i82557.c revision 1.147
1/*	$NetBSD: i82557.c,v 1.147 2017/02/20 07:43:29 ozaki-r Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 *    notice unmodified, this list of conditions, and the following
43 *    disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63/*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.147 2017/02/20 07:43:29 ozaki-r Exp $");
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/callout.h>
74#include <sys/mbuf.h>
75#include <sys/malloc.h>
76#include <sys/kernel.h>
77#include <sys/socket.h>
78#include <sys/ioctl.h>
79#include <sys/errno.h>
80#include <sys/device.h>
81#include <sys/syslog.h>
82#include <sys/proc.h>
83
84#include <machine/endian.h>
85
86#include <sys/rndsource.h>
87
88#include <net/if.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_ether.h>
92
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/ip.h>
96#include <netinet/tcp.h>
97#include <netinet/udp.h>
98
99#include <net/bpf.h>
100
101#include <sys/bus.h>
102#include <sys/intr.h>
103
104#include <dev/mii/miivar.h>
105
106#include <dev/ic/i82557reg.h>
107#include <dev/ic/i82557var.h>
108
109#include <dev/microcode/i8255x/rcvbundl.h>
110
111/*
112 * NOTE!  On the Alpha, we have an alignment constraint.  The
113 * card DMAs the packet immediately following the RFA.  However,
114 * the first thing in the packet is a 14-byte Ethernet header.
115 * This means that the packet is misaligned.  To compensate,
116 * we actually offset the RFA 2 bytes into the cluster.  This
117 * alignes the packet after the Ethernet header at a 32-bit
118 * boundary.  HOWEVER!  This means that the RFA is misaligned!
119 */
120#define	RFA_ALIGNMENT_FUDGE	2
121
122/*
123 * The configuration byte map has several undefined fields which
124 * must be one or must be zero.  Set up a template for these bits
125 * only (assuming an i82557 chip), leaving the actual configuration
126 * for fxp_init().
127 *
128 * See the definition of struct fxp_cb_config for the bit definitions.
129 */
130const uint8_t fxp_cb_config_template[] = {
131	0x0, 0x0,		/* cb_status */
132	0x0, 0x0,		/* cb_command */
133	0x0, 0x0, 0x0, 0x0,	/* link_addr */
134	0x0,	/*  0 */
135	0x0,	/*  1 */
136	0x0,	/*  2 */
137	0x0,	/*  3 */
138	0x0,	/*  4 */
139	0x0,	/*  5 */
140	0x32,	/*  6 */
141	0x0,	/*  7 */
142	0x0,	/*  8 */
143	0x0,	/*  9 */
144	0x6,	/* 10 */
145	0x0,	/* 11 */
146	0x0,	/* 12 */
147	0x0,	/* 13 */
148	0xf2,	/* 14 */
149	0x48,	/* 15 */
150	0x0,	/* 16 */
151	0x40,	/* 17 */
152	0xf0,	/* 18 */
153	0x0,	/* 19 */
154	0x3f,	/* 20 */
155	0x5,	/* 21 */
156	0x0,	/* 22 */
157	0x0,	/* 23 */
158	0x0,	/* 24 */
159	0x0,	/* 25 */
160	0x0,	/* 26 */
161	0x0,	/* 27 */
162	0x0,	/* 28 */
163	0x0,	/* 29 */
164	0x0,	/* 30 */
165	0x0,	/* 31 */
166};
167
168void	fxp_mii_initmedia(struct fxp_softc *);
169void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170
171void	fxp_80c24_initmedia(struct fxp_softc *);
172int	fxp_80c24_mediachange(struct ifnet *);
173void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174
175void	fxp_start(struct ifnet *);
176int	fxp_ioctl(struct ifnet *, u_long, void *);
177void	fxp_watchdog(struct ifnet *);
178int	fxp_init(struct ifnet *);
179void	fxp_stop(struct ifnet *, int);
180
181void	fxp_txintr(struct fxp_softc *);
182int	fxp_rxintr(struct fxp_softc *);
183
184void	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
185	    const struct fxp_rfa *, u_int);
186
187void	fxp_rxdrain(struct fxp_softc *);
188int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189int	fxp_mdi_read(device_t, int, int);
190void	fxp_statchg(struct ifnet *);
191void	fxp_mdi_write(device_t, int, int, int);
192void	fxp_autosize_eeprom(struct fxp_softc*);
193void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195void	fxp_eeprom_update_cksum(struct fxp_softc *);
196void	fxp_get_info(struct fxp_softc *, uint8_t *);
197void	fxp_tick(void *);
198void	fxp_mc_setup(struct fxp_softc *);
199void	fxp_load_ucode(struct fxp_softc *);
200
201int	fxp_copy_small = 0;
202
203/*
204 * Variables for interrupt mitigating microcode.
205 */
206int	fxp_int_delay = 1000;		/* usec */
207int	fxp_bundle_max = 6;		/* packets */
208
209struct fxp_phytype {
210	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
211	void	(*fp_init)(struct fxp_softc *);
212} fxp_phytype_table[] = {
213	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
214	{ -1,				fxp_mii_initmedia },
215};
216
217/*
218 * Set initial transmit threshold at 64 (512 bytes). This is
219 * increased by 64 (512 bytes) at a time, to maximum of 192
220 * (1536 bytes), if an underrun occurs.
221 */
222static int tx_threshold = 64;
223
224/*
225 * Wait for the previous command to be accepted (but not necessarily
226 * completed).
227 */
228static inline void
229fxp_scb_wait(struct fxp_softc *sc)
230{
231	int i = 10000;
232
233	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234		delay(2);
235	if (i == 0)
236		log(LOG_WARNING,
237		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238}
239
240/*
241 * Submit a command to the i82557.
242 */
243static inline void
244fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245{
246
247	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248}
249
250/*
251 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
252 */
253void
254fxp_attach(struct fxp_softc *sc)
255{
256	uint8_t enaddr[ETHER_ADDR_LEN];
257	struct ifnet *ifp;
258	bus_dma_segment_t seg;
259	int rseg, i, error;
260	struct fxp_phytype *fp;
261
262	callout_init(&sc->sc_callout, 0);
263
264        /*
265	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
266	 * Note: to use IPCB we need extended TXCB support too, and
267	 *       these feature flags should be set in each bus attachment.
268	 */
269	if (sc->sc_flags & FXPF_EXT_RFA) {
270		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
271		sc->sc_rfa_size = RFA_EXT_SIZE;
272	} else {
273		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
274		sc->sc_rfa_size = RFA_SIZE;
275	}
276
277	/*
278	 * Allocate the control data structures, and create and load the
279	 * DMA map for it.
280	 */
281	if ((error = bus_dmamem_alloc(sc->sc_dmat,
282	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
283	    0)) != 0) {
284		aprint_error_dev(sc->sc_dev,
285		    "unable to allocate control data, error = %d\n",
286		    error);
287		goto fail_0;
288	}
289
290	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
291	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
292	    BUS_DMA_COHERENT)) != 0) {
293		aprint_error_dev(sc->sc_dev,
294		    "unable to map control data, error = %d\n", error);
295		goto fail_1;
296	}
297	sc->sc_cdseg = seg;
298	sc->sc_cdnseg = rseg;
299
300	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
301
302	if ((error = bus_dmamap_create(sc->sc_dmat,
303	    sizeof(struct fxp_control_data), 1,
304	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
305		aprint_error_dev(sc->sc_dev,
306		    "unable to create control data DMA map, error = %d\n",
307		    error);
308		goto fail_2;
309	}
310
311	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
312	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
313	    0)) != 0) {
314		aprint_error_dev(sc->sc_dev,
315		    "can't load control data DMA map, error = %d\n",
316		    error);
317		goto fail_3;
318	}
319
320	/*
321	 * Create the transmit buffer DMA maps.
322	 */
323	for (i = 0; i < FXP_NTXCB; i++) {
324		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
325		    (sc->sc_flags & FXPF_EXT_RFA) ?
326		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
327		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
328			aprint_error_dev(sc->sc_dev,
329			    "unable to create tx DMA map %d, error = %d\n",
330			    i, error);
331			goto fail_4;
332		}
333	}
334
335	/*
336	 * Create the receive buffer DMA maps.
337	 */
338	for (i = 0; i < FXP_NRFABUFS; i++) {
339		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
340		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
341			aprint_error_dev(sc->sc_dev,
342			    "unable to create rx DMA map %d, error = %d\n",
343			    i, error);
344			goto fail_5;
345		}
346	}
347
348	/* Initialize MAC address and media structures. */
349	fxp_get_info(sc, enaddr);
350
351	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
352	    ether_sprintf(enaddr));
353
354	ifp = &sc->sc_ethercom.ec_if;
355
356	/*
357	 * Get info about our media interface, and initialize it.  Note
358	 * the table terminates itself with a phy of -1, indicating
359	 * that we're using MII.
360	 */
361	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362		if (fp->fp_phy == sc->phy_primary_device)
363			break;
364	(*fp->fp_init)(sc);
365
366	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
367	ifp->if_softc = sc;
368	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369	ifp->if_ioctl = fxp_ioctl;
370	ifp->if_start = fxp_start;
371	ifp->if_watchdog = fxp_watchdog;
372	ifp->if_init = fxp_init;
373	ifp->if_stop = fxp_stop;
374	IFQ_SET_READY(&ifp->if_snd);
375
376	if (sc->sc_flags & FXPF_EXT_RFA) {
377		/*
378		 * Enable hardware cksum support by EXT_RFA and IPCB.
379		 *
380		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381		 * at least, on i82550 rev.12.
382		 * specifically, it doesn't set ipv4 checksum properly
383		 * when sending UDP (and probably TCP) packets with
384		 * 20 byte ipv4 header + 1 or 2 byte data,
385		 * though ICMP packets seem working.
386		 * FreeBSD driver has related comments.
387		 * We've added a workaround to handle the bug by padding
388		 * such packets manually.
389		 */
390		ifp->if_capabilities =
391		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
392		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
396		ifp->if_capabilities =
397		    IFCAP_CSUM_TCPv4_Rx |
398		    IFCAP_CSUM_UDPv4_Rx;
399	}
400
401	/*
402	 * We can support 802.1Q VLAN-sized frames.
403	 */
404	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
405
406	/*
407	 * Attach the interface.
408	 */
409	if_attach(ifp);
410	if_deferred_start_init(ifp, NULL);
411	ether_ifattach(ifp, enaddr);
412	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
413	    RND_TYPE_NET, RND_FLAG_DEFAULT);
414
415#ifdef FXP_EVENT_COUNTERS
416	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
417	    NULL, device_xname(sc->sc_dev), "txstall");
418	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
419	    NULL, device_xname(sc->sc_dev), "txintr");
420	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
421	    NULL, device_xname(sc->sc_dev), "rxintr");
422	if (sc->sc_flags & FXPF_FC) {
423		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
424		    NULL, device_xname(sc->sc_dev), "txpause");
425		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
426		    NULL, device_xname(sc->sc_dev), "rxpause");
427	}
428#endif /* FXP_EVENT_COUNTERS */
429
430	/* The attach is successful. */
431	sc->sc_flags |= FXPF_ATTACHED;
432
433	return;
434
435	/*
436	 * Free any resources we've allocated during the failed attach
437	 * attempt.  Do this in reverse order and fall though.
438	 */
439 fail_5:
440	for (i = 0; i < FXP_NRFABUFS; i++) {
441		if (sc->sc_rxmaps[i] != NULL)
442			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
443	}
444 fail_4:
445	for (i = 0; i < FXP_NTXCB; i++) {
446		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
447			bus_dmamap_destroy(sc->sc_dmat,
448			    FXP_DSTX(sc, i)->txs_dmamap);
449	}
450	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
451 fail_3:
452	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
453 fail_2:
454	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
455	    sizeof(struct fxp_control_data));
456 fail_1:
457	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
458 fail_0:
459	return;
460}
461
462void
463fxp_mii_initmedia(struct fxp_softc *sc)
464{
465	int flags;
466
467	sc->sc_flags |= FXPF_MII;
468
469	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
470	sc->sc_mii.mii_readreg = fxp_mdi_read;
471	sc->sc_mii.mii_writereg = fxp_mdi_write;
472	sc->sc_mii.mii_statchg = fxp_statchg;
473
474	sc->sc_ethercom.ec_mii = &sc->sc_mii;
475	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
476	    fxp_mii_mediastatus);
477
478	flags = MIIF_NOISOLATE;
479	if (sc->sc_flags & FXPF_FC)
480		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
481	/*
482	 * The i82557 wedges if all of its PHYs are isolated!
483	 */
484	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
485	    MII_OFFSET_ANY, flags);
486	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
487		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
488		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
489	} else
490		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
491}
492
493void
494fxp_80c24_initmedia(struct fxp_softc *sc)
495{
496
497	/*
498	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
499	 * doesn't have a programming interface of any sort.  The
500	 * media is sensed automatically based on how the link partner
501	 * is configured.  This is, in essence, manual configuration.
502	 */
503	aprint_normal_dev(sc->sc_dev,
504	    "Seeq 80c24 AutoDUPLEX media interface present\n");
505	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
506	    fxp_80c24_mediastatus);
507	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
508	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
509}
510
511/*
512 * Initialize the interface media.
513 */
514void
515fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
516{
517	uint16_t data, myea[ETHER_ADDR_LEN / 2];
518
519	/*
520	 * Reset to a stable state.
521	 */
522	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
523	DELAY(100);
524
525	sc->sc_eeprom_size = 0;
526	fxp_autosize_eeprom(sc);
527	if (sc->sc_eeprom_size == 0) {
528		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
529		sc->sc_eeprom_size = 6; /* XXX panic here? */
530	}
531#ifdef DEBUG
532	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
533	    1 << sc->sc_eeprom_size);
534#endif
535
536	/*
537	 * Get info about the primary PHY
538	 */
539	fxp_read_eeprom(sc, &data, 6, 1);
540	sc->phy_primary_device =
541	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
542
543	/*
544	 * Read MAC address.
545	 */
546	fxp_read_eeprom(sc, myea, 0, 3);
547	enaddr[0] = myea[0] & 0xff;
548	enaddr[1] = myea[0] >> 8;
549	enaddr[2] = myea[1] & 0xff;
550	enaddr[3] = myea[1] >> 8;
551	enaddr[4] = myea[2] & 0xff;
552	enaddr[5] = myea[2] >> 8;
553
554	/*
555	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
556	 * as some i82559 designs, have a defect where the chip can
557	 * cause a PCI protocol violation if it receives a CU_RESUME
558	 * command when it is entering the IDLE state.
559	 *
560	 * The work-around is to disable Dynamic Standby Mode, so that
561	 * the chip never deasserts #CLKRUN, and always remains in the
562	 * active state.
563	 *
564	 * Unfortunately, the only way to disable Dynamic Standby is
565	 * to frob an EEPROM setting and reboot (the EEPROM setting
566	 * is only consulted when the PCI bus comes out of reset).
567	 *
568	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
569	 */
570	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
571		fxp_read_eeprom(sc, &data, 10, 1);
572		if (data & 0x02) {		/* STB enable */
573			aprint_error_dev(sc->sc_dev, "WARNING: "
574			    "Disabling dynamic standby mode in EEPROM "
575			    "to work around a\n");
576			aprint_normal_dev(sc->sc_dev,
577			    "WARNING: hardware bug.  You must reset "
578			    "the system before using this\n");
579			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
580			data &= ~0x02;
581			fxp_write_eeprom(sc, &data, 10, 1);
582			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
583			    data);
584			fxp_eeprom_update_cksum(sc);
585		}
586	}
587
588	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
589	/* Due to false positives we make it conditional on setting link1 */
590	fxp_read_eeprom(sc, &data, 3, 1);
591	if ((data & 0x03) != 0x03) {
592		aprint_verbose_dev(sc->sc_dev,
593		    "May need receiver lock-up workaround\n");
594	}
595}
596
597static void
598fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
599{
600	uint16_t reg;
601	int x;
602
603	for (x = 1 << (len - 1); x != 0; x >>= 1) {
604		DELAY(40);
605		if (data & x)
606			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
607		else
608			reg = FXP_EEPROM_EECS;
609		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
610		DELAY(40);
611		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
612		    reg | FXP_EEPROM_EESK);
613		DELAY(40);
614		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
615	}
616	DELAY(40);
617}
618
619/*
620 * Figure out EEPROM size.
621 *
622 * 559's can have either 64-word or 256-word EEPROMs, the 558
623 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
624 * talks about the existence of 16 to 256 word EEPROMs.
625 *
626 * The only known sizes are 64 and 256, where the 256 version is used
627 * by CardBus cards to store CIS information.
628 *
629 * The address is shifted in msb-to-lsb, and after the last
630 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
631 * after which follows the actual data. We try to detect this zero, by
632 * probing the data-out bit in the EEPROM control register just after
633 * having shifted in a bit. If the bit is zero, we assume we've
634 * shifted enough address bits. The data-out should be tri-state,
635 * before this, which should translate to a logical one.
636 *
637 * Other ways to do this would be to try to read a register with known
638 * contents with a varying number of address bits, but no such
639 * register seem to be available. The high bits of register 10 are 01
640 * on the 558 and 559, but apparently not on the 557.
641 *
642 * The Linux driver computes a checksum on the EEPROM data, but the
643 * value of this checksum is not very well documented.
644 */
645
646void
647fxp_autosize_eeprom(struct fxp_softc *sc)
648{
649	int x;
650
651	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
652	DELAY(40);
653
654	/* Shift in read opcode. */
655	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
656
657	/*
658	 * Shift in address, wait for the dummy zero following a correct
659	 * address shift.
660	 */
661	for (x = 1; x <= 8; x++) {
662		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
663		DELAY(40);
664		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
665		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
666		DELAY(40);
667		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
668		    FXP_EEPROM_EEDO) == 0)
669			break;
670		DELAY(40);
671		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
672		DELAY(40);
673	}
674	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
675	DELAY(40);
676	if (x != 6 && x != 8) {
677#ifdef DEBUG
678		printf("%s: strange EEPROM size (%d)\n",
679		    device_xname(sc->sc_dev), 1 << x);
680#endif
681	} else
682		sc->sc_eeprom_size = x;
683}
684
685/*
686 * Read from the serial EEPROM. Basically, you manually shift in
687 * the read opcode (one bit at a time) and then shift in the address,
688 * and then you shift out the data (all of this one bit at a time).
689 * The word size is 16 bits, so you have to provide the address for
690 * every 16 bits of data.
691 */
692void
693fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
694{
695	uint16_t reg;
696	int i, x;
697
698	for (i = 0; i < words; i++) {
699		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
700
701		/* Shift in read opcode. */
702		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
703
704		/* Shift in address. */
705		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
706
707		reg = FXP_EEPROM_EECS;
708		data[i] = 0;
709
710		/* Shift out data. */
711		for (x = 16; x > 0; x--) {
712			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
713			    reg | FXP_EEPROM_EESK);
714			DELAY(40);
715			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
716			    FXP_EEPROM_EEDO)
717				data[i] |= (1 << (x - 1));
718			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
719			DELAY(40);
720		}
721		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
722		DELAY(40);
723	}
724}
725
726/*
727 * Write data to the serial EEPROM.
728 */
729void
730fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
731{
732	int i, j;
733
734	for (i = 0; i < words; i++) {
735		/* Erase/write enable. */
736		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
737		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
738		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
739		    sc->sc_eeprom_size);
740		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
741		DELAY(4);
742
743		/* Shift in write opcode, address, data. */
744		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
745		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
746		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
747		fxp_eeprom_shiftin(sc, data[i], 16);
748		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
749		DELAY(4);
750
751		/* Wait for the EEPROM to finish up. */
752		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
753		DELAY(4);
754		for (j = 0; j < 1000; j++) {
755			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
756			    FXP_EEPROM_EEDO)
757				break;
758			DELAY(50);
759		}
760		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
761		DELAY(4);
762
763		/* Erase/write disable. */
764		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
765		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
766		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
767		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
768		DELAY(4);
769	}
770}
771
772/*
773 * Update the checksum of the EEPROM.
774 */
775void
776fxp_eeprom_update_cksum(struct fxp_softc *sc)
777{
778	int i;
779	uint16_t data, cksum;
780
781	cksum = 0;
782	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
783		fxp_read_eeprom(sc, &data, i, 1);
784		cksum += data;
785	}
786	i = (1 << sc->sc_eeprom_size) - 1;
787	cksum = 0xbaba - cksum;
788	fxp_read_eeprom(sc, &data, i, 1);
789	fxp_write_eeprom(sc, &cksum, i, 1);
790	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
791	    device_xname(sc->sc_dev), i, data, cksum);
792}
793
794/*
795 * Start packet transmission on the interface.
796 */
797void
798fxp_start(struct ifnet *ifp)
799{
800	struct fxp_softc *sc = ifp->if_softc;
801	struct mbuf *m0, *m;
802	struct fxp_txdesc *txd;
803	struct fxp_txsoft *txs;
804	bus_dmamap_t dmamap;
805	int error, lasttx, nexttx, opending, seg, nsegs, len;
806
807	/*
808	 * If we want a re-init, bail out now.
809	 */
810	if (sc->sc_flags & FXPF_WANTINIT) {
811		ifp->if_flags |= IFF_OACTIVE;
812		return;
813	}
814
815	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
816		return;
817
818	/*
819	 * Remember the previous txpending and the current lasttx.
820	 */
821	opending = sc->sc_txpending;
822	lasttx = sc->sc_txlast;
823
824	/*
825	 * Loop through the send queue, setting up transmit descriptors
826	 * until we drain the queue, or use up all available transmit
827	 * descriptors.
828	 */
829	for (;;) {
830		struct fxp_tbd *tbdp;
831		int csum_flags;
832
833		/*
834		 * Grab a packet off the queue.
835		 */
836		IFQ_POLL(&ifp->if_snd, m0);
837		if (m0 == NULL)
838			break;
839		m = NULL;
840
841		if (sc->sc_txpending == FXP_NTXCB - 1) {
842			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
843			break;
844		}
845
846		/*
847		 * Get the next available transmit descriptor.
848		 */
849		nexttx = FXP_NEXTTX(sc->sc_txlast);
850		txd = FXP_CDTX(sc, nexttx);
851		txs = FXP_DSTX(sc, nexttx);
852		dmamap = txs->txs_dmamap;
853
854		/*
855		 * Load the DMA map.  If this fails, the packet either
856		 * didn't fit in the allotted number of frags, or we were
857		 * short on resources.  In this case, we'll copy and try
858		 * again.
859		 */
860		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
861		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
862			MGETHDR(m, M_DONTWAIT, MT_DATA);
863			if (m == NULL) {
864				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
865				    device_xname(sc->sc_dev));
866				break;
867			}
868			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
869			if (m0->m_pkthdr.len > MHLEN) {
870				MCLGET(m, M_DONTWAIT);
871				if ((m->m_flags & M_EXT) == 0) {
872					log(LOG_ERR, "%s: unable to allocate "
873					    "Tx cluster\n",
874					    device_xname(sc->sc_dev));
875					m_freem(m);
876					break;
877				}
878			}
879			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
880			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
881			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
882			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
883			if (error) {
884				log(LOG_ERR, "%s: unable to load Tx buffer, "
885				    "error = %d\n",
886				    device_xname(sc->sc_dev), error);
887				break;
888			}
889		}
890
891		IFQ_DEQUEUE(&ifp->if_snd, m0);
892		csum_flags = m0->m_pkthdr.csum_flags;
893		if (m != NULL) {
894			m_freem(m0);
895			m0 = m;
896		}
897
898		/* Initialize the fraglist. */
899		tbdp = txd->txd_tbd;
900		len = m0->m_pkthdr.len;
901		nsegs = dmamap->dm_nsegs;
902		if (sc->sc_flags & FXPF_EXT_RFA)
903			tbdp++;
904		for (seg = 0; seg < nsegs; seg++) {
905			tbdp[seg].tb_addr =
906			    htole32(dmamap->dm_segs[seg].ds_addr);
907			tbdp[seg].tb_size =
908			    htole32(dmamap->dm_segs[seg].ds_len);
909		}
910		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
911		    (csum_flags & M_CSUM_IPv4) != 0)) {
912			/*
913			 * Pad short packets to avoid ip4csum-tx bug.
914			 *
915			 * XXX Should we still consider if such short
916			 *     (36 bytes or less) packets might already
917			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
918			 */
919			KASSERT(nsegs < FXP_IPCB_NTXSEG);
920			nsegs++;
921			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
922			tbdp[seg].tb_size =
923			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
924		}
925
926		/* Sync the DMA map. */
927		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
928		    BUS_DMASYNC_PREWRITE);
929
930		/*
931		 * Store a pointer to the packet so we can free it later.
932		 */
933		txs->txs_mbuf = m0;
934
935		/*
936		 * Initialize the transmit descriptor.
937		 */
938		/* BIG_ENDIAN: no need to swap to store 0 */
939		txd->txd_txcb.cb_status = 0;
940		txd->txd_txcb.cb_command =
941		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
942		txd->txd_txcb.tx_threshold = tx_threshold;
943		txd->txd_txcb.tbd_number = nsegs;
944
945		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
946		if (sc->sc_flags & FXPF_EXT_RFA) {
947			struct m_tag *vtag;
948			struct fxp_ipcb *ipcb;
949			/*
950			 * Deal with TCP/IP checksum offload. Note that
951			 * in order for TCP checksum offload to work,
952			 * the pseudo header checksum must have already
953			 * been computed and stored in the checksum field
954			 * in the TCP header. The stack should have
955			 * already done this for us.
956			 */
957			ipcb = &txd->txd_u.txdu_ipcb;
958			memset(ipcb, 0, sizeof(*ipcb));
959			/*
960			 * always do hardware parsing.
961			 */
962			ipcb->ipcb_ip_activation_high =
963			    FXP_IPCB_HARDWAREPARSING_ENABLE;
964			/*
965			 * ip checksum offloading.
966			 */
967			if (csum_flags & M_CSUM_IPv4) {
968				ipcb->ipcb_ip_schedule |=
969				    FXP_IPCB_IP_CHECKSUM_ENABLE;
970			}
971			/*
972			 * TCP/UDP checksum offloading.
973			 */
974			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
975				ipcb->ipcb_ip_schedule |=
976				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
977			}
978
979			/*
980			 * request VLAN tag insertion if needed.
981			 */
982			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
983			if (vtag) {
984				ipcb->ipcb_vlan_id =
985				    htobe16(*(u_int *)(vtag + 1));
986				ipcb->ipcb_ip_activation_high |=
987				    FXP_IPCB_INSERTVLAN_ENABLE;
988			}
989		} else {
990			KASSERT((csum_flags &
991			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
992		}
993
994		FXP_CDTXSYNC(sc, nexttx,
995		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
996
997		/* Advance the tx pointer. */
998		sc->sc_txpending++;
999		sc->sc_txlast = nexttx;
1000
1001		/*
1002		 * Pass packet to bpf if there is a listener.
1003		 */
1004		bpf_mtap(ifp, m0);
1005	}
1006
1007	if (sc->sc_txpending == FXP_NTXCB - 1) {
1008		/* No more slots; notify upper layer. */
1009		ifp->if_flags |= IFF_OACTIVE;
1010	}
1011
1012	if (sc->sc_txpending != opending) {
1013		/*
1014		 * We enqueued packets.  If the transmitter was idle,
1015		 * reset the txdirty pointer.
1016		 */
1017		if (opending == 0)
1018			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1019
1020		/*
1021		 * Cause the chip to interrupt and suspend command
1022		 * processing once the last packet we've enqueued
1023		 * has been transmitted.
1024		 *
1025		 * To avoid a race between updating status bits
1026		 * by the fxp chip and clearing command bits
1027		 * by this function on machines which don't have
1028		 * atomic methods to clear/set bits in memory
1029		 * smaller than 32bits (both cb_status and cb_command
1030		 * members are uint16_t and in the same 32bit word),
1031		 * we have to prepare a dummy TX descriptor which has
1032		 * NOP command and just causes a TX completion interrupt.
1033		 */
1034		sc->sc_txpending++;
1035		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1036		txd = FXP_CDTX(sc, sc->sc_txlast);
1037		/* BIG_ENDIAN: no need to swap to store 0 */
1038		txd->txd_txcb.cb_status = 0;
1039		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1040		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1041		FXP_CDTXSYNC(sc, sc->sc_txlast,
1042		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1043
1044		/*
1045		 * The entire packet chain is set up.  Clear the suspend bit
1046		 * on the command prior to the first packet we set up.
1047		 */
1048		FXP_CDTXSYNC(sc, lasttx,
1049		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1050		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1051		    htole16(~FXP_CB_COMMAND_S);
1052		FXP_CDTXSYNC(sc, lasttx,
1053		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054
1055		/*
1056		 * Issue a Resume command in case the chip was suspended.
1057		 */
1058		fxp_scb_wait(sc);
1059		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1060
1061		/* Set a watchdog timer in case the chip flakes out. */
1062		ifp->if_timer = 5;
1063	}
1064}
1065
1066/*
1067 * Process interface interrupts.
1068 */
1069int
1070fxp_intr(void *arg)
1071{
1072	struct fxp_softc *sc = arg;
1073	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074	bus_dmamap_t rxmap;
1075	int claimed = 0, rnr;
1076	uint8_t statack;
1077
1078	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1079		return (0);
1080	/*
1081	 * If the interface isn't running, don't try to
1082	 * service the interrupt.. just ack it and bail.
1083	 */
1084	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1085		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1086		if (statack) {
1087			claimed = 1;
1088			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1089		}
1090		return (claimed);
1091	}
1092
1093	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1094		claimed = 1;
1095
1096		/*
1097		 * First ACK all the interrupts in this pass.
1098		 */
1099		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1100
1101		/*
1102		 * Process receiver interrupts. If a no-resource (RNR)
1103		 * condition exists, get whatever packets we can and
1104		 * re-start the receiver.
1105		 */
1106		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1107		    1 : 0;
1108		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1109		    FXP_SCB_STATACK_SWI)) {
1110			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1111			rnr |= fxp_rxintr(sc);
1112		}
1113
1114		/*
1115		 * Free any finished transmit mbuf chains.
1116		 */
1117		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1118			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1119			fxp_txintr(sc);
1120
1121			/*
1122			 * Try to get more packets going.
1123			 */
1124			if_schedule_deferred_start(ifp);
1125
1126			if (sc->sc_txpending == 0) {
1127				/*
1128				 * Tell them that they can re-init now.
1129				 */
1130				if (sc->sc_flags & FXPF_WANTINIT)
1131					wakeup(sc);
1132			}
1133		}
1134
1135		if (rnr) {
1136			fxp_scb_wait(sc);
1137			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1138			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1139			fxp_scb_wait(sc);
1140			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1141			    rxmap->dm_segs[0].ds_addr +
1142			    RFA_ALIGNMENT_FUDGE);
1143			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1144		}
1145	}
1146
1147	if (claimed)
1148		rnd_add_uint32(&sc->rnd_source, statack);
1149	return (claimed);
1150}
1151
1152/*
1153 * Handle transmit completion interrupts.
1154 */
1155void
1156fxp_txintr(struct fxp_softc *sc)
1157{
1158	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159	struct fxp_txdesc *txd;
1160	struct fxp_txsoft *txs;
1161	int i;
1162	uint16_t txstat;
1163
1164	ifp->if_flags &= ~IFF_OACTIVE;
1165	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1166	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1167		txd = FXP_CDTX(sc, i);
1168		txs = FXP_DSTX(sc, i);
1169
1170		FXP_CDTXSYNC(sc, i,
1171		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1172
1173		/* skip dummy NOP TX descriptor */
1174		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1175		    == FXP_CB_COMMAND_NOP)
1176			continue;
1177
1178		txstat = le16toh(txd->txd_txcb.cb_status);
1179
1180		if ((txstat & FXP_CB_STATUS_C) == 0)
1181			break;
1182
1183		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1184		    0, txs->txs_dmamap->dm_mapsize,
1185		    BUS_DMASYNC_POSTWRITE);
1186		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1187		m_freem(txs->txs_mbuf);
1188		txs->txs_mbuf = NULL;
1189	}
1190
1191	/* Update the dirty transmit buffer pointer. */
1192	sc->sc_txdirty = i;
1193
1194	/*
1195	 * Cancel the watchdog timer if there are no pending
1196	 * transmissions.
1197	 */
1198	if (sc->sc_txpending == 0)
1199		ifp->if_timer = 0;
1200}
1201
1202/*
1203 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1204 */
1205
1206void
1207fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1208    u_int len)
1209{
1210	uint32_t csum_data;
1211	int csum_flags;
1212
1213	/*
1214	 * check H/W Checksumming.
1215	 */
1216
1217	csum_flags = 0;
1218	csum_data = 0;
1219
1220	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1221		uint8_t csum_stat;
1222
1223		csum_stat = rfa->cksum_stat;
1224		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1225			goto out;
1226
1227		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1228			csum_flags = M_CSUM_IPv4;
1229			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1230				csum_flags |= M_CSUM_IPv4_BAD;
1231		}
1232
1233		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1234			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1235			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1236				csum_flags |= M_CSUM_TCP_UDP_BAD;
1237		}
1238
1239	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1240		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241		struct ether_header *eh;
1242		struct ip *ip;
1243		struct udphdr *uh;
1244		u_int hlen, pktlen;
1245
1246		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1247			goto out;
1248		pktlen = len - ETHER_HDR_LEN;
1249		eh = mtod(m, struct ether_header *);
1250		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1251			goto out;
1252		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1253		if (ip->ip_v != IPVERSION)
1254			goto out;
1255
1256		hlen = ip->ip_hl << 2;
1257		if (hlen < sizeof(struct ip))
1258			goto out;
1259
1260		/*
1261		 * Bail if too short, has random trailing garbage, truncated,
1262		 * fragment, or has ethernet pad.
1263		 */
1264		if (ntohs(ip->ip_len) < hlen ||
1265		    ntohs(ip->ip_len) != pktlen ||
1266		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1267			goto out;
1268
1269		switch (ip->ip_p) {
1270		case IPPROTO_TCP:
1271			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1272			    pktlen < (hlen + sizeof(struct tcphdr)))
1273				goto out;
1274			csum_flags =
1275			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1276			break;
1277		case IPPROTO_UDP:
1278			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1279			    pktlen < (hlen + sizeof(struct udphdr)))
1280				goto out;
1281			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1282			if (uh->uh_sum == 0)
1283				goto out;	/* no checksum */
1284			csum_flags =
1285			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1286			break;
1287		default:
1288			goto out;
1289		}
1290
1291		/* Extract computed checksum. */
1292		csum_data = be16dec(mtod(m, uint8_t *) + len);
1293
1294		/*
1295		 * The computed checksum includes IP headers,
1296		 * so we have to deduct them.
1297		 */
1298#if 0
1299		/*
1300		 * But in TCP/UDP layer we can assume the IP header is valid,
1301		 * i.e. a sum of the whole IP header should be 0xffff,
1302		 * so we don't have to bother to deduct it.
1303		 */
1304		if (hlen > 0) {
1305			uint32_t hsum;
1306			const uint16_t *iphdr;
1307			hsum = 0;
1308			iphdr = (uint16_t *)ip;
1309
1310			while (hlen > 1) {
1311				hsum += ntohs(*iphdr++);
1312				hlen -= sizeof(uint16_t);
1313			}
1314			while (hsum >> 16)
1315				hsum = (hsum >> 16) + (hsum & 0xffff);
1316
1317			csum_data += (uint16_t)~hsum;
1318
1319			while (csum_data >> 16)
1320				csum_data =
1321				    (csum_data >> 16) + (csum_data & 0xffff);
1322		}
1323#endif
1324	}
1325 out:
1326	m->m_pkthdr.csum_flags = csum_flags;
1327	m->m_pkthdr.csum_data = csum_data;
1328}
1329
1330/*
1331 * Handle receive interrupts.
1332 */
1333int
1334fxp_rxintr(struct fxp_softc *sc)
1335{
1336	struct ethercom *ec = &sc->sc_ethercom;
1337	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1338	struct mbuf *m, *m0;
1339	bus_dmamap_t rxmap;
1340	struct fxp_rfa *rfa;
1341	int rnr;
1342	uint16_t len, rxstat;
1343
1344	rnr = 0;
1345
1346	for (;;) {
1347		m = sc->sc_rxq.ifq_head;
1348		rfa = FXP_MTORFA(m);
1349		rxmap = M_GETCTX(m, bus_dmamap_t);
1350
1351		FXP_RFASYNC(sc, m,
1352		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1353
1354		rxstat = le16toh(rfa->rfa_status);
1355
1356		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1357			rnr = 1;
1358
1359		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1360			/*
1361			 * We have processed all of the
1362			 * receive buffers.
1363			 */
1364			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1365			return rnr;
1366		}
1367
1368		IF_DEQUEUE(&sc->sc_rxq, m);
1369
1370		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1371
1372		len = le16toh(rfa->actual_size) &
1373		    (m->m_ext.ext_size - 1);
1374		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1375			/* Adjust for appended checksum bytes. */
1376			len -= sizeof(uint16_t);
1377		}
1378
1379		if (len < sizeof(struct ether_header)) {
1380			/*
1381			 * Runt packet; drop it now.
1382			 */
1383			FXP_INIT_RFABUF(sc, m);
1384			continue;
1385		}
1386
1387		/*
1388		 * If support for 802.1Q VLAN sized frames is
1389		 * enabled, we need to do some additional error
1390		 * checking (as we are saving bad frames, in
1391		 * order to receive the larger ones).
1392		 */
1393		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1394		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1395			       FXP_RFA_STATUS_RNR|
1396			       FXP_RFA_STATUS_ALIGN|
1397			       FXP_RFA_STATUS_CRC)) != 0) {
1398			FXP_INIT_RFABUF(sc, m);
1399			continue;
1400		}
1401
1402		/*
1403		 * check VLAN tag stripping.
1404		 */
1405		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1406		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1407			struct m_tag *vtag;
1408
1409			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1410			    M_NOWAIT);
1411			if (vtag == NULL)
1412				goto dropit;
1413			*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1414			m_tag_prepend(m, vtag);
1415		}
1416
1417		/* Do checksum checking. */
1418		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1419			fxp_rx_hwcksum(sc, m, rfa, len);
1420
1421		/*
1422		 * If the packet is small enough to fit in a
1423		 * single header mbuf, allocate one and copy
1424		 * the data into it.  This greatly reduces
1425		 * memory consumption when we receive lots
1426		 * of small packets.
1427		 *
1428		 * Otherwise, we add a new buffer to the receive
1429		 * chain.  If this fails, we drop the packet and
1430		 * recycle the old buffer.
1431		 */
1432		if (fxp_copy_small != 0 && len <= MHLEN) {
1433			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1434			if (m0 == NULL)
1435				goto dropit;
1436			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1437			memcpy(mtod(m0, void *),
1438			    mtod(m, void *), len);
1439			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1440			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1441			FXP_INIT_RFABUF(sc, m);
1442			m = m0;
1443		} else {
1444			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1445 dropit:
1446				ifp->if_ierrors++;
1447				FXP_INIT_RFABUF(sc, m);
1448				continue;
1449			}
1450		}
1451
1452		m_set_rcvif(m, ifp);
1453		m->m_pkthdr.len = m->m_len = len;
1454
1455		/* Pass it on. */
1456		if_percpuq_enqueue(ifp->if_percpuq, m);
1457	}
1458}
1459
1460/*
1461 * Update packet in/out/collision statistics. The i82557 doesn't
1462 * allow you to access these counters without doing a fairly
1463 * expensive DMA to get _all_ of the statistics it maintains, so
1464 * we do this operation here only once per second. The statistics
1465 * counters in the kernel are updated from the previous dump-stats
1466 * DMA and then a new dump-stats DMA is started. The on-chip
1467 * counters are zeroed when the DMA completes. If we can't start
1468 * the DMA immediately, we don't wait - we just prepare to read
1469 * them again next time.
1470 */
1471void
1472fxp_tick(void *arg)
1473{
1474	struct fxp_softc *sc = arg;
1475	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1476	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1477	int s;
1478
1479	if (!device_is_active(sc->sc_dev))
1480		return;
1481
1482	s = splnet();
1483
1484	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1485
1486	ifp->if_opackets += le32toh(sp->tx_good);
1487	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1488	if (sp->rx_good) {
1489		ifp->if_ipackets += le32toh(sp->rx_good);
1490		sc->sc_rxidle = 0;
1491	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1492		sc->sc_rxidle++;
1493	}
1494	ifp->if_ierrors +=
1495	    le32toh(sp->rx_crc_errors) +
1496	    le32toh(sp->rx_alignment_errors) +
1497	    le32toh(sp->rx_rnr_errors) +
1498	    le32toh(sp->rx_overrun_errors);
1499	/*
1500	 * If any transmit underruns occurred, bump up the transmit
1501	 * threshold by another 512 bytes (64 * 8).
1502	 */
1503	if (sp->tx_underruns) {
1504		ifp->if_oerrors += le32toh(sp->tx_underruns);
1505		if (tx_threshold < 192)
1506			tx_threshold += 64;
1507	}
1508#ifdef FXP_EVENT_COUNTERS
1509	if (sc->sc_flags & FXPF_FC) {
1510		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1511		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1512	}
1513#endif
1514
1515	/*
1516	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1517	 * then assume the receiver has locked up and attempt to clear
1518	 * the condition by reprogramming the multicast filter (actually,
1519	 * resetting the interface). This is a work-around for a bug in
1520	 * the 82557 where the receiver locks up if it gets certain types
1521	 * of garbage in the synchronization bits prior to the packet header.
1522	 * This bug is supposed to only occur in 10Mbps mode, but has been
1523	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1524	 * speed transition).
1525	 */
1526	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1527		(void) fxp_init(ifp);
1528		splx(s);
1529		return;
1530	}
1531	/*
1532	 * If there is no pending command, start another stats
1533	 * dump. Otherwise punt for now.
1534	 */
1535	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1536		/*
1537		 * Start another stats dump.
1538		 */
1539		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1540		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1541	} else {
1542		/*
1543		 * A previous command is still waiting to be accepted.
1544		 * Just zero our copy of the stats and wait for the
1545		 * next timer event to update them.
1546		 */
1547		/* BIG_ENDIAN: no swap required to store 0 */
1548		sp->tx_good = 0;
1549		sp->tx_underruns = 0;
1550		sp->tx_total_collisions = 0;
1551
1552		sp->rx_good = 0;
1553		sp->rx_crc_errors = 0;
1554		sp->rx_alignment_errors = 0;
1555		sp->rx_rnr_errors = 0;
1556		sp->rx_overrun_errors = 0;
1557		if (sc->sc_flags & FXPF_FC) {
1558			sp->tx_pauseframes = 0;
1559			sp->rx_pauseframes = 0;
1560		}
1561	}
1562
1563	if (sc->sc_flags & FXPF_MII) {
1564		/* Tick the MII clock. */
1565		mii_tick(&sc->sc_mii);
1566	}
1567
1568	splx(s);
1569
1570	/*
1571	 * Schedule another timeout one second from now.
1572	 */
1573	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1574}
1575
1576/*
1577 * Drain the receive queue.
1578 */
1579void
1580fxp_rxdrain(struct fxp_softc *sc)
1581{
1582	bus_dmamap_t rxmap;
1583	struct mbuf *m;
1584
1585	for (;;) {
1586		IF_DEQUEUE(&sc->sc_rxq, m);
1587		if (m == NULL)
1588			break;
1589		rxmap = M_GETCTX(m, bus_dmamap_t);
1590		bus_dmamap_unload(sc->sc_dmat, rxmap);
1591		FXP_RXMAP_PUT(sc, rxmap);
1592		m_freem(m);
1593	}
1594}
1595
1596/*
1597 * Stop the interface. Cancels the statistics updater and resets
1598 * the interface.
1599 */
1600void
1601fxp_stop(struct ifnet *ifp, int disable)
1602{
1603	struct fxp_softc *sc = ifp->if_softc;
1604	struct fxp_txsoft *txs;
1605	int i;
1606
1607	/*
1608	 * Turn down interface (done early to avoid bad interactions
1609	 * between panics, shutdown hooks, and the watchdog timer)
1610	 */
1611	ifp->if_timer = 0;
1612	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1613
1614	/*
1615	 * Cancel stats updater.
1616	 */
1617	callout_stop(&sc->sc_callout);
1618	if (sc->sc_flags & FXPF_MII) {
1619		/* Down the MII. */
1620		mii_down(&sc->sc_mii);
1621	}
1622
1623	/*
1624	 * Issue software reset.  This unloads any microcode that
1625	 * might already be loaded.
1626	 */
1627	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1628	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1629	DELAY(50);
1630
1631	/*
1632	 * Release any xmit buffers.
1633	 */
1634	for (i = 0; i < FXP_NTXCB; i++) {
1635		txs = FXP_DSTX(sc, i);
1636		if (txs->txs_mbuf != NULL) {
1637			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1638			m_freem(txs->txs_mbuf);
1639			txs->txs_mbuf = NULL;
1640		}
1641	}
1642	sc->sc_txpending = 0;
1643
1644	if (disable) {
1645		fxp_rxdrain(sc);
1646		fxp_disable(sc);
1647	}
1648
1649}
1650
1651/*
1652 * Watchdog/transmission transmit timeout handler. Called when a
1653 * transmission is started on the interface, but no interrupt is
1654 * received before the timeout. This usually indicates that the
1655 * card has wedged for some reason.
1656 */
1657void
1658fxp_watchdog(struct ifnet *ifp)
1659{
1660	struct fxp_softc *sc = ifp->if_softc;
1661
1662	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1663	ifp->if_oerrors++;
1664
1665	(void) fxp_init(ifp);
1666}
1667
1668/*
1669 * Initialize the interface.  Must be called at splnet().
1670 */
1671int
1672fxp_init(struct ifnet *ifp)
1673{
1674	struct fxp_softc *sc = ifp->if_softc;
1675	struct fxp_cb_config *cbp;
1676	struct fxp_cb_ias *cb_ias;
1677	struct fxp_txdesc *txd;
1678	bus_dmamap_t rxmap;
1679	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1680	uint16_t status;
1681
1682	if ((error = fxp_enable(sc)) != 0)
1683		goto out;
1684
1685	/*
1686	 * Cancel any pending I/O
1687	 */
1688	fxp_stop(ifp, 0);
1689
1690	/*
1691	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1692	 * flag, and this prevents the MII from detaching resulting in
1693	 * a panic. The flags field should perhaps be split in runtime
1694	 * flags and more static information. For now, just clear the
1695	 * only other flag set.
1696	 */
1697
1698	sc->sc_flags &= ~FXPF_WANTINIT;
1699
1700	/*
1701	 * Initialize base of CBL and RFA memory. Loading with zero
1702	 * sets it up for regular linear addressing.
1703	 */
1704	fxp_scb_wait(sc);
1705	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1706	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1707
1708	fxp_scb_wait(sc);
1709	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1710
1711	/*
1712	 * Initialize the multicast filter.  Do this now, since we might
1713	 * have to setup the config block differently.
1714	 */
1715	fxp_mc_setup(sc);
1716
1717	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1718	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1719
1720	/*
1721	 * In order to support receiving 802.1Q VLAN frames, we have to
1722	 * enable "save bad frames", since they are 4 bytes larger than
1723	 * the normal Ethernet maximum frame length.  On i82558 and later,
1724	 * we have a better mechanism for this.
1725	 */
1726	save_bf = 0;
1727	lrxen = 0;
1728	vlan_drop = 0;
1729	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1730		if (sc->sc_rev < FXP_REV_82558_A4)
1731			save_bf = 1;
1732		else
1733			lrxen = 1;
1734		if (sc->sc_rev >= FXP_REV_82550)
1735			vlan_drop = 1;
1736	}
1737
1738	/*
1739	 * Initialize base of dump-stats buffer.
1740	 */
1741	fxp_scb_wait(sc);
1742	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1743	    sc->sc_cddma + FXP_CDSTATSOFF);
1744	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1745	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1746
1747	cbp = &sc->sc_control_data->fcd_configcb;
1748	memset(cbp, 0, sizeof(struct fxp_cb_config));
1749
1750	/*
1751	 * Load microcode for this controller.
1752	 */
1753	fxp_load_ucode(sc);
1754
1755	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1756		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1757	else
1758		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1759
1760	/*
1761	 * This copy is kind of disgusting, but there are a bunch of must be
1762	 * zero and must be one bits in this structure and this is the easiest
1763	 * way to initialize them all to proper values.
1764	 */
1765	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1766
1767	/* BIG_ENDIAN: no need to swap to store 0 */
1768	cbp->cb_status =	0;
1769	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1770				    FXP_CB_COMMAND_EL);
1771	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1772	cbp->link_addr =	0xffffffff; /* (no) next command */
1773					/* bytes in config block */
1774	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1775				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1776	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1777	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1778	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1779	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1780	cbp->type_enable =	0;	/* actually reserved */
1781	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1782	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1783	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1784	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1785	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1786	cbp->late_scb =		0;	/* (don't) defer SCB update */
1787	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1788	cbp->ci_int =		1;	/* interrupt on CU idle */
1789	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1790	cbp->ext_stats_dis =	1;	/* disable extended counters */
1791	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1792	cbp->save_bf =		save_bf;/* save bad frames */
1793	cbp->disc_short_rx =	!prm;	/* discard short packets */
1794	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1795	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1796	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1797	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1798					/* interface mode */
1799	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1800	cbp->csma_dis =		0;	/* (don't) disable link */
1801	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1802					/* (don't) enable RX checksum */
1803	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1804	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1805	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1806	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1807	cbp->nsai =		1;	/* (don't) disable source addr insert */
1808	cbp->preamble_length =	2;	/* (7 byte) preamble */
1809	cbp->loopback =		0;	/* (don't) loopback */
1810	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1811	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1812	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1813	cbp->promiscuous =	prm;	/* promiscuous mode */
1814	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1815	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1816	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1817	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1818	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1819	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1820	cbp->padding =		1;	/* (do) pad short tx packets */
1821	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1822	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1823	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1824	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1825					/* must set wake_en in PMCSR also */
1826	cbp->force_fdx =	0;	/* (don't) force full duplex */
1827	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1828	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1829	cbp->mc_all =		allm;	/* accept all multicasts */
1830	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1831	cbp->vlan_drop_en =	vlan_drop;
1832
1833	if (!(sc->sc_flags & FXPF_FC)) {
1834		/*
1835		 * The i82557 has no hardware flow control, the values
1836		 * here are the defaults for the chip.
1837		 */
1838		cbp->fc_delay_lsb =	0;
1839		cbp->fc_delay_msb =	0x40;
1840		cbp->pri_fc_thresh =	3;
1841		cbp->tx_fc_dis =	0;
1842		cbp->rx_fc_restop =	0;
1843		cbp->rx_fc_restart =	0;
1844		cbp->fc_filter =	0;
1845		cbp->pri_fc_loc =	1;
1846	} else {
1847		cbp->fc_delay_lsb =	0x1f;
1848		cbp->fc_delay_msb =	0x01;
1849		cbp->pri_fc_thresh =	3;
1850		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1851		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1852		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1853		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1854		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1855		cbp->ext_stats_dis =	0;	/* enable extended stats */
1856	}
1857
1858	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1859
1860	/*
1861	 * Start the config command/DMA.
1862	 */
1863	fxp_scb_wait(sc);
1864	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1865	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1866	/* ...and wait for it to complete. */
1867	for (i = 1000; i > 0; i--) {
1868		FXP_CDCONFIGSYNC(sc,
1869		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1870		status = le16toh(cbp->cb_status);
1871		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1872		if ((status & FXP_CB_STATUS_C) != 0)
1873			break;
1874		DELAY(1);
1875	}
1876	if (i == 0) {
1877		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1878		    device_xname(sc->sc_dev), __LINE__);
1879		return (ETIMEDOUT);
1880	}
1881
1882	/*
1883	 * Initialize the station address.
1884	 */
1885	cb_ias = &sc->sc_control_data->fcd_iascb;
1886	/* BIG_ENDIAN: no need to swap to store 0 */
1887	cb_ias->cb_status = 0;
1888	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1889	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1890	cb_ias->link_addr = 0xffffffff;
1891	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1892
1893	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1894
1895	/*
1896	 * Start the IAS (Individual Address Setup) command/DMA.
1897	 */
1898	fxp_scb_wait(sc);
1899	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1900	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1901	/* ...and wait for it to complete. */
1902	for (i = 1000; i > 0; i++) {
1903		FXP_CDIASSYNC(sc,
1904		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1905		status = le16toh(cb_ias->cb_status);
1906		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1907		if ((status & FXP_CB_STATUS_C) != 0)
1908			break;
1909		DELAY(1);
1910	}
1911	if (i == 0) {
1912		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1913		    device_xname(sc->sc_dev), __LINE__);
1914		return (ETIMEDOUT);
1915	}
1916
1917	/*
1918	 * Initialize the transmit descriptor ring.  txlast is initialized
1919	 * to the end of the list so that it will wrap around to the first
1920	 * descriptor when the first packet is transmitted.
1921	 */
1922	for (i = 0; i < FXP_NTXCB; i++) {
1923		txd = FXP_CDTX(sc, i);
1924		memset(txd, 0, sizeof(*txd));
1925		txd->txd_txcb.cb_command =
1926		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1927		txd->txd_txcb.link_addr =
1928		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1929		if (sc->sc_flags & FXPF_EXT_TXCB)
1930			txd->txd_txcb.tbd_array_addr =
1931			    htole32(FXP_CDTBDADDR(sc, i) +
1932				    (2 * sizeof(struct fxp_tbd)));
1933		else
1934			txd->txd_txcb.tbd_array_addr =
1935			    htole32(FXP_CDTBDADDR(sc, i));
1936		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1937	}
1938	sc->sc_txpending = 0;
1939	sc->sc_txdirty = 0;
1940	sc->sc_txlast = FXP_NTXCB - 1;
1941
1942	/*
1943	 * Initialize the receive buffer list.
1944	 */
1945	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1946	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1947		rxmap = FXP_RXMAP_GET(sc);
1948		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1949			log(LOG_ERR, "%s: unable to allocate or map rx "
1950			    "buffer %d, error = %d\n",
1951			    device_xname(sc->sc_dev),
1952			    sc->sc_rxq.ifq_len, error);
1953			/*
1954			 * XXX Should attempt to run with fewer receive
1955			 * XXX buffers instead of just failing.
1956			 */
1957			FXP_RXMAP_PUT(sc, rxmap);
1958			fxp_rxdrain(sc);
1959			goto out;
1960		}
1961	}
1962	sc->sc_rxidle = 0;
1963
1964	/*
1965	 * Give the transmit ring to the chip.  We do this by pointing
1966	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1967	 * issuing a start command.  It will execute the NOP and then
1968	 * suspend, pointing at the first descriptor.
1969	 */
1970	fxp_scb_wait(sc);
1971	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1972	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1973
1974	/*
1975	 * Initialize receiver buffer area - RFA.
1976	 */
1977#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1978	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1979	fxp_scb_wait(sc);
1980	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1981	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1982	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1983#endif
1984
1985	if (sc->sc_flags & FXPF_MII) {
1986		/*
1987		 * Set current media.
1988		 */
1989		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1990			goto out;
1991	}
1992
1993	/*
1994	 * ...all done!
1995	 */
1996	ifp->if_flags |= IFF_RUNNING;
1997	ifp->if_flags &= ~IFF_OACTIVE;
1998
1999	/*
2000	 * Request a software generated interrupt that will be used to
2001	 * (re)start the RU processing.  If we direct the chip to start
2002	 * receiving from the start of queue now, instead of letting the
2003	 * interrupt handler first process all received packets, we run
2004	 * the risk of having it overwrite mbuf clusters while they are
2005	 * being processed or after they have been returned to the pool.
2006	 */
2007	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2008
2009	/*
2010	 * Start the one second timer.
2011	 */
2012	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2013
2014	/*
2015	 * Attempt to start output on the interface.
2016	 */
2017	fxp_start(ifp);
2018
2019 out:
2020	if (error) {
2021		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2022		ifp->if_timer = 0;
2023		log(LOG_ERR, "%s: interface not running\n",
2024		    device_xname(sc->sc_dev));
2025	}
2026	return (error);
2027}
2028
2029/*
2030 * Notify the world which media we're using.
2031 */
2032void
2033fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2034{
2035	struct fxp_softc *sc = ifp->if_softc;
2036
2037	if (sc->sc_enabled == 0) {
2038		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2039		ifmr->ifm_status = 0;
2040		return;
2041	}
2042
2043	ether_mediastatus(ifp, ifmr);
2044}
2045
2046int
2047fxp_80c24_mediachange(struct ifnet *ifp)
2048{
2049
2050	/* Nothing to do here. */
2051	return (0);
2052}
2053
2054void
2055fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2056{
2057	struct fxp_softc *sc = ifp->if_softc;
2058
2059	/*
2060	 * Media is currently-selected media.  We cannot determine
2061	 * the link status.
2062	 */
2063	ifmr->ifm_status = 0;
2064	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2065}
2066
2067/*
2068 * Add a buffer to the end of the RFA buffer list.
2069 * Return 0 if successful, error code on failure.
2070 *
2071 * The RFA struct is stuck at the beginning of mbuf cluster and the
2072 * data pointer is fixed up to point just past it.
2073 */
2074int
2075fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2076{
2077	struct mbuf *m;
2078	int error;
2079
2080	MGETHDR(m, M_DONTWAIT, MT_DATA);
2081	if (m == NULL)
2082		return (ENOBUFS);
2083
2084	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2085	MCLGET(m, M_DONTWAIT);
2086	if ((m->m_flags & M_EXT) == 0) {
2087		m_freem(m);
2088		return (ENOBUFS);
2089	}
2090
2091	if (unload)
2092		bus_dmamap_unload(sc->sc_dmat, rxmap);
2093
2094	M_SETCTX(m, rxmap);
2095
2096	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2097	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2098	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2099	if (error) {
2100		/* XXX XXX XXX */
2101		aprint_error_dev(sc->sc_dev,
2102		    "can't load rx DMA map %d, error = %d\n",
2103		    sc->sc_rxq.ifq_len, error);
2104		panic("fxp_add_rfabuf");
2105	}
2106
2107	FXP_INIT_RFABUF(sc, m);
2108
2109	return (0);
2110}
2111
2112int
2113fxp_mdi_read(device_t self, int phy, int reg)
2114{
2115	struct fxp_softc *sc = device_private(self);
2116	int count = 10000;
2117	int value;
2118
2119	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2120	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2121
2122	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2123	    0x10000000) == 0 && count--)
2124		DELAY(10);
2125
2126	if (count <= 0)
2127		log(LOG_WARNING,
2128		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2129
2130	return (value & 0xffff);
2131}
2132
2133void
2134fxp_statchg(struct ifnet *ifp)
2135{
2136
2137	/* Nothing to do. */
2138}
2139
2140void
2141fxp_mdi_write(device_t self, int phy, int reg, int value)
2142{
2143	struct fxp_softc *sc = device_private(self);
2144	int count = 10000;
2145
2146	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2147	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2148	    (value & 0xffff));
2149
2150	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2151	    count--)
2152		DELAY(10);
2153
2154	if (count <= 0)
2155		log(LOG_WARNING,
2156		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2157}
2158
2159int
2160fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2161{
2162	struct fxp_softc *sc = ifp->if_softc;
2163	struct ifreq *ifr = (struct ifreq *)data;
2164	int s, error;
2165
2166	s = splnet();
2167
2168	switch (cmd) {
2169	case SIOCSIFMEDIA:
2170	case SIOCGIFMEDIA:
2171		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2172		break;
2173
2174	default:
2175		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2176			break;
2177
2178		error = 0;
2179
2180		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2181			;
2182		else if (ifp->if_flags & IFF_RUNNING) {
2183			/*
2184			 * Multicast list has changed; set the
2185			 * hardware filter accordingly.
2186			 */
2187			while (sc->sc_txpending) {
2188				sc->sc_flags |= FXPF_WANTINIT;
2189				tsleep(sc, PSOCK, "fxp_init", 0);
2190			}
2191			error = fxp_init(ifp);
2192		}
2193		break;
2194	}
2195
2196	/* Try to get more packets going. */
2197	if (sc->sc_enabled)
2198		fxp_start(ifp);
2199
2200	splx(s);
2201	return (error);
2202}
2203
2204/*
2205 * Program the multicast filter.
2206 *
2207 * This function must be called at splnet().
2208 */
2209void
2210fxp_mc_setup(struct fxp_softc *sc)
2211{
2212	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2213	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2214	struct ethercom *ec = &sc->sc_ethercom;
2215	struct ether_multi *enm;
2216	struct ether_multistep step;
2217	int count, nmcasts;
2218	uint16_t status;
2219
2220#ifdef DIAGNOSTIC
2221	if (sc->sc_txpending)
2222		panic("fxp_mc_setup: pending transmissions");
2223#endif
2224
2225
2226	if (ifp->if_flags & IFF_PROMISC) {
2227		ifp->if_flags |= IFF_ALLMULTI;
2228		return;
2229	} else {
2230		ifp->if_flags &= ~IFF_ALLMULTI;
2231	}
2232
2233	/*
2234	 * Initialize multicast setup descriptor.
2235	 */
2236	nmcasts = 0;
2237	ETHER_FIRST_MULTI(step, ec, enm);
2238	while (enm != NULL) {
2239		/*
2240		 * Check for too many multicast addresses or if we're
2241		 * listening to a range.  Either way, we simply have
2242		 * to accept all multicasts.
2243		 */
2244		if (nmcasts >= MAXMCADDR ||
2245		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2246		    ETHER_ADDR_LEN) != 0) {
2247			/*
2248			 * Callers of this function must do the
2249			 * right thing with this.  If we're called
2250			 * from outside fxp_init(), the caller must
2251			 * detect if the state if IFF_ALLMULTI changes.
2252			 * If it does, the caller must then call
2253			 * fxp_init(), since allmulti is handled by
2254			 * the config block.
2255			 */
2256			ifp->if_flags |= IFF_ALLMULTI;
2257			return;
2258		}
2259		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2260		    ETHER_ADDR_LEN);
2261		nmcasts++;
2262		ETHER_NEXT_MULTI(step, enm);
2263	}
2264
2265	/* BIG_ENDIAN: no need to swap to store 0 */
2266	mcsp->cb_status = 0;
2267	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2268	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2269	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2270
2271	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2272
2273	/*
2274	 * Wait until the command unit is not active.  This should never
2275	 * happen since nothing is queued, but make sure anyway.
2276	 */
2277	count = 100;
2278	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2279	    FXP_SCB_CUS_ACTIVE && --count)
2280		DELAY(1);
2281	if (count == 0) {
2282		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2283		    device_xname(sc->sc_dev), __LINE__);
2284		return;
2285	}
2286
2287	/*
2288	 * Start the multicast setup command/DMA.
2289	 */
2290	fxp_scb_wait(sc);
2291	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2292	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2293
2294	/* ...and wait for it to complete. */
2295	for (count = 1000; count > 0; count--) {
2296		FXP_CDMCSSYNC(sc,
2297		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2298		status = le16toh(mcsp->cb_status);
2299		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2300		if ((status & FXP_CB_STATUS_C) != 0)
2301			break;
2302		DELAY(1);
2303	}
2304	if (count == 0) {
2305		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2306		    device_xname(sc->sc_dev), __LINE__);
2307		return;
2308	}
2309}
2310
2311static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2312static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2313static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2314static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2315static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2316static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2317static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2318
2319#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2320
2321static const struct ucode {
2322	int32_t		revision;
2323	const uint32_t	*ucode;
2324	size_t		length;
2325	uint16_t	int_delay_offset;
2326	uint16_t	bundle_max_offset;
2327} ucode_table[] = {
2328	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2329	  D101_CPUSAVER_DWORD, 0 },
2330
2331	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2332	  D101_CPUSAVER_DWORD, 0 },
2333
2334	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2335	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2336
2337	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2338	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2339
2340	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2341	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2342
2343	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2344	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2345
2346	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2347	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2348
2349	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2350	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2351
2352	{ 0, NULL, 0, 0, 0 }
2353};
2354
2355void
2356fxp_load_ucode(struct fxp_softc *sc)
2357{
2358	const struct ucode *uc;
2359	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2360	int count, i;
2361	uint16_t status;
2362
2363	if (sc->sc_flags & FXPF_UCODE_LOADED)
2364		return;
2365
2366	/*
2367	 * Only load the uCode if the user has requested that
2368	 * we do so.
2369	 */
2370	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2371		sc->sc_int_delay = 0;
2372		sc->sc_bundle_max = 0;
2373		return;
2374	}
2375
2376	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2377		if (sc->sc_rev == uc->revision)
2378			break;
2379	}
2380	if (uc->ucode == NULL)
2381		return;
2382
2383	/* BIG ENDIAN: no need to swap to store 0 */
2384	cbp->cb_status = 0;
2385	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2386	cbp->link_addr = 0xffffffff;		/* (no) next command */
2387	for (i = 0; i < uc->length; i++)
2388		cbp->ucode[i] = htole32(uc->ucode[i]);
2389
2390	if (uc->int_delay_offset)
2391		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2392		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2393
2394	if (uc->bundle_max_offset)
2395		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2396		    htole16(fxp_bundle_max);
2397
2398	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2399
2400	/*
2401	 * Download the uCode to the chip.
2402	 */
2403	fxp_scb_wait(sc);
2404	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2405	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2406
2407	/* ...and wait for it to complete. */
2408	for (count = 10000; count > 0; count--) {
2409		FXP_CDUCODESYNC(sc,
2410		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2411		status = le16toh(cbp->cb_status);
2412		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2413		if ((status & FXP_CB_STATUS_C) != 0)
2414			break;
2415		DELAY(2);
2416	}
2417	if (count == 0) {
2418		sc->sc_int_delay = 0;
2419		sc->sc_bundle_max = 0;
2420		log(LOG_WARNING, "%s: timeout loading microcode\n",
2421		    device_xname(sc->sc_dev));
2422		return;
2423	}
2424
2425	if (sc->sc_int_delay != fxp_int_delay ||
2426	    sc->sc_bundle_max != fxp_bundle_max) {
2427		sc->sc_int_delay = fxp_int_delay;
2428		sc->sc_bundle_max = fxp_bundle_max;
2429		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2430		    "max bundle: %d\n", device_xname(sc->sc_dev),
2431		    sc->sc_int_delay,
2432		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2433	}
2434
2435	sc->sc_flags |= FXPF_UCODE_LOADED;
2436}
2437
2438int
2439fxp_enable(struct fxp_softc *sc)
2440{
2441
2442	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2443		if ((*sc->sc_enable)(sc) != 0) {
2444			log(LOG_ERR, "%s: device enable failed\n",
2445			    device_xname(sc->sc_dev));
2446			return (EIO);
2447		}
2448	}
2449
2450	sc->sc_enabled = 1;
2451	return (0);
2452}
2453
2454void
2455fxp_disable(struct fxp_softc *sc)
2456{
2457
2458	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2459		(*sc->sc_disable)(sc);
2460		sc->sc_enabled = 0;
2461	}
2462}
2463
2464/*
2465 * fxp_activate:
2466 *
2467 *	Handle device activation/deactivation requests.
2468 */
2469int
2470fxp_activate(device_t self, enum devact act)
2471{
2472	struct fxp_softc *sc = device_private(self);
2473
2474	switch (act) {
2475	case DVACT_DEACTIVATE:
2476		if_deactivate(&sc->sc_ethercom.ec_if);
2477		return 0;
2478	default:
2479		return EOPNOTSUPP;
2480	}
2481}
2482
2483/*
2484 * fxp_detach:
2485 *
2486 *	Detach an i82557 interface.
2487 */
2488int
2489fxp_detach(struct fxp_softc *sc, int flags)
2490{
2491	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2492	int i, s;
2493
2494	/* Succeed now if there's no work to do. */
2495	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2496		return (0);
2497
2498	s = splnet();
2499	/* Stop the interface. Callouts are stopped in it. */
2500	fxp_stop(ifp, 1);
2501	splx(s);
2502
2503	/* Destroy our callout. */
2504	callout_destroy(&sc->sc_callout);
2505
2506	if (sc->sc_flags & FXPF_MII) {
2507		/* Detach all PHYs */
2508		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2509	}
2510
2511	/* Delete all remaining media. */
2512	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2513
2514	rnd_detach_source(&sc->rnd_source);
2515	ether_ifdetach(ifp);
2516	if_detach(ifp);
2517
2518	for (i = 0; i < FXP_NRFABUFS; i++) {
2519		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2520		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2521	}
2522
2523	for (i = 0; i < FXP_NTXCB; i++) {
2524		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2525		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2526	}
2527
2528	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2529	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2530	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2531	    sizeof(struct fxp_control_data));
2532	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2533
2534	return (0);
2535}
2536