i82557.c revision 1.16
1/*	$NetBSD: i82557.c,v 1.16 2000/02/02 08:05:27 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 *    notice unmodified, this list of conditions, and the following
49 *    disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 *    notice, this list of conditions and the following disclaimer in the
52 *    documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69/*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74#include "opt_inet.h"
75#include "opt_ns.h"
76#include "bpfilter.h"
77#include "rnd.h"
78
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/mbuf.h>
82#include <sys/malloc.h>
83#include <sys/kernel.h>
84#include <sys/socket.h>
85#include <sys/ioctl.h>
86#include <sys/errno.h>
87#include <sys/device.h>
88
89#include <machine/endian.h>
90
91#include <vm/vm.h>		/* for PAGE_SIZE */
92
93#if NRND > 0
94#include <sys/rnd.h>
95#endif
96
97#include <net/if.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_ether.h>
101
102#if NBPFILTER > 0
103#include <net/bpf.h>
104#endif
105
106#ifdef INET
107#include <netinet/in.h>
108#include <netinet/if_inarp.h>
109#endif
110
111#ifdef NS
112#include <netns/ns.h>
113#include <netns/ns_if.h>
114#endif
115
116#include <machine/bus.h>
117#include <machine/intr.h>
118
119#include <dev/mii/miivar.h>
120
121#include <dev/ic/i82557reg.h>
122#include <dev/ic/i82557var.h>
123
124/*
125 * NOTE!  On the Alpha, we have an alignment constraint.  The
126 * card DMAs the packet immediately following the RFA.  However,
127 * the first thing in the packet is a 14-byte Ethernet header.
128 * This means that the packet is misaligned.  To compensate,
129 * we actually offset the RFA 2 bytes into the cluster.  This
130 * alignes the packet after the Ethernet header at a 32-bit
131 * boundary.  HOWEVER!  This means that the RFA is misaligned!
132 */
133#define	RFA_ALIGNMENT_FUDGE	2
134
135/*
136 * Template for default configuration parameters.
137 * See struct fxp_cb_config for the bit definitions.
138 */
139u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x80, 0x2,		/* cb_command */
142	0xff, 0xff, 0xff, 0xff,	/* link_addr */
143	0x16,	/*  0 */
144	0x8,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x80,	/*  5 */
149	0xb2,	/*  6 */
150	0x3,	/*  7 */
151	0x1,	/*  8 */
152	0x0,	/*  9 */
153	0x26,	/* 10 */
154	0x0,	/* 11 */
155	0x60,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf3,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5	/* 21 */
165};
166
167void	fxp_mii_initmedia __P((struct fxp_softc *));
168int	fxp_mii_mediachange __P((struct ifnet *));
169void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
170
171void	fxp_80c24_initmedia __P((struct fxp_softc *));
172int	fxp_80c24_mediachange __P((struct ifnet *));
173void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
174
175inline void fxp_scb_wait __P((struct fxp_softc *));
176
177void	fxp_start __P((struct ifnet *));
178int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
179int	fxp_init __P((struct fxp_softc *));
180void	fxp_rxdrain __P((struct fxp_softc *));
181void	fxp_stop __P((struct fxp_softc *, int));
182void	fxp_watchdog __P((struct ifnet *));
183int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
184int	fxp_mdi_read __P((struct device *, int, int));
185void	fxp_statchg __P((struct device *));
186void	fxp_mdi_write __P((struct device *, int, int, int));
187void	fxp_autosize_eeprom __P((struct fxp_softc*));
188void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
189void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
190void	fxp_tick __P((void *));
191void	fxp_mc_setup __P((struct fxp_softc *));
192
193void	fxp_shutdown __P((void *));
194void	fxp_power __P((int, void *));
195
196int	fxp_copy_small = 0;
197
198int	fxp_enable __P((struct fxp_softc*));
199void	fxp_disable __P((struct fxp_softc*));
200
201struct fxp_phytype {
202	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
203	void	(*fp_init) __P((struct fxp_softc *));
204} fxp_phytype_table[] = {
205	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
206	{ -1,				fxp_mii_initmedia },
207};
208
209/*
210 * Set initial transmit threshold at 64 (512 bytes). This is
211 * increased by 64 (512 bytes) at a time, to maximum of 192
212 * (1536 bytes), if an underrun occurs.
213 */
214static int tx_threshold = 64;
215
216/*
217 * Wait for the previous command to be accepted (but not necessarily
218 * completed).
219 */
220inline void
221fxp_scb_wait(sc)
222	struct fxp_softc *sc;
223{
224	int i = 10000;
225
226	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
227		delay(2);
228	if (i == 0)
229		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
230}
231
232/*
233 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
234 */
235void
236fxp_attach(sc)
237	struct fxp_softc *sc;
238{
239	u_int8_t enaddr[6];
240	struct ifnet *ifp;
241	bus_dma_segment_t seg;
242	int rseg, i, error;
243	struct fxp_phytype *fp;
244
245	/*
246	 * Allocate the control data structures, and create and load the
247	 * DMA map for it.
248	 */
249	if ((error = bus_dmamem_alloc(sc->sc_dmat,
250	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251	    0)) != 0) {
252		printf("%s: unable to allocate control data, error = %d\n",
253		    sc->sc_dev.dv_xname, error);
254		goto fail_0;
255	}
256
257	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259	    BUS_DMA_COHERENT)) != 0) {
260		printf("%s: unable to map control data, error = %d\n",
261		    sc->sc_dev.dv_xname, error);
262		goto fail_1;
263	}
264	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
265
266	if ((error = bus_dmamap_create(sc->sc_dmat,
267	    sizeof(struct fxp_control_data), 1,
268	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
269		printf("%s: unable to create control data DMA map, "
270		    "error = %d\n", sc->sc_dev.dv_xname, error);
271		goto fail_2;
272	}
273
274	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
275	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
276	    0)) != 0) {
277		printf("%s: can't load control data DMA map, error = %d\n",
278		    sc->sc_dev.dv_xname, error);
279		goto fail_3;
280	}
281
282	/*
283	 * Create the transmit buffer DMA maps.
284	 */
285	for (i = 0; i < FXP_NTXCB; i++) {
286		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
287		    FXP_NTXSEG, MCLBYTES, 0, 0,
288		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
289			printf("%s: unable to create tx DMA map %d, "
290			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
291			goto fail_4;
292		}
293	}
294
295	/*
296	 * Create the receive buffer DMA maps.
297	 */
298	for (i = 0; i < FXP_NRFABUFS; i++) {
299		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
300		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
301			printf("%s: unable to create rx DMA map %d, "
302			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
303			goto fail_5;
304		}
305	}
306
307	/* Initialize MAC address and media structures. */
308	fxp_get_info(sc, enaddr);
309
310	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
311	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
312
313	ifp = &sc->sc_ethercom.ec_if;
314
315	/*
316	 * Get info about our media interface, and initialize it.  Note
317	 * the table terminates itself with a phy of -1, indicating
318	 * that we're using MII.
319	 */
320	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
321		if (fp->fp_phy == sc->phy_primary_device)
322			break;
323	(*fp->fp_init)(sc);
324
325	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
326	ifp->if_softc = sc;
327	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
328	ifp->if_ioctl = fxp_ioctl;
329	ifp->if_start = fxp_start;
330	ifp->if_watchdog = fxp_watchdog;
331
332	/*
333	 * Attach the interface.
334	 */
335	if_attach(ifp);
336	ether_ifattach(ifp, enaddr);
337#if NBPFILTER > 0
338	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
339	    sizeof(struct ether_header));
340#endif
341#if NRND > 0
342	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
343			  RND_TYPE_NET, 0);
344#endif
345
346	/*
347	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
348	 * doing do could allow DMA to corrupt kernel memory during the
349	 * reboot before the driver initializes.
350	 */
351	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
352	if (sc->sc_sdhook == NULL)
353		printf("%s: WARNING: unable to establish shutdown hook\n",
354		    sc->sc_dev.dv_xname);
355	/*
356  	 * Add suspend hook, for similar reasons..
357	 */
358	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
359	if (sc->sc_powerhook == NULL)
360		printf("%s: WARNING: unable to establish power hook\n",
361		    sc->sc_dev.dv_xname);
362	return;
363
364	/*
365	 * Free any resources we've allocated during the failed attach
366	 * attempt.  Do this in reverse order and fall though.
367	 */
368 fail_5:
369	for (i = 0; i < FXP_NRFABUFS; i++) {
370		if (sc->sc_rxmaps[i] != NULL)
371			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
372	}
373 fail_4:
374	for (i = 0; i < FXP_NTXCB; i++) {
375		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
376			bus_dmamap_destroy(sc->sc_dmat,
377			    FXP_DSTX(sc, i)->txs_dmamap);
378	}
379	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
380 fail_3:
381	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
382 fail_2:
383	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
384	    sizeof(struct fxp_control_data));
385 fail_1:
386	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
387 fail_0:
388	return;
389}
390
391void
392fxp_mii_initmedia(sc)
393	struct fxp_softc *sc;
394{
395
396	sc->sc_flags |= FXPF_MII;
397
398	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
399	sc->sc_mii.mii_readreg = fxp_mdi_read;
400	sc->sc_mii.mii_writereg = fxp_mdi_write;
401	sc->sc_mii.mii_statchg = fxp_statchg;
402	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
403	    fxp_mii_mediastatus);
404	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
405	    MII_OFFSET_ANY);
406	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
407		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
408		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
409	} else
410		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
411}
412
413void
414fxp_80c24_initmedia(sc)
415	struct fxp_softc *sc;
416{
417
418	/*
419	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
420	 * doesn't have a programming interface of any sort.  The
421	 * media is sensed automatically based on how the link partner
422	 * is configured.  This is, in essence, manual configuration.
423	 */
424	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
425	    sc->sc_dev.dv_xname);
426	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
427	    fxp_80c24_mediastatus);
428	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
429	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
430}
431
432/*
433 * Device shutdown routine. Called at system shutdown after sync. The
434 * main purpose of this routine is to shut off receiver DMA so that
435 * kernel memory doesn't get clobbered during warmboot.
436 */
437void
438fxp_shutdown(arg)
439	void *arg;
440{
441	struct fxp_softc *sc = arg;
442
443	/*
444	 * Since the system's going to halt shortly, don't bother
445	 * freeing mbufs.
446	 */
447	fxp_stop(sc, 0);
448}
449/*
450 * Power handler routine. Called when the system is transitioning
451 * into/out of power save modes.  As with fxp_shutdown, the main
452 * purpose of this routine is to shut off receiver DMA so it doesn't
453 * clobber kernel memory at the wrong time.
454 */
455void
456fxp_power(why, arg)
457	int why;
458	void *arg;
459{
460	struct fxp_softc *sc = arg;
461	struct ifnet *ifp;
462	int s;
463
464	s = splnet();
465	if (why != PWR_RESUME)
466		fxp_stop(sc, 0);
467	else {
468		ifp = &sc->sc_ethercom.ec_if;
469		if (ifp->if_flags & IFF_UP)
470			fxp_init(sc);
471	}
472	splx(s);
473}
474
475/*
476 * Initialize the interface media.
477 */
478void
479fxp_get_info(sc, enaddr)
480	struct fxp_softc *sc;
481	u_int8_t *enaddr;
482{
483	u_int16_t data, myea[3];
484
485	/*
486	 * Reset to a stable state.
487	 */
488	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
489	DELAY(10);
490
491	sc->sc_eeprom_size = 0;
492	fxp_autosize_eeprom(sc);
493	if(sc->sc_eeprom_size == 0) {
494	    printf("%s: failed to detect EEPROM size", sc->sc_dev.dv_xname);
495	    sc->sc_eeprom_size = 6; /* XXX panic here? */
496	}
497#ifdef DEBUG
498	printf("%s: detected %d word EEPROM\n",
499	       sc->sc_dev.dv_xname,
500	       1 << sc->sc_eeprom_size);
501#endif
502
503	/*
504	 * Get info about the primary PHY
505	 */
506	fxp_read_eeprom(sc, &data, 6, 1);
507	sc->phy_primary_addr = data & 0xff;
508	sc->phy_primary_device = (data >> 8) & 0x3f;
509	sc->phy_10Mbps_only = data >> 15;
510
511	/*
512	 * Read MAC address.
513	 */
514	fxp_read_eeprom(sc, myea, 0, 3);
515	bcopy(myea, enaddr, ETHER_ADDR_LEN);
516}
517
518/*
519 * Figure out EEPROM size.
520 *
521 * 559's can have either 64-word or 256-word EEPROMs, the 558
522 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
523 * talks about the existance of 16 to 256 word EEPROMs.
524 *
525 * The only known sizes are 64 and 256, where the 256 version is used
526 * by CardBus cards to store CIS information.
527 *
528 * The address is shifted in msb-to-lsb, and after the last
529 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
530 * after which follows the actual data. We try to detect this zero, by
531 * probing the data-out bit in the EEPROM control register just after
532 * having shifted in a bit. If the bit is zero, we assume we've
533 * shifted enough address bits. The data-out should be tri-state,
534 * before this, which should translate to a logical one.
535 *
536 * Other ways to do this would be to try to read a register with known
537 * contents with a varying number of address bits, but no such
538 * register seem to be available. The high bits of register 10 are 01
539 * on the 558 and 559, but apparently not on the 557.
540 *
541 * The Linux driver computes a checksum on the EEPROM data, but the
542 * value of this checksum is not very well documented.
543 */
544
545void
546fxp_autosize_eeprom(sc)
547	struct fxp_softc *sc;
548{
549	u_int16_t reg;
550	int x;
551
552	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
553	/*
554	 * Shift in read opcode.
555	 */
556	for (x = 3; x > 0; x--) {
557		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
558			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
559		} else {
560			reg = FXP_EEPROM_EECS;
561		}
562		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
563		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
564			    reg | FXP_EEPROM_EESK);
565		DELAY(1);
566		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
567		DELAY(1);
568	}
569	/*
570	 * Shift in address, wait for the dummy zero following a correct
571	 * address shift.
572	 */
573	for (x = 1; x <=  8; x++) {
574		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
575		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
576			    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
577		DELAY(1);
578		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
579		    FXP_EEPROM_EEDO) == 0)
580			break;
581		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
582		DELAY(1);
583	}
584	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
585	DELAY(1);
586	if(x != 6 && x != 8) {
587#ifdef DEBUG
588		printf("%s: strange EEPROM size (%d)\n",
589		       sc->sc_dev.dv_xname, 1 << x);
590#endif
591	} else
592		sc->sc_eeprom_size = x;
593}
594
595/*
596 * Read from the serial EEPROM. Basically, you manually shift in
597 * the read opcode (one bit at a time) and then shift in the address,
598 * and then you shift out the data (all of this one bit at a time).
599 * The word size is 16 bits, so you have to provide the address for
600 * every 16 bits of data.
601 */
602void
603fxp_read_eeprom(sc, data, offset, words)
604	struct fxp_softc *sc;
605	u_int16_t *data;
606	int offset;
607	int words;
608{
609	u_int16_t reg;
610	int i, x;
611
612	for (i = 0; i < words; i++) {
613		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
614		/*
615		 * Shift in read opcode.
616		 */
617		for (x = 3; x > 0; x--) {
618			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
619				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
620			} else {
621				reg = FXP_EEPROM_EECS;
622			}
623			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
624			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
625			    reg | FXP_EEPROM_EESK);
626			DELAY(1);
627			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
628			DELAY(1);
629		}
630		/*
631		 * Shift in address.
632		 */
633		for (x = sc->sc_eeprom_size; x > 0; x--) {
634			if ((i + offset) & (1 << (x - 1))) {
635			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
636			} else {
637			    reg = FXP_EEPROM_EECS;
638			}
639			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
640			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
641				    reg | FXP_EEPROM_EESK);
642			DELAY(1);
643			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
644			DELAY(1);
645		}
646		reg = FXP_EEPROM_EECS;
647		data[i] = 0;
648		/*
649		 * Shift out data.
650		 */
651		for (x = 16; x > 0; x--) {
652			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
653			    reg | FXP_EEPROM_EESK);
654			DELAY(1);
655			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
656			    FXP_EEPROM_EEDO)
657				data[i] |= (1 << (x - 1));
658			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
659			DELAY(1);
660		}
661		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
662		DELAY(1);
663	}
664}
665
666/*
667 * Start packet transmission on the interface.
668 */
669void
670fxp_start(ifp)
671	struct ifnet *ifp;
672{
673	struct fxp_softc *sc = ifp->if_softc;
674	struct mbuf *m0, *m;
675	struct fxp_cb_tx *txd;
676	struct fxp_txsoft *txs;
677	struct fxp_tbdlist *tbd;
678	bus_dmamap_t dmamap;
679	int error, lasttx, nexttx, opending, seg;
680
681	/*
682	 * If we want a re-init, bail out now.
683	 */
684	if (sc->sc_flags & FXPF_WANTINIT) {
685		ifp->if_flags |= IFF_OACTIVE;
686		return;
687	}
688
689	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
690		return;
691
692	/*
693	 * Remember the previous txpending and the current lasttx.
694	 */
695	opending = sc->sc_txpending;
696	lasttx = sc->sc_txlast;
697
698	/*
699	 * Loop through the send queue, setting up transmit descriptors
700	 * until we drain the queue, or use up all available transmit
701	 * descriptors.
702	 */
703	while (sc->sc_txpending < FXP_NTXCB) {
704		/*
705		 * Grab a packet off the queue.
706		 */
707		IF_DEQUEUE(&ifp->if_snd, m0);
708		if (m0 == NULL)
709			break;
710
711		/*
712		 * Get the next available transmit descriptor.
713		 */
714		nexttx = FXP_NEXTTX(sc->sc_txlast);
715		txd = FXP_CDTX(sc, nexttx);
716		tbd = FXP_CDTBD(sc, nexttx);
717		txs = FXP_DSTX(sc, nexttx);
718		dmamap = txs->txs_dmamap;
719
720		/*
721		 * Load the DMA map.  If this fails, the packet either
722		 * didn't fit in the allotted number of frags, or we were
723		 * short on resources.  In this case, we'll copy and try
724		 * again.
725		 */
726		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
727		    BUS_DMA_NOWAIT) != 0) {
728			MGETHDR(m, M_DONTWAIT, MT_DATA);
729			if (m == NULL) {
730				printf("%s: unable to allocate Tx mbuf\n",
731				    sc->sc_dev.dv_xname);
732				IF_PREPEND(&ifp->if_snd, m0);
733				break;
734			}
735			if (m0->m_pkthdr.len > MHLEN) {
736				MCLGET(m, M_DONTWAIT);
737				if ((m->m_flags & M_EXT) == 0) {
738					printf("%s: unable to allocate Tx "
739					    "cluster\n", sc->sc_dev.dv_xname);
740					m_freem(m);
741					IF_PREPEND(&ifp->if_snd, m0);
742					break;
743				}
744			}
745			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
746			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
747			m_freem(m0);
748			m0 = m;
749			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
750			    m0, BUS_DMA_NOWAIT);
751			if (error) {
752				printf("%s: unable to load Tx buffer, "
753				    "error = %d\n", sc->sc_dev.dv_xname, error);
754				IF_PREPEND(&ifp->if_snd, m0);
755				break;
756			}
757		}
758
759		/* Initialize the fraglist. */
760		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
761			tbd->tbd_d[seg].tb_addr =
762			    htole32(dmamap->dm_segs[seg].ds_addr);
763			tbd->tbd_d[seg].tb_size =
764			    htole32(dmamap->dm_segs[seg].ds_len);
765		}
766
767		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
768
769		/* Sync the DMA map. */
770		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
771		    BUS_DMASYNC_PREWRITE);
772
773		/*
774		 * Store a pointer to the packet so we can free it later.
775		 */
776		txs->txs_mbuf = m0;
777
778		/*
779		 * Initialize the transmit descriptor.
780		 */
781		/* BIG_ENDIAN: no need to swap to store 0 */
782		txd->cb_status = 0;
783		txd->cb_command =
784		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
785		txd->tx_threshold = tx_threshold;
786		txd->tbd_number = dmamap->dm_nsegs;
787
788		FXP_CDTXSYNC(sc, nexttx,
789		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
790
791		/* Advance the tx pointer. */
792		sc->sc_txpending++;
793		sc->sc_txlast = nexttx;
794
795#if NBPFILTER > 0
796		/*
797		 * Pass packet to bpf if there is a listener.
798		 */
799		if (ifp->if_bpf)
800			bpf_mtap(ifp->if_bpf, m0);
801#endif
802	}
803
804	if (sc->sc_txpending == FXP_NTXCB) {
805		/* No more slots; notify upper layer. */
806		ifp->if_flags |= IFF_OACTIVE;
807	}
808
809	if (sc->sc_txpending != opending) {
810		/*
811		 * We enqueued packets.  If the transmitter was idle,
812		 * reset the txdirty pointer.
813		 */
814		if (opending == 0)
815			sc->sc_txdirty = FXP_NEXTTX(lasttx);
816
817		/*
818		 * Cause the chip to interrupt and suspend command
819		 * processing once the last packet we've enqueued
820		 * has been transmitted.
821		 */
822		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
823		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
824		FXP_CDTXSYNC(sc, sc->sc_txlast,
825		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
826
827		/*
828		 * The entire packet chain is set up.  Clear the suspend bit
829		 * on the command prior to the first packet we set up.
830		 */
831		FXP_CDTXSYNC(sc, lasttx,
832		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
833		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
834		FXP_CDTXSYNC(sc, lasttx,
835		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
836
837		/*
838		 * Issue a Resume command in case the chip was suspended.
839		 */
840		fxp_scb_wait(sc);
841		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
842
843		/* Set a watchdog timer in case the chip flakes out. */
844		ifp->if_timer = 5;
845	}
846}
847
848/*
849 * Process interface interrupts.
850 */
851int
852fxp_intr(arg)
853	void *arg;
854{
855	struct fxp_softc *sc = arg;
856	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857	struct fxp_cb_tx *txd;
858	struct fxp_txsoft *txs;
859	struct mbuf *m, *m0;
860	bus_dmamap_t rxmap;
861	struct fxp_rfa *rfa;
862	struct ether_header *eh;
863	int i, claimed = 0;
864	u_int16_t len, rxstat, txstat;
865	u_int8_t statack;
866
867	/*
868	 * If the interface isn't running, don't try to
869	 * service the interrupt.. just ack it and bail.
870	 */
871	if ((ifp->if_flags & IFF_RUNNING) == 0) {
872		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
873		if (statack) {
874			claimed = 1;
875			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
876		}
877		return claimed;
878	}
879
880	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
881		claimed = 1;
882
883		/*
884		 * First ACK all the interrupts in this pass.
885		 */
886		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
887
888		/*
889		 * Process receiver interrupts. If a no-resource (RNR)
890		 * condition exists, get whatever packets we can and
891		 * re-start the receiver.
892		 */
893		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
894 rcvloop:
895			m = sc->sc_rxq.ifq_head;
896			rfa = FXP_MTORFA(m);
897			rxmap = M_GETCTX(m, bus_dmamap_t);
898
899			FXP_RFASYNC(sc, m,
900			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
901
902			rxstat = le16toh(rfa->rfa_status);
903
904			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
905				/*
906				 * We have processed all of the
907				 * receive buffers.
908				 */
909				goto do_transmit;
910			}
911
912			IF_DEQUEUE(&sc->sc_rxq, m);
913
914			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
915
916			len = le16toh(rfa->actual_size) &
917			    (m->m_ext.ext_size - 1);
918
919			if (len < sizeof(struct ether_header)) {
920				/*
921				 * Runt packet; drop it now.
922				 */
923				FXP_INIT_RFABUF(sc, m);
924				goto rcvloop;
925			}
926
927			/*
928			 * If the packet is small enough to fit in a
929			 * single header mbuf, allocate one and copy
930			 * the data into it.  This greatly reduces
931			 * memory consumption when we receive lots
932			 * of small packets.
933			 *
934			 * Otherwise, we add a new buffer to the receive
935			 * chain.  If this fails, we drop the packet and
936			 * recycle the old buffer.
937			 */
938			if (fxp_copy_small != 0 && len <= MHLEN) {
939				MGETHDR(m0, M_DONTWAIT, MT_DATA);
940				if (m == NULL)
941					goto dropit;
942				memcpy(mtod(m0, caddr_t),
943				    mtod(m, caddr_t), len);
944				FXP_INIT_RFABUF(sc, m);
945				m = m0;
946			} else {
947				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
948 dropit:
949					ifp->if_ierrors++;
950					FXP_INIT_RFABUF(sc, m);
951					goto rcvloop;
952				}
953			}
954
955			m->m_pkthdr.rcvif = ifp;
956			m->m_pkthdr.len = m->m_len = len;
957			eh = mtod(m, struct ether_header *);
958
959#if NBPFILTER > 0
960			/*
961			 * Pass this up to any BPF listeners, but only
962			 * pass it up the stack it its for us.
963			 */
964			if (ifp->if_bpf) {
965				bpf_mtap(ifp->if_bpf, m);
966
967				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
968				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
969				    (eh->ether_dhost[0] & 1) == 0) {
970					m_freem(m);
971					goto rcvloop;
972				}
973			}
974#endif /* NBPFILTER > 0 */
975
976			/* Pass it on. */
977			(*ifp->if_input)(ifp, m);
978			goto rcvloop;
979		}
980
981 do_transmit:
982		if (statack & FXP_SCB_STATACK_RNR) {
983			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
984			fxp_scb_wait(sc);
985			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
986			    rxmap->dm_segs[0].ds_addr +
987			    RFA_ALIGNMENT_FUDGE);
988			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
989			    FXP_SCB_COMMAND_RU_START);
990		}
991
992		/*
993		 * Free any finished transmit mbuf chains.
994		 */
995		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
996			ifp->if_flags &= ~IFF_OACTIVE;
997			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
998			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
999				txd = FXP_CDTX(sc, i);
1000				txs = FXP_DSTX(sc, i);
1001
1002				FXP_CDTXSYNC(sc, i,
1003				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1004
1005				txstat = le16toh(txd->cb_status);
1006
1007				if ((txstat & FXP_CB_STATUS_C) == 0)
1008					break;
1009
1010				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1011
1012				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1013				    0, txs->txs_dmamap->dm_mapsize,
1014				    BUS_DMASYNC_POSTWRITE);
1015				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1016				m_freem(txs->txs_mbuf);
1017				txs->txs_mbuf = NULL;
1018			}
1019
1020			/* Update the dirty transmit buffer pointer. */
1021			sc->sc_txdirty = i;
1022
1023			/*
1024			 * Cancel the watchdog timer if there are no pending
1025			 * transmissions.
1026			 */
1027			if (sc->sc_txpending == 0) {
1028				ifp->if_timer = 0;
1029
1030				/*
1031				 * If we want a re-init, do that now.
1032				 */
1033				if (sc->sc_flags & FXPF_WANTINIT)
1034					(void) fxp_init(sc);
1035			}
1036
1037			/*
1038			 * Try to get more packets going.
1039			 */
1040			fxp_start(ifp);
1041		}
1042	}
1043
1044#if NRND > 0
1045	if (claimed)
1046		rnd_add_uint32(&sc->rnd_source, statack);
1047#endif
1048	return (claimed);
1049}
1050
1051/*
1052 * Update packet in/out/collision statistics. The i82557 doesn't
1053 * allow you to access these counters without doing a fairly
1054 * expensive DMA to get _all_ of the statistics it maintains, so
1055 * we do this operation here only once per second. The statistics
1056 * counters in the kernel are updated from the previous dump-stats
1057 * DMA and then a new dump-stats DMA is started. The on-chip
1058 * counters are zeroed when the DMA completes. If we can't start
1059 * the DMA immediately, we don't wait - we just prepare to read
1060 * them again next time.
1061 */
1062void
1063fxp_tick(arg)
1064	void *arg;
1065{
1066	struct fxp_softc *sc = arg;
1067	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1068	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1069	int s;
1070
1071	s = splnet();
1072
1073	ifp->if_opackets += le32toh(sp->tx_good);
1074	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1075	if (sp->rx_good) {
1076		ifp->if_ipackets += le32toh(sp->rx_good);
1077		sc->sc_rxidle = 0;
1078	} else {
1079		sc->sc_rxidle++;
1080	}
1081	ifp->if_ierrors +=
1082	    le32toh(sp->rx_crc_errors) +
1083	    le32toh(sp->rx_alignment_errors) +
1084	    le32toh(sp->rx_rnr_errors) +
1085	    le32toh(sp->rx_overrun_errors);
1086	/*
1087	 * If any transmit underruns occured, bump up the transmit
1088	 * threshold by another 512 bytes (64 * 8).
1089	 */
1090	if (sp->tx_underruns) {
1091		ifp->if_oerrors += le32toh(sp->tx_underruns);
1092		if (tx_threshold < 192)
1093			tx_threshold += 64;
1094	}
1095
1096	/*
1097	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1098	 * then assume the receiver has locked up and attempt to clear
1099	 * the condition by reprogramming the multicast filter (actually,
1100	 * resetting the interface). This is a work-around for a bug in
1101	 * the 82557 where the receiver locks up if it gets certain types
1102	 * of garbage in the syncronization bits prior to the packet header.
1103	 * This bug is supposed to only occur in 10Mbps mode, but has been
1104	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1105	 * speed transition).
1106	 */
1107	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1108		(void) fxp_init(sc);
1109		splx(s);
1110		return;
1111	}
1112	/*
1113	 * If there is no pending command, start another stats
1114	 * dump. Otherwise punt for now.
1115	 */
1116	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1117		/*
1118		 * Start another stats dump.
1119		 */
1120		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1121		    FXP_SCB_COMMAND_CU_DUMPRESET);
1122	} else {
1123		/*
1124		 * A previous command is still waiting to be accepted.
1125		 * Just zero our copy of the stats and wait for the
1126		 * next timer event to update them.
1127		 */
1128		/* BIG_ENDIAN: no swap required to store 0 */
1129		sp->tx_good = 0;
1130		sp->tx_underruns = 0;
1131		sp->tx_total_collisions = 0;
1132
1133		sp->rx_good = 0;
1134		sp->rx_crc_errors = 0;
1135		sp->rx_alignment_errors = 0;
1136		sp->rx_rnr_errors = 0;
1137		sp->rx_overrun_errors = 0;
1138	}
1139
1140	if (sc->sc_flags & FXPF_MII) {
1141		/* Tick the MII clock. */
1142		mii_tick(&sc->sc_mii);
1143	}
1144
1145	splx(s);
1146
1147	/*
1148	 * Schedule another timeout one second from now.
1149	 */
1150	timeout(fxp_tick, sc, hz);
1151}
1152
1153/*
1154 * Drain the receive queue.
1155 */
1156void
1157fxp_rxdrain(sc)
1158	struct fxp_softc *sc;
1159{
1160	bus_dmamap_t rxmap;
1161	struct mbuf *m;
1162
1163	for (;;) {
1164		IF_DEQUEUE(&sc->sc_rxq, m);
1165		if (m == NULL)
1166			break;
1167		rxmap = M_GETCTX(m, bus_dmamap_t);
1168		bus_dmamap_unload(sc->sc_dmat, rxmap);
1169		FXP_RXMAP_PUT(sc, rxmap);
1170		m_freem(m);
1171	}
1172}
1173
1174/*
1175 * Stop the interface. Cancels the statistics updater and resets
1176 * the interface.
1177 */
1178void
1179fxp_stop(sc, drain)
1180	struct fxp_softc *sc;
1181	int drain;
1182{
1183	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1184	struct fxp_txsoft *txs;
1185	int i;
1186
1187	/*
1188	 * Turn down interface (done early to avoid bad interactions
1189	 * between panics, shutdown hooks, and the watchdog timer)
1190	 */
1191	ifp->if_timer = 0;
1192	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1193
1194	/*
1195	 * Cancel stats updater.
1196	 */
1197	untimeout(fxp_tick, sc);
1198	if (sc->sc_flags & FXPF_MII) {
1199		/* Down the MII. */
1200		mii_down(&sc->sc_mii);
1201	}
1202
1203	/*
1204	 * Issue software reset
1205	 */
1206	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1207	DELAY(10);
1208
1209	/*
1210	 * Release any xmit buffers.
1211	 */
1212	for (i = 0; i < FXP_NTXCB; i++) {
1213		txs = FXP_DSTX(sc, i);
1214		if (txs->txs_mbuf != NULL) {
1215			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1216			m_freem(txs->txs_mbuf);
1217			txs->txs_mbuf = NULL;
1218		}
1219	}
1220	sc->sc_txpending = 0;
1221
1222	if (drain) {
1223		/*
1224		 * Release the receive buffers.
1225		 */
1226		fxp_rxdrain(sc);
1227	}
1228
1229}
1230
1231/*
1232 * Watchdog/transmission transmit timeout handler. Called when a
1233 * transmission is started on the interface, but no interrupt is
1234 * received before the timeout. This usually indicates that the
1235 * card has wedged for some reason.
1236 */
1237void
1238fxp_watchdog(ifp)
1239	struct ifnet *ifp;
1240{
1241	struct fxp_softc *sc = ifp->if_softc;
1242
1243	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1244	ifp->if_oerrors++;
1245
1246	(void) fxp_init(sc);
1247}
1248
1249/*
1250 * Initialize the interface.  Must be called at splnet().
1251 */
1252int
1253fxp_init(sc)
1254	struct fxp_softc *sc;
1255{
1256	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257	struct fxp_cb_config *cbp;
1258	struct fxp_cb_ias *cb_ias;
1259	struct fxp_cb_tx *txd;
1260	bus_dmamap_t rxmap;
1261	int i, prm, allm, error = 0;
1262
1263	/*
1264	 * Cancel any pending I/O
1265	 */
1266	fxp_stop(sc, 0);
1267
1268	sc->sc_flags = 0;
1269
1270	/*
1271	 * Initialize base of CBL and RFA memory. Loading with zero
1272	 * sets it up for regular linear addressing.
1273	 */
1274	fxp_scb_wait(sc);
1275	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1276	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1277
1278	fxp_scb_wait(sc);
1279	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1280
1281	/*
1282	 * Initialize the multicast filter.  Do this now, since we might
1283	 * have to setup the config block differently.
1284	 */
1285	fxp_mc_setup(sc);
1286
1287	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1288	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1289
1290	/*
1291	 * Initialize base of dump-stats buffer.
1292	 */
1293	fxp_scb_wait(sc);
1294	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1295	    sc->sc_cddma + FXP_CDSTATSOFF);
1296	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1297
1298	cbp = &sc->sc_control_data->fcd_configcb;
1299	memset(cbp, 0, sizeof(struct fxp_cb_config));
1300
1301	/*
1302	 * This copy is kind of disgusting, but there are a bunch of must be
1303	 * zero and must be one bits in this structure and this is the easiest
1304	 * way to initialize them all to proper values.
1305	 */
1306	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1307
1308	/* BIG_ENDIAN: no need to swap to store 0 */
1309	cbp->cb_status =	0;
1310	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1311				    FXP_CB_COMMAND_EL);
1312	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1313	cbp->link_addr =	0xffffffff; /* (no) next command */
1314	cbp->byte_count =	22;	/* (22) bytes to config */
1315	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1316	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1317	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1318	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1319	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1320	cbp->dma_bce =		0;	/* (disable) dma max counters */
1321	cbp->late_scb =		0;	/* (don't) defer SCB update */
1322	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
1323	cbp->ci_int =		1;	/* interrupt on CU idle */
1324	cbp->save_bf =		prm;	/* save bad frames */
1325	cbp->disc_short_rx =	!prm;	/* discard short packets */
1326	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1327	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
1328	cbp->nsai =		1;	/* (don't) disable source addr insert */
1329	cbp->preamble_length =	2;	/* (7 byte) preamble */
1330	cbp->loopback =		0;	/* (don't) loopback */
1331	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1332	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1333	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1334	cbp->promiscuous =	prm;	/* promiscuous mode */
1335	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1336	cbp->crscdt =		0;	/* (CRS only) */
1337	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1338	cbp->padding =		1;	/* (do) pad short tx packets */
1339	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1340	cbp->force_fdx =	0;	/* (don't) force full duplex */
1341	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1342	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1343	cbp->mc_all =		allm;	/* accept all multicasts */
1344
1345	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1346
1347	/*
1348	 * Start the config command/DMA.
1349	 */
1350	fxp_scb_wait(sc);
1351	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1352	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1353	/* ...and wait for it to complete. */
1354	do {
1355		FXP_CDCONFIGSYNC(sc,
1356		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1357	} while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
1358
1359	/*
1360	 * Initialize the station address.
1361	 */
1362	cb_ias = &sc->sc_control_data->fcd_iascb;
1363	/* BIG_ENDIAN: no need to swap to store 0 */
1364	cb_ias->cb_status = 0;
1365	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1366	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1367	cb_ias->link_addr = 0xffffffff;
1368	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1369
1370	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1371
1372	/*
1373	 * Start the IAS (Individual Address Setup) command/DMA.
1374	 */
1375	fxp_scb_wait(sc);
1376	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1377	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1378	/* ...and wait for it to complete. */
1379	do {
1380		FXP_CDIASSYNC(sc,
1381		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1382	} while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
1383
1384	/*
1385	 * Initialize the transmit descriptor ring.  txlast is initialized
1386	 * to the end of the list so that it will wrap around to the first
1387	 * descriptor when the first packet is transmitted.
1388	 */
1389	for (i = 0; i < FXP_NTXCB; i++) {
1390		txd = FXP_CDTX(sc, i);
1391		memset(txd, 0, sizeof(struct fxp_cb_tx));
1392		txd->cb_command =
1393		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1394		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1395		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1396		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1397	}
1398	sc->sc_txpending = 0;
1399	sc->sc_txdirty = 0;
1400	sc->sc_txlast = FXP_NTXCB - 1;
1401
1402	/*
1403	 * Initialize the receive buffer list.
1404	 */
1405	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1406	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1407		rxmap = FXP_RXMAP_GET(sc);
1408		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1409			printf("%s: unable to allocate or map rx "
1410			    "buffer %d, error = %d\n",
1411			    sc->sc_dev.dv_xname,
1412			    sc->sc_rxq.ifq_len, error);
1413			/*
1414			 * XXX Should attempt to run with fewer receive
1415			 * XXX buffers instead of just failing.
1416			 */
1417			FXP_RXMAP_PUT(sc, rxmap);
1418			fxp_rxdrain(sc);
1419			goto out;
1420		}
1421	}
1422	sc->sc_rxidle = 0;
1423
1424	/*
1425	 * Give the transmit ring to the chip.  We do this by pointing
1426	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1427	 * issuing a start command.  It will execute the NOP and then
1428	 * suspend, pointing at the first descriptor.
1429	 */
1430	fxp_scb_wait(sc);
1431	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1432	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1433
1434	/*
1435	 * Initialize receiver buffer area - RFA.
1436	 */
1437	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1438	fxp_scb_wait(sc);
1439	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1440	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1441	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1442
1443	if (sc->sc_flags & FXPF_MII) {
1444		/*
1445		 * Set current media.
1446		 */
1447		mii_mediachg(&sc->sc_mii);
1448	}
1449
1450	/*
1451	 * ...all done!
1452	 */
1453	ifp->if_flags |= IFF_RUNNING;
1454	ifp->if_flags &= ~IFF_OACTIVE;
1455
1456	/*
1457	 * Start the one second timer.
1458	 */
1459	timeout(fxp_tick, sc, hz);
1460
1461	/*
1462	 * Attempt to start output on the interface.
1463	 */
1464	fxp_start(ifp);
1465
1466 out:
1467	if (error)
1468		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1469	return (error);
1470}
1471
1472/*
1473 * Change media according to request.
1474 */
1475int
1476fxp_mii_mediachange(ifp)
1477	struct ifnet *ifp;
1478{
1479	struct fxp_softc *sc = ifp->if_softc;
1480
1481	if (ifp->if_flags & IFF_UP)
1482		mii_mediachg(&sc->sc_mii);
1483	return (0);
1484}
1485
1486/*
1487 * Notify the world which media we're using.
1488 */
1489void
1490fxp_mii_mediastatus(ifp, ifmr)
1491	struct ifnet *ifp;
1492	struct ifmediareq *ifmr;
1493{
1494	struct fxp_softc *sc = ifp->if_softc;
1495
1496	if(sc->sc_enabled == 0) {
1497		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1498		ifmr->ifm_status = 0;
1499		return;
1500	}
1501
1502	mii_pollstat(&sc->sc_mii);
1503	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1504	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1505}
1506
1507int
1508fxp_80c24_mediachange(ifp)
1509	struct ifnet *ifp;
1510{
1511
1512	/* Nothing to do here. */
1513	return (0);
1514}
1515
1516void
1517fxp_80c24_mediastatus(ifp, ifmr)
1518	struct ifnet *ifp;
1519	struct ifmediareq *ifmr;
1520{
1521	struct fxp_softc *sc = ifp->if_softc;
1522
1523	/*
1524	 * Media is currently-selected media.  We cannot determine
1525	 * the link status.
1526	 */
1527	ifmr->ifm_status = 0;
1528	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1529}
1530
1531/*
1532 * Add a buffer to the end of the RFA buffer list.
1533 * Return 0 if successful, error code on failure.
1534 *
1535 * The RFA struct is stuck at the beginning of mbuf cluster and the
1536 * data pointer is fixed up to point just past it.
1537 */
1538int
1539fxp_add_rfabuf(sc, rxmap, unload)
1540	struct fxp_softc *sc;
1541	bus_dmamap_t rxmap;
1542	int unload;
1543{
1544	struct mbuf *m;
1545	int error;
1546
1547	MGETHDR(m, M_DONTWAIT, MT_DATA);
1548	if (m == NULL)
1549		return (ENOBUFS);
1550
1551	MCLGET(m, M_DONTWAIT);
1552	if ((m->m_flags & M_EXT) == 0) {
1553		m_freem(m);
1554		return (ENOBUFS);
1555	}
1556
1557	if (unload)
1558		bus_dmamap_unload(sc->sc_dmat, rxmap);
1559
1560	M_SETCTX(m, rxmap);
1561
1562	error = bus_dmamap_load(sc->sc_dmat, rxmap,
1563	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1564	if (error) {
1565		printf("%s: can't load rx DMA map %d, error = %d\n",
1566		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1567		panic("fxp_add_rfabuf");		/* XXX */
1568	}
1569
1570	FXP_INIT_RFABUF(sc, m);
1571
1572	return (0);
1573}
1574
1575volatile int
1576fxp_mdi_read(self, phy, reg)
1577	struct device *self;
1578	int phy;
1579	int reg;
1580{
1581	struct fxp_softc *sc = (struct fxp_softc *)self;
1582	int count = 10000;
1583	int value;
1584
1585	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1586	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1587
1588	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1589	    && count--)
1590		DELAY(10);
1591
1592	if (count <= 0)
1593		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1594
1595	return (value & 0xffff);
1596}
1597
1598void
1599fxp_statchg(self)
1600	struct device *self;
1601{
1602
1603	/* XXX Update ifp->if_baudrate */
1604}
1605
1606void
1607fxp_mdi_write(self, phy, reg, value)
1608	struct device *self;
1609	int phy;
1610	int reg;
1611	int value;
1612{
1613	struct fxp_softc *sc = (struct fxp_softc *)self;
1614	int count = 10000;
1615
1616	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1617	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1618	    (value & 0xffff));
1619
1620	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1621	    count--)
1622		DELAY(10);
1623
1624	if (count <= 0)
1625		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1626}
1627
1628int
1629fxp_ioctl(ifp, command, data)
1630	struct ifnet *ifp;
1631	u_long command;
1632	caddr_t data;
1633{
1634	struct fxp_softc *sc = ifp->if_softc;
1635	struct ifreq *ifr = (struct ifreq *)data;
1636	struct ifaddr *ifa = (struct ifaddr *)data;
1637	int s, error = 0;
1638
1639	s = splnet();
1640
1641	switch (command) {
1642	case SIOCSIFADDR:
1643		if ((error = fxp_enable(sc)) != 0)
1644			break;
1645		ifp->if_flags |= IFF_UP;
1646
1647		switch (ifa->ifa_addr->sa_family) {
1648#ifdef INET
1649		case AF_INET:
1650			if ((error = fxp_init(sc)) != 0)
1651				break;
1652			arp_ifinit(ifp, ifa);
1653			break;
1654#endif /* INET */
1655#ifdef NS
1656		case AF_NS:
1657		    {
1658			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1659
1660			 if (ns_nullhost(*ina))
1661				ina->x_host = *(union ns_host *)
1662				    LLADDR(ifp->if_sadl);
1663			 else
1664				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1665				    ifp->if_addrlen);
1666			 /* Set new address. */
1667			 error = fxp_init(sc);
1668			 break;
1669		    }
1670#endif /* NS */
1671		default:
1672			error = fxp_init(sc);
1673			break;
1674		}
1675		break;
1676
1677	case SIOCSIFMTU:
1678		if (ifr->ifr_mtu > ETHERMTU)
1679			error = EINVAL;
1680		else
1681			ifp->if_mtu = ifr->ifr_mtu;
1682		break;
1683
1684	case SIOCSIFFLAGS:
1685		if ((ifp->if_flags & IFF_UP) == 0 &&
1686		    (ifp->if_flags & IFF_RUNNING) != 0) {
1687			/*
1688			 * If interface is marked down and it is running, then
1689			 * stop it.
1690			 */
1691			fxp_stop(sc, 1);
1692			fxp_disable(sc);
1693		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1694			   (ifp->if_flags & IFF_RUNNING) == 0) {
1695			/*
1696			 * If interface is marked up and it is stopped, then
1697			 * start it.
1698			 */
1699			if((error = fxp_enable(sc)) != 0)
1700				break;
1701			error = fxp_init(sc);
1702		} else if ((ifp->if_flags & IFF_UP) != 0) {
1703			/*
1704			 * Reset the interface to pick up change in any other
1705			 * flags that affect the hardware state.
1706			 */
1707			if((error = fxp_enable(sc)) != 0)
1708				break;
1709			error = fxp_init(sc);
1710		}
1711		break;
1712
1713	case SIOCADDMULTI:
1714	case SIOCDELMULTI:
1715		if(sc->sc_enabled == 0) {
1716			error = EIO;
1717			break;
1718		}
1719		error = (command == SIOCADDMULTI) ?
1720		    ether_addmulti(ifr, &sc->sc_ethercom) :
1721		    ether_delmulti(ifr, &sc->sc_ethercom);
1722
1723		if (error == ENETRESET) {
1724			/*
1725			 * Multicast list has changed; set the hardware
1726			 * filter accordingly.
1727			 */
1728			if (sc->sc_txpending) {
1729				sc->sc_flags |= FXPF_WANTINIT;
1730				error = 0;
1731			} else
1732				error = fxp_init(sc);
1733		}
1734		break;
1735
1736	case SIOCSIFMEDIA:
1737	case SIOCGIFMEDIA:
1738		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1739		break;
1740
1741	default:
1742		error = EINVAL;
1743		break;
1744	}
1745
1746	splx(s);
1747	return (error);
1748}
1749
1750/*
1751 * Program the multicast filter.
1752 *
1753 * This function must be called at splnet().
1754 */
1755void
1756fxp_mc_setup(sc)
1757	struct fxp_softc *sc;
1758{
1759	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1760	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1761	struct ethercom *ec = &sc->sc_ethercom;
1762	struct ether_multi *enm;
1763	struct ether_multistep step;
1764	int nmcasts;
1765
1766#ifdef DIAGNOSTIC
1767	if (sc->sc_txpending)
1768		panic("fxp_mc_setup: pending transmissions");
1769#endif
1770
1771	ifp->if_flags &= ~IFF_ALLMULTI;
1772
1773	/*
1774	 * Initialize multicast setup descriptor.
1775	 */
1776	nmcasts = 0;
1777	ETHER_FIRST_MULTI(step, ec, enm);
1778	while (enm != NULL) {
1779		/*
1780		 * Check for too many multicast addresses or if we're
1781		 * listening to a range.  Either way, we simply have
1782		 * to accept all multicasts.
1783		 */
1784		if (nmcasts >= MAXMCADDR ||
1785		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
1786		           ETHER_ADDR_LEN) != 0) {
1787			/*
1788			 * Callers of this function must do the
1789			 * right thing with this.  If we're called
1790			 * from outside fxp_init(), the caller must
1791			 * detect if the state if IFF_ALLMULTI changes.
1792			 * If it does, the caller must then call
1793			 * fxp_init(), since allmulti is handled by
1794			 * the config block.
1795			 */
1796			ifp->if_flags |= IFF_ALLMULTI;
1797			return;
1798		}
1799		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1800		    ETHER_ADDR_LEN);
1801		nmcasts++;
1802		ETHER_NEXT_MULTI(step, enm);
1803	}
1804
1805	/* BIG_ENDIAN: no need to swap to store 0 */
1806	mcsp->cb_status = 0;
1807	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1808	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1809	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1810
1811	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1812
1813	/*
1814	 * Wait until the command unit is not active.  This should never
1815	 * happen since nothing is queued, but make sure anyway.
1816	 */
1817	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1818	    FXP_SCB_CUS_ACTIVE)
1819		/* nothing */ ;
1820
1821	/*
1822	 * Start the multicast setup command/DMA.
1823	 */
1824	fxp_scb_wait(sc);
1825	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1826	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1827
1828	/* ...and wait for it to complete. */
1829	do {
1830		FXP_CDMCSSYNC(sc,
1831		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1832	} while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
1833}
1834
1835int
1836fxp_enable(sc)
1837	struct fxp_softc *sc;
1838{
1839
1840	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1841		if ((*sc->sc_enable)(sc) != 0) {
1842			printf("%s: device enable failed\n",
1843			       sc->sc_dev.dv_xname);
1844			return (EIO);
1845		}
1846	}
1847
1848	sc->sc_enabled = 1;
1849
1850	return 0;
1851}
1852
1853void
1854fxp_disable(sc)
1855	struct fxp_softc *sc;
1856{
1857	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1858		(*sc->sc_disable)(sc);
1859		sc->sc_enabled = 0;
1860	}
1861}
1862