101			tx_threshold += 64;
1102	}
1103
1104	/*
1105	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1106	 * then assume the receiver has locked up and attempt to clear
1107	 * the condition by reprogramming the multicast filter (actually,
1108	 * resetting the interface). This is a work-around for a bug in
1109	 * the 82557 where the receiver locks up if it gets certain types
1110	 * of garbage in the syncronization bits prior to the packet header.
1111	 * This bug is supposed to only occur in 10Mbps mode, but has been
1112	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1113	 * speed transition).
1114	 */
1115	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1116		(void) fxp_init(sc);
1117		splx(s);
1118		return;
1119	}
1120	/*
1121	 * If there is no pending command, start another stats
1122	 * dump. Otherwise punt for now.
1123	 */
1124	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1125		/*
1126		 * Start another stats dump.
1127		 */
1128		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1129		    FXP_SCB_COMMAND_CU_DUMPRESET);
1130	} else {
1131		/*
1132		 * A previous command is still waiting to be accepted.
1133		 * Just zero our copy of the stats and wait for the
1134		 * next timer event to update them.
1135		 */
1136		/* BIG_ENDIAN: no swap required to store 0 */
1137		sp->tx_good = 0;
1138		sp->tx_underruns = 0;
1139		sp->tx_total_collisions = 0;
1140
1141		sp->rx_good = 0;
1142		sp->rx_crc_errors = 0;
1143		sp->rx_alignment_errors = 0;
1144		sp->rx_rnr_errors = 0;
1145		sp->rx_overrun_errors = 0;
1146	}
1147
1148	if (sc->sc_flags & FXPF_MII) {
1149		/* Tick the MII clock. */
1150		mii_tick(&sc->sc_mii);
1151	}
1152
1153	splx(s);
1154
1155	/*
1156	 * Schedule another timeout one second from now.
1157	 */
1158	timeout(fxp_tick, sc, hz);
1159}
1160
1161/*
1162 * Drain the receive queue.
1163 */
1164void
1165fxp_rxdrain(sc)
1166	struct fxp_softc *sc;
1167{
1168	bus_dmamap_t rxmap;
1169	struct mbuf *m;
1170
1171	for (;;) {
1172		IF_DEQUEUE(&sc->sc_rxq, m);
1173		if (m == NULL)
1174			break;
1175		rxmap = M_GETCTX(m, bus_dmamap_t);
1176		bus_dmamap_unload(sc->sc_dmat, rxmap);
1177		FXP_RXMAP_PUT(sc, rxmap);
1178		m_freem(m);
1179	}
1180}
1181
1182/*
1183 * Stop the interface. Cancels the statistics updater and resets
1184 * the interface.
1185 */
1186void
1187fxp_stop(sc, drain)
1188	struct fxp_softc *sc;
1189	int drain;
1190{
1191	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1192	struct fxp_txsoft *txs;
1193	int i;
1194
1195	/*
1196	 * Turn down interface (done early to avoid bad interactions
1197	 * between panics, shutdown hooks, and the watchdog timer)
1198	 */
1199	ifp->if_timer = 0;
1200	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1201
1202	/*
1203	 * Cancel stats updater.
1204	 */
1205	untimeout(fxp_tick, sc);
1206	if (sc->sc_flags & FXPF_MII) {
1207		/* Down the MII. */
1208		mii_down(&sc->sc_mii);
1209	}
1210
1211	/*
1212	 * Issue software reset
1213	 */
1214	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1215	DELAY(10);
1216
1217	/*
1218	 * Release any xmit buffers.
1219	 */
1220	for (i = 0; i < FXP_NTXCB; i++) {
1221		txs = FXP_DSTX(sc, i);
1222		if (txs->txs_mbuf != NULL) {
1223			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1224			m_freem(txs->txs_mbuf);
1225			txs->txs_mbuf = NULL;
1226		}
1227	}
1228	sc->sc_txpending = 0;
1229
1230	if (drain) {
1231		/*
1232		 * Release the receive buffers.
1233		 */
1234		fxp_rxdrain(sc);
1235	}
1236
1237}
1238
1239/*
1240 * Watchdog/transmission transmit timeout handler. Called when a
1241 * transmission is started on the interface, but no interrupt is
1242 * received before the timeout. This usually indicates that the
1243 * card has wedged for some reason.
1244 */
1245void
1246fxp_watchdog(ifp)
1247	struct ifnet *ifp;
1248{
1249	struct fxp_softc *sc = ifp->if_softc;
1250
1251	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1252	ifp->if_oerrors++;
1253
1254	(void) fxp_init(sc);
1255}
1256
1257/*
1258 * Initialize the interface.  Must be called at splnet().
1259 */
1260int
1261fxp_init(sc)
1262	struct fxp_softc *sc;
1263{
1264	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1265	struct fxp_cb_config *cbp;
1266	struct fxp_cb_ias *cb_ias;
1267	struct fxp_cb_tx *txd;
1268	bus_dmamap_t rxmap;
1269	int i, prm, allm, error = 0;
1270
1271	/*
1272	 * Cancel any pending I/O
1273	 */
1274	fxp_stop(sc, 0);
1275
1276	sc->sc_flags = 0;
1277
1278	/*
1279	 * Initialize base of CBL and RFA memory. Loading with zero
1280	 * sets it up for regular linear addressing.
1281	 */
1282	fxp_scb_wait(sc);
1283	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1284	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1285
1286	fxp_scb_wait(sc);
1287	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1288
1289	/*
1290	 * Initialize the multicast filter.  Do this now, since we might
1291	 * have to setup the config block differently.
1292	 */
1293	fxp_mc_setup(sc);
1294
1295	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1296	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1297
1298	/*
1299	 * Initialize base of dump-stats buffer.
1300	 */
1301	fxp_scb_wait(sc);
1302	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1303	    sc->sc_cddma + FXP_CDSTATSOFF);
1304	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1305
1306	cbp = &sc->sc_control_data->fcd_configcb;
1307	memset(cbp, 0, sizeof(struct fxp_cb_config));
1308
1309	/*
1310	 * This copy is kind of disgusting, but there are a bunch of must be
1311	 * zero and must be one bits in this structure and this is the easiest
1312	 * way to initialize them all to proper values.
1313	 */
1314	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1315
1316	/* BIG_ENDIAN: no need to swap to store 0 */
1317	cbp->cb_status =	0;
1318	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1319				    FXP_CB_COMMAND_EL);
1320	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1321	cbp->link_addr =	0xffffffff; /* (no) next command */
1322	cbp->byte_count =	22;	/* (22) bytes to config */
1323	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1324	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1325	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1326	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1327	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1328	cbp->dma_bce =		0;	/* (disable) dma max counters */
1329	cbp->late_scb =		0;	/* (don't) defer SCB update */
1330	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1331	cbp->ci_int =		1;	/* interrupt on CU idle */
1332	cbp->save_bf =		prm;	/* save bad frames */
1333	cbp->disc_short_rx =	!prm;	/* discard short packets */
1334	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1335	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1336	cbp->nsai =		1;	/* (don't) disable source addr insert */
1337	cbp->preamble_length =	2;	/* (7 byte) preamble */
1338	cbp->loopback =		0;	/* (don't) loopback */
1339	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1340	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1341	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1342	cbp->promiscuous =	prm;	/* promiscuous mode */
1343	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1344	cbp->crscdt =		0;	/* (CRS only) */
1345	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1346	cbp->padding =		1;	/* (do) pad short tx packets */
1347	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1348	cbp->force_fdx =	0;	/* (don't) force full duplex */
1349	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1350	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1351	cbp->mc_all =		allm;	/* accept all multicasts */
1352
1353	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1354
1355	/*
1356	 * Start the config command/DMA.
1357	 */
1358	fxp_scb_wait(sc);
1359	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1360	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1361	/* ...and wait for it to complete. */
1362	do {
1363		FXP_CDCONFIGSYNC(sc,
1364		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1365	} while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
1366
1367	/*
1368	 * Initialize the station address.
1369	 */
1370	cb_ias = &sc->sc_control_data->fcd_iascb;
1371	/* BIG_ENDIAN: no need to swap to store 0 */
1372	cb_ias->cb_status = 0;
1373	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1374	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1375	cb_ias->link_addr = 0xffffffff;
1376	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1377
1378	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1379
1380	/*
1381	 * Start the IAS (Individual Address Setup) command/DMA.
1382	 */
1383	fxp_scb_wait(sc);
1384	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1385	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1386	/* ...and wait for it to complete. */
1387	do {
1388		FXP_CDIASSYNC(sc,
1389		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1390	} while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
1391
1392	/*
1393	 * Initialize the transmit descriptor ring.  txlast is initialized
1394	 * to the end of the list so that it will wrap around to the first
1395	 * descriptor when the first packet is transmitted.
1396	 */
1397	for (i = 0; i < FXP_NTXCB; i++) {
1398		txd = FXP_CDTX(sc, i);
1399		memset(txd, 0, sizeof(struct fxp_cb_tx));
1400		txd->cb_command =
1401		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1402		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1403		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1404		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1405	}
1406	sc->sc_txpending = 0;
1407	sc->sc_txdirty = 0;
1408	sc->sc_txlast = FXP_NTXCB - 1;
1409
1410	/*
1411	 * Initialize the receive buffer list.
1412	 */
1413	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1414	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1415		rxmap = FXP_RXMAP_GET(sc);
1416		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1417			printf("%s: unable to allocate or map rx "
1418			    "buffer %d, error = %d\n",
1419			    sc->sc_dev.dv_xname,
1420			    sc->sc_rxq.ifq_len, error);
1421			/*
1422			 * XXX Should attempt to run with fewer receive
1423			 * XXX buffers instead of just failing.
1424			 */
1425			FXP_RXMAP_PUT(sc, rxmap);
1426			fxp_rxdrain(sc);
1427			goto out;
1428		}
1429	}
1430	sc->sc_rxidle = 0;
1431
1432	/*
1433	 * Give the transmit ring to the chip.  We do this by pointing
1434	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1435	 * issuing a start command.  It will execute the NOP and then
1436	 * suspend, pointing at the first descriptor.
1437	 */
1438	fxp_scb_wait(sc);
1439	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1440	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1441
1442	/*
1443	 * Initialize receiver buffer area - RFA.
1444	 */
1445	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1446	fxp_scb_wait(sc);
1447	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1448	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1449	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1450
1451	if (sc->sc_flags & FXPF_MII) {
1452		/*
1453		 * Set current media.
1454		 */
1455		mii_mediachg(&sc->sc_mii);
1456	}
1457
1458	/*
1459	 * ...all done!
1460	 */
1461	ifp->if_flags |= IFF_RUNNING;
1462	ifp->if_flags &= ~IFF_OACTIVE;
1463
1464	/*
1465	 * Start the one second timer.
1466	 */
1467	timeout(fxp_tick, sc, hz);
1468
1469	/*
1470	 * Attempt to start output on the interface.
1471	 */
1472	fxp_start(ifp);
1473
1474 out:
1475	if (error)
1476		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1477	return (error);
1478}
1479
1480/*
1481 * Change media according to request.
1482 */
1483int
1484fxp_mii_mediachange(ifp)
1485	struct ifnet *ifp;
1486{
1487	struct fxp_softc *sc = ifp->if_softc;
1488
1489	if (ifp->if_flags & IFF_UP)
1490		mii_mediachg(&sc->sc_mii);
1491	return (0);
1492}
1493
1494/*
1495 * Notify the world which media we're using.
1496 */
1497void
1498fxp_mii_mediastatus(ifp, ifmr)
1499	struct ifnet *ifp;
1500	struct ifmediareq *ifmr;
1501{
1502	struct fxp_softc *sc = ifp->if_softc;
1503
1504	if(sc->sc_enabled == 0) {
1505		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1506		ifmr->ifm_status = 0;
1507		return;
1508	}
1509
1510	mii_pollstat(&sc->sc_mii);
1511	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1512	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1513}
1514
1515int
1516fxp_80c24_mediachange(ifp)
1517	struct ifnet *ifp;
1518{
1519
1520	/* Nothing to do here. */
1521	return (0);
1522}
1523
1524void
1525fxp_80c24_mediastatus(ifp, ifmr)
1526	struct ifnet *ifp;
1527	struct ifmediareq *ifmr;
1528{
1529	struct fxp_softc *sc = ifp->if_softc;
1530
1531	/*
1532	 * Media is currently-selected media.  We cannot determine
1533	 * the link status.
1534	 */
1535	ifmr->ifm_status = 0;
1536	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1537}
1538
1539/*
1540 * Add a buffer to the end of the RFA buffer list.
1541 * Return 0 if successful, error code on failure.
1542 *
1543 * The RFA struct is stuck at the beginning of mbuf cluster and the
1544 * data pointer is fixed up to point just past it.
1545 */
1546int
1547fxp_add_rfabuf(sc, rxmap, unload)
1548	struct fxp_softc *sc;
1549	bus_dmamap_t rxmap;
1550	int unload;
1551{
1552	struct mbuf *m;
1553	int error;
1554
1555	MGETHDR(m, M_DONTWAIT, MT_DATA);
1556	if (m == NULL)
1557		return (ENOBUFS);
1558
1559	MCLGET(m, M_DONTWAIT);
1560	if ((m->m_flags & M_EXT) == 0) {
1561		m_freem(m);
1562		return (ENOBUFS);
1563	}
1564
1565	if (unload)
1566		bus_dmamap_unload(sc->sc_dmat, rxmap);
1567
1568	M_SETCTX(m, rxmap);
1569
1570	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1571	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1572	if (error) {
1573		printf("%s: can't load rx DMA map %d, error = %d\n",
1574		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1575		panic("fxp_add_rfabuf");		/* XXX */
1576	}
1577
1578	FXP_INIT_RFABUF(sc, m);
1579
1580	return (0);
1581}
1582
1583volatile int
1584fxp_mdi_read(self, phy, reg)
1585	struct device *self;
1586	int phy;
1587	int reg;
1588{
1589	struct fxp_softc *sc = (struct fxp_softc *)self;
1590	int count = 10000;
1591	int value;
1592
1593	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1594	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1595
1596	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1597	    && count--)
1598		DELAY(10);
1599
1600	if (count <= 0)
1601		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1602
1603	return (value & 0xffff);
1604}
1605
1606void
1607fxp_statchg(self)
1608	struct device *self;
1609{
1610
1611	/* XXX Update ifp->if_baudrate */
1612}
1613
1614void
1615fxp_mdi_write(self, phy, reg, value)
1616	struct device *self;
1617	int phy;
1618	int reg;
1619	int value;
1620{
1621	struct fxp_softc *sc = (struct fxp_softc *)self;
1622	int count = 10000;
1623
1624	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1625	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1626	    (value & 0xffff));
1627
1628	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1629	    count--)
1630		DELAY(10);
1631
1632	if (count <= 0)
1633		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1634}
1635
1636int
1637fxp_ioctl(ifp, command, data)
1638	struct ifnet *ifp;
1639	u_long command;
1640	caddr_t data;
1641{
1642	struct fxp_softc *sc = ifp->if_softc;
1643	struct ifreq *ifr = (struct ifreq *)data;
1644	struct ifaddr *ifa = (struct ifaddr *)data;
1645	int s, error = 0;
1646
1647	s = splnet();
1648
1649	switch (command) {
1650	case SIOCSIFADDR:
1651		if ((error = fxp_enable(sc)) != 0)
1652			break;
1653		ifp->if_flags |= IFF_UP;
1654
1655		switch (ifa->ifa_addr->sa_family) {
1656#ifdef INET
1657		case AF_INET:
1658			if ((error = fxp_init(sc)) != 0)
1659				break;
1660			arp_ifinit(ifp, ifa);
1661			break;
1662#endif /* INET */
1663#ifdef NS
1664		case AF_NS:
1665		    {
1666			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1667
1668			 if (ns_nullhost(*ina))
1669				ina->x_host = *(union ns_host *)
1670				    LLADDR(ifp->if_sadl);
1671			 else
1672				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1673				    ifp->if_addrlen);
1674			 /* Set new address. */
1675			 error = fxp_init(sc);
1676			 break;
1677		    }
1678#endif /* NS */
1679		default:
1680			error = fxp_init(sc);
1681			break;
1682		}
1683		break;
1684
1685	case SIOCSIFMTU:
1686		if (ifr->ifr_mtu > ETHERMTU)
1687			error = EINVAL;
1688		else
1689			ifp->if_mtu = ifr->ifr_mtu;
1690		break;
1691
1692	case SIOCSIFFLAGS:
1693		if ((ifp->if_flags & IFF_UP) == 0 &&
1694		    (ifp->if_flags & IFF_RUNNING) != 0) {
1695			/*
1696			 * If interface is marked down and it is running, then
1697			 * stop it.
1698			 */
1699			fxp_stop(sc, 1);
1700			fxp_disable(sc);
1701		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1702		    (ifp->if_flags & IFF_RUNNING) == 0) {
1703			/*
1704			 * If interface is marked up and it is stopped, then
1705			 * start it.
1706			 */
1707			if((error = fxp_enable(sc)) != 0)
1708				break;
1709			error = fxp_init(sc);
1710		} else if ((ifp->if_flags & IFF_UP) != 0) {
1711			/*
1712			 * Reset the interface to pick up change in any other
1713			 * flags that affect the hardware state.
1714			 */
1715			if((error = fxp_enable(sc)) != 0)
1716				break;
1717			error = fxp_init(sc);
1718		}
1719		break;
1720
1721	case SIOCADDMULTI:
1722	case SIOCDELMULTI:
1723		if(sc->sc_enabled == 0) {
1724			error = EIO;
1725			break;
1726		}
1727		error = (command == SIOCADDMULTI) ?
1728		    ether_addmulti(ifr, &sc->sc_ethercom) :
1729		    ether_delmulti(ifr, &sc->sc_ethercom);
1730
1731		if (error == ENETRESET) {
1732			/*
1733			 * Multicast list has changed; set the hardware
1734			 * filter accordingly.
1735			 */
1736			if (sc->sc_txpending) {
1737				sc->sc_flags |= FXPF_WANTINIT;
1738				error = 0;
1739			} else
1740				error = fxp_init(sc);
1741		}
1742		break;
1743
1744	case SIOCSIFMEDIA:
1745	case SIOCGIFMEDIA:
1746		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1747		break;
1748
1749	default:
1750		error = EINVAL;
1751		break;
1752	}
1753
1754	splx(s);
1755	return (error);
1756}
1757
1758/*
1759 * Program the multicast filter.
1760 *
1761 * This function must be called at splnet().
1762 */
1763void
1764fxp_mc_setup(sc)
1765	struct fxp_softc *sc;
1766{
1767	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1768	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1769	struct ethercom *ec = &sc->sc_ethercom;
1770	struct ether_multi *enm;
1771	struct ether_multistep step;
1772	int nmcasts;
1773
1774#ifdef DIAGNOSTIC
1775	if (sc->sc_txpending)
1776		panic("fxp_mc_setup: pending transmissions");
1777#endif
1778
1779	ifp->if_flags &= ~IFF_ALLMULTI;
1780
1781	/*
1782	 * Initialize multicast setup descriptor.
1783	 */
1784	nmcasts = 0;
1785	ETHER_FIRST_MULTI(step, ec, enm);
1786	while (enm != NULL) {
1787		/*
1788		 * Check for too many multicast addresses or if we're
1789		 * listening to a range.  Either way, we simply have
1790		 * to accept all multicasts.
1791		 */
1792		if (nmcasts >= MAXMCADDR ||
1793		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1794		    ETHER_ADDR_LEN) != 0) {
1795			/*
1796			 * Callers of this function must do the
1797			 * right thing with this.  If we're called
1798			 * from outside fxp_init(), the caller must
1799			 * detect if the state if IFF_ALLMULTI changes.
1800			 * If it does, the caller must then call
1801			 * fxp_init(), since allmulti is handled by
1802			 * the config block.
1803			 */
1804			ifp->if_flags |= IFF_ALLMULTI;
1805			return;
1806		}
1807		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1808		    ETHER_ADDR_LEN);
1809		nmcasts++;
1810		ETHER_NEXT_MULTI(step, enm);
1811	}
1812
1813	/* BIG_ENDIAN: no need to swap to store 0 */
1814	mcsp->cb_status = 0;
1815	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1816	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1817	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1818
1819	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1820
1821	/*
1822	 * Wait until the command unit is not active.  This should never
1823	 * happen since nothing is queued, but make sure anyway.
1824	 */
1825	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1826	    FXP_SCB_CUS_ACTIVE)
1827		/* nothing */ ;
1828
1829	/*
1830	 * Start the multicast setup command/DMA.
1831	 */
1832	fxp_scb_wait(sc);
1833	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1834	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1835
1836	/* ...and wait for it to complete. */
1837	do {
1838		FXP_CDMCSSYNC(sc,
1839		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1840	} while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
1841}
1842
1843int
1844fxp_enable(sc)
1845	struct fxp_softc *sc;
1846{
1847
1848	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1849		if ((*sc->sc_enable)(sc) != 0) {
1850			printf("%s: device enable failed\n",
1851			    sc->sc_dev.dv_xname);
1852			return (EIO);
1853		}
1854	}
1855
1856	sc->sc_enabled = 1;
1857	return (0);
1858}
1859
1860void
1861fxp_disable(sc)
1862	struct fxp_softc *sc;
1863{
1864
1865	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1866		(*sc->sc_disable)(sc);
1867		sc->sc_enabled = 0;
1868	}
1869}
1870
1871int
1872fxp_detach(sc)
1873	struct fxp_softc *sc;
1874{
1875	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1876	int i;
1877
1878	/* Unhook our tick handler. */
1879	untimeout(fxp_tick, sc);
1880
1881	if (sc->sc_flags & FXPF_MII) {
1882		/* Detach all PHYs */
1883		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1884	}
1885
1886	/* Delete all remaining media. */
1887	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1888
1889#if NRND > 0
1890	rnd_detach_source(&sc->rnd_source);
1891#endif
1892#if NBPFILTER > 0
1893	bpfdetach(ifp);
1894#endif
1895	ether_ifdetach(ifp);
1896	if_detach(ifp);
1897
1898	for (i = 0; i < FXP_NRFABUFS; i++) {
1899		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1900		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1901	}
1902
1903	for (i = 0; i < FXP_NTXCB; i++) {
1904		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1905		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1906	}
1907
1908	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1909	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1910	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1911	    sizeof(struct fxp_control_data));
1912	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1913
1914	shutdownhook_disestablish(sc->sc_sdhook);
1915
1916	return (0);
1917}
1918