i82557.c revision 1.122
1/*	$NetBSD: i82557.c,v 1.122 2009/01/18 10:37:04 mrg Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 *    notice unmodified, this list of conditions, and the following
43 *    disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63/*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.122 2009/01/18 10:37:04 mrg Exp $");
70
71#include "bpfilter.h"
72#include "rnd.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/callout.h>
77#include <sys/mbuf.h>
78#include <sys/malloc.h>
79#include <sys/kernel.h>
80#include <sys/socket.h>
81#include <sys/ioctl.h>
82#include <sys/errno.h>
83#include <sys/device.h>
84#include <sys/syslog.h>
85
86#include <machine/endian.h>
87
88#include <uvm/uvm_extern.h>
89
90#if NRND > 0
91#include <sys/rnd.h>
92#endif
93
94#include <net/if.h>
95#include <net/if_dl.h>
96#include <net/if_media.h>
97#include <net/if_ether.h>
98
99#if NBPFILTER > 0
100#include <net/bpf.h>
101#endif
102
103#include <sys/bus.h>
104#include <sys/intr.h>
105
106#include <dev/mii/miivar.h>
107
108#include <dev/ic/i82557reg.h>
109#include <dev/ic/i82557var.h>
110
111#include <dev/microcode/i8255x/rcvbundl.h>
112
113/*
114 * NOTE!  On the Alpha, we have an alignment constraint.  The
115 * card DMAs the packet immediately following the RFA.  However,
116 * the first thing in the packet is a 14-byte Ethernet header.
117 * This means that the packet is misaligned.  To compensate,
118 * we actually offset the RFA 2 bytes into the cluster.  This
119 * alignes the packet after the Ethernet header at a 32-bit
120 * boundary.  HOWEVER!  This means that the RFA is misaligned!
121 */
122#define	RFA_ALIGNMENT_FUDGE	2
123
124/*
125 * The configuration byte map has several undefined fields which
126 * must be one or must be zero.  Set up a template for these bits
127 * only (assuming an i82557 chip), leaving the actual configuration
128 * for fxp_init().
129 *
130 * See the definition of struct fxp_cb_config for the bit definitions.
131 */
132const u_int8_t fxp_cb_config_template[] = {
133	0x0, 0x0,		/* cb_status */
134	0x0, 0x0,		/* cb_command */
135	0x0, 0x0, 0x0, 0x0,	/* link_addr */
136	0x0,	/*  0 */
137	0x0,	/*  1 */
138	0x0,	/*  2 */
139	0x0,	/*  3 */
140	0x0,	/*  4 */
141	0x0,	/*  5 */
142	0x32,	/*  6 */
143	0x0,	/*  7 */
144	0x0,	/*  8 */
145	0x0,	/*  9 */
146	0x6,	/* 10 */
147	0x0,	/* 11 */
148	0x0,	/* 12 */
149	0x0,	/* 13 */
150	0xf2,	/* 14 */
151	0x48,	/* 15 */
152	0x0,	/* 16 */
153	0x40,	/* 17 */
154	0xf0,	/* 18 */
155	0x0,	/* 19 */
156	0x3f,	/* 20 */
157	0x5,	/* 21 */
158	0x0,	/* 22 */
159	0x0,	/* 23 */
160	0x0,	/* 24 */
161	0x0,	/* 25 */
162	0x0,	/* 26 */
163	0x0,	/* 27 */
164	0x0,	/* 28 */
165	0x0,	/* 29 */
166	0x0,	/* 30 */
167	0x0,	/* 31 */
168};
169
170void	fxp_mii_initmedia(struct fxp_softc *);
171void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
172
173void	fxp_80c24_initmedia(struct fxp_softc *);
174int	fxp_80c24_mediachange(struct ifnet *);
175void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
176
177void	fxp_start(struct ifnet *);
178int	fxp_ioctl(struct ifnet *, u_long, void *);
179void	fxp_watchdog(struct ifnet *);
180int	fxp_init(struct ifnet *);
181void	fxp_stop(struct ifnet *, int);
182
183void	fxp_txintr(struct fxp_softc *);
184int	fxp_rxintr(struct fxp_softc *);
185
186int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
187
188void	fxp_rxdrain(struct fxp_softc *);
189int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
190int	fxp_mdi_read(device_t, int, int);
191void	fxp_statchg(device_t);
192void	fxp_mdi_write(device_t, int, int, int);
193void	fxp_autosize_eeprom(struct fxp_softc*);
194void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
195void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
196void	fxp_eeprom_update_cksum(struct fxp_softc *);
197void	fxp_get_info(struct fxp_softc *, u_int8_t *);
198void	fxp_tick(void *);
199void	fxp_mc_setup(struct fxp_softc *);
200void	fxp_load_ucode(struct fxp_softc *);
201
202int	fxp_copy_small = 0;
203
204/*
205 * Variables for interrupt mitigating microcode.
206 */
207int	fxp_int_delay = 1000;		/* usec */
208int	fxp_bundle_max = 6;		/* packets */
209
210struct fxp_phytype {
211	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
212	void	(*fp_init)(struct fxp_softc *);
213} fxp_phytype_table[] = {
214	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
215	{ -1,				fxp_mii_initmedia },
216};
217
218/*
219 * Set initial transmit threshold at 64 (512 bytes). This is
220 * increased by 64 (512 bytes) at a time, to maximum of 192
221 * (1536 bytes), if an underrun occurs.
222 */
223static int tx_threshold = 64;
224
225/*
226 * Wait for the previous command to be accepted (but not necessarily
227 * completed).
228 */
229static inline void
230fxp_scb_wait(struct fxp_softc *sc)
231{
232	int i = 10000;
233
234	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
235		delay(2);
236	if (i == 0)
237		log(LOG_WARNING,
238		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
239}
240
241/*
242 * Submit a command to the i82557.
243 */
244static inline void
245fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
246{
247
248	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
249}
250
251/*
252 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
253 */
254void
255fxp_attach(struct fxp_softc *sc)
256{
257	u_int8_t enaddr[ETHER_ADDR_LEN];
258	struct ifnet *ifp;
259	bus_dma_segment_t seg;
260	int rseg, i, error;
261	struct fxp_phytype *fp;
262
263	callout_init(&sc->sc_callout, 0);
264
265        /*
266	 * Enable use of extended RFDs and TCBs for 82550
267	 * and later chips. Note: we need extended TXCB support
268	 * too, but that's already enabled by the code above.
269	 * Be careful to do this only on the right devices.
270	 */
271	if (sc->sc_flags & FXPF_IPCB)
272		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
273	else
274		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
275
276	sc->sc_rfa_size =
277	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
278
279	/*
280	 * Allocate the control data structures, and create and load the
281	 * DMA map for it.
282	 */
283	if ((error = bus_dmamem_alloc(sc->sc_dmat,
284	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
285	    0)) != 0) {
286		aprint_error_dev(sc->sc_dev,
287		    "unable to allocate control data, error = %d\n",
288		    error);
289		goto fail_0;
290	}
291
292	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
293	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
294	    BUS_DMA_COHERENT)) != 0) {
295		aprint_error_dev(sc->sc_dev,
296		    "unable to map control data, error = %d\n", error);
297		goto fail_1;
298	}
299	sc->sc_cdseg = seg;
300	sc->sc_cdnseg = rseg;
301
302	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
303
304	if ((error = bus_dmamap_create(sc->sc_dmat,
305	    sizeof(struct fxp_control_data), 1,
306	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
307		aprint_error_dev(sc->sc_dev,
308		    "unable to create control data DMA map, error = %d\n",
309		    error);
310		goto fail_2;
311	}
312
313	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
314	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
315	    0)) != 0) {
316		aprint_error_dev(sc->sc_dev,
317		    "can't load control data DMA map, error = %d\n",
318		    error);
319		goto fail_3;
320	}
321
322	/*
323	 * Create the transmit buffer DMA maps.
324	 */
325	for (i = 0; i < FXP_NTXCB; i++) {
326		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
327		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
328		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
329			aprint_error_dev(sc->sc_dev,
330			    "unable to create tx DMA map %d, error = %d\n",
331			    i, error);
332			goto fail_4;
333		}
334	}
335
336	/*
337	 * Create the receive buffer DMA maps.
338	 */
339	for (i = 0; i < FXP_NRFABUFS; i++) {
340		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342			aprint_error_dev(sc->sc_dev,
343			    "unable to create rx DMA map %d, error = %d\n",
344			    i, error);
345			goto fail_5;
346		}
347	}
348
349	/* Initialize MAC address and media structures. */
350	fxp_get_info(sc, enaddr);
351
352	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
353	    ether_sprintf(enaddr));
354
355	ifp = &sc->sc_ethercom.ec_if;
356
357	/*
358	 * Get info about our media interface, and initialize it.  Note
359	 * the table terminates itself with a phy of -1, indicating
360	 * that we're using MII.
361	 */
362	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
363		if (fp->fp_phy == sc->phy_primary_device)
364			break;
365	(*fp->fp_init)(sc);
366
367	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
368	ifp->if_softc = sc;
369	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
370	ifp->if_ioctl = fxp_ioctl;
371	ifp->if_start = fxp_start;
372	ifp->if_watchdog = fxp_watchdog;
373	ifp->if_init = fxp_init;
374	ifp->if_stop = fxp_stop;
375	IFQ_SET_READY(&ifp->if_snd);
376
377	if (sc->sc_flags & FXPF_IPCB) {
378		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
379		/*
380		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381		 * at least, on i82550 rev.12.
382		 * specifically, it doesn't set ipv4 checksum properly
383		 * when sending UDP (and probably TCP) packets with
384		 * 20 byte ipv4 header + 1 or 2 byte data,
385		 * though ICMP packets seem working.
386		 * FreeBSD driver has related comments.
387		 * We've added a workaround to handle the bug by padding
388		 * such packets manually.
389		 */
390		ifp->if_capabilities =
391		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
392		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395	}
396
397	/*
398	 * We can support 802.1Q VLAN-sized frames.
399	 */
400	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
401
402	/*
403	 * Attach the interface.
404	 */
405	if_attach(ifp);
406	ether_ifattach(ifp, enaddr);
407#if NRND > 0
408	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
409	    RND_TYPE_NET, 0);
410#endif
411
412#ifdef FXP_EVENT_COUNTERS
413	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
414	    NULL, device_xname(sc->sc_dev), "txstall");
415	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
416	    NULL, device_xname(sc->sc_dev), "txintr");
417	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
418	    NULL, device_xname(sc->sc_dev), "rxintr");
419	if (sc->sc_flags & FXPF_FC) {
420		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
421		    NULL, device_xname(sc->sc_dev), "txpause");
422		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
423		    NULL, device_xname(sc->sc_dev), "rxpause");
424	}
425#endif /* FXP_EVENT_COUNTERS */
426
427	/* The attach is successful. */
428	sc->sc_flags |= FXPF_ATTACHED;
429
430	return;
431
432	/*
433	 * Free any resources we've allocated during the failed attach
434	 * attempt.  Do this in reverse order and fall though.
435	 */
436 fail_5:
437	for (i = 0; i < FXP_NRFABUFS; i++) {
438		if (sc->sc_rxmaps[i] != NULL)
439			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
440	}
441 fail_4:
442	for (i = 0; i < FXP_NTXCB; i++) {
443		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
444			bus_dmamap_destroy(sc->sc_dmat,
445			    FXP_DSTX(sc, i)->txs_dmamap);
446	}
447	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
448 fail_3:
449	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
450 fail_2:
451	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
452	    sizeof(struct fxp_control_data));
453 fail_1:
454	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
455 fail_0:
456	return;
457}
458
459void
460fxp_mii_initmedia(struct fxp_softc *sc)
461{
462	int flags;
463
464	sc->sc_flags |= FXPF_MII;
465
466	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
467	sc->sc_mii.mii_readreg = fxp_mdi_read;
468	sc->sc_mii.mii_writereg = fxp_mdi_write;
469	sc->sc_mii.mii_statchg = fxp_statchg;
470
471	sc->sc_ethercom.ec_mii = &sc->sc_mii;
472	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
473	    fxp_mii_mediastatus);
474
475	flags = MIIF_NOISOLATE;
476	if (sc->sc_flags & FXPF_FC)
477		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
478	/*
479	 * The i82557 wedges if all of its PHYs are isolated!
480	 */
481	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
482	    MII_OFFSET_ANY, flags);
483	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
484		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
485		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
486	} else
487		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
488}
489
490void
491fxp_80c24_initmedia(struct fxp_softc *sc)
492{
493
494	/*
495	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
496	 * doesn't have a programming interface of any sort.  The
497	 * media is sensed automatically based on how the link partner
498	 * is configured.  This is, in essence, manual configuration.
499	 */
500	aprint_normal_dev(sc->sc_dev,
501	    "Seeq 80c24 AutoDUPLEX media interface present\n");
502	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
503	    fxp_80c24_mediastatus);
504	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
505	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
506}
507
508/*
509 * Initialize the interface media.
510 */
511void
512fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
513{
514	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
515
516	/*
517	 * Reset to a stable state.
518	 */
519	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
520	DELAY(100);
521
522	sc->sc_eeprom_size = 0;
523	fxp_autosize_eeprom(sc);
524	if (sc->sc_eeprom_size == 0) {
525		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
526		sc->sc_eeprom_size = 6; /* XXX panic here? */
527	}
528#ifdef DEBUG
529	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
530	    1 << sc->sc_eeprom_size);
531#endif
532
533	/*
534	 * Get info about the primary PHY
535	 */
536	fxp_read_eeprom(sc, &data, 6, 1);
537	sc->phy_primary_device =
538	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
539
540	/*
541	 * Read MAC address.
542	 */
543	fxp_read_eeprom(sc, myea, 0, 3);
544	enaddr[0] = myea[0] & 0xff;
545	enaddr[1] = myea[0] >> 8;
546	enaddr[2] = myea[1] & 0xff;
547	enaddr[3] = myea[1] >> 8;
548	enaddr[4] = myea[2] & 0xff;
549	enaddr[5] = myea[2] >> 8;
550
551	/*
552	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
553	 * as some i82559 designs, have a defect where the chip can
554	 * cause a PCI protocol violation if it receives a CU_RESUME
555	 * command when it is entering the IDLE state.
556	 *
557	 * The work-around is to disable Dynamic Standby Mode, so that
558	 * the chip never deasserts #CLKRUN, and always remains in the
559	 * active state.
560	 *
561	 * Unfortunately, the only way to disable Dynamic Standby is
562	 * to frob an EEPROM setting and reboot (the EEPROM setting
563	 * is only consulted when the PCI bus comes out of reset).
564	 *
565	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
566	 */
567	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
568		fxp_read_eeprom(sc, &data, 10, 1);
569		if (data & 0x02) {		/* STB enable */
570			aprint_error_dev(sc->sc_dev, "WARNING: "
571			    "Disabling dynamic standby mode in EEPROM "
572			    "to work around a\n");
573			aprint_normal_dev(sc->sc_dev,
574			    "WARNING: hardware bug.  You must reset "
575			    "the system before using this\n");
576			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
577			data &= ~0x02;
578			fxp_write_eeprom(sc, &data, 10, 1);
579			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
580			    data);
581			fxp_eeprom_update_cksum(sc);
582		}
583	}
584
585	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
586	/* Due to false positives we make it conditional on setting link1 */
587	fxp_read_eeprom(sc, &data, 3, 1);
588	if ((data & 0x03) != 0x03) {
589		aprint_verbose_dev(sc->sc_dev,
590		    "May need receiver lock-up workaround\n");
591	}
592}
593
594static void
595fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
596{
597	uint16_t reg;
598	int x;
599
600	for (x = 1 << (len - 1); x != 0; x >>= 1) {
601		DELAY(40);
602		if (data & x)
603			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
604		else
605			reg = FXP_EEPROM_EECS;
606		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
607		DELAY(40);
608		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
609		    reg | FXP_EEPROM_EESK);
610		DELAY(40);
611		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
612	}
613	DELAY(40);
614}
615
616/*
617 * Figure out EEPROM size.
618 *
619 * 559's can have either 64-word or 256-word EEPROMs, the 558
620 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
621 * talks about the existence of 16 to 256 word EEPROMs.
622 *
623 * The only known sizes are 64 and 256, where the 256 version is used
624 * by CardBus cards to store CIS information.
625 *
626 * The address is shifted in msb-to-lsb, and after the last
627 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
628 * after which follows the actual data. We try to detect this zero, by
629 * probing the data-out bit in the EEPROM control register just after
630 * having shifted in a bit. If the bit is zero, we assume we've
631 * shifted enough address bits. The data-out should be tri-state,
632 * before this, which should translate to a logical one.
633 *
634 * Other ways to do this would be to try to read a register with known
635 * contents with a varying number of address bits, but no such
636 * register seem to be available. The high bits of register 10 are 01
637 * on the 558 and 559, but apparently not on the 557.
638 *
639 * The Linux driver computes a checksum on the EEPROM data, but the
640 * value of this checksum is not very well documented.
641 */
642
643void
644fxp_autosize_eeprom(struct fxp_softc *sc)
645{
646	int x;
647
648	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
649	DELAY(40);
650
651	/* Shift in read opcode. */
652	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
653
654	/*
655	 * Shift in address, wait for the dummy zero following a correct
656	 * address shift.
657	 */
658	for (x = 1; x <= 8; x++) {
659		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
660		DELAY(40);
661		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
662		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
663		DELAY(40);
664		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
665		    FXP_EEPROM_EEDO) == 0)
666			break;
667		DELAY(40);
668		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
669		DELAY(40);
670	}
671	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
672	DELAY(40);
673	if (x != 6 && x != 8) {
674#ifdef DEBUG
675		printf("%s: strange EEPROM size (%d)\n",
676		    device_xname(sc->sc_dev), 1 << x);
677#endif
678	} else
679		sc->sc_eeprom_size = x;
680}
681
682/*
683 * Read from the serial EEPROM. Basically, you manually shift in
684 * the read opcode (one bit at a time) and then shift in the address,
685 * and then you shift out the data (all of this one bit at a time).
686 * The word size is 16 bits, so you have to provide the address for
687 * every 16 bits of data.
688 */
689void
690fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
691{
692	u_int16_t reg;
693	int i, x;
694
695	for (i = 0; i < words; i++) {
696		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
697
698		/* Shift in read opcode. */
699		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
700
701		/* Shift in address. */
702		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
703
704		reg = FXP_EEPROM_EECS;
705		data[i] = 0;
706
707		/* Shift out data. */
708		for (x = 16; x > 0; x--) {
709			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
710			    reg | FXP_EEPROM_EESK);
711			DELAY(40);
712			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
713			    FXP_EEPROM_EEDO)
714				data[i] |= (1 << (x - 1));
715			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
716			DELAY(40);
717		}
718		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
719		DELAY(40);
720	}
721}
722
723/*
724 * Write data to the serial EEPROM.
725 */
726void
727fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
728{
729	int i, j;
730
731	for (i = 0; i < words; i++) {
732		/* Erase/write enable. */
733		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
734		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
735		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
736		    sc->sc_eeprom_size);
737		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
738		DELAY(4);
739
740		/* Shift in write opcode, address, data. */
741		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
743		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
744		fxp_eeprom_shiftin(sc, data[i], 16);
745		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
746		DELAY(4);
747
748		/* Wait for the EEPROM to finish up. */
749		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750		DELAY(4);
751		for (j = 0; j < 1000; j++) {
752			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
753			    FXP_EEPROM_EEDO)
754				break;
755			DELAY(50);
756		}
757		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
758		DELAY(4);
759
760		/* Erase/write disable. */
761		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
762		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
763		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
764		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
765		DELAY(4);
766	}
767}
768
769/*
770 * Update the checksum of the EEPROM.
771 */
772void
773fxp_eeprom_update_cksum(struct fxp_softc *sc)
774{
775	int i;
776	uint16_t data, cksum;
777
778	cksum = 0;
779	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
780		fxp_read_eeprom(sc, &data, i, 1);
781		cksum += data;
782	}
783	i = (1 << sc->sc_eeprom_size) - 1;
784	cksum = 0xbaba - cksum;
785	fxp_read_eeprom(sc, &data, i, 1);
786	fxp_write_eeprom(sc, &cksum, i, 1);
787	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
788	    device_xname(sc->sc_dev), i, data, cksum);
789}
790
791/*
792 * Start packet transmission on the interface.
793 */
794void
795fxp_start(struct ifnet *ifp)
796{
797	struct fxp_softc *sc = ifp->if_softc;
798	struct mbuf *m0, *m;
799	struct fxp_txdesc *txd;
800	struct fxp_txsoft *txs;
801	bus_dmamap_t dmamap;
802	int error, lasttx, nexttx, opending, seg, nsegs, len;
803
804	/*
805	 * If we want a re-init, bail out now.
806	 */
807	if (sc->sc_flags & FXPF_WANTINIT) {
808		ifp->if_flags |= IFF_OACTIVE;
809		return;
810	}
811
812	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
813		return;
814
815	/*
816	 * Remember the previous txpending and the current lasttx.
817	 */
818	opending = sc->sc_txpending;
819	lasttx = sc->sc_txlast;
820
821	/*
822	 * Loop through the send queue, setting up transmit descriptors
823	 * until we drain the queue, or use up all available transmit
824	 * descriptors.
825	 */
826	for (;;) {
827		struct fxp_tbd *tbdp;
828		int csum_flags;
829
830		/*
831		 * Grab a packet off the queue.
832		 */
833		IFQ_POLL(&ifp->if_snd, m0);
834		if (m0 == NULL)
835			break;
836		m = NULL;
837
838		if (sc->sc_txpending == FXP_NTXCB - 1) {
839			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
840			break;
841		}
842
843		/*
844		 * Get the next available transmit descriptor.
845		 */
846		nexttx = FXP_NEXTTX(sc->sc_txlast);
847		txd = FXP_CDTX(sc, nexttx);
848		txs = FXP_DSTX(sc, nexttx);
849		dmamap = txs->txs_dmamap;
850
851		/*
852		 * Load the DMA map.  If this fails, the packet either
853		 * didn't fit in the allotted number of frags, or we were
854		 * short on resources.  In this case, we'll copy and try
855		 * again.
856		 */
857		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
858		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
859			MGETHDR(m, M_DONTWAIT, MT_DATA);
860			if (m == NULL) {
861				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
862				    device_xname(sc->sc_dev));
863				break;
864			}
865			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
866			if (m0->m_pkthdr.len > MHLEN) {
867				MCLGET(m, M_DONTWAIT);
868				if ((m->m_flags & M_EXT) == 0) {
869					log(LOG_ERR, "%s: unable to allocate "
870					    "Tx cluster\n",
871					    device_xname(sc->sc_dev));
872					m_freem(m);
873					break;
874				}
875			}
876			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
877			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
878			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
879			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
880			if (error) {
881				log(LOG_ERR, "%s: unable to load Tx buffer, "
882				    "error = %d\n",
883				    device_xname(sc->sc_dev), error);
884				break;
885			}
886		}
887
888		IFQ_DEQUEUE(&ifp->if_snd, m0);
889		csum_flags = m0->m_pkthdr.csum_flags;
890		if (m != NULL) {
891			m_freem(m0);
892			m0 = m;
893		}
894
895		/* Initialize the fraglist. */
896		tbdp = txd->txd_tbd;
897		len = m0->m_pkthdr.len;
898		nsegs = dmamap->dm_nsegs;
899		if (sc->sc_flags & FXPF_IPCB)
900			tbdp++;
901		for (seg = 0; seg < nsegs; seg++) {
902			tbdp[seg].tb_addr =
903			    htole32(dmamap->dm_segs[seg].ds_addr);
904			tbdp[seg].tb_size =
905			    htole32(dmamap->dm_segs[seg].ds_len);
906		}
907		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
908		    (csum_flags & M_CSUM_IPv4) != 0)) {
909			/*
910			 * Pad short packets to avoid ip4csum-tx bug.
911			 *
912			 * XXX Should we still consider if such short
913			 *     (36 bytes or less) packets might already
914			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
915			 */
916			KASSERT(nsegs < FXP_IPCB_NTXSEG);
917			nsegs++;
918			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
919			tbdp[seg].tb_size =
920			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
921		}
922
923		/* Sync the DMA map. */
924		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
925		    BUS_DMASYNC_PREWRITE);
926
927		/*
928		 * Store a pointer to the packet so we can free it later.
929		 */
930		txs->txs_mbuf = m0;
931
932		/*
933		 * Initialize the transmit descriptor.
934		 */
935		/* BIG_ENDIAN: no need to swap to store 0 */
936		txd->txd_txcb.cb_status = 0;
937		txd->txd_txcb.cb_command =
938		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
939		txd->txd_txcb.tx_threshold = tx_threshold;
940		txd->txd_txcb.tbd_number = nsegs;
941
942		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
943		if (sc->sc_flags & FXPF_IPCB) {
944			struct m_tag *vtag;
945			struct fxp_ipcb *ipcb;
946			/*
947			 * Deal with TCP/IP checksum offload. Note that
948			 * in order for TCP checksum offload to work,
949			 * the pseudo header checksum must have already
950			 * been computed and stored in the checksum field
951			 * in the TCP header. The stack should have
952			 * already done this for us.
953			 */
954			ipcb = &txd->txd_u.txdu_ipcb;
955			memset(ipcb, 0, sizeof(*ipcb));
956			/*
957			 * always do hardware parsing.
958			 */
959			ipcb->ipcb_ip_activation_high =
960			    FXP_IPCB_HARDWAREPARSING_ENABLE;
961			/*
962			 * ip checksum offloading.
963			 */
964			if (csum_flags & M_CSUM_IPv4) {
965				ipcb->ipcb_ip_schedule |=
966				    FXP_IPCB_IP_CHECKSUM_ENABLE;
967			}
968			/*
969			 * TCP/UDP checksum offloading.
970			 */
971			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
972				ipcb->ipcb_ip_schedule |=
973				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
974			}
975
976			/*
977			 * request VLAN tag insertion if needed.
978			 */
979			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
980			if (vtag) {
981				ipcb->ipcb_vlan_id =
982				    htobe16(*(u_int *)(vtag + 1));
983				ipcb->ipcb_ip_activation_high |=
984				    FXP_IPCB_INSERTVLAN_ENABLE;
985			}
986		} else {
987			KASSERT((csum_flags &
988			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
989		}
990
991		FXP_CDTXSYNC(sc, nexttx,
992		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993
994		/* Advance the tx pointer. */
995		sc->sc_txpending++;
996		sc->sc_txlast = nexttx;
997
998#if NBPFILTER > 0
999		/*
1000		 * Pass packet to bpf if there is a listener.
1001		 */
1002		if (ifp->if_bpf)
1003			bpf_mtap(ifp->if_bpf, m0);
1004#endif
1005	}
1006
1007	if (sc->sc_txpending == FXP_NTXCB - 1) {
1008		/* No more slots; notify upper layer. */
1009		ifp->if_flags |= IFF_OACTIVE;
1010	}
1011
1012	if (sc->sc_txpending != opending) {
1013		/*
1014		 * We enqueued packets.  If the transmitter was idle,
1015		 * reset the txdirty pointer.
1016		 */
1017		if (opending == 0)
1018			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1019
1020		/*
1021		 * Cause the chip to interrupt and suspend command
1022		 * processing once the last packet we've enqueued
1023		 * has been transmitted.
1024		 *
1025		 * To avoid a race between updating status bits
1026		 * by the fxp chip and clearing command bits
1027		 * by this function on machines which don't have
1028		 * atomic methods to clear/set bits in memory
1029		 * smaller than 32bits (both cb_status and cb_command
1030		 * members are uint16_t and in the same 32bit word),
1031		 * we have to prepare a dummy TX descriptor which has
1032		 * NOP command and just causes a TX completion interrupt.
1033		 */
1034		sc->sc_txpending++;
1035		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1036		txd = FXP_CDTX(sc, sc->sc_txlast);
1037		/* BIG_ENDIAN: no need to swap to store 0 */
1038		txd->txd_txcb.cb_status = 0;
1039		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1040		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1041		FXP_CDTXSYNC(sc, sc->sc_txlast,
1042		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1043
1044		/*
1045		 * The entire packet chain is set up.  Clear the suspend bit
1046		 * on the command prior to the first packet we set up.
1047		 */
1048		FXP_CDTXSYNC(sc, lasttx,
1049		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1050		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1051		    htole16(~FXP_CB_COMMAND_S);
1052		FXP_CDTXSYNC(sc, lasttx,
1053		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054
1055		/*
1056		 * Issue a Resume command in case the chip was suspended.
1057		 */
1058		fxp_scb_wait(sc);
1059		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1060
1061		/* Set a watchdog timer in case the chip flakes out. */
1062		ifp->if_timer = 5;
1063	}
1064}
1065
1066/*
1067 * Process interface interrupts.
1068 */
1069int
1070fxp_intr(void *arg)
1071{
1072	struct fxp_softc *sc = arg;
1073	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074	bus_dmamap_t rxmap;
1075	int claimed = 0, rnr;
1076	u_int8_t statack;
1077
1078	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1079		return (0);
1080	/*
1081	 * If the interface isn't running, don't try to
1082	 * service the interrupt.. just ack it and bail.
1083	 */
1084	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1085		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1086		if (statack) {
1087			claimed = 1;
1088			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1089		}
1090		return (claimed);
1091	}
1092
1093	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1094		claimed = 1;
1095
1096		/*
1097		 * First ACK all the interrupts in this pass.
1098		 */
1099		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1100
1101		/*
1102		 * Process receiver interrupts. If a no-resource (RNR)
1103		 * condition exists, get whatever packets we can and
1104		 * re-start the receiver.
1105		 */
1106		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1107		    1 : 0;
1108		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1109		    FXP_SCB_STATACK_SWI)) {
1110			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1111			rnr |= fxp_rxintr(sc);
1112		}
1113
1114		/*
1115		 * Free any finished transmit mbuf chains.
1116		 */
1117		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1118			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1119			fxp_txintr(sc);
1120
1121			/*
1122			 * Try to get more packets going.
1123			 */
1124			fxp_start(ifp);
1125
1126			if (sc->sc_txpending == 0) {
1127				/*
1128				 * Tell them that they can re-init now.
1129				 */
1130				if (sc->sc_flags & FXPF_WANTINIT)
1131					wakeup(sc);
1132			}
1133		}
1134
1135		if (rnr) {
1136			fxp_scb_wait(sc);
1137			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1138			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1139			fxp_scb_wait(sc);
1140			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1141			    rxmap->dm_segs[0].ds_addr +
1142			    RFA_ALIGNMENT_FUDGE);
1143			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1144		}
1145	}
1146
1147#if NRND > 0
1148	if (claimed)
1149		rnd_add_uint32(&sc->rnd_source, statack);
1150#endif
1151	return (claimed);
1152}
1153
1154/*
1155 * Handle transmit completion interrupts.
1156 */
1157void
1158fxp_txintr(struct fxp_softc *sc)
1159{
1160	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161	struct fxp_txdesc *txd;
1162	struct fxp_txsoft *txs;
1163	int i;
1164	u_int16_t txstat;
1165
1166	ifp->if_flags &= ~IFF_OACTIVE;
1167	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1168	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1169		txd = FXP_CDTX(sc, i);
1170		txs = FXP_DSTX(sc, i);
1171
1172		FXP_CDTXSYNC(sc, i,
1173		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174
1175		/* skip dummy NOP TX descriptor */
1176		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1177		    == FXP_CB_COMMAND_NOP)
1178			continue;
1179
1180		txstat = le16toh(txd->txd_txcb.cb_status);
1181
1182		if ((txstat & FXP_CB_STATUS_C) == 0)
1183			break;
1184
1185		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1186		    0, txs->txs_dmamap->dm_mapsize,
1187		    BUS_DMASYNC_POSTWRITE);
1188		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1189		m_freem(txs->txs_mbuf);
1190		txs->txs_mbuf = NULL;
1191	}
1192
1193	/* Update the dirty transmit buffer pointer. */
1194	sc->sc_txdirty = i;
1195
1196	/*
1197	 * Cancel the watchdog timer if there are no pending
1198	 * transmissions.
1199	 */
1200	if (sc->sc_txpending == 0)
1201		ifp->if_timer = 0;
1202}
1203
1204/*
1205 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1206 */
1207
1208int
1209fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1210{
1211	u_int8_t rxparsestat;
1212	u_int8_t csum_stat;
1213	u_int32_t csum_data;
1214	int csum_flags;
1215
1216	/*
1217	 * check VLAN tag stripping.
1218	 */
1219
1220	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1221		struct m_tag *vtag;
1222
1223		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1224		if (vtag == NULL)
1225			return ENOMEM;
1226		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1227		m_tag_prepend(m, vtag);
1228	}
1229
1230	/*
1231	 * check H/W Checksumming.
1232	 */
1233
1234	csum_stat = rfa->cksum_stat;
1235	rxparsestat = rfa->rx_parse_stat;
1236	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1237		return 0;
1238
1239	csum_flags = 0;
1240	csum_data = 0;
1241
1242	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1243		csum_flags = M_CSUM_IPv4;
1244		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1245			csum_flags |= M_CSUM_IPv4_BAD;
1246	}
1247
1248	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1249		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1250		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1251			csum_flags |= M_CSUM_TCP_UDP_BAD;
1252	}
1253
1254	m->m_pkthdr.csum_flags = csum_flags;
1255	m->m_pkthdr.csum_data = csum_data;
1256
1257	return 0;
1258}
1259
1260/*
1261 * Handle receive interrupts.
1262 */
1263int
1264fxp_rxintr(struct fxp_softc *sc)
1265{
1266	struct ethercom *ec = &sc->sc_ethercom;
1267	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1268	struct mbuf *m, *m0;
1269	bus_dmamap_t rxmap;
1270	struct fxp_rfa *rfa;
1271	int rnr;
1272	u_int16_t len, rxstat;
1273
1274	rnr = 0;
1275
1276	for (;;) {
1277		m = sc->sc_rxq.ifq_head;
1278		rfa = FXP_MTORFA(m);
1279		rxmap = M_GETCTX(m, bus_dmamap_t);
1280
1281		FXP_RFASYNC(sc, m,
1282		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1283
1284		rxstat = le16toh(rfa->rfa_status);
1285
1286		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1287			rnr = 1;
1288
1289		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1290			/*
1291			 * We have processed all of the
1292			 * receive buffers.
1293			 */
1294			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1295			return rnr;
1296		}
1297
1298		IF_DEQUEUE(&sc->sc_rxq, m);
1299
1300		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1301
1302		len = le16toh(rfa->actual_size) &
1303		    (m->m_ext.ext_size - 1);
1304
1305		if (len < sizeof(struct ether_header)) {
1306			/*
1307			 * Runt packet; drop it now.
1308			 */
1309			FXP_INIT_RFABUF(sc, m);
1310			continue;
1311		}
1312
1313		/*
1314		 * If support for 802.1Q VLAN sized frames is
1315		 * enabled, we need to do some additional error
1316		 * checking (as we are saving bad frames, in
1317		 * order to receive the larger ones).
1318		 */
1319		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1320		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1321			       FXP_RFA_STATUS_RNR|
1322			       FXP_RFA_STATUS_ALIGN|
1323			       FXP_RFA_STATUS_CRC)) != 0) {
1324			FXP_INIT_RFABUF(sc, m);
1325			continue;
1326		}
1327
1328		/* Do checksum checking. */
1329		m->m_pkthdr.csum_flags = 0;
1330		if (sc->sc_flags & FXPF_EXT_RFA)
1331			if (fxp_rx_hwcksum(m, rfa))
1332				goto dropit;
1333
1334		/*
1335		 * If the packet is small enough to fit in a
1336		 * single header mbuf, allocate one and copy
1337		 * the data into it.  This greatly reduces
1338		 * memory consumption when we receive lots
1339		 * of small packets.
1340		 *
1341		 * Otherwise, we add a new buffer to the receive
1342		 * chain.  If this fails, we drop the packet and
1343		 * recycle the old buffer.
1344		 */
1345		if (fxp_copy_small != 0 && len <= MHLEN) {
1346			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1347			if (m0 == NULL)
1348				goto dropit;
1349			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1350			memcpy(mtod(m0, void *),
1351			    mtod(m, void *), len);
1352			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1353			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1354			FXP_INIT_RFABUF(sc, m);
1355			m = m0;
1356		} else {
1357			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1358 dropit:
1359				ifp->if_ierrors++;
1360				FXP_INIT_RFABUF(sc, m);
1361				continue;
1362			}
1363		}
1364
1365		m->m_pkthdr.rcvif = ifp;
1366		m->m_pkthdr.len = m->m_len = len;
1367
1368#if NBPFILTER > 0
1369		/*
1370		 * Pass this up to any BPF listeners, but only
1371		 * pass it up the stack if it's for us.
1372		 */
1373		if (ifp->if_bpf)
1374			bpf_mtap(ifp->if_bpf, m);
1375#endif
1376
1377		/* Pass it on. */
1378		(*ifp->if_input)(ifp, m);
1379	}
1380}
1381
1382/*
1383 * Update packet in/out/collision statistics. The i82557 doesn't
1384 * allow you to access these counters without doing a fairly
1385 * expensive DMA to get _all_ of the statistics it maintains, so
1386 * we do this operation here only once per second. The statistics
1387 * counters in the kernel are updated from the previous dump-stats
1388 * DMA and then a new dump-stats DMA is started. The on-chip
1389 * counters are zeroed when the DMA completes. If we can't start
1390 * the DMA immediately, we don't wait - we just prepare to read
1391 * them again next time.
1392 */
1393void
1394fxp_tick(void *arg)
1395{
1396	struct fxp_softc *sc = arg;
1397	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1398	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1399	int s;
1400
1401	if (!device_is_active(sc->sc_dev))
1402		return;
1403
1404	s = splnet();
1405
1406	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1407
1408	ifp->if_opackets += le32toh(sp->tx_good);
1409	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1410	if (sp->rx_good) {
1411		ifp->if_ipackets += le32toh(sp->rx_good);
1412		sc->sc_rxidle = 0;
1413	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1414		sc->sc_rxidle++;
1415	}
1416	ifp->if_ierrors +=
1417	    le32toh(sp->rx_crc_errors) +
1418	    le32toh(sp->rx_alignment_errors) +
1419	    le32toh(sp->rx_rnr_errors) +
1420	    le32toh(sp->rx_overrun_errors);
1421	/*
1422	 * If any transmit underruns occurred, bump up the transmit
1423	 * threshold by another 512 bytes (64 * 8).
1424	 */
1425	if (sp->tx_underruns) {
1426		ifp->if_oerrors += le32toh(sp->tx_underruns);
1427		if (tx_threshold < 192)
1428			tx_threshold += 64;
1429	}
1430#ifdef FXP_EVENT_COUNTERS
1431	if (sc->sc_flags & FXPF_FC) {
1432		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1433		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1434	}
1435#endif
1436
1437	/*
1438	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1439	 * then assume the receiver has locked up and attempt to clear
1440	 * the condition by reprogramming the multicast filter (actually,
1441	 * resetting the interface). This is a work-around for a bug in
1442	 * the 82557 where the receiver locks up if it gets certain types
1443	 * of garbage in the synchronization bits prior to the packet header.
1444	 * This bug is supposed to only occur in 10Mbps mode, but has been
1445	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1446	 * speed transition).
1447	 */
1448	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1449		(void) fxp_init(ifp);
1450		splx(s);
1451		return;
1452	}
1453	/*
1454	 * If there is no pending command, start another stats
1455	 * dump. Otherwise punt for now.
1456	 */
1457	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1458		/*
1459		 * Start another stats dump.
1460		 */
1461		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1462		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1463	} else {
1464		/*
1465		 * A previous command is still waiting to be accepted.
1466		 * Just zero our copy of the stats and wait for the
1467		 * next timer event to update them.
1468		 */
1469		/* BIG_ENDIAN: no swap required to store 0 */
1470		sp->tx_good = 0;
1471		sp->tx_underruns = 0;
1472		sp->tx_total_collisions = 0;
1473
1474		sp->rx_good = 0;
1475		sp->rx_crc_errors = 0;
1476		sp->rx_alignment_errors = 0;
1477		sp->rx_rnr_errors = 0;
1478		sp->rx_overrun_errors = 0;
1479		if (sc->sc_flags & FXPF_FC) {
1480			sp->tx_pauseframes = 0;
1481			sp->rx_pauseframes = 0;
1482		}
1483	}
1484
1485	if (sc->sc_flags & FXPF_MII) {
1486		/* Tick the MII clock. */
1487		mii_tick(&sc->sc_mii);
1488	}
1489
1490	splx(s);
1491
1492	/*
1493	 * Schedule another timeout one second from now.
1494	 */
1495	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1496}
1497
1498/*
1499 * Drain the receive queue.
1500 */
1501void
1502fxp_rxdrain(struct fxp_softc *sc)
1503{
1504	bus_dmamap_t rxmap;
1505	struct mbuf *m;
1506
1507	for (;;) {
1508		IF_DEQUEUE(&sc->sc_rxq, m);
1509		if (m == NULL)
1510			break;
1511		rxmap = M_GETCTX(m, bus_dmamap_t);
1512		bus_dmamap_unload(sc->sc_dmat, rxmap);
1513		FXP_RXMAP_PUT(sc, rxmap);
1514		m_freem(m);
1515	}
1516}
1517
1518/*
1519 * Stop the interface. Cancels the statistics updater and resets
1520 * the interface.
1521 */
1522void
1523fxp_stop(struct ifnet *ifp, int disable)
1524{
1525	struct fxp_softc *sc = ifp->if_softc;
1526	struct fxp_txsoft *txs;
1527	int i;
1528
1529	/*
1530	 * Turn down interface (done early to avoid bad interactions
1531	 * between panics, shutdown hooks, and the watchdog timer)
1532	 */
1533	ifp->if_timer = 0;
1534	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1535
1536	/*
1537	 * Cancel stats updater.
1538	 */
1539	callout_stop(&sc->sc_callout);
1540	if (sc->sc_flags & FXPF_MII) {
1541		/* Down the MII. */
1542		mii_down(&sc->sc_mii);
1543	}
1544
1545	/*
1546	 * Issue software reset.  This unloads any microcode that
1547	 * might already be loaded.
1548	 */
1549	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1550	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1551	DELAY(50);
1552
1553	/*
1554	 * Release any xmit buffers.
1555	 */
1556	for (i = 0; i < FXP_NTXCB; i++) {
1557		txs = FXP_DSTX(sc, i);
1558		if (txs->txs_mbuf != NULL) {
1559			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1560			m_freem(txs->txs_mbuf);
1561			txs->txs_mbuf = NULL;
1562		}
1563	}
1564	sc->sc_txpending = 0;
1565
1566	if (disable) {
1567		fxp_rxdrain(sc);
1568		fxp_disable(sc);
1569	}
1570
1571}
1572
1573/*
1574 * Watchdog/transmission transmit timeout handler. Called when a
1575 * transmission is started on the interface, but no interrupt is
1576 * received before the timeout. This usually indicates that the
1577 * card has wedged for some reason.
1578 */
1579void
1580fxp_watchdog(struct ifnet *ifp)
1581{
1582	struct fxp_softc *sc = ifp->if_softc;
1583
1584	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1585	ifp->if_oerrors++;
1586
1587	(void) fxp_init(ifp);
1588}
1589
1590/*
1591 * Initialize the interface.  Must be called at splnet().
1592 */
1593int
1594fxp_init(struct ifnet *ifp)
1595{
1596	struct fxp_softc *sc = ifp->if_softc;
1597	struct fxp_cb_config *cbp;
1598	struct fxp_cb_ias *cb_ias;
1599	struct fxp_txdesc *txd;
1600	bus_dmamap_t rxmap;
1601	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1602	uint16_t status;
1603
1604	if ((error = fxp_enable(sc)) != 0)
1605		goto out;
1606
1607	/*
1608	 * Cancel any pending I/O
1609	 */
1610	fxp_stop(ifp, 0);
1611
1612	/*
1613	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1614	 * flag, and this prevents the MII from detaching resulting in
1615	 * a panic. The flags field should perhaps be split in runtime
1616	 * flags and more static information. For now, just clear the
1617	 * only other flag set.
1618	 */
1619
1620	sc->sc_flags &= ~FXPF_WANTINIT;
1621
1622	/*
1623	 * Initialize base of CBL and RFA memory. Loading with zero
1624	 * sets it up for regular linear addressing.
1625	 */
1626	fxp_scb_wait(sc);
1627	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1628	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1629
1630	fxp_scb_wait(sc);
1631	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1632
1633	/*
1634	 * Initialize the multicast filter.  Do this now, since we might
1635	 * have to setup the config block differently.
1636	 */
1637	fxp_mc_setup(sc);
1638
1639	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1640	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1641
1642	/*
1643	 * In order to support receiving 802.1Q VLAN frames, we have to
1644	 * enable "save bad frames", since they are 4 bytes larger than
1645	 * the normal Ethernet maximum frame length.  On i82558 and later,
1646	 * we have a better mechanism for this.
1647	 */
1648	save_bf = 0;
1649	lrxen = 0;
1650	vlan_drop = 0;
1651	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1652		if (sc->sc_rev < FXP_REV_82558_A4)
1653			save_bf = 1;
1654		else
1655			lrxen = 1;
1656		if (sc->sc_rev >= FXP_REV_82550)
1657			vlan_drop = 1;
1658	}
1659
1660	/*
1661	 * Initialize base of dump-stats buffer.
1662	 */
1663	fxp_scb_wait(sc);
1664	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1665	    sc->sc_cddma + FXP_CDSTATSOFF);
1666	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1667	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1668
1669	cbp = &sc->sc_control_data->fcd_configcb;
1670	memset(cbp, 0, sizeof(struct fxp_cb_config));
1671
1672	/*
1673	 * Load microcode for this controller.
1674	 */
1675	fxp_load_ucode(sc);
1676
1677	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1678		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1679	else
1680		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1681
1682	/*
1683	 * This copy is kind of disgusting, but there are a bunch of must be
1684	 * zero and must be one bits in this structure and this is the easiest
1685	 * way to initialize them all to proper values.
1686	 */
1687	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1688
1689	/* BIG_ENDIAN: no need to swap to store 0 */
1690	cbp->cb_status =	0;
1691	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1692				    FXP_CB_COMMAND_EL);
1693	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1694	cbp->link_addr =	0xffffffff; /* (no) next command */
1695					/* bytes in config block */
1696	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1697				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1698	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1699	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1700	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1701	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1702	cbp->type_enable =	0;	/* actually reserved */
1703	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1704	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1705	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1706	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1707	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1708	cbp->late_scb =		0;	/* (don't) defer SCB update */
1709	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1710	cbp->ci_int =		1;	/* interrupt on CU idle */
1711	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1712	cbp->ext_stats_dis =	1;	/* disable extended counters */
1713	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1714	cbp->save_bf =		save_bf;/* save bad frames */
1715	cbp->disc_short_rx =	!prm;	/* discard short packets */
1716	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1717	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1718	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1719	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1720					/* interface mode */
1721	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1722	cbp->csma_dis =		0;	/* (don't) disable link */
1723	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1724	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1725	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1726	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1727	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1728	cbp->nsai =		1;	/* (don't) disable source addr insert */
1729	cbp->preamble_length =	2;	/* (7 byte) preamble */
1730	cbp->loopback =		0;	/* (don't) loopback */
1731	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1732	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1733	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1734	cbp->promiscuous =	prm;	/* promiscuous mode */
1735	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1736	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1737	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1738	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1739	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1740	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1741	cbp->padding =		1;	/* (do) pad short tx packets */
1742	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1743	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1744	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1745	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1746					/* must set wake_en in PMCSR also */
1747	cbp->force_fdx =	0;	/* (don't) force full duplex */
1748	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1749	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1750	cbp->mc_all =		allm;	/* accept all multicasts */
1751	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1752	cbp->vlan_drop_en =	vlan_drop;
1753
1754	if (!(sc->sc_flags & FXPF_FC)) {
1755		/*
1756		 * The i82557 has no hardware flow control, the values
1757		 * here are the defaults for the chip.
1758		 */
1759		cbp->fc_delay_lsb =	0;
1760		cbp->fc_delay_msb =	0x40;
1761		cbp->pri_fc_thresh =	3;
1762		cbp->tx_fc_dis =	0;
1763		cbp->rx_fc_restop =	0;
1764		cbp->rx_fc_restart =	0;
1765		cbp->fc_filter =	0;
1766		cbp->pri_fc_loc =	1;
1767	} else {
1768		cbp->fc_delay_lsb =	0x1f;
1769		cbp->fc_delay_msb =	0x01;
1770		cbp->pri_fc_thresh =	3;
1771		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1772		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1773		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1774		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1775		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1776		cbp->ext_stats_dis =	0;	/* enable extended stats */
1777	}
1778
1779	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1780
1781	/*
1782	 * Start the config command/DMA.
1783	 */
1784	fxp_scb_wait(sc);
1785	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1786	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1787	/* ...and wait for it to complete. */
1788	for (i = 1000; i > 0; i--) {
1789		FXP_CDCONFIGSYNC(sc,
1790		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1791		status = le16toh(cbp->cb_status);
1792		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1793		if ((status & FXP_CB_STATUS_C) != 0)
1794			break;
1795		DELAY(1);
1796	}
1797	if (i == 0) {
1798		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1799		    device_xname(sc->sc_dev), __LINE__);
1800		return (ETIMEDOUT);
1801	}
1802
1803	/*
1804	 * Initialize the station address.
1805	 */
1806	cb_ias = &sc->sc_control_data->fcd_iascb;
1807	/* BIG_ENDIAN: no need to swap to store 0 */
1808	cb_ias->cb_status = 0;
1809	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1810	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1811	cb_ias->link_addr = 0xffffffff;
1812	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1813
1814	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1815
1816	/*
1817	 * Start the IAS (Individual Address Setup) command/DMA.
1818	 */
1819	fxp_scb_wait(sc);
1820	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1821	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1822	/* ...and wait for it to complete. */
1823	for (i = 1000; i > 0; i++) {
1824		FXP_CDIASSYNC(sc,
1825		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1826		status = le16toh(cb_ias->cb_status);
1827		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1828		if ((status & FXP_CB_STATUS_C) != 0)
1829			break;
1830		DELAY(1);
1831	}
1832	if (i == 0) {
1833		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1834		    device_xname(sc->sc_dev), __LINE__);
1835		return (ETIMEDOUT);
1836	}
1837
1838	/*
1839	 * Initialize the transmit descriptor ring.  txlast is initialized
1840	 * to the end of the list so that it will wrap around to the first
1841	 * descriptor when the first packet is transmitted.
1842	 */
1843	for (i = 0; i < FXP_NTXCB; i++) {
1844		txd = FXP_CDTX(sc, i);
1845		memset(txd, 0, sizeof(*txd));
1846		txd->txd_txcb.cb_command =
1847		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1848		txd->txd_txcb.link_addr =
1849		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1850		if (sc->sc_flags & FXPF_EXT_TXCB)
1851			txd->txd_txcb.tbd_array_addr =
1852			    htole32(FXP_CDTBDADDR(sc, i) +
1853				    (2 * sizeof(struct fxp_tbd)));
1854		else
1855			txd->txd_txcb.tbd_array_addr =
1856			    htole32(FXP_CDTBDADDR(sc, i));
1857		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1858	}
1859	sc->sc_txpending = 0;
1860	sc->sc_txdirty = 0;
1861	sc->sc_txlast = FXP_NTXCB - 1;
1862
1863	/*
1864	 * Initialize the receive buffer list.
1865	 */
1866	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1867	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1868		rxmap = FXP_RXMAP_GET(sc);
1869		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1870			log(LOG_ERR, "%s: unable to allocate or map rx "
1871			    "buffer %d, error = %d\n",
1872			    device_xname(sc->sc_dev),
1873			    sc->sc_rxq.ifq_len, error);
1874			/*
1875			 * XXX Should attempt to run with fewer receive
1876			 * XXX buffers instead of just failing.
1877			 */
1878			FXP_RXMAP_PUT(sc, rxmap);
1879			fxp_rxdrain(sc);
1880			goto out;
1881		}
1882	}
1883	sc->sc_rxidle = 0;
1884
1885	/*
1886	 * Give the transmit ring to the chip.  We do this by pointing
1887	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1888	 * issuing a start command.  It will execute the NOP and then
1889	 * suspend, pointing at the first descriptor.
1890	 */
1891	fxp_scb_wait(sc);
1892	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1893	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1894
1895	/*
1896	 * Initialize receiver buffer area - RFA.
1897	 */
1898#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1899	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1900	fxp_scb_wait(sc);
1901	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1902	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1903	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1904#endif
1905
1906	if (sc->sc_flags & FXPF_MII) {
1907		/*
1908		 * Set current media.
1909		 */
1910		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1911			goto out;
1912	}
1913
1914	/*
1915	 * ...all done!
1916	 */
1917	ifp->if_flags |= IFF_RUNNING;
1918	ifp->if_flags &= ~IFF_OACTIVE;
1919
1920	/*
1921	 * Request a software generated interrupt that will be used to
1922	 * (re)start the RU processing.  If we direct the chip to start
1923	 * receiving from the start of queue now, instead of letting the
1924	 * interrupt handler first process all received packets, we run
1925	 * the risk of having it overwrite mbuf clusters while they are
1926	 * being processed or after they have been returned to the pool.
1927	 */
1928	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1929
1930	/*
1931	 * Start the one second timer.
1932	 */
1933	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1934
1935	/*
1936	 * Attempt to start output on the interface.
1937	 */
1938	fxp_start(ifp);
1939
1940 out:
1941	if (error) {
1942		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1943		ifp->if_timer = 0;
1944		log(LOG_ERR, "%s: interface not running\n",
1945		    device_xname(sc->sc_dev));
1946	}
1947	return (error);
1948}
1949
1950/*
1951 * Notify the world which media we're using.
1952 */
1953void
1954fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1955{
1956	struct fxp_softc *sc = ifp->if_softc;
1957
1958	if (sc->sc_enabled == 0) {
1959		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1960		ifmr->ifm_status = 0;
1961		return;
1962	}
1963
1964	ether_mediastatus(ifp, ifmr);
1965}
1966
1967int
1968fxp_80c24_mediachange(struct ifnet *ifp)
1969{
1970
1971	/* Nothing to do here. */
1972	return (0);
1973}
1974
1975void
1976fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1977{
1978	struct fxp_softc *sc = ifp->if_softc;
1979
1980	/*
1981	 * Media is currently-selected media.  We cannot determine
1982	 * the link status.
1983	 */
1984	ifmr->ifm_status = 0;
1985	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1986}
1987
1988/*
1989 * Add a buffer to the end of the RFA buffer list.
1990 * Return 0 if successful, error code on failure.
1991 *
1992 * The RFA struct is stuck at the beginning of mbuf cluster and the
1993 * data pointer is fixed up to point just past it.
1994 */
1995int
1996fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1997{
1998	struct mbuf *m;
1999	int error;
2000
2001	MGETHDR(m, M_DONTWAIT, MT_DATA);
2002	if (m == NULL)
2003		return (ENOBUFS);
2004
2005	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006	MCLGET(m, M_DONTWAIT);
2007	if ((m->m_flags & M_EXT) == 0) {
2008		m_freem(m);
2009		return (ENOBUFS);
2010	}
2011
2012	if (unload)
2013		bus_dmamap_unload(sc->sc_dmat, rxmap);
2014
2015	M_SETCTX(m, rxmap);
2016
2017	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2018	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2019	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2020	if (error) {
2021		/* XXX XXX XXX */
2022		aprint_error_dev(sc->sc_dev,
2023		    "can't load rx DMA map %d, error = %d\n",
2024		    sc->sc_rxq.ifq_len, error);
2025		panic("fxp_add_rfabuf");
2026	}
2027
2028	FXP_INIT_RFABUF(sc, m);
2029
2030	return (0);
2031}
2032
2033int
2034fxp_mdi_read(device_t self, int phy, int reg)
2035{
2036	struct fxp_softc *sc = device_private(self);
2037	int count = 10000;
2038	int value;
2039
2040	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2041	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2042
2043	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2044	    0x10000000) == 0 && count--)
2045		DELAY(10);
2046
2047	if (count <= 0)
2048		log(LOG_WARNING,
2049		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
2050
2051	return (value & 0xffff);
2052}
2053
2054void
2055fxp_statchg(device_t self)
2056{
2057
2058	/* Nothing to do. */
2059}
2060
2061void
2062fxp_mdi_write(device_t self, int phy, int reg, int value)
2063{
2064	struct fxp_softc *sc = device_private(self);
2065	int count = 10000;
2066
2067	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2068	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2069	    (value & 0xffff));
2070
2071	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2072	    count--)
2073		DELAY(10);
2074
2075	if (count <= 0)
2076		log(LOG_WARNING,
2077		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
2078}
2079
2080int
2081fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2082{
2083	struct fxp_softc *sc = ifp->if_softc;
2084	struct ifreq *ifr = (struct ifreq *)data;
2085	int s, error;
2086
2087	s = splnet();
2088
2089	switch (cmd) {
2090	case SIOCSIFMEDIA:
2091	case SIOCGIFMEDIA:
2092		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2093		break;
2094
2095	default:
2096		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2097			break;
2098
2099		error = 0;
2100
2101		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2102			;
2103		else if (ifp->if_flags & IFF_RUNNING) {
2104			/*
2105			 * Multicast list has changed; set the
2106			 * hardware filter accordingly.
2107			 */
2108			while (sc->sc_txpending) {
2109				sc->sc_flags |= FXPF_WANTINIT;
2110				tsleep(sc, PSOCK, "fxp_init", 0);
2111			}
2112			error = fxp_init(ifp);
2113		}
2114		break;
2115	}
2116
2117	/* Try to get more packets going. */
2118	if (sc->sc_enabled)
2119		fxp_start(ifp);
2120
2121	splx(s);
2122	return (error);
2123}
2124
2125/*
2126 * Program the multicast filter.
2127 *
2128 * This function must be called at splnet().
2129 */
2130void
2131fxp_mc_setup(struct fxp_softc *sc)
2132{
2133	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2134	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2135	struct ethercom *ec = &sc->sc_ethercom;
2136	struct ether_multi *enm;
2137	struct ether_multistep step;
2138	int count, nmcasts;
2139	uint16_t status;
2140
2141#ifdef DIAGNOSTIC
2142	if (sc->sc_txpending)
2143		panic("fxp_mc_setup: pending transmissions");
2144#endif
2145
2146	ifp->if_flags &= ~IFF_ALLMULTI;
2147
2148	/*
2149	 * Initialize multicast setup descriptor.
2150	 */
2151	nmcasts = 0;
2152	ETHER_FIRST_MULTI(step, ec, enm);
2153	while (enm != NULL) {
2154		/*
2155		 * Check for too many multicast addresses or if we're
2156		 * listening to a range.  Either way, we simply have
2157		 * to accept all multicasts.
2158		 */
2159		if (nmcasts >= MAXMCADDR ||
2160		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2161		    ETHER_ADDR_LEN) != 0) {
2162			/*
2163			 * Callers of this function must do the
2164			 * right thing with this.  If we're called
2165			 * from outside fxp_init(), the caller must
2166			 * detect if the state if IFF_ALLMULTI changes.
2167			 * If it does, the caller must then call
2168			 * fxp_init(), since allmulti is handled by
2169			 * the config block.
2170			 */
2171			ifp->if_flags |= IFF_ALLMULTI;
2172			return;
2173		}
2174		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2175		    ETHER_ADDR_LEN);
2176		nmcasts++;
2177		ETHER_NEXT_MULTI(step, enm);
2178	}
2179
2180	/* BIG_ENDIAN: no need to swap to store 0 */
2181	mcsp->cb_status = 0;
2182	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2183	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2184	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2185
2186	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2187
2188	/*
2189	 * Wait until the command unit is not active.  This should never
2190	 * happen since nothing is queued, but make sure anyway.
2191	 */
2192	count = 100;
2193	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2194	    FXP_SCB_CUS_ACTIVE && --count)
2195		DELAY(1);
2196	if (count == 0) {
2197		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2198		    device_xname(sc->sc_dev), __LINE__);
2199		return;
2200	}
2201
2202	/*
2203	 * Start the multicast setup command/DMA.
2204	 */
2205	fxp_scb_wait(sc);
2206	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2207	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2208
2209	/* ...and wait for it to complete. */
2210	for (count = 1000; count > 0; count--) {
2211		FXP_CDMCSSYNC(sc,
2212		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2213		status = le16toh(mcsp->cb_status);
2214		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2215		if ((status & FXP_CB_STATUS_C) != 0)
2216			break;
2217		DELAY(1);
2218	}
2219	if (count == 0) {
2220		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2221		    device_xname(sc->sc_dev), __LINE__);
2222		return;
2223	}
2224}
2225
2226static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2227static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2228static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2229static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2230static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2231static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2232
2233#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2234
2235static const struct ucode {
2236	int32_t		revision;
2237	const uint32_t	*ucode;
2238	size_t		length;
2239	uint16_t	int_delay_offset;
2240	uint16_t	bundle_max_offset;
2241} ucode_table[] = {
2242	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2243	  D101_CPUSAVER_DWORD, 0 },
2244
2245	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2246	  D101_CPUSAVER_DWORD, 0 },
2247
2248	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2249	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2250
2251	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2252	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2253
2254	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2255	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2256
2257	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2258	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2259
2260	{ 0, NULL, 0, 0, 0 }
2261};
2262
2263void
2264fxp_load_ucode(struct fxp_softc *sc)
2265{
2266	const struct ucode *uc;
2267	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2268	int count, i;
2269	uint16_t status;
2270
2271	if (sc->sc_flags & FXPF_UCODE_LOADED)
2272		return;
2273
2274	/*
2275	 * Only load the uCode if the user has requested that
2276	 * we do so.
2277	 */
2278	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2279		sc->sc_int_delay = 0;
2280		sc->sc_bundle_max = 0;
2281		return;
2282	}
2283
2284	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2285		if (sc->sc_rev == uc->revision)
2286			break;
2287	}
2288	if (uc->ucode == NULL)
2289		return;
2290
2291	/* BIG ENDIAN: no need to swap to store 0 */
2292	cbp->cb_status = 0;
2293	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2294	cbp->link_addr = 0xffffffff;		/* (no) next command */
2295	for (i = 0; i < uc->length; i++)
2296		cbp->ucode[i] = htole32(uc->ucode[i]);
2297
2298	if (uc->int_delay_offset)
2299		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2300		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2301
2302	if (uc->bundle_max_offset)
2303		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2304		    htole16(fxp_bundle_max);
2305
2306	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2307
2308	/*
2309	 * Download the uCode to the chip.
2310	 */
2311	fxp_scb_wait(sc);
2312	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2313	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2314
2315	/* ...and wait for it to complete. */
2316	for (count = 10000; count > 0; count--) {
2317		FXP_CDUCODESYNC(sc,
2318		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2319		status = le16toh(cbp->cb_status);
2320		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2321		if ((status & FXP_CB_STATUS_C) != 0)
2322			break;
2323		DELAY(2);
2324	}
2325	if (count == 0) {
2326		sc->sc_int_delay = 0;
2327		sc->sc_bundle_max = 0;
2328		log(LOG_WARNING, "%s: timeout loading microcode\n",
2329		    device_xname(sc->sc_dev));
2330		return;
2331	}
2332
2333	if (sc->sc_int_delay != fxp_int_delay ||
2334	    sc->sc_bundle_max != fxp_bundle_max) {
2335		sc->sc_int_delay = fxp_int_delay;
2336		sc->sc_bundle_max = fxp_bundle_max;
2337		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2338		    "max bundle: %d\n", device_xname(sc->sc_dev),
2339		    sc->sc_int_delay,
2340		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2341	}
2342
2343	sc->sc_flags |= FXPF_UCODE_LOADED;
2344}
2345
2346int
2347fxp_enable(struct fxp_softc *sc)
2348{
2349
2350	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2351		if ((*sc->sc_enable)(sc) != 0) {
2352			log(LOG_ERR, "%s: device enable failed\n",
2353			    device_xname(sc->sc_dev));
2354			return (EIO);
2355		}
2356	}
2357
2358	sc->sc_enabled = 1;
2359	return (0);
2360}
2361
2362void
2363fxp_disable(struct fxp_softc *sc)
2364{
2365
2366	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2367		(*sc->sc_disable)(sc);
2368		sc->sc_enabled = 0;
2369	}
2370}
2371
2372/*
2373 * fxp_activate:
2374 *
2375 *	Handle device activation/deactivation requests.
2376 */
2377int
2378fxp_activate(device_t self, enum devact act)
2379{
2380	struct fxp_softc *sc = device_private(self);
2381	int s, error = 0;
2382
2383	s = splnet();
2384	switch (act) {
2385	case DVACT_ACTIVATE:
2386		error = EOPNOTSUPP;
2387		break;
2388
2389	case DVACT_DEACTIVATE:
2390		if (sc->sc_flags & FXPF_MII)
2391			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2392			    MII_OFFSET_ANY);
2393		if_deactivate(&sc->sc_ethercom.ec_if);
2394		break;
2395	}
2396	splx(s);
2397
2398	return (error);
2399}
2400
2401/*
2402 * fxp_detach:
2403 *
2404 *	Detach an i82557 interface.
2405 */
2406int
2407fxp_detach(struct fxp_softc *sc)
2408{
2409	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2410	int i;
2411
2412	/* Succeed now if there's no work to do. */
2413	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2414		return (0);
2415
2416	/* Unhook our tick handler. */
2417	callout_stop(&sc->sc_callout);
2418
2419	if (sc->sc_flags & FXPF_MII) {
2420		/* Detach all PHYs */
2421		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2422	}
2423
2424	/* Delete all remaining media. */
2425	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2426
2427#if NRND > 0
2428	rnd_detach_source(&sc->rnd_source);
2429#endif
2430	ether_ifdetach(ifp);
2431	if_detach(ifp);
2432
2433	for (i = 0; i < FXP_NRFABUFS; i++) {
2434		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2435		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2436	}
2437
2438	for (i = 0; i < FXP_NTXCB; i++) {
2439		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2440		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2441	}
2442
2443	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2444	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2445	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2446	    sizeof(struct fxp_control_data));
2447	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2448
2449	return (0);
2450}
2451