i82557.c revision 1.159
1/*	$NetBSD: i82557.c,v 1.159 2020/02/07 00:56:48 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 *    notice unmodified, this list of conditions, and the following
43 *    disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63/*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.159 2020/02/07 00:56:48 thorpej Exp $");
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/callout.h>
74#include <sys/mbuf.h>
75#include <sys/malloc.h>
76#include <sys/kernel.h>
77#include <sys/socket.h>
78#include <sys/ioctl.h>
79#include <sys/errno.h>
80#include <sys/device.h>
81#include <sys/syslog.h>
82#include <sys/proc.h>
83
84#include <machine/endian.h>
85
86#include <sys/rndsource.h>
87
88#include <net/if.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_ether.h>
92
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/ip.h>
96#include <netinet/tcp.h>
97#include <netinet/udp.h>
98
99#include <net/bpf.h>
100
101#include <sys/bus.h>
102#include <sys/intr.h>
103
104#include <dev/mii/miivar.h>
105
106#include <dev/ic/i82557reg.h>
107#include <dev/ic/i82557var.h>
108
109#include <dev/microcode/i8255x/rcvbundl.h>
110
111/*
112 * NOTE!  On the Alpha, we have an alignment constraint.  The
113 * card DMAs the packet immediately following the RFA.  However,
114 * the first thing in the packet is a 14-byte Ethernet header.
115 * This means that the packet is misaligned.  To compensate,
116 * we actually offset the RFA 2 bytes into the cluster.  This
117 * alignes the packet after the Ethernet header at a 32-bit
118 * boundary.  HOWEVER!  This means that the RFA is misaligned!
119 */
120#define	RFA_ALIGNMENT_FUDGE	2
121
122/*
123 * The configuration byte map has several undefined fields which
124 * must be one or must be zero.  Set up a template for these bits
125 * only (assuming an i82557 chip), leaving the actual configuration
126 * for fxp_init().
127 *
128 * See the definition of struct fxp_cb_config for the bit definitions.
129 */
130const uint8_t fxp_cb_config_template[] = {
131	0x0, 0x0,		/* cb_status */
132	0x0, 0x0,		/* cb_command */
133	0x0, 0x0, 0x0, 0x0,	/* link_addr */
134	0x0,	/*  0 */
135	0x0,	/*  1 */
136	0x0,	/*  2 */
137	0x0,	/*  3 */
138	0x0,	/*  4 */
139	0x0,	/*  5 */
140	0x32,	/*  6 */
141	0x0,	/*  7 */
142	0x0,	/*  8 */
143	0x0,	/*  9 */
144	0x6,	/* 10 */
145	0x0,	/* 11 */
146	0x0,	/* 12 */
147	0x0,	/* 13 */
148	0xf2,	/* 14 */
149	0x48,	/* 15 */
150	0x0,	/* 16 */
151	0x40,	/* 17 */
152	0xf0,	/* 18 */
153	0x0,	/* 19 */
154	0x3f,	/* 20 */
155	0x5,	/* 21 */
156	0x0,	/* 22 */
157	0x0,	/* 23 */
158	0x0,	/* 24 */
159	0x0,	/* 25 */
160	0x0,	/* 26 */
161	0x0,	/* 27 */
162	0x0,	/* 28 */
163	0x0,	/* 29 */
164	0x0,	/* 30 */
165	0x0,	/* 31 */
166};
167
168void	fxp_mii_initmedia(struct fxp_softc *);
169void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170
171void	fxp_80c24_initmedia(struct fxp_softc *);
172int	fxp_80c24_mediachange(struct ifnet *);
173void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174
175void	fxp_start(struct ifnet *);
176int	fxp_ioctl(struct ifnet *, u_long, void *);
177void	fxp_watchdog(struct ifnet *);
178int	fxp_init(struct ifnet *);
179void	fxp_stop(struct ifnet *, int);
180
181void	fxp_txintr(struct fxp_softc *);
182int	fxp_rxintr(struct fxp_softc *);
183
184void	fxp_rx_hwcksum(struct fxp_softc *, struct mbuf *,
185	    const struct fxp_rfa *, u_int);
186
187void	fxp_rxdrain(struct fxp_softc *);
188int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189int	fxp_mdi_read(device_t, int, int, uint16_t *);
190void	fxp_statchg(struct ifnet *);
191int	fxp_mdi_write(device_t, int, int, uint16_t);
192void	fxp_autosize_eeprom(struct fxp_softc*);
193void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195void	fxp_eeprom_update_cksum(struct fxp_softc *);
196void	fxp_get_info(struct fxp_softc *, uint8_t *);
197void	fxp_tick(void *);
198void	fxp_mc_setup(struct fxp_softc *);
199void	fxp_load_ucode(struct fxp_softc *);
200
201int	fxp_copy_small = 0;
202
203/*
204 * Variables for interrupt mitigating microcode.
205 */
206int	fxp_int_delay = 1000;		/* usec */
207int	fxp_bundle_max = 6;		/* packets */
208
209struct fxp_phytype {
210	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
211	void	(*fp_init)(struct fxp_softc *);
212} fxp_phytype_table[] = {
213	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
214	{ -1,				fxp_mii_initmedia },
215};
216
217/*
218 * Set initial transmit threshold at 64 (512 bytes). This is
219 * increased by 64 (512 bytes) at a time, to maximum of 192
220 * (1536 bytes), if an underrun occurs.
221 */
222static int tx_threshold = 64;
223
224/*
225 * Wait for the previous command to be accepted (but not necessarily
226 * completed).
227 */
228static inline void
229fxp_scb_wait(struct fxp_softc *sc)
230{
231	int i = 10000;
232
233	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234		delay(2);
235	if (i == 0)
236		log(LOG_WARNING,
237		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238}
239
240/*
241 * Submit a command to the i82557.
242 */
243static inline void
244fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245{
246
247	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248}
249
250/*
251 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
252 */
253void
254fxp_attach(struct fxp_softc *sc)
255{
256	uint8_t enaddr[ETHER_ADDR_LEN];
257	struct ifnet *ifp;
258	bus_dma_segment_t seg;
259	int rseg, i, error;
260	struct fxp_phytype *fp;
261
262	callout_init(&sc->sc_callout, 0);
263	callout_setfunc(&sc->sc_callout, fxp_tick, sc);
264
265        /*
266	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
267	 * Note: to use IPCB we need extended TXCB support too, and
268	 *       these feature flags should be set in each bus attachment.
269	 */
270	if (sc->sc_flags & FXPF_EXT_RFA) {
271		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
272		sc->sc_rfa_size = RFA_EXT_SIZE;
273	} else {
274		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
275		sc->sc_rfa_size = RFA_SIZE;
276	}
277
278	/*
279	 * Allocate the control data structures, and create and load the
280	 * DMA map for it.
281	 */
282	if ((error = bus_dmamem_alloc(sc->sc_dmat,
283	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
284	    0)) != 0) {
285		aprint_error_dev(sc->sc_dev,
286		    "unable to allocate control data, error = %d\n",
287		    error);
288		goto fail_0;
289	}
290
291	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
292	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
293	    BUS_DMA_COHERENT)) != 0) {
294		aprint_error_dev(sc->sc_dev,
295		    "unable to map control data, error = %d\n", error);
296		goto fail_1;
297	}
298	sc->sc_cdseg = seg;
299	sc->sc_cdnseg = rseg;
300
301	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
302
303	if ((error = bus_dmamap_create(sc->sc_dmat,
304	    sizeof(struct fxp_control_data), 1,
305	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
306		aprint_error_dev(sc->sc_dev,
307		    "unable to create control data DMA map, error = %d\n",
308		    error);
309		goto fail_2;
310	}
311
312	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
313	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
314	    0)) != 0) {
315		aprint_error_dev(sc->sc_dev,
316		    "can't load control data DMA map, error = %d\n",
317		    error);
318		goto fail_3;
319	}
320
321	/*
322	 * Create the transmit buffer DMA maps.
323	 */
324	for (i = 0; i < FXP_NTXCB; i++) {
325		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
326		    (sc->sc_flags & FXPF_EXT_RFA) ?
327		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
328		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
329			aprint_error_dev(sc->sc_dev,
330			    "unable to create tx DMA map %d, error = %d\n",
331			    i, error);
332			goto fail_4;
333		}
334	}
335
336	/*
337	 * Create the receive buffer DMA maps.
338	 */
339	for (i = 0; i < FXP_NRFABUFS; i++) {
340		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342			aprint_error_dev(sc->sc_dev,
343			    "unable to create rx DMA map %d, error = %d\n",
344			    i, error);
345			goto fail_5;
346		}
347	}
348
349	/* Initialize MAC address and media structures. */
350	fxp_get_info(sc, enaddr);
351
352	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
353	    ether_sprintf(enaddr));
354
355	ifp = &sc->sc_ethercom.ec_if;
356
357	/*
358	 * Get info about our media interface, and initialize it.  Note
359	 * the table terminates itself with a phy of -1, indicating
360	 * that we're using MII.
361	 */
362	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
363		if (fp->fp_phy == sc->phy_primary_device)
364			break;
365	(*fp->fp_init)(sc);
366
367	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
368	ifp->if_softc = sc;
369	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
370	ifp->if_ioctl = fxp_ioctl;
371	ifp->if_start = fxp_start;
372	ifp->if_watchdog = fxp_watchdog;
373	ifp->if_init = fxp_init;
374	ifp->if_stop = fxp_stop;
375	IFQ_SET_READY(&ifp->if_snd);
376
377	if (sc->sc_flags & FXPF_EXT_RFA) {
378		/*
379		 * Enable hardware cksum support by EXT_RFA and IPCB.
380		 *
381		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
382		 * at least, on i82550 rev.12.
383		 * specifically, it doesn't set ipv4 checksum properly
384		 * when sending UDP (and probably TCP) packets with
385		 * 20 byte ipv4 header + 1 or 2 byte data,
386		 * though ICMP packets seem working.
387		 * FreeBSD driver has related comments.
388		 * We've added a workaround to handle the bug by padding
389		 * such packets manually.
390		 */
391		ifp->if_capabilities =
392		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
393		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
394		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
395		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
396		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
397	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
398		ifp->if_capabilities =
399		    IFCAP_CSUM_TCPv4_Rx |
400		    IFCAP_CSUM_UDPv4_Rx;
401	}
402
403	/*
404	 * We can support 802.1Q VLAN-sized frames.
405	 */
406	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
407
408	/*
409	 * Attach the interface.
410	 */
411	if_attach(ifp);
412	if_deferred_start_init(ifp, NULL);
413	ether_ifattach(ifp, enaddr);
414	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
415	    RND_TYPE_NET, RND_FLAG_DEFAULT);
416
417#ifdef FXP_EVENT_COUNTERS
418	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
419	    NULL, device_xname(sc->sc_dev), "txstall");
420	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
421	    NULL, device_xname(sc->sc_dev), "txintr");
422	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
423	    NULL, device_xname(sc->sc_dev), "rxintr");
424	if (sc->sc_flags & FXPF_FC) {
425		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
426		    NULL, device_xname(sc->sc_dev), "txpause");
427		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
428		    NULL, device_xname(sc->sc_dev), "rxpause");
429	}
430#endif /* FXP_EVENT_COUNTERS */
431
432	/* The attach is successful. */
433	sc->sc_flags |= FXPF_ATTACHED;
434
435	return;
436
437	/*
438	 * Free any resources we've allocated during the failed attach
439	 * attempt.  Do this in reverse order and fall though.
440	 */
441 fail_5:
442	for (i = 0; i < FXP_NRFABUFS; i++) {
443		if (sc->sc_rxmaps[i] != NULL)
444			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
445	}
446 fail_4:
447	for (i = 0; i < FXP_NTXCB; i++) {
448		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
449			bus_dmamap_destroy(sc->sc_dmat,
450			    FXP_DSTX(sc, i)->txs_dmamap);
451	}
452	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
453 fail_3:
454	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
455 fail_2:
456	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
457	    sizeof(struct fxp_control_data));
458 fail_1:
459	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
460 fail_0:
461	return;
462}
463
464void
465fxp_mii_initmedia(struct fxp_softc *sc)
466{
467	struct mii_data * const mii = &sc->sc_mii;
468	int flags;
469
470	sc->sc_flags |= FXPF_MII;
471
472	mii->mii_ifp = &sc->sc_ethercom.ec_if;
473	mii->mii_readreg = fxp_mdi_read;
474	mii->mii_writereg = fxp_mdi_write;
475	mii->mii_statchg = fxp_statchg;
476
477	sc->sc_ethercom.ec_mii = mii;
478	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
479	    fxp_mii_mediastatus);
480
481	flags = MIIF_NOISOLATE;
482	if (sc->sc_flags & FXPF_FC)
483		flags |= MIIF_FORCEANEG | MIIF_DOPAUSE;
484	/*
485	 * The i82557 wedges if all of its PHYs are isolated!
486	 */
487	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
488	    MII_OFFSET_ANY, flags);
489	if (LIST_EMPTY(&mii->mii_phys)) {
490		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
491		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
492	} else
493		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
494}
495
496void
497fxp_80c24_initmedia(struct fxp_softc *sc)
498{
499	struct mii_data * const mii = &sc->sc_mii;
500
501	/*
502	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
503	 * doesn't have a programming interface of any sort.  The
504	 * media is sensed automatically based on how the link partner
505	 * is configured.  This is, in essence, manual configuration.
506	 */
507	aprint_normal_dev(sc->sc_dev,
508	    "Seeq 80c24 AutoDUPLEX media interface present\n");
509	ifmedia_init(&mii->mii_media, 0, fxp_80c24_mediachange,
510	    fxp_80c24_mediastatus);
511	ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
512	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
513}
514
515/*
516 * Initialize the interface media.
517 */
518void
519fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
520{
521	uint16_t data, myea[ETHER_ADDR_LEN / 2];
522
523	/*
524	 * Reset to a stable state.
525	 */
526	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
527	DELAY(100);
528
529	sc->sc_eeprom_size = 0;
530	fxp_autosize_eeprom(sc);
531	if (sc->sc_eeprom_size == 0) {
532		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
533		sc->sc_eeprom_size = 6; /* XXX panic here? */
534	}
535#ifdef DEBUG
536	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
537	    1 << sc->sc_eeprom_size);
538#endif
539
540	/*
541	 * Get info about the primary PHY
542	 */
543	fxp_read_eeprom(sc, &data, 6, 1);
544	sc->phy_primary_device =
545	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
546
547	/*
548	 * Read MAC address.
549	 */
550	fxp_read_eeprom(sc, myea, 0, 3);
551	enaddr[0] = myea[0] & 0xff;
552	enaddr[1] = myea[0] >> 8;
553	enaddr[2] = myea[1] & 0xff;
554	enaddr[3] = myea[1] >> 8;
555	enaddr[4] = myea[2] & 0xff;
556	enaddr[5] = myea[2] >> 8;
557
558	/*
559	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
560	 * as some i82559 designs, have a defect where the chip can
561	 * cause a PCI protocol violation if it receives a CU_RESUME
562	 * command when it is entering the IDLE state.
563	 *
564	 * The work-around is to disable Dynamic Standby Mode, so that
565	 * the chip never deasserts #CLKRUN, and always remains in the
566	 * active state.
567	 *
568	 * Unfortunately, the only way to disable Dynamic Standby is
569	 * to frob an EEPROM setting and reboot (the EEPROM setting
570	 * is only consulted when the PCI bus comes out of reset).
571	 *
572	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
573	 */
574	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
575		fxp_read_eeprom(sc, &data, 10, 1);
576		if (data & 0x02) {		/* STB enable */
577			aprint_error_dev(sc->sc_dev, "WARNING: "
578			    "Disabling dynamic standby mode in EEPROM "
579			    "to work around a\n");
580			aprint_normal_dev(sc->sc_dev,
581			    "WARNING: hardware bug.  You must reset "
582			    "the system before using this\n");
583			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
584			data &= ~0x02;
585			fxp_write_eeprom(sc, &data, 10, 1);
586			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
587			    data);
588			fxp_eeprom_update_cksum(sc);
589		}
590	}
591
592	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
593	/* Due to false positives we make it conditional on setting link1 */
594	fxp_read_eeprom(sc, &data, 3, 1);
595	if ((data & 0x03) != 0x03) {
596		aprint_verbose_dev(sc->sc_dev,
597		    "May need receiver lock-up workaround\n");
598	}
599}
600
601static void
602fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
603{
604	uint16_t reg;
605	int x;
606
607	for (x = 1 << (len - 1); x != 0; x >>= 1) {
608		DELAY(40);
609		if (data & x)
610			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
611		else
612			reg = FXP_EEPROM_EECS;
613		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
614		DELAY(40);
615		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
616		    reg | FXP_EEPROM_EESK);
617		DELAY(40);
618		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
619	}
620	DELAY(40);
621}
622
623/*
624 * Figure out EEPROM size.
625 *
626 * 559's can have either 64-word or 256-word EEPROMs, the 558
627 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
628 * talks about the existence of 16 to 256 word EEPROMs.
629 *
630 * The only known sizes are 64 and 256, where the 256 version is used
631 * by CardBus cards to store CIS information.
632 *
633 * The address is shifted in msb-to-lsb, and after the last
634 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
635 * after which follows the actual data. We try to detect this zero, by
636 * probing the data-out bit in the EEPROM control register just after
637 * having shifted in a bit. If the bit is zero, we assume we've
638 * shifted enough address bits. The data-out should be tri-state,
639 * before this, which should translate to a logical one.
640 *
641 * Other ways to do this would be to try to read a register with known
642 * contents with a varying number of address bits, but no such
643 * register seem to be available. The high bits of register 10 are 01
644 * on the 558 and 559, but apparently not on the 557.
645 *
646 * The Linux driver computes a checksum on the EEPROM data, but the
647 * value of this checksum is not very well documented.
648 */
649
650void
651fxp_autosize_eeprom(struct fxp_softc *sc)
652{
653	int x;
654
655	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
656	DELAY(40);
657
658	/* Shift in read opcode. */
659	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
660
661	/*
662	 * Shift in address, wait for the dummy zero following a correct
663	 * address shift.
664	 */
665	for (x = 1; x <= 8; x++) {
666		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
667		DELAY(40);
668		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
669		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
670		DELAY(40);
671		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
672		    FXP_EEPROM_EEDO) == 0)
673			break;
674		DELAY(40);
675		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
676		DELAY(40);
677	}
678	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
679	DELAY(40);
680	if (x != 6 && x != 8) {
681#ifdef DEBUG
682		printf("%s: strange EEPROM size (%d)\n",
683		    device_xname(sc->sc_dev), 1 << x);
684#endif
685	} else
686		sc->sc_eeprom_size = x;
687}
688
689/*
690 * Read from the serial EEPROM. Basically, you manually shift in
691 * the read opcode (one bit at a time) and then shift in the address,
692 * and then you shift out the data (all of this one bit at a time).
693 * The word size is 16 bits, so you have to provide the address for
694 * every 16 bits of data.
695 */
696void
697fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
698{
699	uint16_t reg;
700	int i, x;
701
702	for (i = 0; i < words; i++) {
703		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
704
705		/* Shift in read opcode. */
706		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
707
708		/* Shift in address. */
709		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
710
711		reg = FXP_EEPROM_EECS;
712		data[i] = 0;
713
714		/* Shift out data. */
715		for (x = 16; x > 0; x--) {
716			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
717			    reg | FXP_EEPROM_EESK);
718			DELAY(40);
719			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
720			    FXP_EEPROM_EEDO)
721				data[i] |= (1 << (x - 1));
722			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
723			DELAY(40);
724		}
725		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
726		DELAY(40);
727	}
728}
729
730/*
731 * Write data to the serial EEPROM.
732 */
733void
734fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
735{
736	int i, j;
737
738	for (i = 0; i < words; i++) {
739		/* Erase/write enable. */
740		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
741		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
742		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
743		    sc->sc_eeprom_size);
744		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
745		DELAY(4);
746
747		/* Shift in write opcode, address, data. */
748		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
749		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
750		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
751		fxp_eeprom_shiftin(sc, data[i], 16);
752		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
753		DELAY(4);
754
755		/* Wait for the EEPROM to finish up. */
756		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
757		DELAY(4);
758		for (j = 0; j < 1000; j++) {
759			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
760			    FXP_EEPROM_EEDO)
761				break;
762			DELAY(50);
763		}
764		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
765		DELAY(4);
766
767		/* Erase/write disable. */
768		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
769		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
770		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
771		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
772		DELAY(4);
773	}
774}
775
776/*
777 * Update the checksum of the EEPROM.
778 */
779void
780fxp_eeprom_update_cksum(struct fxp_softc *sc)
781{
782	int i;
783	uint16_t data, cksum;
784
785	cksum = 0;
786	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
787		fxp_read_eeprom(sc, &data, i, 1);
788		cksum += data;
789	}
790	i = (1 << sc->sc_eeprom_size) - 1;
791	cksum = 0xbaba - cksum;
792	fxp_read_eeprom(sc, &data, i, 1);
793	fxp_write_eeprom(sc, &cksum, i, 1);
794	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
795	    device_xname(sc->sc_dev), i, data, cksum);
796}
797
798/*
799 * Start packet transmission on the interface.
800 */
801void
802fxp_start(struct ifnet *ifp)
803{
804	struct fxp_softc *sc = ifp->if_softc;
805	struct mbuf *m0, *m;
806	struct fxp_txdesc *txd;
807	struct fxp_txsoft *txs;
808	bus_dmamap_t dmamap;
809	int error, lasttx, nexttx, opending, seg, nsegs, len;
810
811	/*
812	 * If we want a re-init, bail out now.
813	 */
814	if (sc->sc_flags & FXPF_WANTINIT) {
815		ifp->if_flags |= IFF_OACTIVE;
816		return;
817	}
818
819	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
820		return;
821
822	/*
823	 * Remember the previous txpending and the current lasttx.
824	 */
825	opending = sc->sc_txpending;
826	lasttx = sc->sc_txlast;
827
828	/*
829	 * Loop through the send queue, setting up transmit descriptors
830	 * until we drain the queue, or use up all available transmit
831	 * descriptors.
832	 */
833	for (;;) {
834		struct fxp_tbd *tbdp;
835		int csum_flags;
836
837		/*
838		 * Grab a packet off the queue.
839		 */
840		IFQ_POLL(&ifp->if_snd, m0);
841		if (m0 == NULL)
842			break;
843		m = NULL;
844
845		if (sc->sc_txpending == FXP_NTXCB - 1) {
846			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
847			break;
848		}
849
850		/*
851		 * Get the next available transmit descriptor.
852		 */
853		nexttx = FXP_NEXTTX(sc->sc_txlast);
854		txd = FXP_CDTX(sc, nexttx);
855		txs = FXP_DSTX(sc, nexttx);
856		dmamap = txs->txs_dmamap;
857
858		/*
859		 * Load the DMA map.  If this fails, the packet either
860		 * didn't fit in the allotted number of frags, or we were
861		 * short on resources.  In this case, we'll copy and try
862		 * again.
863		 */
864		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
865		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
866			MGETHDR(m, M_DONTWAIT, MT_DATA);
867			if (m == NULL) {
868				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
869				    device_xname(sc->sc_dev));
870				break;
871			}
872			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
873			if (m0->m_pkthdr.len > MHLEN) {
874				MCLGET(m, M_DONTWAIT);
875				if ((m->m_flags & M_EXT) == 0) {
876					log(LOG_ERR, "%s: unable to allocate "
877					    "Tx cluster\n",
878					    device_xname(sc->sc_dev));
879					m_freem(m);
880					break;
881				}
882			}
883			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
884			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
885			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
886			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
887			if (error) {
888				log(LOG_ERR, "%s: unable to load Tx buffer, "
889				    "error = %d\n",
890				    device_xname(sc->sc_dev), error);
891				break;
892			}
893		}
894
895		IFQ_DEQUEUE(&ifp->if_snd, m0);
896		csum_flags = m0->m_pkthdr.csum_flags;
897		if (m != NULL) {
898			m_freem(m0);
899			m0 = m;
900		}
901
902		/* Initialize the fraglist. */
903		tbdp = txd->txd_tbd;
904		len = m0->m_pkthdr.len;
905		nsegs = dmamap->dm_nsegs;
906		if (sc->sc_flags & FXPF_EXT_RFA)
907			tbdp++;
908		for (seg = 0; seg < nsegs; seg++) {
909			tbdp[seg].tb_addr =
910			    htole32(dmamap->dm_segs[seg].ds_addr);
911			tbdp[seg].tb_size =
912			    htole32(dmamap->dm_segs[seg].ds_len);
913		}
914		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
915		    (csum_flags & M_CSUM_IPv4) != 0)) {
916			/*
917			 * Pad short packets to avoid ip4csum-tx bug.
918			 *
919			 * XXX Should we still consider if such short
920			 *     (36 bytes or less) packets might already
921			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
922			 */
923			KASSERT(nsegs < FXP_IPCB_NTXSEG);
924			nsegs++;
925			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
926			tbdp[seg].tb_size =
927			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
928		}
929
930		/* Sync the DMA map. */
931		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
932		    BUS_DMASYNC_PREWRITE);
933
934		/*
935		 * Store a pointer to the packet so we can free it later.
936		 */
937		txs->txs_mbuf = m0;
938
939		/*
940		 * Initialize the transmit descriptor.
941		 */
942		/* BIG_ENDIAN: no need to swap to store 0 */
943		txd->txd_txcb.cb_status = 0;
944		txd->txd_txcb.cb_command =
945		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
946		txd->txd_txcb.tx_threshold = tx_threshold;
947		txd->txd_txcb.tbd_number = nsegs;
948
949		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
950		if (sc->sc_flags & FXPF_EXT_RFA) {
951			struct fxp_ipcb *ipcb;
952			/*
953			 * Deal with TCP/IP checksum offload. Note that
954			 * in order for TCP checksum offload to work,
955			 * the pseudo header checksum must have already
956			 * been computed and stored in the checksum field
957			 * in the TCP header. The stack should have
958			 * already done this for us.
959			 */
960			ipcb = &txd->txd_u.txdu_ipcb;
961			memset(ipcb, 0, sizeof(*ipcb));
962			/*
963			 * always do hardware parsing.
964			 */
965			ipcb->ipcb_ip_activation_high =
966			    FXP_IPCB_HARDWAREPARSING_ENABLE;
967			/*
968			 * ip checksum offloading.
969			 */
970			if (csum_flags & M_CSUM_IPv4) {
971				ipcb->ipcb_ip_schedule |=
972				    FXP_IPCB_IP_CHECKSUM_ENABLE;
973			}
974			/*
975			 * TCP/UDP checksum offloading.
976			 */
977			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
978				ipcb->ipcb_ip_schedule |=
979				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
980			}
981
982			/*
983			 * request VLAN tag insertion if needed.
984			 */
985			if (vlan_has_tag(m0)) {
986				ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
987				ipcb->ipcb_ip_activation_high |=
988				    FXP_IPCB_INSERTVLAN_ENABLE;
989			}
990		} else {
991			KASSERT((csum_flags &
992			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
993		}
994
995		FXP_CDTXSYNC(sc, nexttx,
996		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
997
998		/* Advance the tx pointer. */
999		sc->sc_txpending++;
1000		sc->sc_txlast = nexttx;
1001
1002		/*
1003		 * Pass packet to bpf if there is a listener.
1004		 */
1005		bpf_mtap(ifp, m0, BPF_D_OUT);
1006	}
1007
1008	if (sc->sc_txpending == FXP_NTXCB - 1) {
1009		/* No more slots; notify upper layer. */
1010		ifp->if_flags |= IFF_OACTIVE;
1011	}
1012
1013	if (sc->sc_txpending != opending) {
1014		/*
1015		 * We enqueued packets.  If the transmitter was idle,
1016		 * reset the txdirty pointer.
1017		 */
1018		if (opending == 0)
1019			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1020
1021		/*
1022		 * Cause the chip to interrupt and suspend command
1023		 * processing once the last packet we've enqueued
1024		 * has been transmitted.
1025		 *
1026		 * To avoid a race between updating status bits
1027		 * by the fxp chip and clearing command bits
1028		 * by this function on machines which don't have
1029		 * atomic methods to clear/set bits in memory
1030		 * smaller than 32bits (both cb_status and cb_command
1031		 * members are uint16_t and in the same 32bit word),
1032		 * we have to prepare a dummy TX descriptor which has
1033		 * NOP command and just causes a TX completion interrupt.
1034		 */
1035		sc->sc_txpending++;
1036		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1037		txd = FXP_CDTX(sc, sc->sc_txlast);
1038		/* BIG_ENDIAN: no need to swap to store 0 */
1039		txd->txd_txcb.cb_status = 0;
1040		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1041		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1042		FXP_CDTXSYNC(sc, sc->sc_txlast,
1043		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1044
1045		/*
1046		 * The entire packet chain is set up.  Clear the suspend bit
1047		 * on the command prior to the first packet we set up.
1048		 */
1049		FXP_CDTXSYNC(sc, lasttx,
1050		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1051		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1052		    htole16(~FXP_CB_COMMAND_S);
1053		FXP_CDTXSYNC(sc, lasttx,
1054		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1055
1056		/*
1057		 * Issue a Resume command in case the chip was suspended.
1058		 */
1059		fxp_scb_wait(sc);
1060		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1061
1062		/* Set a watchdog timer in case the chip flakes out. */
1063		ifp->if_timer = 5;
1064	}
1065}
1066
1067/*
1068 * Process interface interrupts.
1069 */
1070int
1071fxp_intr(void *arg)
1072{
1073	struct fxp_softc *sc = arg;
1074	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1075	bus_dmamap_t rxmap;
1076	int claimed = 0, rnr;
1077	uint8_t statack;
1078
1079	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1080		return (0);
1081	/*
1082	 * If the interface isn't running, don't try to
1083	 * service the interrupt.. just ack it and bail.
1084	 */
1085	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1086		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1087		if (statack) {
1088			claimed = 1;
1089			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1090		}
1091		return (claimed);
1092	}
1093
1094	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1095		claimed = 1;
1096
1097		/*
1098		 * First ACK all the interrupts in this pass.
1099		 */
1100		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1101
1102		/*
1103		 * Process receiver interrupts. If a no-resource (RNR)
1104		 * condition exists, get whatever packets we can and
1105		 * re-start the receiver.
1106		 */
1107		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1108		    1 : 0;
1109		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1110		    FXP_SCB_STATACK_SWI)) {
1111			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1112			rnr |= fxp_rxintr(sc);
1113		}
1114
1115		/*
1116		 * Free any finished transmit mbuf chains.
1117		 */
1118		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1119			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1120			fxp_txintr(sc);
1121
1122			/*
1123			 * Try to get more packets going.
1124			 */
1125			if_schedule_deferred_start(ifp);
1126
1127			if (sc->sc_txpending == 0) {
1128				/*
1129				 * Tell them that they can re-init now.
1130				 */
1131				if (sc->sc_flags & FXPF_WANTINIT)
1132					wakeup(sc);
1133			}
1134		}
1135
1136		if (rnr) {
1137			fxp_scb_wait(sc);
1138			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1139			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1140			fxp_scb_wait(sc);
1141			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1142			    rxmap->dm_segs[0].ds_addr +
1143			    RFA_ALIGNMENT_FUDGE);
1144			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1145		}
1146	}
1147
1148	if (claimed)
1149		rnd_add_uint32(&sc->rnd_source, statack);
1150	return (claimed);
1151}
1152
1153/*
1154 * Handle transmit completion interrupts.
1155 */
1156void
1157fxp_txintr(struct fxp_softc *sc)
1158{
1159	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160	struct fxp_txdesc *txd;
1161	struct fxp_txsoft *txs;
1162	int i;
1163	uint16_t txstat;
1164
1165	ifp->if_flags &= ~IFF_OACTIVE;
1166	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1167	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1168		txd = FXP_CDTX(sc, i);
1169		txs = FXP_DSTX(sc, i);
1170
1171		FXP_CDTXSYNC(sc, i,
1172		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1173
1174		/* skip dummy NOP TX descriptor */
1175		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1176		    == FXP_CB_COMMAND_NOP)
1177			continue;
1178
1179		txstat = le16toh(txd->txd_txcb.cb_status);
1180
1181		if ((txstat & FXP_CB_STATUS_C) == 0)
1182			break;
1183
1184		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1185		    0, txs->txs_dmamap->dm_mapsize,
1186		    BUS_DMASYNC_POSTWRITE);
1187		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1188		m_freem(txs->txs_mbuf);
1189		txs->txs_mbuf = NULL;
1190	}
1191
1192	/* Update the dirty transmit buffer pointer. */
1193	sc->sc_txdirty = i;
1194
1195	/*
1196	 * Cancel the watchdog timer if there are no pending
1197	 * transmissions.
1198	 */
1199	if (sc->sc_txpending == 0)
1200		ifp->if_timer = 0;
1201}
1202
1203/*
1204 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1205 */
1206
1207void
1208fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1209    u_int len)
1210{
1211	uint32_t csum_data;
1212	int csum_flags;
1213
1214	/*
1215	 * check H/W Checksumming.
1216	 */
1217
1218	csum_flags = 0;
1219	csum_data = 0;
1220
1221	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1222		uint8_t csum_stat;
1223
1224		csum_stat = rfa->cksum_stat;
1225		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1226			goto out;
1227
1228		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1229			csum_flags = M_CSUM_IPv4;
1230			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1231				csum_flags |= M_CSUM_IPv4_BAD;
1232		}
1233
1234		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1235			csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4); /* XXX */
1236			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1237				csum_flags |= M_CSUM_TCP_UDP_BAD;
1238		}
1239
1240	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1241		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1242		struct ether_header *eh;
1243		struct ip *ip;
1244		struct udphdr *uh;
1245		u_int hlen, pktlen;
1246
1247		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1248			goto out;
1249		pktlen = len - ETHER_HDR_LEN;
1250		eh = mtod(m, struct ether_header *);
1251		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1252			goto out;
1253		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1254		if (ip->ip_v != IPVERSION)
1255			goto out;
1256
1257		hlen = ip->ip_hl << 2;
1258		if (hlen < sizeof(struct ip))
1259			goto out;
1260
1261		/*
1262		 * Bail if too short, has random trailing garbage, truncated,
1263		 * fragment, or has ethernet pad.
1264		 */
1265		if (ntohs(ip->ip_len) < hlen ||
1266		    ntohs(ip->ip_len) != pktlen ||
1267		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1268			goto out;
1269
1270		switch (ip->ip_p) {
1271		case IPPROTO_TCP:
1272			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1273			    pktlen < (hlen + sizeof(struct tcphdr)))
1274				goto out;
1275			csum_flags =
1276			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1277			break;
1278		case IPPROTO_UDP:
1279			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1280			    pktlen < (hlen + sizeof(struct udphdr)))
1281				goto out;
1282			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1283			if (uh->uh_sum == 0)
1284				goto out;	/* no checksum */
1285			csum_flags =
1286			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1287			break;
1288		default:
1289			goto out;
1290		}
1291
1292		/* Extract computed checksum. */
1293		csum_data = be16dec(mtod(m, uint8_t *) + len);
1294
1295		/*
1296		 * The computed checksum includes IP headers,
1297		 * so we have to deduct them.
1298		 */
1299#if 0
1300		/*
1301		 * But in TCP/UDP layer we can assume the IP header is valid,
1302		 * i.e. a sum of the whole IP header should be 0xffff,
1303		 * so we don't have to bother to deduct it.
1304		 */
1305		if (hlen > 0) {
1306			uint32_t hsum;
1307			const uint16_t *iphdr;
1308			hsum = 0;
1309			iphdr = (uint16_t *)ip;
1310
1311			while (hlen > 1) {
1312				hsum += ntohs(*iphdr++);
1313				hlen -= sizeof(uint16_t);
1314			}
1315			while (hsum >> 16)
1316				hsum = (hsum >> 16) + (hsum & 0xffff);
1317
1318			csum_data += (uint16_t)~hsum;
1319
1320			while (csum_data >> 16)
1321				csum_data =
1322				    (csum_data >> 16) + (csum_data & 0xffff);
1323		}
1324#endif
1325	}
1326 out:
1327	m->m_pkthdr.csum_flags = csum_flags;
1328	m->m_pkthdr.csum_data = csum_data;
1329}
1330
1331/*
1332 * Handle receive interrupts.
1333 */
1334int
1335fxp_rxintr(struct fxp_softc *sc)
1336{
1337	struct ethercom *ec = &sc->sc_ethercom;
1338	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1339	struct mbuf *m, *m0;
1340	bus_dmamap_t rxmap;
1341	struct fxp_rfa *rfa;
1342	int rnr;
1343	uint16_t len, rxstat;
1344
1345	rnr = 0;
1346
1347	for (;;) {
1348		m = sc->sc_rxq.ifq_head;
1349		rfa = FXP_MTORFA(m);
1350		rxmap = M_GETCTX(m, bus_dmamap_t);
1351
1352		FXP_RFASYNC(sc, m,
1353		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1354
1355		rxstat = le16toh(rfa->rfa_status);
1356
1357		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1358			rnr = 1;
1359
1360		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1361			/*
1362			 * We have processed all of the
1363			 * receive buffers.
1364			 */
1365			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1366			return rnr;
1367		}
1368
1369		IF_DEQUEUE(&sc->sc_rxq, m);
1370
1371		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1372
1373		len = le16toh(rfa->actual_size) &
1374		    (m->m_ext.ext_size - 1);
1375		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1376			/* Adjust for appended checksum bytes. */
1377			len -= sizeof(uint16_t);
1378		}
1379
1380		if (len < sizeof(struct ether_header)) {
1381			/*
1382			 * Runt packet; drop it now.
1383			 */
1384			FXP_INIT_RFABUF(sc, m);
1385			continue;
1386		}
1387
1388		/*
1389		 * If support for 802.1Q VLAN sized frames is
1390		 * enabled, we need to do some additional error
1391		 * checking (as we are saving bad frames, in
1392		 * order to receive the larger ones).
1393		 */
1394		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1395		    (rxstat & (FXP_RFA_STATUS_OVERRUN |
1396			       FXP_RFA_STATUS_RNR |
1397			       FXP_RFA_STATUS_ALIGN |
1398			       FXP_RFA_STATUS_CRC)) != 0) {
1399			FXP_INIT_RFABUF(sc, m);
1400			continue;
1401		}
1402
1403		/*
1404		 * check VLAN tag stripping.
1405		 */
1406		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1407		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
1408			vlan_set_tag(m, be16toh(rfa->vlan_id));
1409
1410		/* Do checksum checking. */
1411		if ((ifp->if_csum_flags_rx &
1412		    (M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0)
1413			fxp_rx_hwcksum(sc, m, rfa, len);
1414
1415		/*
1416		 * If the packet is small enough to fit in a
1417		 * single header mbuf, allocate one and copy
1418		 * the data into it.  This greatly reduces
1419		 * memory consumption when we receive lots
1420		 * of small packets.
1421		 *
1422		 * Otherwise, we add a new buffer to the receive
1423		 * chain.  If this fails, we drop the packet and
1424		 * recycle the old buffer.
1425		 */
1426		if (fxp_copy_small != 0 && len <= MHLEN) {
1427			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1428			if (m0 == NULL)
1429				goto dropit;
1430			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1431			memcpy(mtod(m0, void *),
1432			    mtod(m, void *), len);
1433			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1434			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1435			FXP_INIT_RFABUF(sc, m);
1436			m = m0;
1437		} else {
1438			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1439 dropit:
1440				if_statinc(ifp, if_ierrors);
1441				FXP_INIT_RFABUF(sc, m);
1442				continue;
1443			}
1444		}
1445
1446		m_set_rcvif(m, ifp);
1447		m->m_pkthdr.len = m->m_len = len;
1448
1449		/* Pass it on. */
1450		if_percpuq_enqueue(ifp->if_percpuq, m);
1451	}
1452}
1453
1454/*
1455 * Update packet in/out/collision statistics. The i82557 doesn't
1456 * allow you to access these counters without doing a fairly
1457 * expensive DMA to get _all_ of the statistics it maintains, so
1458 * we do this operation here only once per second. The statistics
1459 * counters in the kernel are updated from the previous dump-stats
1460 * DMA and then a new dump-stats DMA is started. The on-chip
1461 * counters are zeroed when the DMA completes. If we can't start
1462 * the DMA immediately, we don't wait - we just prepare to read
1463 * them again next time.
1464 */
1465void
1466fxp_tick(void *arg)
1467{
1468	struct fxp_softc *sc = arg;
1469	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1470	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1471	int s;
1472
1473	if (!device_is_active(sc->sc_dev))
1474		return;
1475
1476	s = splnet();
1477
1478	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1479
1480	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1481
1482	if_statadd_ref(nsr, if_opackets, le32toh(sp->tx_good));
1483	if_statadd_ref(nsr, if_collisions, le32toh(sp->tx_total_collisions));
1484	if (sp->rx_good) {
1485		sc->sc_rxidle = 0;
1486	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1487		sc->sc_rxidle++;
1488	}
1489	if_statadd_ref(nsr, if_ierrors,
1490	    le32toh(sp->rx_crc_errors) +
1491	    le32toh(sp->rx_alignment_errors) +
1492	    le32toh(sp->rx_rnr_errors) +
1493	    le32toh(sp->rx_overrun_errors));
1494	/*
1495	 * If any transmit underruns occurred, bump up the transmit
1496	 * threshold by another 512 bytes (64 * 8).
1497	 */
1498	if (sp->tx_underruns) {
1499		if_statadd_ref(nsr, if_oerrors, le32toh(sp->tx_underruns));
1500		if (tx_threshold < 192)
1501			tx_threshold += 64;
1502	}
1503#ifdef FXP_EVENT_COUNTERS
1504	if (sc->sc_flags & FXPF_FC) {
1505		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1506		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1507	}
1508#endif
1509
1510	IF_STAT_PUTREF(ifp);
1511
1512	/*
1513	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1514	 * then assume the receiver has locked up and attempt to clear
1515	 * the condition by reprogramming the multicast filter (actually,
1516	 * resetting the interface). This is a work-around for a bug in
1517	 * the 82557 where the receiver locks up if it gets certain types
1518	 * of garbage in the synchronization bits prior to the packet header.
1519	 * This bug is supposed to only occur in 10Mbps mode, but has been
1520	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1521	 * speed transition).
1522	 */
1523	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1524		(void) fxp_init(ifp);
1525		splx(s);
1526		return;
1527	}
1528	/*
1529	 * If there is no pending command, start another stats
1530	 * dump. Otherwise punt for now.
1531	 */
1532	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1533		/*
1534		 * Start another stats dump.
1535		 */
1536		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1537		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1538	} else {
1539		/*
1540		 * A previous command is still waiting to be accepted.
1541		 * Just zero our copy of the stats and wait for the
1542		 * next timer event to update them.
1543		 */
1544		/* BIG_ENDIAN: no swap required to store 0 */
1545		sp->tx_good = 0;
1546		sp->tx_underruns = 0;
1547		sp->tx_total_collisions = 0;
1548
1549		sp->rx_good = 0;
1550		sp->rx_crc_errors = 0;
1551		sp->rx_alignment_errors = 0;
1552		sp->rx_rnr_errors = 0;
1553		sp->rx_overrun_errors = 0;
1554		if (sc->sc_flags & FXPF_FC) {
1555			sp->tx_pauseframes = 0;
1556			sp->rx_pauseframes = 0;
1557		}
1558	}
1559
1560	if (sc->sc_flags & FXPF_MII) {
1561		/* Tick the MII clock. */
1562		mii_tick(&sc->sc_mii);
1563	}
1564
1565	splx(s);
1566
1567	/*
1568	 * Schedule another timeout one second from now.
1569	 */
1570	callout_schedule(&sc->sc_callout, hz);
1571}
1572
1573/*
1574 * Drain the receive queue.
1575 */
1576void
1577fxp_rxdrain(struct fxp_softc *sc)
1578{
1579	bus_dmamap_t rxmap;
1580	struct mbuf *m;
1581
1582	for (;;) {
1583		IF_DEQUEUE(&sc->sc_rxq, m);
1584		if (m == NULL)
1585			break;
1586		rxmap = M_GETCTX(m, bus_dmamap_t);
1587		bus_dmamap_unload(sc->sc_dmat, rxmap);
1588		FXP_RXMAP_PUT(sc, rxmap);
1589		m_freem(m);
1590	}
1591}
1592
1593/*
1594 * Stop the interface. Cancels the statistics updater and resets
1595 * the interface.
1596 */
1597void
1598fxp_stop(struct ifnet *ifp, int disable)
1599{
1600	struct fxp_softc *sc = ifp->if_softc;
1601	struct fxp_txsoft *txs;
1602	int i;
1603
1604	/*
1605	 * Turn down interface (done early to avoid bad interactions
1606	 * between panics, shutdown hooks, and the watchdog timer)
1607	 */
1608	ifp->if_timer = 0;
1609	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1610
1611	/*
1612	 * Cancel stats updater.
1613	 */
1614	callout_stop(&sc->sc_callout);
1615	if (sc->sc_flags & FXPF_MII) {
1616		/* Down the MII. */
1617		mii_down(&sc->sc_mii);
1618	}
1619
1620	/*
1621	 * Issue software reset.  This unloads any microcode that
1622	 * might already be loaded.
1623	 */
1624	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1625	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1626	DELAY(50);
1627
1628	/*
1629	 * Release any xmit buffers.
1630	 */
1631	for (i = 0; i < FXP_NTXCB; i++) {
1632		txs = FXP_DSTX(sc, i);
1633		if (txs->txs_mbuf != NULL) {
1634			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1635			m_freem(txs->txs_mbuf);
1636			txs->txs_mbuf = NULL;
1637		}
1638	}
1639	sc->sc_txpending = 0;
1640
1641	if (disable) {
1642		fxp_rxdrain(sc);
1643		fxp_disable(sc);
1644	}
1645
1646}
1647
1648/*
1649 * Watchdog/transmission transmit timeout handler. Called when a
1650 * transmission is started on the interface, but no interrupt is
1651 * received before the timeout. This usually indicates that the
1652 * card has wedged for some reason.
1653 */
1654void
1655fxp_watchdog(struct ifnet *ifp)
1656{
1657	struct fxp_softc *sc = ifp->if_softc;
1658
1659	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1660	if_statinc(ifp, if_oerrors);
1661
1662	(void) fxp_init(ifp);
1663}
1664
1665/*
1666 * Initialize the interface.  Must be called at splnet().
1667 */
1668int
1669fxp_init(struct ifnet *ifp)
1670{
1671	struct fxp_softc *sc = ifp->if_softc;
1672	struct fxp_cb_config *cbp;
1673	struct fxp_cb_ias *cb_ias;
1674	struct fxp_txdesc *txd;
1675	bus_dmamap_t rxmap;
1676	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1677	uint16_t status;
1678
1679	if ((error = fxp_enable(sc)) != 0)
1680		goto out;
1681
1682	/*
1683	 * Cancel any pending I/O
1684	 */
1685	fxp_stop(ifp, 0);
1686
1687	/*
1688	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1689	 * flag, and this prevents the MII from detaching resulting in
1690	 * a panic. The flags field should perhaps be split in runtime
1691	 * flags and more static information. For now, just clear the
1692	 * only other flag set.
1693	 */
1694
1695	sc->sc_flags &= ~FXPF_WANTINIT;
1696
1697	/*
1698	 * Initialize base of CBL and RFA memory. Loading with zero
1699	 * sets it up for regular linear addressing.
1700	 */
1701	fxp_scb_wait(sc);
1702	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1703	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1704
1705	fxp_scb_wait(sc);
1706	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1707
1708	/*
1709	 * Initialize the multicast filter.  Do this now, since we might
1710	 * have to setup the config block differently.
1711	 */
1712	fxp_mc_setup(sc);
1713
1714	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1715	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1716
1717	/*
1718	 * In order to support receiving 802.1Q VLAN frames, we have to
1719	 * enable "save bad frames", since they are 4 bytes larger than
1720	 * the normal Ethernet maximum frame length.  On i82558 and later,
1721	 * we have a better mechanism for this.
1722	 */
1723	save_bf = 0;
1724	lrxen = 0;
1725	vlan_drop = 0;
1726	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1727		if (sc->sc_rev < FXP_REV_82558_A4)
1728			save_bf = 1;
1729		else
1730			lrxen = 1;
1731		if (sc->sc_rev >= FXP_REV_82550)
1732			vlan_drop = 1;
1733	}
1734
1735	/*
1736	 * Initialize base of dump-stats buffer.
1737	 */
1738	fxp_scb_wait(sc);
1739	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1740	    sc->sc_cddma + FXP_CDSTATSOFF);
1741	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1742	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1743
1744	cbp = &sc->sc_control_data->fcd_configcb;
1745	memset(cbp, 0, sizeof(struct fxp_cb_config));
1746
1747	/*
1748	 * Load microcode for this controller.
1749	 */
1750	fxp_load_ucode(sc);
1751
1752	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1753		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1754	else
1755		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1756
1757	/*
1758	 * This copy is kind of disgusting, but there are a bunch of must be
1759	 * zero and must be one bits in this structure and this is the easiest
1760	 * way to initialize them all to proper values.
1761	 */
1762	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1763
1764	/* BIG_ENDIAN: no need to swap to store 0 */
1765	cbp->cb_status =	0;
1766	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1767				    FXP_CB_COMMAND_EL);
1768	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1769	cbp->link_addr =	0xffffffff; /* (no) next command */
1770					/* bytes in config block */
1771	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1772				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1773	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1774	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1775	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1776	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1777	cbp->type_enable =	0;	/* actually reserved */
1778	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1779	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1780	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1781	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1782	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1783	cbp->late_scb =		0;	/* (don't) defer SCB update */
1784	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1785	cbp->ci_int =		1;	/* interrupt on CU idle */
1786	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1787	cbp->ext_stats_dis =	1;	/* disable extended counters */
1788	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1789	cbp->save_bf =		save_bf;/* save bad frames */
1790	cbp->disc_short_rx =	!prm;	/* discard short packets */
1791	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1792	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1793	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1794	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1795					/* interface mode */
1796	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1797	cbp->csma_dis =		0;	/* (don't) disable link */
1798	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1799					/* (don't) enable RX checksum */
1800	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1801	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1802	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1803	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1804	cbp->nsai =		1;	/* (don't) disable source addr insert */
1805	cbp->preamble_length =	2;	/* (7 byte) preamble */
1806	cbp->loopback =		0;	/* (don't) loopback */
1807	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1808	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1809	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1810	cbp->promiscuous =	prm;	/* promiscuous mode */
1811	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1812	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1813	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1814	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1815	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1816	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1817	cbp->padding =		1;	/* (do) pad short tx packets */
1818	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1819	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1820	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1821	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1822					/* must set wake_en in PMCSR also */
1823	cbp->force_fdx =	0;	/* (don't) force full duplex */
1824	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1825	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1826	cbp->mc_all =		allm;	/* accept all multicasts */
1827	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1828	cbp->vlan_drop_en =	vlan_drop;
1829
1830	if (!(sc->sc_flags & FXPF_FC)) {
1831		/*
1832		 * The i82557 has no hardware flow control, the values
1833		 * here are the defaults for the chip.
1834		 */
1835		cbp->fc_delay_lsb =	0;
1836		cbp->fc_delay_msb =	0x40;
1837		cbp->pri_fc_thresh =	3;
1838		cbp->tx_fc_dis =	0;
1839		cbp->rx_fc_restop =	0;
1840		cbp->rx_fc_restart =	0;
1841		cbp->fc_filter =	0;
1842		cbp->pri_fc_loc =	1;
1843	} else {
1844		cbp->fc_delay_lsb =	0x1f;
1845		cbp->fc_delay_msb =	0x01;
1846		cbp->pri_fc_thresh =	3;
1847		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1848		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1849		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1850		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1851		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1852		cbp->ext_stats_dis =	0;	/* enable extended stats */
1853	}
1854
1855	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1856
1857	/*
1858	 * Start the config command/DMA.
1859	 */
1860	fxp_scb_wait(sc);
1861	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1862	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1863	/* ...and wait for it to complete. */
1864	for (i = 1000; i > 0; i--) {
1865		FXP_CDCONFIGSYNC(sc,
1866		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1867		status = le16toh(cbp->cb_status);
1868		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1869		if ((status & FXP_CB_STATUS_C) != 0)
1870			break;
1871		DELAY(1);
1872	}
1873	if (i == 0) {
1874		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1875		    device_xname(sc->sc_dev), __LINE__);
1876		return (ETIMEDOUT);
1877	}
1878
1879	/*
1880	 * Initialize the station address.
1881	 */
1882	cb_ias = &sc->sc_control_data->fcd_iascb;
1883	/* BIG_ENDIAN: no need to swap to store 0 */
1884	cb_ias->cb_status = 0;
1885	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1886	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1887	cb_ias->link_addr = 0xffffffff;
1888	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1889
1890	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1891
1892	/*
1893	 * Start the IAS (Individual Address Setup) command/DMA.
1894	 */
1895	fxp_scb_wait(sc);
1896	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1897	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1898	/* ...and wait for it to complete. */
1899	for (i = 1000; i > 0; i--) {
1900		FXP_CDIASSYNC(sc,
1901		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1902		status = le16toh(cb_ias->cb_status);
1903		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1904		if ((status & FXP_CB_STATUS_C) != 0)
1905			break;
1906		DELAY(1);
1907	}
1908	if (i == 0) {
1909		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1910		    device_xname(sc->sc_dev), __LINE__);
1911		return (ETIMEDOUT);
1912	}
1913
1914	/*
1915	 * Initialize the transmit descriptor ring.  txlast is initialized
1916	 * to the end of the list so that it will wrap around to the first
1917	 * descriptor when the first packet is transmitted.
1918	 */
1919	for (i = 0; i < FXP_NTXCB; i++) {
1920		txd = FXP_CDTX(sc, i);
1921		memset(txd, 0, sizeof(*txd));
1922		txd->txd_txcb.cb_command =
1923		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1924		txd->txd_txcb.link_addr =
1925		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1926		if (sc->sc_flags & FXPF_EXT_TXCB)
1927			txd->txd_txcb.tbd_array_addr =
1928			    htole32(FXP_CDTBDADDR(sc, i) +
1929				    (2 * sizeof(struct fxp_tbd)));
1930		else
1931			txd->txd_txcb.tbd_array_addr =
1932			    htole32(FXP_CDTBDADDR(sc, i));
1933		FXP_CDTXSYNC(sc, i,
1934		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1935	}
1936	sc->sc_txpending = 0;
1937	sc->sc_txdirty = 0;
1938	sc->sc_txlast = FXP_NTXCB - 1;
1939
1940	/*
1941	 * Initialize the receive buffer list.
1942	 */
1943	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1944	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1945		rxmap = FXP_RXMAP_GET(sc);
1946		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1947			log(LOG_ERR, "%s: unable to allocate or map rx "
1948			    "buffer %d, error = %d\n",
1949			    device_xname(sc->sc_dev),
1950			    sc->sc_rxq.ifq_len, error);
1951			/*
1952			 * XXX Should attempt to run with fewer receive
1953			 * XXX buffers instead of just failing.
1954			 */
1955			FXP_RXMAP_PUT(sc, rxmap);
1956			fxp_rxdrain(sc);
1957			goto out;
1958		}
1959	}
1960	sc->sc_rxidle = 0;
1961
1962	/*
1963	 * Give the transmit ring to the chip.  We do this by pointing
1964	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1965	 * issuing a start command.  It will execute the NOP and then
1966	 * suspend, pointing at the first descriptor.
1967	 */
1968	fxp_scb_wait(sc);
1969	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1970	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1971
1972	/*
1973	 * Initialize receiver buffer area - RFA.
1974	 */
1975#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1976	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1977	fxp_scb_wait(sc);
1978	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1979	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1980	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1981#endif
1982
1983	if (sc->sc_flags & FXPF_MII) {
1984		/*
1985		 * Set current media.
1986		 */
1987		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1988			goto out;
1989	}
1990
1991	/*
1992	 * ...all done!
1993	 */
1994	ifp->if_flags |= IFF_RUNNING;
1995	ifp->if_flags &= ~IFF_OACTIVE;
1996
1997	/*
1998	 * Request a software generated interrupt that will be used to
1999	 * (re)start the RU processing.  If we direct the chip to start
2000	 * receiving from the start of queue now, instead of letting the
2001	 * interrupt handler first process all received packets, we run
2002	 * the risk of having it overwrite mbuf clusters while they are
2003	 * being processed or after they have been returned to the pool.
2004	 */
2005	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2006
2007	/*
2008	 * Start the one second timer.
2009	 */
2010	callout_schedule(&sc->sc_callout, hz);
2011
2012	/*
2013	 * Attempt to start output on the interface.
2014	 */
2015	fxp_start(ifp);
2016
2017 out:
2018	if (error) {
2019		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2020		ifp->if_timer = 0;
2021		log(LOG_ERR, "%s: interface not running\n",
2022		    device_xname(sc->sc_dev));
2023	}
2024	return (error);
2025}
2026
2027/*
2028 * Notify the world which media we're using.
2029 */
2030void
2031fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2032{
2033	struct fxp_softc *sc = ifp->if_softc;
2034
2035	if (sc->sc_enabled == 0) {
2036		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2037		ifmr->ifm_status = 0;
2038		return;
2039	}
2040
2041	ether_mediastatus(ifp, ifmr);
2042}
2043
2044int
2045fxp_80c24_mediachange(struct ifnet *ifp)
2046{
2047
2048	/* Nothing to do here. */
2049	return (0);
2050}
2051
2052void
2053fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2054{
2055	struct fxp_softc *sc = ifp->if_softc;
2056
2057	/*
2058	 * Media is currently-selected media.  We cannot determine
2059	 * the link status.
2060	 */
2061	ifmr->ifm_status = 0;
2062	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2063}
2064
2065/*
2066 * Add a buffer to the end of the RFA buffer list.
2067 * Return 0 if successful, error code on failure.
2068 *
2069 * The RFA struct is stuck at the beginning of mbuf cluster and the
2070 * data pointer is fixed up to point just past it.
2071 */
2072int
2073fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2074{
2075	struct mbuf *m;
2076	int error;
2077
2078	MGETHDR(m, M_DONTWAIT, MT_DATA);
2079	if (m == NULL)
2080		return (ENOBUFS);
2081
2082	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2083	MCLGET(m, M_DONTWAIT);
2084	if ((m->m_flags & M_EXT) == 0) {
2085		m_freem(m);
2086		return (ENOBUFS);
2087	}
2088
2089	if (unload)
2090		bus_dmamap_unload(sc->sc_dmat, rxmap);
2091
2092	M_SETCTX(m, rxmap);
2093
2094	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2095	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2096	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2097	if (error) {
2098		/* XXX XXX XXX */
2099		aprint_error_dev(sc->sc_dev,
2100		    "can't load rx DMA map %d, error = %d\n",
2101		    sc->sc_rxq.ifq_len, error);
2102		panic("fxp_add_rfabuf");
2103	}
2104
2105	FXP_INIT_RFABUF(sc, m);
2106
2107	return (0);
2108}
2109
2110int
2111fxp_mdi_read(device_t self, int phy, int reg, uint16_t *value)
2112{
2113	struct fxp_softc *sc = device_private(self);
2114	int count = 10000;
2115	uint32_t data;
2116
2117	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2118	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2119
2120	while (((data = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2121	    0x10000000) == 0 && count--)
2122		DELAY(10);
2123
2124	if (count <= 0) {
2125		log(LOG_WARNING,
2126		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2127		return ETIMEDOUT;
2128	}
2129
2130	*value = data & 0xffff;
2131	return 0;
2132}
2133
2134void
2135fxp_statchg(struct ifnet *ifp)
2136{
2137
2138	/* Nothing to do. */
2139}
2140
2141int
2142fxp_mdi_write(device_t self, int phy, int reg, uint16_t value)
2143{
2144	struct fxp_softc *sc = device_private(self);
2145	int count = 10000;
2146
2147	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2148	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | value);
2149
2150	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2151	    count--)
2152		DELAY(10);
2153
2154	if (count <= 0) {
2155		log(LOG_WARNING,
2156		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2157		return ETIMEDOUT;
2158	}
2159
2160	return 0;
2161}
2162
2163int
2164fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2165{
2166	struct fxp_softc *sc = ifp->if_softc;
2167	int s, error;
2168
2169	s = splnet();
2170
2171	switch (cmd) {
2172	default:
2173		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2174			break;
2175
2176		error = 0;
2177
2178		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2179			;
2180		else if (ifp->if_flags & IFF_RUNNING) {
2181			/*
2182			 * Multicast list has changed; set the
2183			 * hardware filter accordingly.
2184			 */
2185			while (sc->sc_txpending) {
2186				sc->sc_flags |= FXPF_WANTINIT;
2187				tsleep(sc, PSOCK, "fxp_init", 0);
2188			}
2189			error = fxp_init(ifp);
2190		}
2191		break;
2192	}
2193
2194	/* Try to get more packets going. */
2195	if (sc->sc_enabled)
2196		fxp_start(ifp);
2197
2198	splx(s);
2199	return (error);
2200}
2201
2202/*
2203 * Program the multicast filter.
2204 *
2205 * This function must be called at splnet().
2206 */
2207void
2208fxp_mc_setup(struct fxp_softc *sc)
2209{
2210	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2211	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2212	struct ethercom *ec = &sc->sc_ethercom;
2213	struct ether_multi *enm;
2214	struct ether_multistep step;
2215	int count, nmcasts;
2216	uint16_t status;
2217
2218#ifdef DIAGNOSTIC
2219	if (sc->sc_txpending)
2220		panic("fxp_mc_setup: pending transmissions");
2221#endif
2222
2223
2224	if (ifp->if_flags & IFF_PROMISC) {
2225		ifp->if_flags |= IFF_ALLMULTI;
2226		return;
2227	} else {
2228		ifp->if_flags &= ~IFF_ALLMULTI;
2229	}
2230
2231	/*
2232	 * Initialize multicast setup descriptor.
2233	 */
2234	nmcasts = 0;
2235	ETHER_LOCK(ec);
2236	ETHER_FIRST_MULTI(step, ec, enm);
2237	while (enm != NULL) {
2238		/*
2239		 * Check for too many multicast addresses or if we're
2240		 * listening to a range.  Either way, we simply have
2241		 * to accept all multicasts.
2242		 */
2243		if (nmcasts >= MAXMCADDR ||
2244		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2245		    ETHER_ADDR_LEN) != 0) {
2246			/*
2247			 * Callers of this function must do the
2248			 * right thing with this.  If we're called
2249			 * from outside fxp_init(), the caller must
2250			 * detect if the state if IFF_ALLMULTI changes.
2251			 * If it does, the caller must then call
2252			 * fxp_init(), since allmulti is handled by
2253			 * the config block.
2254			 */
2255			ifp->if_flags |= IFF_ALLMULTI;
2256			ETHER_UNLOCK(ec);
2257			return;
2258		}
2259		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2260		    ETHER_ADDR_LEN);
2261		nmcasts++;
2262		ETHER_NEXT_MULTI(step, enm);
2263	}
2264	ETHER_UNLOCK(ec);
2265
2266	/* BIG_ENDIAN: no need to swap to store 0 */
2267	mcsp->cb_status = 0;
2268	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2269	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2270	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2271
2272	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2273
2274	/*
2275	 * Wait until the command unit is not active.  This should never
2276	 * happen since nothing is queued, but make sure anyway.
2277	 */
2278	count = 100;
2279	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2280	    FXP_SCB_CUS_ACTIVE && --count)
2281		DELAY(1);
2282	if (count == 0) {
2283		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2284		    device_xname(sc->sc_dev), __LINE__);
2285		return;
2286	}
2287
2288	/*
2289	 * Start the multicast setup command/DMA.
2290	 */
2291	fxp_scb_wait(sc);
2292	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2293	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2294
2295	/* ...and wait for it to complete. */
2296	for (count = 1000; count > 0; count--) {
2297		FXP_CDMCSSYNC(sc,
2298		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2299		status = le16toh(mcsp->cb_status);
2300		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2301		if ((status & FXP_CB_STATUS_C) != 0)
2302			break;
2303		DELAY(1);
2304	}
2305	if (count == 0) {
2306		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2307		    device_xname(sc->sc_dev), __LINE__);
2308		return;
2309	}
2310}
2311
2312static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2313static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2314static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2315static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2316static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2317static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2318static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2319
2320#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2321
2322static const struct ucode {
2323	int32_t		revision;
2324	const uint32_t	*ucode;
2325	size_t		length;
2326	uint16_t	int_delay_offset;
2327	uint16_t	bundle_max_offset;
2328} ucode_table[] = {
2329	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2330	  D101_CPUSAVER_DWORD, 0 },
2331
2332	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2333	  D101_CPUSAVER_DWORD, 0 },
2334
2335	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2336	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2337
2338	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2339	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2340
2341	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2342	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2343
2344	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2345	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2346
2347	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2348	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2349
2350	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2351	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2352
2353	{ 0, NULL, 0, 0, 0 }
2354};
2355
2356void
2357fxp_load_ucode(struct fxp_softc *sc)
2358{
2359	const struct ucode *uc;
2360	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2361	int count, i;
2362	uint16_t status;
2363
2364	if (sc->sc_flags & FXPF_UCODE_LOADED)
2365		return;
2366
2367	/*
2368	 * Only load the uCode if the user has requested that
2369	 * we do so.
2370	 */
2371	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2372		sc->sc_int_delay = 0;
2373		sc->sc_bundle_max = 0;
2374		return;
2375	}
2376
2377	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2378		if (sc->sc_rev == uc->revision)
2379			break;
2380	}
2381	if (uc->ucode == NULL)
2382		return;
2383
2384	/* BIG ENDIAN: no need to swap to store 0 */
2385	cbp->cb_status = 0;
2386	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2387	cbp->link_addr = 0xffffffff;		/* (no) next command */
2388	for (i = 0; i < uc->length; i++)
2389		cbp->ucode[i] = htole32(uc->ucode[i]);
2390
2391	if (uc->int_delay_offset)
2392		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2393		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2394
2395	if (uc->bundle_max_offset)
2396		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2397		    htole16(fxp_bundle_max);
2398
2399	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2400
2401	/*
2402	 * Download the uCode to the chip.
2403	 */
2404	fxp_scb_wait(sc);
2405	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2406	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2407
2408	/* ...and wait for it to complete. */
2409	for (count = 10000; count > 0; count--) {
2410		FXP_CDUCODESYNC(sc,
2411		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2412		status = le16toh(cbp->cb_status);
2413		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2414		if ((status & FXP_CB_STATUS_C) != 0)
2415			break;
2416		DELAY(2);
2417	}
2418	if (count == 0) {
2419		sc->sc_int_delay = 0;
2420		sc->sc_bundle_max = 0;
2421		log(LOG_WARNING, "%s: timeout loading microcode\n",
2422		    device_xname(sc->sc_dev));
2423		return;
2424	}
2425
2426	if (sc->sc_int_delay != fxp_int_delay ||
2427	    sc->sc_bundle_max != fxp_bundle_max) {
2428		sc->sc_int_delay = fxp_int_delay;
2429		sc->sc_bundle_max = fxp_bundle_max;
2430		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2431		    "max bundle: %d\n", device_xname(sc->sc_dev),
2432		    sc->sc_int_delay,
2433		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2434	}
2435
2436	sc->sc_flags |= FXPF_UCODE_LOADED;
2437}
2438
2439int
2440fxp_enable(struct fxp_softc *sc)
2441{
2442
2443	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2444		if ((*sc->sc_enable)(sc) != 0) {
2445			log(LOG_ERR, "%s: device enable failed\n",
2446			    device_xname(sc->sc_dev));
2447			return (EIO);
2448		}
2449	}
2450
2451	sc->sc_enabled = 1;
2452	return (0);
2453}
2454
2455void
2456fxp_disable(struct fxp_softc *sc)
2457{
2458
2459	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2460		(*sc->sc_disable)(sc);
2461		sc->sc_enabled = 0;
2462	}
2463}
2464
2465/*
2466 * fxp_activate:
2467 *
2468 *	Handle device activation/deactivation requests.
2469 */
2470int
2471fxp_activate(device_t self, enum devact act)
2472{
2473	struct fxp_softc *sc = device_private(self);
2474
2475	switch (act) {
2476	case DVACT_DEACTIVATE:
2477		if_deactivate(&sc->sc_ethercom.ec_if);
2478		return 0;
2479	default:
2480		return EOPNOTSUPP;
2481	}
2482}
2483
2484/*
2485 * fxp_detach:
2486 *
2487 *	Detach an i82557 interface.
2488 */
2489int
2490fxp_detach(struct fxp_softc *sc, int flags)
2491{
2492	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2493	int i, s;
2494
2495	/* Succeed now if there's no work to do. */
2496	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2497		return (0);
2498
2499	s = splnet();
2500	/* Stop the interface. Callouts are stopped in it. */
2501	fxp_stop(ifp, 1);
2502	splx(s);
2503
2504	/* Destroy our callout. */
2505	callout_destroy(&sc->sc_callout);
2506
2507	if (sc->sc_flags & FXPF_MII) {
2508		/* Detach all PHYs */
2509		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2510	}
2511
2512	rnd_detach_source(&sc->rnd_source);
2513	ether_ifdetach(ifp);
2514	if_detach(ifp);
2515
2516	/* Delete all remaining media. */
2517	ifmedia_fini(&sc->sc_mii.mii_media);
2518
2519	for (i = 0; i < FXP_NRFABUFS; i++) {
2520		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2521		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2522	}
2523
2524	for (i = 0; i < FXP_NTXCB; i++) {
2525		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2526		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2527	}
2528
2529	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2530	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2531	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2532	    sizeof(struct fxp_control_data));
2533	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2534
2535	return (0);
2536}
2537