i82557.c revision 1.146
1147072Sbrooks/*	$NetBSD: i82557.c,v 1.146 2016/12/15 09:28:05 ozaki-r Exp $	*/
2147072Sbrooks
3147072Sbrooks/*-
4147072Sbrooks * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5147072Sbrooks * All rights reserved.
6147072Sbrooks *
7147072Sbrooks * This code is derived from software contributed to The NetBSD Foundation
8147072Sbrooks * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9147072Sbrooks * NASA Ames Research Center.
10147072Sbrooks *
11147072Sbrooks * Redistribution and use in source and binary forms, with or without
12147072Sbrooks * modification, are permitted provided that the following conditions
13147072Sbrooks * are met:
14147072Sbrooks * 1. Redistributions of source code must retain the above copyright
15147072Sbrooks *    notice, this list of conditions and the following disclaimer.
16147072Sbrooks * 2. Redistributions in binary form must reproduce the above copyright
17147072Sbrooks *    notice, this list of conditions and the following disclaimer in the
18147072Sbrooks *    documentation and/or other materials provided with the distribution.
19147072Sbrooks *
20147072Sbrooks * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21147072Sbrooks * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22147072Sbrooks * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23147072Sbrooks * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24147072Sbrooks * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25147072Sbrooks * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26147072Sbrooks * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27147072Sbrooks * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28147072Sbrooks * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29147072Sbrooks * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30147072Sbrooks * POSSIBILITY OF SUCH DAMAGE.
31147072Sbrooks */
32147072Sbrooks
33147072Sbrooks/*
34147072Sbrooks * Copyright (c) 1995, David Greenman
35147072Sbrooks * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36147072Sbrooks * All rights reserved.
37147072Sbrooks *
38147072Sbrooks * Redistribution and use in source and binary forms, with or without
39147072Sbrooks * modification, are permitted provided that the following conditions
40147072Sbrooks * are met:
41147072Sbrooks * 1. Redistributions of source code must retain the above copyright
42147072Sbrooks *    notice unmodified, this list of conditions, and the following
43149399Sbrooks *    disclaimer.
44149399Sbrooks * 2. Redistributions in binary form must reproduce the above copyright
45149399Sbrooks *    notice, this list of conditions and the following disclaimer in the
46147072Sbrooks *    documentation and/or other materials provided with the distribution.
47147072Sbrooks *
48147072Sbrooks * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49147072Sbrooks * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50147072Sbrooks * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51147072Sbrooks * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52147072Sbrooks * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53147072Sbrooks * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54147072Sbrooks * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55147072Sbrooks * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56147072Sbrooks * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57147072Sbrooks * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58147072Sbrooks * SUCH DAMAGE.
59147072Sbrooks *
60147072Sbrooks *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61147072Sbrooks */
62147072Sbrooks
63147072Sbrooks/*
64147072Sbrooks * Device driver for the Intel i82557 fast Ethernet controller,
65147072Sbrooks * and its successors, the i82558 and i82559.
66147072Sbrooks */
67147072Sbrooks
68147072Sbrooks#include <sys/cdefs.h>
69147072Sbrooks__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.146 2016/12/15 09:28:05 ozaki-r Exp $");
70147072Sbrooks
71147072Sbrooks#include <sys/param.h>
72147072Sbrooks#include <sys/systm.h>
73147072Sbrooks#include <sys/callout.h>
74147072Sbrooks#include <sys/mbuf.h>
75147072Sbrooks#include <sys/malloc.h>
76147072Sbrooks#include <sys/kernel.h>
77147072Sbrooks#include <sys/socket.h>
78147072Sbrooks#include <sys/ioctl.h>
79147072Sbrooks#include <sys/errno.h>
80147072Sbrooks#include <sys/device.h>
81147072Sbrooks#include <sys/syslog.h>
82147072Sbrooks#include <sys/proc.h>
83147072Sbrooks
84147072Sbrooks#include <machine/endian.h>
85147072Sbrooks
86147072Sbrooks#include <sys/rndsource.h>
87147072Sbrooks
88147072Sbrooks#include <net/if.h>
89147072Sbrooks#include <net/if_dl.h>
90147072Sbrooks#include <net/if_media.h>
91147072Sbrooks#include <net/if_ether.h>
92147072Sbrooks
93147072Sbrooks#include <netinet/in.h>
94147072Sbrooks#include <netinet/in_systm.h>
95147072Sbrooks#include <netinet/ip.h>
96147072Sbrooks#include <netinet/tcp.h>
97147072Sbrooks#include <netinet/udp.h>
98147072Sbrooks
99147072Sbrooks#include <net/bpf.h>
100301235Spfg
101301235Spfg#include <sys/bus.h>
102147072Sbrooks#include <sys/intr.h>
103147072Sbrooks
104147072Sbrooks#include <dev/mii/miivar.h>
105147072Sbrooks
106147072Sbrooks#include <dev/ic/i82557reg.h>
107149400Sbrooks#include <dev/ic/i82557var.h>
108147072Sbrooks
109147072Sbrooks#include <dev/microcode/i8255x/rcvbundl.h>
110147072Sbrooks
111147072Sbrooks/*
112147072Sbrooks * NOTE!  On the Alpha, we have an alignment constraint.  The
113147072Sbrooks * card DMAs the packet immediately following the RFA.  However,
114147072Sbrooks * the first thing in the packet is a 14-byte Ethernet header.
115147072Sbrooks * This means that the packet is misaligned.  To compensate,
116147072Sbrooks * we actually offset the RFA 2 bytes into the cluster.  This
117147072Sbrooks * alignes the packet after the Ethernet header at a 32-bit
118147072Sbrooks * boundary.  HOWEVER!  This means that the RFA is misaligned!
119147072Sbrooks */
120147072Sbrooks#define	RFA_ALIGNMENT_FUDGE	2
121147072Sbrooks
122147072Sbrooks/*
123147072Sbrooks * The configuration byte map has several undefined fields which
124147072Sbrooks * must be one or must be zero.  Set up a template for these bits
125147072Sbrooks * only (assuming an i82557 chip), leaving the actual configuration
126147072Sbrooks * for fxp_init().
127147072Sbrooks *
128147072Sbrooks * See the definition of struct fxp_cb_config for the bit definitions.
129147072Sbrooks */
130147072Sbrooksconst uint8_t fxp_cb_config_template[] = {
131147072Sbrooks	0x0, 0x0,		/* cb_status */
132147072Sbrooks	0x0, 0x0,		/* cb_command */
133147072Sbrooks	0x0, 0x0, 0x0, 0x0,	/* link_addr */
134147072Sbrooks	0x0,	/*  0 */
135147072Sbrooks	0x0,	/*  1 */
136147072Sbrooks	0x0,	/*  2 */
137147072Sbrooks	0x0,	/*  3 */
138147072Sbrooks	0x0,	/*  4 */
139147072Sbrooks	0x0,	/*  5 */
140147072Sbrooks	0x32,	/*  6 */
141147072Sbrooks	0x0,	/*  7 */
142147072Sbrooks	0x0,	/*  8 */
143147072Sbrooks	0x0,	/*  9 */
144147072Sbrooks	0x6,	/* 10 */
145147072Sbrooks	0x0,	/* 11 */
146147072Sbrooks	0x0,	/* 12 */
147147072Sbrooks	0x0,	/* 13 */
148147072Sbrooks	0xf2,	/* 14 */
149147072Sbrooks	0x48,	/* 15 */
150147072Sbrooks	0x0,	/* 16 */
151147072Sbrooks	0x40,	/* 17 */
152147072Sbrooks	0xf0,	/* 18 */
153147072Sbrooks	0x0,	/* 19 */
154147072Sbrooks	0x3f,	/* 20 */
155147072Sbrooks	0x5,	/* 21 */
156147072Sbrooks	0x0,	/* 22 */
157147072Sbrooks	0x0,	/* 23 */
158147072Sbrooks	0x0,	/* 24 */
159147072Sbrooks	0x0,	/* 25 */
160147072Sbrooks	0x0,	/* 26 */
161147072Sbrooks	0x0,	/* 27 */
162147072Sbrooks	0x0,	/* 28 */
163147072Sbrooks	0x0,	/* 29 */
164147072Sbrooks	0x0,	/* 30 */
165147072Sbrooks	0x0,	/* 31 */
166147072Sbrooks};
167147072Sbrooks
168147072Sbrooksvoid	fxp_mii_initmedia(struct fxp_softc *);
169147072Sbrooksvoid	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170147072Sbrooks
171147072Sbrooksvoid	fxp_80c24_initmedia(struct fxp_softc *);
172147072Sbrooksint	fxp_80c24_mediachange(struct ifnet *);
173147072Sbrooksvoid	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174147072Sbrooks
175147072Sbrooksvoid	fxp_start(struct ifnet *);
176147072Sbrooksint	fxp_ioctl(struct ifnet *, u_long, void *);
177147072Sbrooksvoid	fxp_watchdog(struct ifnet *);
178147072Sbrooksint	fxp_init(struct ifnet *);
179147072Sbrooksvoid	fxp_stop(struct ifnet *, int);
180147072Sbrooks
181147072Sbrooksvoid	fxp_txintr(struct fxp_softc *);
182147072Sbrooksint	fxp_rxintr(struct fxp_softc *);
183147072Sbrooks
184147072Sbrooksvoid	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
185147072Sbrooks	    const struct fxp_rfa *, u_int);
186147072Sbrooks
187147072Sbrooksvoid	fxp_rxdrain(struct fxp_softc *);
188147072Sbrooksint	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189147072Sbrooksint	fxp_mdi_read(device_t, int, int);
190147072Sbrooksvoid	fxp_statchg(struct ifnet *);
191147072Sbrooksvoid	fxp_mdi_write(device_t, int, int, int);
192147072Sbrooksvoid	fxp_autosize_eeprom(struct fxp_softc*);
193147072Sbrooksvoid	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194147072Sbrooksvoid	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195147072Sbrooksvoid	fxp_eeprom_update_cksum(struct fxp_softc *);
196147072Sbrooksvoid	fxp_get_info(struct fxp_softc *, uint8_t *);
197147072Sbrooksvoid	fxp_tick(void *);
198147072Sbrooksvoid	fxp_mc_setup(struct fxp_softc *);
199147072Sbrooksvoid	fxp_load_ucode(struct fxp_softc *);
200147072Sbrooks
201147072Sbrooksint	fxp_copy_small = 0;
202147072Sbrooks
203147072Sbrooks/*
204147072Sbrooks * Variables for interrupt mitigating microcode.
205147072Sbrooks */
206147072Sbrooksint	fxp_int_delay = 1000;		/* usec */
207147072Sbrooksint	fxp_bundle_max = 6;		/* packets */
208147072Sbrooks
209147072Sbrooksstruct fxp_phytype {
210147072Sbrooks	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
211147072Sbrooks	void	(*fp_init)(struct fxp_softc *);
212147072Sbrooks} fxp_phytype_table[] = {
213147072Sbrooks	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
214147072Sbrooks	{ -1,				fxp_mii_initmedia },
215147072Sbrooks};
216147072Sbrooks
217147072Sbrooks/*
218147072Sbrooks * Set initial transmit threshold at 64 (512 bytes). This is
219147072Sbrooks * increased by 64 (512 bytes) at a time, to maximum of 192
220147072Sbrooks * (1536 bytes), if an underrun occurs.
221147072Sbrooks */
222147072Sbrooksstatic int tx_threshold = 64;
223147072Sbrooks
224147072Sbrooks/*
225147072Sbrooks * Wait for the previous command to be accepted (but not necessarily
226147072Sbrooks * completed).
227147072Sbrooks */
228147072Sbrooksstatic inline void
229147072Sbrooksfxp_scb_wait(struct fxp_softc *sc)
230147072Sbrooks{
231147072Sbrooks	int i = 10000;
232147072Sbrooks
233147072Sbrooks	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234147072Sbrooks		delay(2);
235147072Sbrooks	if (i == 0)
236147072Sbrooks		log(LOG_WARNING,
237147072Sbrooks		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238147072Sbrooks}
239149481Sbrooks
240147072Sbrooks/*
241147072Sbrooks * Submit a command to the i82557.
242147072Sbrooks */
243147072Sbrooksstatic inline void
244147072Sbrooksfxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245147072Sbrooks{
246147072Sbrooks
247147072Sbrooks	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248147072Sbrooks}
249147072Sbrooks
250147072Sbrooks/*
251147072Sbrooks * Finish attaching an i82557 interface.  Called by bus-specific front-end.
252147072Sbrooks */
253147072Sbrooksvoid
254147072Sbrooksfxp_attach(struct fxp_softc *sc)
255147072Sbrooks{
256147072Sbrooks	uint8_t enaddr[ETHER_ADDR_LEN];
257147072Sbrooks	struct ifnet *ifp;
258147072Sbrooks	bus_dma_segment_t seg;
259147072Sbrooks	int rseg, i, error;
260147072Sbrooks	struct fxp_phytype *fp;
261147072Sbrooks
262147072Sbrooks	callout_init(&sc->sc_callout, 0);
263147072Sbrooks
264147072Sbrooks        /*
265147072Sbrooks	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
266147072Sbrooks	 * Note: to use IPCB we need extended TXCB support too, and
267147072Sbrooks	 *       these feature flags should be set in each bus attachment.
268147072Sbrooks	 */
269147072Sbrooks	if (sc->sc_flags & FXPF_EXT_RFA) {
270147072Sbrooks		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
271147072Sbrooks		sc->sc_rfa_size = RFA_EXT_SIZE;
272147072Sbrooks	} else {
273147072Sbrooks		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
274147072Sbrooks		sc->sc_rfa_size = RFA_SIZE;
275147072Sbrooks	}
276147072Sbrooks
277147072Sbrooks	/*
278147072Sbrooks	 * Allocate the control data structures, and create and load the
279147072Sbrooks	 * DMA map for it.
280147072Sbrooks	 */
281147072Sbrooks	if ((error = bus_dmamem_alloc(sc->sc_dmat,
282147072Sbrooks	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
283147072Sbrooks	    0)) != 0) {
284147072Sbrooks		aprint_error_dev(sc->sc_dev,
285147072Sbrooks		    "unable to allocate control data, error = %d\n",
286147072Sbrooks		    error);
287147072Sbrooks		goto fail_0;
288147072Sbrooks	}
289147072Sbrooks
290147072Sbrooks	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
291147072Sbrooks	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
292147072Sbrooks	    BUS_DMA_COHERENT)) != 0) {
293147072Sbrooks		aprint_error_dev(sc->sc_dev,
294147072Sbrooks		    "unable to map control data, error = %d\n", error);
295147072Sbrooks		goto fail_1;
296147072Sbrooks	}
297147072Sbrooks	sc->sc_cdseg = seg;
298147072Sbrooks	sc->sc_cdnseg = rseg;
299147072Sbrooks
300147072Sbrooks	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
301147072Sbrooks
302147072Sbrooks	if ((error = bus_dmamap_create(sc->sc_dmat,
303147072Sbrooks	    sizeof(struct fxp_control_data), 1,
304147072Sbrooks	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
305147072Sbrooks		aprint_error_dev(sc->sc_dev,
306147072Sbrooks		    "unable to create control data DMA map, error = %d\n",
307147072Sbrooks		    error);
308147072Sbrooks		goto fail_2;
309147072Sbrooks	}
310147072Sbrooks
311147072Sbrooks	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
312147072Sbrooks	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
313147072Sbrooks	    0)) != 0) {
314147072Sbrooks		aprint_error_dev(sc->sc_dev,
315147072Sbrooks		    "can't load control data DMA map, error = %d\n",
316147072Sbrooks		    error);
317147072Sbrooks		goto fail_3;
318147072Sbrooks	}
319147072Sbrooks
320147072Sbrooks	/*
321147072Sbrooks	 * Create the transmit buffer DMA maps.
322147072Sbrooks	 */
323147072Sbrooks	for (i = 0; i < FXP_NTXCB; i++) {
324147072Sbrooks		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
325147072Sbrooks		    (sc->sc_flags & FXPF_EXT_RFA) ?
326147072Sbrooks		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
327147072Sbrooks		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
328147072Sbrooks			aprint_error_dev(sc->sc_dev,
329147072Sbrooks			    "unable to create tx DMA map %d, error = %d\n",
330147072Sbrooks			    i, error);
331147072Sbrooks			goto fail_4;
332147072Sbrooks		}
333147072Sbrooks	}
334147072Sbrooks
335147072Sbrooks	/*
336147072Sbrooks	 * Create the receive buffer DMA maps.
337147072Sbrooks	 */
338147072Sbrooks	for (i = 0; i < FXP_NRFABUFS; i++) {
339147072Sbrooks		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
340147072Sbrooks		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
341147072Sbrooks			aprint_error_dev(sc->sc_dev,
342147072Sbrooks			    "unable to create rx DMA map %d, error = %d\n",
343147072Sbrooks			    i, error);
344147072Sbrooks			goto fail_5;
345147072Sbrooks		}
346147072Sbrooks	}
347147072Sbrooks
348147072Sbrooks	/* Initialize MAC address and media structures. */
349147072Sbrooks	fxp_get_info(sc, enaddr);
350147072Sbrooks
351147072Sbrooks	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
352147072Sbrooks	    ether_sprintf(enaddr));
353147072Sbrooks
354147072Sbrooks	ifp = &sc->sc_ethercom.ec_if;
355147072Sbrooks
356147072Sbrooks	/*
357147072Sbrooks	 * Get info about our media interface, and initialize it.  Note
358147072Sbrooks	 * the table terminates itself with a phy of -1, indicating
359147072Sbrooks	 * that we're using MII.
360147072Sbrooks	 */
361147072Sbrooks	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362147072Sbrooks		if (fp->fp_phy == sc->phy_primary_device)
363147072Sbrooks			break;
364147072Sbrooks	(*fp->fp_init)(sc);
365147072Sbrooks
366147072Sbrooks	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
367147072Sbrooks	ifp->if_softc = sc;
368147072Sbrooks	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369147072Sbrooks	ifp->if_ioctl = fxp_ioctl;
370147072Sbrooks	ifp->if_start = fxp_start;
371147072Sbrooks	ifp->if_watchdog = fxp_watchdog;
372147072Sbrooks	ifp->if_init = fxp_init;
373147072Sbrooks	ifp->if_stop = fxp_stop;
374147072Sbrooks	IFQ_SET_READY(&ifp->if_snd);
375147072Sbrooks
376147072Sbrooks	if (sc->sc_flags & FXPF_EXT_RFA) {
377147072Sbrooks		/*
378147072Sbrooks		 * Enable hardware cksum support by EXT_RFA and IPCB.
379147072Sbrooks		 *
380147072Sbrooks		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381147072Sbrooks		 * at least, on i82550 rev.12.
382147072Sbrooks		 * specifically, it doesn't set ipv4 checksum properly
383147072Sbrooks		 * when sending UDP (and probably TCP) packets with
384147072Sbrooks		 * 20 byte ipv4 header + 1 or 2 byte data,
385147072Sbrooks		 * though ICMP packets seem working.
386147072Sbrooks		 * FreeBSD driver has related comments.
387147072Sbrooks		 * We've added a workaround to handle the bug by padding
388147072Sbrooks		 * such packets manually.
389147072Sbrooks		 */
390147072Sbrooks		ifp->if_capabilities =
391147072Sbrooks		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
392147072Sbrooks		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393147072Sbrooks		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394147072Sbrooks		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395147072Sbrooks	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
396147072Sbrooks		ifp->if_capabilities =
397147072Sbrooks		    IFCAP_CSUM_TCPv4_Rx |
398147072Sbrooks		    IFCAP_CSUM_UDPv4_Rx;
399147072Sbrooks	}
400147072Sbrooks
401147072Sbrooks	/*
402147072Sbrooks	 * We can support 802.1Q VLAN-sized frames.
403147072Sbrooks	 */
404147072Sbrooks	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
405147072Sbrooks
406147072Sbrooks	/*
407147072Sbrooks	 * Attach the interface.
408147072Sbrooks	 */
409147072Sbrooks	if_attach(ifp);
410147072Sbrooks	ether_ifattach(ifp, enaddr);
411147072Sbrooks	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
412147072Sbrooks	    RND_TYPE_NET, RND_FLAG_DEFAULT);
413147072Sbrooks
414147072Sbrooks#ifdef FXP_EVENT_COUNTERS
415147072Sbrooks	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
416147072Sbrooks	    NULL, device_xname(sc->sc_dev), "txstall");
417147072Sbrooks	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
418147072Sbrooks	    NULL, device_xname(sc->sc_dev), "txintr");
419147072Sbrooks	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
420147072Sbrooks	    NULL, device_xname(sc->sc_dev), "rxintr");
421147072Sbrooks	if (sc->sc_flags & FXPF_FC) {
422147072Sbrooks		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
423147072Sbrooks		    NULL, device_xname(sc->sc_dev), "txpause");
424147072Sbrooks		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
425147072Sbrooks		    NULL, device_xname(sc->sc_dev), "rxpause");
426147072Sbrooks	}
427147072Sbrooks#endif /* FXP_EVENT_COUNTERS */
428147072Sbrooks
429147072Sbrooks	/* The attach is successful. */
430147072Sbrooks	sc->sc_flags |= FXPF_ATTACHED;
431147072Sbrooks
432147072Sbrooks	return;
433147072Sbrooks
434147072Sbrooks	/*
435147072Sbrooks	 * Free any resources we've allocated during the failed attach
436147072Sbrooks	 * attempt.  Do this in reverse order and fall though.
437147072Sbrooks	 */
438147072Sbrooks fail_5:
439147072Sbrooks	for (i = 0; i < FXP_NRFABUFS; i++) {
440147072Sbrooks		if (sc->sc_rxmaps[i] != NULL)
441147072Sbrooks			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
442147072Sbrooks	}
443147072Sbrooks fail_4:
444147072Sbrooks	for (i = 0; i < FXP_NTXCB; i++) {
445147072Sbrooks		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
446147072Sbrooks			bus_dmamap_destroy(sc->sc_dmat,
447147072Sbrooks			    FXP_DSTX(sc, i)->txs_dmamap);
448147072Sbrooks	}
449147072Sbrooks	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
450147072Sbrooks fail_3:
451147072Sbrooks	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
452147072Sbrooks fail_2:
453147072Sbrooks	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
454147072Sbrooks	    sizeof(struct fxp_control_data));
455147072Sbrooks fail_1:
456147072Sbrooks	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
457147072Sbrooks fail_0:
458147072Sbrooks	return;
459147072Sbrooks}
460147072Sbrooks
461147072Sbrooksvoid
462147072Sbrooksfxp_mii_initmedia(struct fxp_softc *sc)
463147072Sbrooks{
464147072Sbrooks	int flags;
465147072Sbrooks
466147072Sbrooks	sc->sc_flags |= FXPF_MII;
467147072Sbrooks
468147072Sbrooks	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
469147072Sbrooks	sc->sc_mii.mii_readreg = fxp_mdi_read;
470147072Sbrooks	sc->sc_mii.mii_writereg = fxp_mdi_write;
471147072Sbrooks	sc->sc_mii.mii_statchg = fxp_statchg;
472147072Sbrooks
473147072Sbrooks	sc->sc_ethercom.ec_mii = &sc->sc_mii;
474147072Sbrooks	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
475147072Sbrooks	    fxp_mii_mediastatus);
476147072Sbrooks
477147072Sbrooks	flags = MIIF_NOISOLATE;
478147072Sbrooks	if (sc->sc_flags & FXPF_FC)
479147072Sbrooks		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
480147072Sbrooks	/*
481147072Sbrooks	 * The i82557 wedges if all of its PHYs are isolated!
482147072Sbrooks	 */
483147072Sbrooks	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
484147072Sbrooks	    MII_OFFSET_ANY, flags);
485147072Sbrooks	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
486147072Sbrooks		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
487147072Sbrooks		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
488147072Sbrooks	} else
489147072Sbrooks		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
490147072Sbrooks}
491147072Sbrooks
492147072Sbrooksvoid
493147072Sbrooksfxp_80c24_initmedia(struct fxp_softc *sc)
494147072Sbrooks{
495147072Sbrooks
496147072Sbrooks	/*
497147072Sbrooks	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
498147072Sbrooks	 * doesn't have a programming interface of any sort.  The
499147072Sbrooks	 * media is sensed automatically based on how the link partner
500147072Sbrooks	 * is configured.  This is, in essence, manual configuration.
501147072Sbrooks	 */
502147072Sbrooks	aprint_normal_dev(sc->sc_dev,
503147072Sbrooks	    "Seeq 80c24 AutoDUPLEX media interface present\n");
504147072Sbrooks	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
505147072Sbrooks	    fxp_80c24_mediastatus);
506147072Sbrooks	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
507147072Sbrooks	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
508147072Sbrooks}
509147072Sbrooks
510147072Sbrooks/*
511147072Sbrooks * Initialize the interface media.
512147072Sbrooks */
513147072Sbrooksvoid
514147072Sbrooksfxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
515147072Sbrooks{
516147072Sbrooks	uint16_t data, myea[ETHER_ADDR_LEN / 2];
517147072Sbrooks
518147072Sbrooks	/*
519147072Sbrooks	 * Reset to a stable state.
520147072Sbrooks	 */
521147072Sbrooks	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
522147072Sbrooks	DELAY(100);
523147072Sbrooks
524147072Sbrooks	sc->sc_eeprom_size = 0;
525147072Sbrooks	fxp_autosize_eeprom(sc);
526147072Sbrooks	if (sc->sc_eeprom_size == 0) {
527147072Sbrooks		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
528147072Sbrooks		sc->sc_eeprom_size = 6; /* XXX panic here? */
529147072Sbrooks	}
530#ifdef DEBUG
531	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
532	    1 << sc->sc_eeprom_size);
533#endif
534
535	/*
536	 * Get info about the primary PHY
537	 */
538	fxp_read_eeprom(sc, &data, 6, 1);
539	sc->phy_primary_device =
540	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
541
542	/*
543	 * Read MAC address.
544	 */
545	fxp_read_eeprom(sc, myea, 0, 3);
546	enaddr[0] = myea[0] & 0xff;
547	enaddr[1] = myea[0] >> 8;
548	enaddr[2] = myea[1] & 0xff;
549	enaddr[3] = myea[1] >> 8;
550	enaddr[4] = myea[2] & 0xff;
551	enaddr[5] = myea[2] >> 8;
552
553	/*
554	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
555	 * as some i82559 designs, have a defect where the chip can
556	 * cause a PCI protocol violation if it receives a CU_RESUME
557	 * command when it is entering the IDLE state.
558	 *
559	 * The work-around is to disable Dynamic Standby Mode, so that
560	 * the chip never deasserts #CLKRUN, and always remains in the
561	 * active state.
562	 *
563	 * Unfortunately, the only way to disable Dynamic Standby is
564	 * to frob an EEPROM setting and reboot (the EEPROM setting
565	 * is only consulted when the PCI bus comes out of reset).
566	 *
567	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
568	 */
569	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
570		fxp_read_eeprom(sc, &data, 10, 1);
571		if (data & 0x02) {		/* STB enable */
572			aprint_error_dev(sc->sc_dev, "WARNING: "
573			    "Disabling dynamic standby mode in EEPROM "
574			    "to work around a\n");
575			aprint_normal_dev(sc->sc_dev,
576			    "WARNING: hardware bug.  You must reset "
577			    "the system before using this\n");
578			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
579			data &= ~0x02;
580			fxp_write_eeprom(sc, &data, 10, 1);
581			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
582			    data);
583			fxp_eeprom_update_cksum(sc);
584		}
585	}
586
587	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
588	/* Due to false positives we make it conditional on setting link1 */
589	fxp_read_eeprom(sc, &data, 3, 1);
590	if ((data & 0x03) != 0x03) {
591		aprint_verbose_dev(sc->sc_dev,
592		    "May need receiver lock-up workaround\n");
593	}
594}
595
596static void
597fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
598{
599	uint16_t reg;
600	int x;
601
602	for (x = 1 << (len - 1); x != 0; x >>= 1) {
603		DELAY(40);
604		if (data & x)
605			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
606		else
607			reg = FXP_EEPROM_EECS;
608		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
609		DELAY(40);
610		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
611		    reg | FXP_EEPROM_EESK);
612		DELAY(40);
613		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
614	}
615	DELAY(40);
616}
617
618/*
619 * Figure out EEPROM size.
620 *
621 * 559's can have either 64-word or 256-word EEPROMs, the 558
622 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
623 * talks about the existence of 16 to 256 word EEPROMs.
624 *
625 * The only known sizes are 64 and 256, where the 256 version is used
626 * by CardBus cards to store CIS information.
627 *
628 * The address is shifted in msb-to-lsb, and after the last
629 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
630 * after which follows the actual data. We try to detect this zero, by
631 * probing the data-out bit in the EEPROM control register just after
632 * having shifted in a bit. If the bit is zero, we assume we've
633 * shifted enough address bits. The data-out should be tri-state,
634 * before this, which should translate to a logical one.
635 *
636 * Other ways to do this would be to try to read a register with known
637 * contents with a varying number of address bits, but no such
638 * register seem to be available. The high bits of register 10 are 01
639 * on the 558 and 559, but apparently not on the 557.
640 *
641 * The Linux driver computes a checksum on the EEPROM data, but the
642 * value of this checksum is not very well documented.
643 */
644
645void
646fxp_autosize_eeprom(struct fxp_softc *sc)
647{
648	int x;
649
650	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
651	DELAY(40);
652
653	/* Shift in read opcode. */
654	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
655
656	/*
657	 * Shift in address, wait for the dummy zero following a correct
658	 * address shift.
659	 */
660	for (x = 1; x <= 8; x++) {
661		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
662		DELAY(40);
663		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
664		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
665		DELAY(40);
666		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
667		    FXP_EEPROM_EEDO) == 0)
668			break;
669		DELAY(40);
670		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
671		DELAY(40);
672	}
673	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
674	DELAY(40);
675	if (x != 6 && x != 8) {
676#ifdef DEBUG
677		printf("%s: strange EEPROM size (%d)\n",
678		    device_xname(sc->sc_dev), 1 << x);
679#endif
680	} else
681		sc->sc_eeprom_size = x;
682}
683
684/*
685 * Read from the serial EEPROM. Basically, you manually shift in
686 * the read opcode (one bit at a time) and then shift in the address,
687 * and then you shift out the data (all of this one bit at a time).
688 * The word size is 16 bits, so you have to provide the address for
689 * every 16 bits of data.
690 */
691void
692fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
693{
694	uint16_t reg;
695	int i, x;
696
697	for (i = 0; i < words; i++) {
698		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
699
700		/* Shift in read opcode. */
701		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
702
703		/* Shift in address. */
704		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
705
706		reg = FXP_EEPROM_EECS;
707		data[i] = 0;
708
709		/* Shift out data. */
710		for (x = 16; x > 0; x--) {
711			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
712			    reg | FXP_EEPROM_EESK);
713			DELAY(40);
714			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
715			    FXP_EEPROM_EEDO)
716				data[i] |= (1 << (x - 1));
717			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
718			DELAY(40);
719		}
720		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
721		DELAY(40);
722	}
723}
724
725/*
726 * Write data to the serial EEPROM.
727 */
728void
729fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
730{
731	int i, j;
732
733	for (i = 0; i < words; i++) {
734		/* Erase/write enable. */
735		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
736		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
737		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
738		    sc->sc_eeprom_size);
739		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
740		DELAY(4);
741
742		/* Shift in write opcode, address, data. */
743		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
744		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
745		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
746		fxp_eeprom_shiftin(sc, data[i], 16);
747		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
748		DELAY(4);
749
750		/* Wait for the EEPROM to finish up. */
751		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
752		DELAY(4);
753		for (j = 0; j < 1000; j++) {
754			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
755			    FXP_EEPROM_EEDO)
756				break;
757			DELAY(50);
758		}
759		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
760		DELAY(4);
761
762		/* Erase/write disable. */
763		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
764		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
765		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
766		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
767		DELAY(4);
768	}
769}
770
771/*
772 * Update the checksum of the EEPROM.
773 */
774void
775fxp_eeprom_update_cksum(struct fxp_softc *sc)
776{
777	int i;
778	uint16_t data, cksum;
779
780	cksum = 0;
781	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
782		fxp_read_eeprom(sc, &data, i, 1);
783		cksum += data;
784	}
785	i = (1 << sc->sc_eeprom_size) - 1;
786	cksum = 0xbaba - cksum;
787	fxp_read_eeprom(sc, &data, i, 1);
788	fxp_write_eeprom(sc, &cksum, i, 1);
789	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
790	    device_xname(sc->sc_dev), i, data, cksum);
791}
792
793/*
794 * Start packet transmission on the interface.
795 */
796void
797fxp_start(struct ifnet *ifp)
798{
799	struct fxp_softc *sc = ifp->if_softc;
800	struct mbuf *m0, *m;
801	struct fxp_txdesc *txd;
802	struct fxp_txsoft *txs;
803	bus_dmamap_t dmamap;
804	int error, lasttx, nexttx, opending, seg, nsegs, len;
805
806	/*
807	 * If we want a re-init, bail out now.
808	 */
809	if (sc->sc_flags & FXPF_WANTINIT) {
810		ifp->if_flags |= IFF_OACTIVE;
811		return;
812	}
813
814	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
815		return;
816
817	/*
818	 * Remember the previous txpending and the current lasttx.
819	 */
820	opending = sc->sc_txpending;
821	lasttx = sc->sc_txlast;
822
823	/*
824	 * Loop through the send queue, setting up transmit descriptors
825	 * until we drain the queue, or use up all available transmit
826	 * descriptors.
827	 */
828	for (;;) {
829		struct fxp_tbd *tbdp;
830		int csum_flags;
831
832		/*
833		 * Grab a packet off the queue.
834		 */
835		IFQ_POLL(&ifp->if_snd, m0);
836		if (m0 == NULL)
837			break;
838		m = NULL;
839
840		if (sc->sc_txpending == FXP_NTXCB - 1) {
841			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
842			break;
843		}
844
845		/*
846		 * Get the next available transmit descriptor.
847		 */
848		nexttx = FXP_NEXTTX(sc->sc_txlast);
849		txd = FXP_CDTX(sc, nexttx);
850		txs = FXP_DSTX(sc, nexttx);
851		dmamap = txs->txs_dmamap;
852
853		/*
854		 * Load the DMA map.  If this fails, the packet either
855		 * didn't fit in the allotted number of frags, or we were
856		 * short on resources.  In this case, we'll copy and try
857		 * again.
858		 */
859		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
860		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
861			MGETHDR(m, M_DONTWAIT, MT_DATA);
862			if (m == NULL) {
863				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
864				    device_xname(sc->sc_dev));
865				break;
866			}
867			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
868			if (m0->m_pkthdr.len > MHLEN) {
869				MCLGET(m, M_DONTWAIT);
870				if ((m->m_flags & M_EXT) == 0) {
871					log(LOG_ERR, "%s: unable to allocate "
872					    "Tx cluster\n",
873					    device_xname(sc->sc_dev));
874					m_freem(m);
875					break;
876				}
877			}
878			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
879			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
880			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
881			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
882			if (error) {
883				log(LOG_ERR, "%s: unable to load Tx buffer, "
884				    "error = %d\n",
885				    device_xname(sc->sc_dev), error);
886				break;
887			}
888		}
889
890		IFQ_DEQUEUE(&ifp->if_snd, m0);
891		csum_flags = m0->m_pkthdr.csum_flags;
892		if (m != NULL) {
893			m_freem(m0);
894			m0 = m;
895		}
896
897		/* Initialize the fraglist. */
898		tbdp = txd->txd_tbd;
899		len = m0->m_pkthdr.len;
900		nsegs = dmamap->dm_nsegs;
901		if (sc->sc_flags & FXPF_EXT_RFA)
902			tbdp++;
903		for (seg = 0; seg < nsegs; seg++) {
904			tbdp[seg].tb_addr =
905			    htole32(dmamap->dm_segs[seg].ds_addr);
906			tbdp[seg].tb_size =
907			    htole32(dmamap->dm_segs[seg].ds_len);
908		}
909		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
910		    (csum_flags & M_CSUM_IPv4) != 0)) {
911			/*
912			 * Pad short packets to avoid ip4csum-tx bug.
913			 *
914			 * XXX Should we still consider if such short
915			 *     (36 bytes or less) packets might already
916			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
917			 */
918			KASSERT(nsegs < FXP_IPCB_NTXSEG);
919			nsegs++;
920			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
921			tbdp[seg].tb_size =
922			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
923		}
924
925		/* Sync the DMA map. */
926		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
927		    BUS_DMASYNC_PREWRITE);
928
929		/*
930		 * Store a pointer to the packet so we can free it later.
931		 */
932		txs->txs_mbuf = m0;
933
934		/*
935		 * Initialize the transmit descriptor.
936		 */
937		/* BIG_ENDIAN: no need to swap to store 0 */
938		txd->txd_txcb.cb_status = 0;
939		txd->txd_txcb.cb_command =
940		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
941		txd->txd_txcb.tx_threshold = tx_threshold;
942		txd->txd_txcb.tbd_number = nsegs;
943
944		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
945		if (sc->sc_flags & FXPF_EXT_RFA) {
946			struct m_tag *vtag;
947			struct fxp_ipcb *ipcb;
948			/*
949			 * Deal with TCP/IP checksum offload. Note that
950			 * in order for TCP checksum offload to work,
951			 * the pseudo header checksum must have already
952			 * been computed and stored in the checksum field
953			 * in the TCP header. The stack should have
954			 * already done this for us.
955			 */
956			ipcb = &txd->txd_u.txdu_ipcb;
957			memset(ipcb, 0, sizeof(*ipcb));
958			/*
959			 * always do hardware parsing.
960			 */
961			ipcb->ipcb_ip_activation_high =
962			    FXP_IPCB_HARDWAREPARSING_ENABLE;
963			/*
964			 * ip checksum offloading.
965			 */
966			if (csum_flags & M_CSUM_IPv4) {
967				ipcb->ipcb_ip_schedule |=
968				    FXP_IPCB_IP_CHECKSUM_ENABLE;
969			}
970			/*
971			 * TCP/UDP checksum offloading.
972			 */
973			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
974				ipcb->ipcb_ip_schedule |=
975				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
976			}
977
978			/*
979			 * request VLAN tag insertion if needed.
980			 */
981			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
982			if (vtag) {
983				ipcb->ipcb_vlan_id =
984				    htobe16(*(u_int *)(vtag + 1));
985				ipcb->ipcb_ip_activation_high |=
986				    FXP_IPCB_INSERTVLAN_ENABLE;
987			}
988		} else {
989			KASSERT((csum_flags &
990			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
991		}
992
993		FXP_CDTXSYNC(sc, nexttx,
994		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
995
996		/* Advance the tx pointer. */
997		sc->sc_txpending++;
998		sc->sc_txlast = nexttx;
999
1000		/*
1001		 * Pass packet to bpf if there is a listener.
1002		 */
1003		bpf_mtap(ifp, m0);
1004	}
1005
1006	if (sc->sc_txpending == FXP_NTXCB - 1) {
1007		/* No more slots; notify upper layer. */
1008		ifp->if_flags |= IFF_OACTIVE;
1009	}
1010
1011	if (sc->sc_txpending != opending) {
1012		/*
1013		 * We enqueued packets.  If the transmitter was idle,
1014		 * reset the txdirty pointer.
1015		 */
1016		if (opending == 0)
1017			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1018
1019		/*
1020		 * Cause the chip to interrupt and suspend command
1021		 * processing once the last packet we've enqueued
1022		 * has been transmitted.
1023		 *
1024		 * To avoid a race between updating status bits
1025		 * by the fxp chip and clearing command bits
1026		 * by this function on machines which don't have
1027		 * atomic methods to clear/set bits in memory
1028		 * smaller than 32bits (both cb_status and cb_command
1029		 * members are uint16_t and in the same 32bit word),
1030		 * we have to prepare a dummy TX descriptor which has
1031		 * NOP command and just causes a TX completion interrupt.
1032		 */
1033		sc->sc_txpending++;
1034		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1035		txd = FXP_CDTX(sc, sc->sc_txlast);
1036		/* BIG_ENDIAN: no need to swap to store 0 */
1037		txd->txd_txcb.cb_status = 0;
1038		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1039		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1040		FXP_CDTXSYNC(sc, sc->sc_txlast,
1041		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1042
1043		/*
1044		 * The entire packet chain is set up.  Clear the suspend bit
1045		 * on the command prior to the first packet we set up.
1046		 */
1047		FXP_CDTXSYNC(sc, lasttx,
1048		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1049		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1050		    htole16(~FXP_CB_COMMAND_S);
1051		FXP_CDTXSYNC(sc, lasttx,
1052		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1053
1054		/*
1055		 * Issue a Resume command in case the chip was suspended.
1056		 */
1057		fxp_scb_wait(sc);
1058		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1059
1060		/* Set a watchdog timer in case the chip flakes out. */
1061		ifp->if_timer = 5;
1062	}
1063}
1064
1065/*
1066 * Process interface interrupts.
1067 */
1068int
1069fxp_intr(void *arg)
1070{
1071	struct fxp_softc *sc = arg;
1072	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1073	bus_dmamap_t rxmap;
1074	int claimed = 0, rnr;
1075	uint8_t statack;
1076
1077	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1078		return (0);
1079	/*
1080	 * If the interface isn't running, don't try to
1081	 * service the interrupt.. just ack it and bail.
1082	 */
1083	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1084		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1085		if (statack) {
1086			claimed = 1;
1087			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1088		}
1089		return (claimed);
1090	}
1091
1092	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1093		claimed = 1;
1094
1095		/*
1096		 * First ACK all the interrupts in this pass.
1097		 */
1098		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1099
1100		/*
1101		 * Process receiver interrupts. If a no-resource (RNR)
1102		 * condition exists, get whatever packets we can and
1103		 * re-start the receiver.
1104		 */
1105		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1106		    1 : 0;
1107		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1108		    FXP_SCB_STATACK_SWI)) {
1109			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1110			rnr |= fxp_rxintr(sc);
1111		}
1112
1113		/*
1114		 * Free any finished transmit mbuf chains.
1115		 */
1116		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1117			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1118			fxp_txintr(sc);
1119
1120			/*
1121			 * Try to get more packets going.
1122			 */
1123			fxp_start(ifp);
1124
1125			if (sc->sc_txpending == 0) {
1126				/*
1127				 * Tell them that they can re-init now.
1128				 */
1129				if (sc->sc_flags & FXPF_WANTINIT)
1130					wakeup(sc);
1131			}
1132		}
1133
1134		if (rnr) {
1135			fxp_scb_wait(sc);
1136			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1137			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1138			fxp_scb_wait(sc);
1139			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1140			    rxmap->dm_segs[0].ds_addr +
1141			    RFA_ALIGNMENT_FUDGE);
1142			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1143		}
1144	}
1145
1146	if (claimed)
1147		rnd_add_uint32(&sc->rnd_source, statack);
1148	return (claimed);
1149}
1150
1151/*
1152 * Handle transmit completion interrupts.
1153 */
1154void
1155fxp_txintr(struct fxp_softc *sc)
1156{
1157	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158	struct fxp_txdesc *txd;
1159	struct fxp_txsoft *txs;
1160	int i;
1161	uint16_t txstat;
1162
1163	ifp->if_flags &= ~IFF_OACTIVE;
1164	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1165	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1166		txd = FXP_CDTX(sc, i);
1167		txs = FXP_DSTX(sc, i);
1168
1169		FXP_CDTXSYNC(sc, i,
1170		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1171
1172		/* skip dummy NOP TX descriptor */
1173		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1174		    == FXP_CB_COMMAND_NOP)
1175			continue;
1176
1177		txstat = le16toh(txd->txd_txcb.cb_status);
1178
1179		if ((txstat & FXP_CB_STATUS_C) == 0)
1180			break;
1181
1182		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1183		    0, txs->txs_dmamap->dm_mapsize,
1184		    BUS_DMASYNC_POSTWRITE);
1185		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1186		m_freem(txs->txs_mbuf);
1187		txs->txs_mbuf = NULL;
1188	}
1189
1190	/* Update the dirty transmit buffer pointer. */
1191	sc->sc_txdirty = i;
1192
1193	/*
1194	 * Cancel the watchdog timer if there are no pending
1195	 * transmissions.
1196	 */
1197	if (sc->sc_txpending == 0)
1198		ifp->if_timer = 0;
1199}
1200
1201/*
1202 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1203 */
1204
1205void
1206fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1207    u_int len)
1208{
1209	uint32_t csum_data;
1210	int csum_flags;
1211
1212	/*
1213	 * check H/W Checksumming.
1214	 */
1215
1216	csum_flags = 0;
1217	csum_data = 0;
1218
1219	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1220		uint8_t csum_stat;
1221
1222		csum_stat = rfa->cksum_stat;
1223		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1224			goto out;
1225
1226		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1227			csum_flags = M_CSUM_IPv4;
1228			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1229				csum_flags |= M_CSUM_IPv4_BAD;
1230		}
1231
1232		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1233			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1234			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1235				csum_flags |= M_CSUM_TCP_UDP_BAD;
1236		}
1237
1238	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1239		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1240		struct ether_header *eh;
1241		struct ip *ip;
1242		struct udphdr *uh;
1243		u_int hlen, pktlen;
1244
1245		if (len < ETHER_HDR_LEN + sizeof(struct ip))
1246			goto out;
1247		pktlen = len - ETHER_HDR_LEN;
1248		eh = mtod(m, struct ether_header *);
1249		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1250			goto out;
1251		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1252		if (ip->ip_v != IPVERSION)
1253			goto out;
1254
1255		hlen = ip->ip_hl << 2;
1256		if (hlen < sizeof(struct ip))
1257			goto out;
1258
1259		/*
1260		 * Bail if too short, has random trailing garbage, truncated,
1261		 * fragment, or has ethernet pad.
1262		 */
1263		if (ntohs(ip->ip_len) < hlen ||
1264		    ntohs(ip->ip_len) != pktlen ||
1265		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1266			goto out;
1267
1268		switch (ip->ip_p) {
1269		case IPPROTO_TCP:
1270			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1271			    pktlen < (hlen + sizeof(struct tcphdr)))
1272				goto out;
1273			csum_flags =
1274			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1275			break;
1276		case IPPROTO_UDP:
1277			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1278			    pktlen < (hlen + sizeof(struct udphdr)))
1279				goto out;
1280			uh = (struct udphdr *)((uint8_t *)ip + hlen);
1281			if (uh->uh_sum == 0)
1282				goto out;	/* no checksum */
1283			csum_flags =
1284			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1285			break;
1286		default:
1287			goto out;
1288		}
1289
1290		/* Extract computed checksum. */
1291		csum_data = be16dec(mtod(m, uint8_t *) + len);
1292
1293		/*
1294		 * The computed checksum includes IP headers,
1295		 * so we have to deduct them.
1296		 */
1297#if 0
1298		/*
1299		 * But in TCP/UDP layer we can assume the IP header is valid,
1300		 * i.e. a sum of the whole IP header should be 0xffff,
1301		 * so we don't have to bother to deduct it.
1302		 */
1303		if (hlen > 0) {
1304			uint32_t hsum;
1305			const uint16_t *iphdr;
1306			hsum = 0;
1307			iphdr = (uint16_t *)ip;
1308
1309			while (hlen > 1) {
1310				hsum += ntohs(*iphdr++);
1311				hlen -= sizeof(uint16_t);
1312			}
1313			while (hsum >> 16)
1314				hsum = (hsum >> 16) + (hsum & 0xffff);
1315
1316			csum_data += (uint16_t)~hsum;
1317
1318			while (csum_data >> 16)
1319				csum_data =
1320				    (csum_data >> 16) + (csum_data & 0xffff);
1321		}
1322#endif
1323	}
1324 out:
1325	m->m_pkthdr.csum_flags = csum_flags;
1326	m->m_pkthdr.csum_data = csum_data;
1327}
1328
1329/*
1330 * Handle receive interrupts.
1331 */
1332int
1333fxp_rxintr(struct fxp_softc *sc)
1334{
1335	struct ethercom *ec = &sc->sc_ethercom;
1336	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1337	struct mbuf *m, *m0;
1338	bus_dmamap_t rxmap;
1339	struct fxp_rfa *rfa;
1340	int rnr;
1341	uint16_t len, rxstat;
1342
1343	rnr = 0;
1344
1345	for (;;) {
1346		m = sc->sc_rxq.ifq_head;
1347		rfa = FXP_MTORFA(m);
1348		rxmap = M_GETCTX(m, bus_dmamap_t);
1349
1350		FXP_RFASYNC(sc, m,
1351		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1352
1353		rxstat = le16toh(rfa->rfa_status);
1354
1355		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1356			rnr = 1;
1357
1358		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1359			/*
1360			 * We have processed all of the
1361			 * receive buffers.
1362			 */
1363			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1364			return rnr;
1365		}
1366
1367		IF_DEQUEUE(&sc->sc_rxq, m);
1368
1369		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1370
1371		len = le16toh(rfa->actual_size) &
1372		    (m->m_ext.ext_size - 1);
1373		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1374			/* Adjust for appended checksum bytes. */
1375			len -= sizeof(uint16_t);
1376		}
1377
1378		if (len < sizeof(struct ether_header)) {
1379			/*
1380			 * Runt packet; drop it now.
1381			 */
1382			FXP_INIT_RFABUF(sc, m);
1383			continue;
1384		}
1385
1386		/*
1387		 * If support for 802.1Q VLAN sized frames is
1388		 * enabled, we need to do some additional error
1389		 * checking (as we are saving bad frames, in
1390		 * order to receive the larger ones).
1391		 */
1392		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1393		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1394			       FXP_RFA_STATUS_RNR|
1395			       FXP_RFA_STATUS_ALIGN|
1396			       FXP_RFA_STATUS_CRC)) != 0) {
1397			FXP_INIT_RFABUF(sc, m);
1398			continue;
1399		}
1400
1401		/*
1402		 * check VLAN tag stripping.
1403		 */
1404		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1405		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1406			struct m_tag *vtag;
1407
1408			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1409			    M_NOWAIT);
1410			if (vtag == NULL)
1411				goto dropit;
1412			*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1413			m_tag_prepend(m, vtag);
1414		}
1415
1416		/* Do checksum checking. */
1417		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1418			fxp_rx_hwcksum(sc, m, rfa, len);
1419
1420		/*
1421		 * If the packet is small enough to fit in a
1422		 * single header mbuf, allocate one and copy
1423		 * the data into it.  This greatly reduces
1424		 * memory consumption when we receive lots
1425		 * of small packets.
1426		 *
1427		 * Otherwise, we add a new buffer to the receive
1428		 * chain.  If this fails, we drop the packet and
1429		 * recycle the old buffer.
1430		 */
1431		if (fxp_copy_small != 0 && len <= MHLEN) {
1432			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1433			if (m0 == NULL)
1434				goto dropit;
1435			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1436			memcpy(mtod(m0, void *),
1437			    mtod(m, void *), len);
1438			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1439			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1440			FXP_INIT_RFABUF(sc, m);
1441			m = m0;
1442		} else {
1443			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1444 dropit:
1445				ifp->if_ierrors++;
1446				FXP_INIT_RFABUF(sc, m);
1447				continue;
1448			}
1449		}
1450
1451		m_set_rcvif(m, ifp);
1452		m->m_pkthdr.len = m->m_len = len;
1453
1454		/* Pass it on. */
1455		if_percpuq_enqueue(ifp->if_percpuq, m);
1456	}
1457}
1458
1459/*
1460 * Update packet in/out/collision statistics. The i82557 doesn't
1461 * allow you to access these counters without doing a fairly
1462 * expensive DMA to get _all_ of the statistics it maintains, so
1463 * we do this operation here only once per second. The statistics
1464 * counters in the kernel are updated from the previous dump-stats
1465 * DMA and then a new dump-stats DMA is started. The on-chip
1466 * counters are zeroed when the DMA completes. If we can't start
1467 * the DMA immediately, we don't wait - we just prepare to read
1468 * them again next time.
1469 */
1470void
1471fxp_tick(void *arg)
1472{
1473	struct fxp_softc *sc = arg;
1474	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1475	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1476	int s;
1477
1478	if (!device_is_active(sc->sc_dev))
1479		return;
1480
1481	s = splnet();
1482
1483	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1484
1485	ifp->if_opackets += le32toh(sp->tx_good);
1486	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1487	if (sp->rx_good) {
1488		ifp->if_ipackets += le32toh(sp->rx_good);
1489		sc->sc_rxidle = 0;
1490	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1491		sc->sc_rxidle++;
1492	}
1493	ifp->if_ierrors +=
1494	    le32toh(sp->rx_crc_errors) +
1495	    le32toh(sp->rx_alignment_errors) +
1496	    le32toh(sp->rx_rnr_errors) +
1497	    le32toh(sp->rx_overrun_errors);
1498	/*
1499	 * If any transmit underruns occurred, bump up the transmit
1500	 * threshold by another 512 bytes (64 * 8).
1501	 */
1502	if (sp->tx_underruns) {
1503		ifp->if_oerrors += le32toh(sp->tx_underruns);
1504		if (tx_threshold < 192)
1505			tx_threshold += 64;
1506	}
1507#ifdef FXP_EVENT_COUNTERS
1508	if (sc->sc_flags & FXPF_FC) {
1509		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1510		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1511	}
1512#endif
1513
1514	/*
1515	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1516	 * then assume the receiver has locked up and attempt to clear
1517	 * the condition by reprogramming the multicast filter (actually,
1518	 * resetting the interface). This is a work-around for a bug in
1519	 * the 82557 where the receiver locks up if it gets certain types
1520	 * of garbage in the synchronization bits prior to the packet header.
1521	 * This bug is supposed to only occur in 10Mbps mode, but has been
1522	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1523	 * speed transition).
1524	 */
1525	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1526		(void) fxp_init(ifp);
1527		splx(s);
1528		return;
1529	}
1530	/*
1531	 * If there is no pending command, start another stats
1532	 * dump. Otherwise punt for now.
1533	 */
1534	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1535		/*
1536		 * Start another stats dump.
1537		 */
1538		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1539		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1540	} else {
1541		/*
1542		 * A previous command is still waiting to be accepted.
1543		 * Just zero our copy of the stats and wait for the
1544		 * next timer event to update them.
1545		 */
1546		/* BIG_ENDIAN: no swap required to store 0 */
1547		sp->tx_good = 0;
1548		sp->tx_underruns = 0;
1549		sp->tx_total_collisions = 0;
1550
1551		sp->rx_good = 0;
1552		sp->rx_crc_errors = 0;
1553		sp->rx_alignment_errors = 0;
1554		sp->rx_rnr_errors = 0;
1555		sp->rx_overrun_errors = 0;
1556		if (sc->sc_flags & FXPF_FC) {
1557			sp->tx_pauseframes = 0;
1558			sp->rx_pauseframes = 0;
1559		}
1560	}
1561
1562	if (sc->sc_flags & FXPF_MII) {
1563		/* Tick the MII clock. */
1564		mii_tick(&sc->sc_mii);
1565	}
1566
1567	splx(s);
1568
1569	/*
1570	 * Schedule another timeout one second from now.
1571	 */
1572	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1573}
1574
1575/*
1576 * Drain the receive queue.
1577 */
1578void
1579fxp_rxdrain(struct fxp_softc *sc)
1580{
1581	bus_dmamap_t rxmap;
1582	struct mbuf *m;
1583
1584	for (;;) {
1585		IF_DEQUEUE(&sc->sc_rxq, m);
1586		if (m == NULL)
1587			break;
1588		rxmap = M_GETCTX(m, bus_dmamap_t);
1589		bus_dmamap_unload(sc->sc_dmat, rxmap);
1590		FXP_RXMAP_PUT(sc, rxmap);
1591		m_freem(m);
1592	}
1593}
1594
1595/*
1596 * Stop the interface. Cancels the statistics updater and resets
1597 * the interface.
1598 */
1599void
1600fxp_stop(struct ifnet *ifp, int disable)
1601{
1602	struct fxp_softc *sc = ifp->if_softc;
1603	struct fxp_txsoft *txs;
1604	int i;
1605
1606	/*
1607	 * Turn down interface (done early to avoid bad interactions
1608	 * between panics, shutdown hooks, and the watchdog timer)
1609	 */
1610	ifp->if_timer = 0;
1611	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1612
1613	/*
1614	 * Cancel stats updater.
1615	 */
1616	callout_stop(&sc->sc_callout);
1617	if (sc->sc_flags & FXPF_MII) {
1618		/* Down the MII. */
1619		mii_down(&sc->sc_mii);
1620	}
1621
1622	/*
1623	 * Issue software reset.  This unloads any microcode that
1624	 * might already be loaded.
1625	 */
1626	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1627	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1628	DELAY(50);
1629
1630	/*
1631	 * Release any xmit buffers.
1632	 */
1633	for (i = 0; i < FXP_NTXCB; i++) {
1634		txs = FXP_DSTX(sc, i);
1635		if (txs->txs_mbuf != NULL) {
1636			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1637			m_freem(txs->txs_mbuf);
1638			txs->txs_mbuf = NULL;
1639		}
1640	}
1641	sc->sc_txpending = 0;
1642
1643	if (disable) {
1644		fxp_rxdrain(sc);
1645		fxp_disable(sc);
1646	}
1647
1648}
1649
1650/*
1651 * Watchdog/transmission transmit timeout handler. Called when a
1652 * transmission is started on the interface, but no interrupt is
1653 * received before the timeout. This usually indicates that the
1654 * card has wedged for some reason.
1655 */
1656void
1657fxp_watchdog(struct ifnet *ifp)
1658{
1659	struct fxp_softc *sc = ifp->if_softc;
1660
1661	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1662	ifp->if_oerrors++;
1663
1664	(void) fxp_init(ifp);
1665}
1666
1667/*
1668 * Initialize the interface.  Must be called at splnet().
1669 */
1670int
1671fxp_init(struct ifnet *ifp)
1672{
1673	struct fxp_softc *sc = ifp->if_softc;
1674	struct fxp_cb_config *cbp;
1675	struct fxp_cb_ias *cb_ias;
1676	struct fxp_txdesc *txd;
1677	bus_dmamap_t rxmap;
1678	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1679	uint16_t status;
1680
1681	if ((error = fxp_enable(sc)) != 0)
1682		goto out;
1683
1684	/*
1685	 * Cancel any pending I/O
1686	 */
1687	fxp_stop(ifp, 0);
1688
1689	/*
1690	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1691	 * flag, and this prevents the MII from detaching resulting in
1692	 * a panic. The flags field should perhaps be split in runtime
1693	 * flags and more static information. For now, just clear the
1694	 * only other flag set.
1695	 */
1696
1697	sc->sc_flags &= ~FXPF_WANTINIT;
1698
1699	/*
1700	 * Initialize base of CBL and RFA memory. Loading with zero
1701	 * sets it up for regular linear addressing.
1702	 */
1703	fxp_scb_wait(sc);
1704	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1705	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1706
1707	fxp_scb_wait(sc);
1708	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1709
1710	/*
1711	 * Initialize the multicast filter.  Do this now, since we might
1712	 * have to setup the config block differently.
1713	 */
1714	fxp_mc_setup(sc);
1715
1716	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1717	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1718
1719	/*
1720	 * In order to support receiving 802.1Q VLAN frames, we have to
1721	 * enable "save bad frames", since they are 4 bytes larger than
1722	 * the normal Ethernet maximum frame length.  On i82558 and later,
1723	 * we have a better mechanism for this.
1724	 */
1725	save_bf = 0;
1726	lrxen = 0;
1727	vlan_drop = 0;
1728	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1729		if (sc->sc_rev < FXP_REV_82558_A4)
1730			save_bf = 1;
1731		else
1732			lrxen = 1;
1733		if (sc->sc_rev >= FXP_REV_82550)
1734			vlan_drop = 1;
1735	}
1736
1737	/*
1738	 * Initialize base of dump-stats buffer.
1739	 */
1740	fxp_scb_wait(sc);
1741	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1742	    sc->sc_cddma + FXP_CDSTATSOFF);
1743	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1744	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1745
1746	cbp = &sc->sc_control_data->fcd_configcb;
1747	memset(cbp, 0, sizeof(struct fxp_cb_config));
1748
1749	/*
1750	 * Load microcode for this controller.
1751	 */
1752	fxp_load_ucode(sc);
1753
1754	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1755		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1756	else
1757		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1758
1759	/*
1760	 * This copy is kind of disgusting, but there are a bunch of must be
1761	 * zero and must be one bits in this structure and this is the easiest
1762	 * way to initialize them all to proper values.
1763	 */
1764	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1765
1766	/* BIG_ENDIAN: no need to swap to store 0 */
1767	cbp->cb_status =	0;
1768	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1769				    FXP_CB_COMMAND_EL);
1770	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1771	cbp->link_addr =	0xffffffff; /* (no) next command */
1772					/* bytes in config block */
1773	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1774				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1775	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1776	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1777	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1778	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1779	cbp->type_enable =	0;	/* actually reserved */
1780	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1781	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1782	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1783	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1784	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1785	cbp->late_scb =		0;	/* (don't) defer SCB update */
1786	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1787	cbp->ci_int =		1;	/* interrupt on CU idle */
1788	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1789	cbp->ext_stats_dis =	1;	/* disable extended counters */
1790	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1791	cbp->save_bf =		save_bf;/* save bad frames */
1792	cbp->disc_short_rx =	!prm;	/* discard short packets */
1793	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1794	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1795	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1796	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1797					/* interface mode */
1798	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1799	cbp->csma_dis =		0;	/* (don't) disable link */
1800	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1801					/* (don't) enable RX checksum */
1802	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1803	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1804	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1805	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1806	cbp->nsai =		1;	/* (don't) disable source addr insert */
1807	cbp->preamble_length =	2;	/* (7 byte) preamble */
1808	cbp->loopback =		0;	/* (don't) loopback */
1809	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1810	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1811	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1812	cbp->promiscuous =	prm;	/* promiscuous mode */
1813	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1814	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1815	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1816	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1817	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1818	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1819	cbp->padding =		1;	/* (do) pad short tx packets */
1820	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1821	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1822	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1823	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1824					/* must set wake_en in PMCSR also */
1825	cbp->force_fdx =	0;	/* (don't) force full duplex */
1826	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1827	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1828	cbp->mc_all =		allm;	/* accept all multicasts */
1829	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1830	cbp->vlan_drop_en =	vlan_drop;
1831
1832	if (!(sc->sc_flags & FXPF_FC)) {
1833		/*
1834		 * The i82557 has no hardware flow control, the values
1835		 * here are the defaults for the chip.
1836		 */
1837		cbp->fc_delay_lsb =	0;
1838		cbp->fc_delay_msb =	0x40;
1839		cbp->pri_fc_thresh =	3;
1840		cbp->tx_fc_dis =	0;
1841		cbp->rx_fc_restop =	0;
1842		cbp->rx_fc_restart =	0;
1843		cbp->fc_filter =	0;
1844		cbp->pri_fc_loc =	1;
1845	} else {
1846		cbp->fc_delay_lsb =	0x1f;
1847		cbp->fc_delay_msb =	0x01;
1848		cbp->pri_fc_thresh =	3;
1849		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1850		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1851		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1852		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1853		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1854		cbp->ext_stats_dis =	0;	/* enable extended stats */
1855	}
1856
1857	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1858
1859	/*
1860	 * Start the config command/DMA.
1861	 */
1862	fxp_scb_wait(sc);
1863	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1864	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1865	/* ...and wait for it to complete. */
1866	for (i = 1000; i > 0; i--) {
1867		FXP_CDCONFIGSYNC(sc,
1868		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1869		status = le16toh(cbp->cb_status);
1870		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1871		if ((status & FXP_CB_STATUS_C) != 0)
1872			break;
1873		DELAY(1);
1874	}
1875	if (i == 0) {
1876		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1877		    device_xname(sc->sc_dev), __LINE__);
1878		return (ETIMEDOUT);
1879	}
1880
1881	/*
1882	 * Initialize the station address.
1883	 */
1884	cb_ias = &sc->sc_control_data->fcd_iascb;
1885	/* BIG_ENDIAN: no need to swap to store 0 */
1886	cb_ias->cb_status = 0;
1887	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1888	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1889	cb_ias->link_addr = 0xffffffff;
1890	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1891
1892	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1893
1894	/*
1895	 * Start the IAS (Individual Address Setup) command/DMA.
1896	 */
1897	fxp_scb_wait(sc);
1898	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1899	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1900	/* ...and wait for it to complete. */
1901	for (i = 1000; i > 0; i++) {
1902		FXP_CDIASSYNC(sc,
1903		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1904		status = le16toh(cb_ias->cb_status);
1905		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1906		if ((status & FXP_CB_STATUS_C) != 0)
1907			break;
1908		DELAY(1);
1909	}
1910	if (i == 0) {
1911		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1912		    device_xname(sc->sc_dev), __LINE__);
1913		return (ETIMEDOUT);
1914	}
1915
1916	/*
1917	 * Initialize the transmit descriptor ring.  txlast is initialized
1918	 * to the end of the list so that it will wrap around to the first
1919	 * descriptor when the first packet is transmitted.
1920	 */
1921	for (i = 0; i < FXP_NTXCB; i++) {
1922		txd = FXP_CDTX(sc, i);
1923		memset(txd, 0, sizeof(*txd));
1924		txd->txd_txcb.cb_command =
1925		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1926		txd->txd_txcb.link_addr =
1927		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1928		if (sc->sc_flags & FXPF_EXT_TXCB)
1929			txd->txd_txcb.tbd_array_addr =
1930			    htole32(FXP_CDTBDADDR(sc, i) +
1931				    (2 * sizeof(struct fxp_tbd)));
1932		else
1933			txd->txd_txcb.tbd_array_addr =
1934			    htole32(FXP_CDTBDADDR(sc, i));
1935		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1936	}
1937	sc->sc_txpending = 0;
1938	sc->sc_txdirty = 0;
1939	sc->sc_txlast = FXP_NTXCB - 1;
1940
1941	/*
1942	 * Initialize the receive buffer list.
1943	 */
1944	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1945	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1946		rxmap = FXP_RXMAP_GET(sc);
1947		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1948			log(LOG_ERR, "%s: unable to allocate or map rx "
1949			    "buffer %d, error = %d\n",
1950			    device_xname(sc->sc_dev),
1951			    sc->sc_rxq.ifq_len, error);
1952			/*
1953			 * XXX Should attempt to run with fewer receive
1954			 * XXX buffers instead of just failing.
1955			 */
1956			FXP_RXMAP_PUT(sc, rxmap);
1957			fxp_rxdrain(sc);
1958			goto out;
1959		}
1960	}
1961	sc->sc_rxidle = 0;
1962
1963	/*
1964	 * Give the transmit ring to the chip.  We do this by pointing
1965	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1966	 * issuing a start command.  It will execute the NOP and then
1967	 * suspend, pointing at the first descriptor.
1968	 */
1969	fxp_scb_wait(sc);
1970	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1971	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1972
1973	/*
1974	 * Initialize receiver buffer area - RFA.
1975	 */
1976#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1977	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1978	fxp_scb_wait(sc);
1979	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1980	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1981	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1982#endif
1983
1984	if (sc->sc_flags & FXPF_MII) {
1985		/*
1986		 * Set current media.
1987		 */
1988		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1989			goto out;
1990	}
1991
1992	/*
1993	 * ...all done!
1994	 */
1995	ifp->if_flags |= IFF_RUNNING;
1996	ifp->if_flags &= ~IFF_OACTIVE;
1997
1998	/*
1999	 * Request a software generated interrupt that will be used to
2000	 * (re)start the RU processing.  If we direct the chip to start
2001	 * receiving from the start of queue now, instead of letting the
2002	 * interrupt handler first process all received packets, we run
2003	 * the risk of having it overwrite mbuf clusters while they are
2004	 * being processed or after they have been returned to the pool.
2005	 */
2006	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2007
2008	/*
2009	 * Start the one second timer.
2010	 */
2011	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2012
2013	/*
2014	 * Attempt to start output on the interface.
2015	 */
2016	fxp_start(ifp);
2017
2018 out:
2019	if (error) {
2020		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2021		ifp->if_timer = 0;
2022		log(LOG_ERR, "%s: interface not running\n",
2023		    device_xname(sc->sc_dev));
2024	}
2025	return (error);
2026}
2027
2028/*
2029 * Notify the world which media we're using.
2030 */
2031void
2032fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2033{
2034	struct fxp_softc *sc = ifp->if_softc;
2035
2036	if (sc->sc_enabled == 0) {
2037		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2038		ifmr->ifm_status = 0;
2039		return;
2040	}
2041
2042	ether_mediastatus(ifp, ifmr);
2043}
2044
2045int
2046fxp_80c24_mediachange(struct ifnet *ifp)
2047{
2048
2049	/* Nothing to do here. */
2050	return (0);
2051}
2052
2053void
2054fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2055{
2056	struct fxp_softc *sc = ifp->if_softc;
2057
2058	/*
2059	 * Media is currently-selected media.  We cannot determine
2060	 * the link status.
2061	 */
2062	ifmr->ifm_status = 0;
2063	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2064}
2065
2066/*
2067 * Add a buffer to the end of the RFA buffer list.
2068 * Return 0 if successful, error code on failure.
2069 *
2070 * The RFA struct is stuck at the beginning of mbuf cluster and the
2071 * data pointer is fixed up to point just past it.
2072 */
2073int
2074fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2075{
2076	struct mbuf *m;
2077	int error;
2078
2079	MGETHDR(m, M_DONTWAIT, MT_DATA);
2080	if (m == NULL)
2081		return (ENOBUFS);
2082
2083	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2084	MCLGET(m, M_DONTWAIT);
2085	if ((m->m_flags & M_EXT) == 0) {
2086		m_freem(m);
2087		return (ENOBUFS);
2088	}
2089
2090	if (unload)
2091		bus_dmamap_unload(sc->sc_dmat, rxmap);
2092
2093	M_SETCTX(m, rxmap);
2094
2095	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2096	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2097	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2098	if (error) {
2099		/* XXX XXX XXX */
2100		aprint_error_dev(sc->sc_dev,
2101		    "can't load rx DMA map %d, error = %d\n",
2102		    sc->sc_rxq.ifq_len, error);
2103		panic("fxp_add_rfabuf");
2104	}
2105
2106	FXP_INIT_RFABUF(sc, m);
2107
2108	return (0);
2109}
2110
2111int
2112fxp_mdi_read(device_t self, int phy, int reg)
2113{
2114	struct fxp_softc *sc = device_private(self);
2115	int count = 10000;
2116	int value;
2117
2118	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2119	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2120
2121	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2122	    0x10000000) == 0 && count--)
2123		DELAY(10);
2124
2125	if (count <= 0)
2126		log(LOG_WARNING,
2127		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2128
2129	return (value & 0xffff);
2130}
2131
2132void
2133fxp_statchg(struct ifnet *ifp)
2134{
2135
2136	/* Nothing to do. */
2137}
2138
2139void
2140fxp_mdi_write(device_t self, int phy, int reg, int value)
2141{
2142	struct fxp_softc *sc = device_private(self);
2143	int count = 10000;
2144
2145	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2146	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2147	    (value & 0xffff));
2148
2149	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2150	    count--)
2151		DELAY(10);
2152
2153	if (count <= 0)
2154		log(LOG_WARNING,
2155		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2156}
2157
2158int
2159fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2160{
2161	struct fxp_softc *sc = ifp->if_softc;
2162	struct ifreq *ifr = (struct ifreq *)data;
2163	int s, error;
2164
2165	s = splnet();
2166
2167	switch (cmd) {
2168	case SIOCSIFMEDIA:
2169	case SIOCGIFMEDIA:
2170		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2171		break;
2172
2173	default:
2174		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2175			break;
2176
2177		error = 0;
2178
2179		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2180			;
2181		else if (ifp->if_flags & IFF_RUNNING) {
2182			/*
2183			 * Multicast list has changed; set the
2184			 * hardware filter accordingly.
2185			 */
2186			while (sc->sc_txpending) {
2187				sc->sc_flags |= FXPF_WANTINIT;
2188				tsleep(sc, PSOCK, "fxp_init", 0);
2189			}
2190			error = fxp_init(ifp);
2191		}
2192		break;
2193	}
2194
2195	/* Try to get more packets going. */
2196	if (sc->sc_enabled)
2197		fxp_start(ifp);
2198
2199	splx(s);
2200	return (error);
2201}
2202
2203/*
2204 * Program the multicast filter.
2205 *
2206 * This function must be called at splnet().
2207 */
2208void
2209fxp_mc_setup(struct fxp_softc *sc)
2210{
2211	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2212	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2213	struct ethercom *ec = &sc->sc_ethercom;
2214	struct ether_multi *enm;
2215	struct ether_multistep step;
2216	int count, nmcasts;
2217	uint16_t status;
2218
2219#ifdef DIAGNOSTIC
2220	if (sc->sc_txpending)
2221		panic("fxp_mc_setup: pending transmissions");
2222#endif
2223
2224
2225	if (ifp->if_flags & IFF_PROMISC) {
2226		ifp->if_flags |= IFF_ALLMULTI;
2227		return;
2228	} else {
2229		ifp->if_flags &= ~IFF_ALLMULTI;
2230	}
2231
2232	/*
2233	 * Initialize multicast setup descriptor.
2234	 */
2235	nmcasts = 0;
2236	ETHER_FIRST_MULTI(step, ec, enm);
2237	while (enm != NULL) {
2238		/*
2239		 * Check for too many multicast addresses or if we're
2240		 * listening to a range.  Either way, we simply have
2241		 * to accept all multicasts.
2242		 */
2243		if (nmcasts >= MAXMCADDR ||
2244		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2245		    ETHER_ADDR_LEN) != 0) {
2246			/*
2247			 * Callers of this function must do the
2248			 * right thing with this.  If we're called
2249			 * from outside fxp_init(), the caller must
2250			 * detect if the state if IFF_ALLMULTI changes.
2251			 * If it does, the caller must then call
2252			 * fxp_init(), since allmulti is handled by
2253			 * the config block.
2254			 */
2255			ifp->if_flags |= IFF_ALLMULTI;
2256			return;
2257		}
2258		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2259		    ETHER_ADDR_LEN);
2260		nmcasts++;
2261		ETHER_NEXT_MULTI(step, enm);
2262	}
2263
2264	/* BIG_ENDIAN: no need to swap to store 0 */
2265	mcsp->cb_status = 0;
2266	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2267	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2268	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2269
2270	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2271
2272	/*
2273	 * Wait until the command unit is not active.  This should never
2274	 * happen since nothing is queued, but make sure anyway.
2275	 */
2276	count = 100;
2277	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2278	    FXP_SCB_CUS_ACTIVE && --count)
2279		DELAY(1);
2280	if (count == 0) {
2281		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2282		    device_xname(sc->sc_dev), __LINE__);
2283		return;
2284	}
2285
2286	/*
2287	 * Start the multicast setup command/DMA.
2288	 */
2289	fxp_scb_wait(sc);
2290	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2291	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2292
2293	/* ...and wait for it to complete. */
2294	for (count = 1000; count > 0; count--) {
2295		FXP_CDMCSSYNC(sc,
2296		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2297		status = le16toh(mcsp->cb_status);
2298		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2299		if ((status & FXP_CB_STATUS_C) != 0)
2300			break;
2301		DELAY(1);
2302	}
2303	if (count == 0) {
2304		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2305		    device_xname(sc->sc_dev), __LINE__);
2306		return;
2307	}
2308}
2309
2310static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2311static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2312static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2313static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2314static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2315static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2316static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2317
2318#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2319
2320static const struct ucode {
2321	int32_t		revision;
2322	const uint32_t	*ucode;
2323	size_t		length;
2324	uint16_t	int_delay_offset;
2325	uint16_t	bundle_max_offset;
2326} ucode_table[] = {
2327	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2328	  D101_CPUSAVER_DWORD, 0 },
2329
2330	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2331	  D101_CPUSAVER_DWORD, 0 },
2332
2333	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2334	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2335
2336	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2337	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2338
2339	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2340	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2341
2342	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2343	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2344
2345	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2346	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2347
2348	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2349	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2350
2351	{ 0, NULL, 0, 0, 0 }
2352};
2353
2354void
2355fxp_load_ucode(struct fxp_softc *sc)
2356{
2357	const struct ucode *uc;
2358	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2359	int count, i;
2360	uint16_t status;
2361
2362	if (sc->sc_flags & FXPF_UCODE_LOADED)
2363		return;
2364
2365	/*
2366	 * Only load the uCode if the user has requested that
2367	 * we do so.
2368	 */
2369	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2370		sc->sc_int_delay = 0;
2371		sc->sc_bundle_max = 0;
2372		return;
2373	}
2374
2375	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2376		if (sc->sc_rev == uc->revision)
2377			break;
2378	}
2379	if (uc->ucode == NULL)
2380		return;
2381
2382	/* BIG ENDIAN: no need to swap to store 0 */
2383	cbp->cb_status = 0;
2384	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2385	cbp->link_addr = 0xffffffff;		/* (no) next command */
2386	for (i = 0; i < uc->length; i++)
2387		cbp->ucode[i] = htole32(uc->ucode[i]);
2388
2389	if (uc->int_delay_offset)
2390		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2391		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2392
2393	if (uc->bundle_max_offset)
2394		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2395		    htole16(fxp_bundle_max);
2396
2397	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2398
2399	/*
2400	 * Download the uCode to the chip.
2401	 */
2402	fxp_scb_wait(sc);
2403	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2404	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2405
2406	/* ...and wait for it to complete. */
2407	for (count = 10000; count > 0; count--) {
2408		FXP_CDUCODESYNC(sc,
2409		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2410		status = le16toh(cbp->cb_status);
2411		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2412		if ((status & FXP_CB_STATUS_C) != 0)
2413			break;
2414		DELAY(2);
2415	}
2416	if (count == 0) {
2417		sc->sc_int_delay = 0;
2418		sc->sc_bundle_max = 0;
2419		log(LOG_WARNING, "%s: timeout loading microcode\n",
2420		    device_xname(sc->sc_dev));
2421		return;
2422	}
2423
2424	if (sc->sc_int_delay != fxp_int_delay ||
2425	    sc->sc_bundle_max != fxp_bundle_max) {
2426		sc->sc_int_delay = fxp_int_delay;
2427		sc->sc_bundle_max = fxp_bundle_max;
2428		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2429		    "max bundle: %d\n", device_xname(sc->sc_dev),
2430		    sc->sc_int_delay,
2431		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2432	}
2433
2434	sc->sc_flags |= FXPF_UCODE_LOADED;
2435}
2436
2437int
2438fxp_enable(struct fxp_softc *sc)
2439{
2440
2441	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2442		if ((*sc->sc_enable)(sc) != 0) {
2443			log(LOG_ERR, "%s: device enable failed\n",
2444			    device_xname(sc->sc_dev));
2445			return (EIO);
2446		}
2447	}
2448
2449	sc->sc_enabled = 1;
2450	return (0);
2451}
2452
2453void
2454fxp_disable(struct fxp_softc *sc)
2455{
2456
2457	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2458		(*sc->sc_disable)(sc);
2459		sc->sc_enabled = 0;
2460	}
2461}
2462
2463/*
2464 * fxp_activate:
2465 *
2466 *	Handle device activation/deactivation requests.
2467 */
2468int
2469fxp_activate(device_t self, enum devact act)
2470{
2471	struct fxp_softc *sc = device_private(self);
2472
2473	switch (act) {
2474	case DVACT_DEACTIVATE:
2475		if_deactivate(&sc->sc_ethercom.ec_if);
2476		return 0;
2477	default:
2478		return EOPNOTSUPP;
2479	}
2480}
2481
2482/*
2483 * fxp_detach:
2484 *
2485 *	Detach an i82557 interface.
2486 */
2487int
2488fxp_detach(struct fxp_softc *sc, int flags)
2489{
2490	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2491	int i, s;
2492
2493	/* Succeed now if there's no work to do. */
2494	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2495		return (0);
2496
2497	s = splnet();
2498	/* Stop the interface. Callouts are stopped in it. */
2499	fxp_stop(ifp, 1);
2500	splx(s);
2501
2502	/* Destroy our callout. */
2503	callout_destroy(&sc->sc_callout);
2504
2505	if (sc->sc_flags & FXPF_MII) {
2506		/* Detach all PHYs */
2507		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2508	}
2509
2510	/* Delete all remaining media. */
2511	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2512
2513	rnd_detach_source(&sc->rnd_source);
2514	ether_ifdetach(ifp);
2515	if_detach(ifp);
2516
2517	for (i = 0; i < FXP_NRFABUFS; i++) {
2518		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2519		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2520	}
2521
2522	for (i = 0; i < FXP_NTXCB; i++) {
2523		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2524		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2525	}
2526
2527	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2528	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2529	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2530	    sizeof(struct fxp_control_data));
2531	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2532
2533	return (0);
2534}
2535