i82557.c revision 1.110
1/*	$NetBSD: i82557.c,v 1.110 2008/01/19 22:10:17 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.110 2008/01/19 22:10:17 dyoung Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91#include <sys/syslog.h>
92
93#include <machine/endian.h>
94
95#include <uvm/uvm_extern.h>
96
97#if NRND > 0
98#include <sys/rnd.h>
99#endif
100
101#include <net/if.h>
102#include <net/if_dl.h>
103#include <net/if_media.h>
104#include <net/if_ether.h>
105
106#if NBPFILTER > 0
107#include <net/bpf.h>
108#endif
109
110#include <sys/bus.h>
111#include <sys/intr.h>
112
113#include <dev/mii/miivar.h>
114
115#include <dev/ic/i82557reg.h>
116#include <dev/ic/i82557var.h>
117
118#include <dev/microcode/i8255x/rcvbundl.h>
119
120/*
121 * NOTE!  On the Alpha, we have an alignment constraint.  The
122 * card DMAs the packet immediately following the RFA.  However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned.  To compensate,
125 * we actually offset the RFA 2 bytes into the cluster.  This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary.  HOWEVER!  This means that the RFA is misaligned!
128 */
129#define	RFA_ALIGNMENT_FUDGE	2
130
131/*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero.  Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139const u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x0, 0x0,		/* cb_command */
142	0x0, 0x0, 0x0, 0x0,	/* link_addr */
143	0x0,	/*  0 */
144	0x0,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x0,	/*  5 */
149	0x32,	/*  6 */
150	0x0,	/*  7 */
151	0x0,	/*  8 */
152	0x0,	/*  9 */
153	0x6,	/* 10 */
154	0x0,	/* 11 */
155	0x0,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf0,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5,	/* 21 */
165	0x0,	/* 22 */
166	0x0,	/* 23 */
167	0x0,	/* 24 */
168	0x0,	/* 25 */
169	0x0,	/* 26 */
170	0x0,	/* 27 */
171	0x0,	/* 28 */
172	0x0,	/* 29 */
173	0x0,	/* 30 */
174	0x0,	/* 31 */
175};
176
177void	fxp_mii_initmedia(struct fxp_softc *);
178void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180void	fxp_80c24_initmedia(struct fxp_softc *);
181int	fxp_80c24_mediachange(struct ifnet *);
182void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184void	fxp_start(struct ifnet *);
185int	fxp_ioctl(struct ifnet *, u_long, void *);
186void	fxp_watchdog(struct ifnet *);
187int	fxp_init(struct ifnet *);
188void	fxp_stop(struct ifnet *, int);
189
190void	fxp_txintr(struct fxp_softc *);
191int	fxp_rxintr(struct fxp_softc *);
192
193int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195void	fxp_rxdrain(struct fxp_softc *);
196int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197int	fxp_mdi_read(struct device *, int, int);
198void	fxp_statchg(struct device *);
199void	fxp_mdi_write(struct device *, int, int, int);
200void	fxp_autosize_eeprom(struct fxp_softc*);
201void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203void	fxp_eeprom_update_cksum(struct fxp_softc *);
204void	fxp_get_info(struct fxp_softc *, u_int8_t *);
205void	fxp_tick(void *);
206void	fxp_mc_setup(struct fxp_softc *);
207void	fxp_load_ucode(struct fxp_softc *);
208
209int	fxp_copy_small = 0;
210
211/*
212 * Variables for interrupt mitigating microcode.
213 */
214int	fxp_int_delay = 1000;		/* usec */
215int	fxp_bundle_max = 6;		/* packets */
216
217struct fxp_phytype {
218	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
219	void	(*fp_init)(struct fxp_softc *);
220} fxp_phytype_table[] = {
221	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
222	{ -1,				fxp_mii_initmedia },
223};
224
225/*
226 * Set initial transmit threshold at 64 (512 bytes). This is
227 * increased by 64 (512 bytes) at a time, to maximum of 192
228 * (1536 bytes), if an underrun occurs.
229 */
230static int tx_threshold = 64;
231
232/*
233 * Wait for the previous command to be accepted (but not necessarily
234 * completed).
235 */
236static inline void
237fxp_scb_wait(struct fxp_softc *sc)
238{
239	int i = 10000;
240
241	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
242		delay(2);
243	if (i == 0)
244		log(LOG_WARNING,
245		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246}
247
248/*
249 * Submit a command to the i82557.
250 */
251static inline void
252fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253{
254
255	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256}
257
258/*
259 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
260 */
261void
262fxp_attach(struct fxp_softc *sc)
263{
264	u_int8_t enaddr[ETHER_ADDR_LEN];
265	struct ifnet *ifp;
266	bus_dma_segment_t seg;
267	int rseg, i, error;
268	struct fxp_phytype *fp;
269
270	callout_init(&sc->sc_callout, 0);
271
272	/*
273	 * Enable some good stuff on i82558 and later.
274	 */
275	if (sc->sc_rev >= FXP_REV_82558_A4) {
276		/* Enable the extended TxCB. */
277		sc->sc_flags |= FXPF_EXT_TXCB;
278	}
279
280        /*
281	 * Enable use of extended RFDs and TCBs for 82550
282	 * and later chips. Note: we need extended TXCB support
283	 * too, but that's already enabled by the code above.
284	 * Be careful to do this only on the right devices.
285	 */
286	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
287		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
288		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
289	} else {
290		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
291	}
292
293	sc->sc_rfa_size =
294	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
295
296	/*
297	 * Allocate the control data structures, and create and load the
298	 * DMA map for it.
299	 */
300	if ((error = bus_dmamem_alloc(sc->sc_dmat,
301	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
302	    0)) != 0) {
303		aprint_error(
304		    "%s: unable to allocate control data, error = %d\n",
305		    sc->sc_dev.dv_xname, error);
306		goto fail_0;
307	}
308
309	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
310	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
311	    BUS_DMA_COHERENT)) != 0) {
312		aprint_error("%s: unable to map control data, error = %d\n",
313		    sc->sc_dev.dv_xname, error);
314		goto fail_1;
315	}
316	sc->sc_cdseg = seg;
317	sc->sc_cdnseg = rseg;
318
319	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
320
321	if ((error = bus_dmamap_create(sc->sc_dmat,
322	    sizeof(struct fxp_control_data), 1,
323	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
324		aprint_error("%s: unable to create control data DMA map, "
325		    "error = %d\n", sc->sc_dev.dv_xname, error);
326		goto fail_2;
327	}
328
329	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
330	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
331	    0)) != 0) {
332		aprint_error(
333		    "%s: can't load control data DMA map, error = %d\n",
334		    sc->sc_dev.dv_xname, error);
335		goto fail_3;
336	}
337
338	/*
339	 * Create the transmit buffer DMA maps.
340	 */
341	for (i = 0; i < FXP_NTXCB; i++) {
342		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
343		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
344		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
345			aprint_error("%s: unable to create tx DMA map %d, "
346			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
347			goto fail_4;
348		}
349	}
350
351	/*
352	 * Create the receive buffer DMA maps.
353	 */
354	for (i = 0; i < FXP_NRFABUFS; i++) {
355		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
356		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
357			aprint_error("%s: unable to create rx DMA map %d, "
358			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
359			goto fail_5;
360		}
361	}
362
363	/* Initialize MAC address and media structures. */
364	fxp_get_info(sc, enaddr);
365
366	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
367	    ether_sprintf(enaddr));
368
369	ifp = &sc->sc_ethercom.ec_if;
370
371	/*
372	 * Get info about our media interface, and initialize it.  Note
373	 * the table terminates itself with a phy of -1, indicating
374	 * that we're using MII.
375	 */
376	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
377		if (fp->fp_phy == sc->phy_primary_device)
378			break;
379	(*fp->fp_init)(sc);
380
381	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
382	ifp->if_softc = sc;
383	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
384	ifp->if_ioctl = fxp_ioctl;
385	ifp->if_start = fxp_start;
386	ifp->if_watchdog = fxp_watchdog;
387	ifp->if_init = fxp_init;
388	ifp->if_stop = fxp_stop;
389	IFQ_SET_READY(&ifp->if_snd);
390
391	if (sc->sc_flags & FXPF_IPCB) {
392		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
393		/*
394		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
395		 * at least, on i82550 rev.12.
396		 * specifically, it doesn't calculate ipv4 checksum correctly
397		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
398		 * FreeBSD driver has related comments.
399		 */
400		ifp->if_capabilities =
401		    IFCAP_CSUM_IPv4_Rx |
402		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
403		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
404		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
405	}
406
407	/*
408	 * We can support 802.1Q VLAN-sized frames.
409	 */
410	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
411
412	/*
413	 * Attach the interface.
414	 */
415	if_attach(ifp);
416	ether_ifattach(ifp, enaddr);
417#if NRND > 0
418	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
419	    RND_TYPE_NET, 0);
420#endif
421
422#ifdef FXP_EVENT_COUNTERS
423	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
424	    NULL, sc->sc_dev.dv_xname, "txstall");
425	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
426	    NULL, sc->sc_dev.dv_xname, "txintr");
427	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
428	    NULL, sc->sc_dev.dv_xname, "rxintr");
429	if (sc->sc_rev >= FXP_REV_82558_A4) {
430		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
431		    NULL, sc->sc_dev.dv_xname, "txpause");
432		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
433		    NULL, sc->sc_dev.dv_xname, "rxpause");
434	}
435#endif /* FXP_EVENT_COUNTERS */
436
437	/* The attach is successful. */
438	sc->sc_flags |= FXPF_ATTACHED;
439
440	return;
441
442	/*
443	 * Free any resources we've allocated during the failed attach
444	 * attempt.  Do this in reverse order and fall though.
445	 */
446 fail_5:
447	for (i = 0; i < FXP_NRFABUFS; i++) {
448		if (sc->sc_rxmaps[i] != NULL)
449			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
450	}
451 fail_4:
452	for (i = 0; i < FXP_NTXCB; i++) {
453		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
454			bus_dmamap_destroy(sc->sc_dmat,
455			    FXP_DSTX(sc, i)->txs_dmamap);
456	}
457	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
458 fail_3:
459	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
460 fail_2:
461	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
462	    sizeof(struct fxp_control_data));
463 fail_1:
464	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
465 fail_0:
466	return;
467}
468
469void
470fxp_mii_initmedia(struct fxp_softc *sc)
471{
472	int flags;
473
474	sc->sc_flags |= FXPF_MII;
475
476	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
477	sc->sc_mii.mii_readreg = fxp_mdi_read;
478	sc->sc_mii.mii_writereg = fxp_mdi_write;
479	sc->sc_mii.mii_statchg = fxp_statchg;
480
481	sc->sc_ethercom.ec_mii = &sc->sc_mii;
482	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
483	    fxp_mii_mediastatus);
484
485	flags = MIIF_NOISOLATE;
486	if (sc->sc_rev >= FXP_REV_82558_A4)
487		flags |= MIIF_DOPAUSE;
488	/*
489	 * The i82557 wedges if all of its PHYs are isolated!
490	 */
491	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
492	    MII_OFFSET_ANY, flags);
493	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
494		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
495		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
496	} else
497		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
498}
499
500void
501fxp_80c24_initmedia(struct fxp_softc *sc)
502{
503
504	/*
505	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
506	 * doesn't have a programming interface of any sort.  The
507	 * media is sensed automatically based on how the link partner
508	 * is configured.  This is, in essence, manual configuration.
509	 */
510	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
511	    sc->sc_dev.dv_xname);
512	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
513	    fxp_80c24_mediastatus);
514	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
515	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
516}
517
518/*
519 * Initialize the interface media.
520 */
521void
522fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
523{
524	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
525
526	/*
527	 * Reset to a stable state.
528	 */
529	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
530	DELAY(100);
531
532	sc->sc_eeprom_size = 0;
533	fxp_autosize_eeprom(sc);
534	if (sc->sc_eeprom_size == 0) {
535		aprint_error("%s: failed to detect EEPROM size\n",
536		    sc->sc_dev.dv_xname);
537		sc->sc_eeprom_size = 6; /* XXX panic here? */
538	}
539#ifdef DEBUG
540	aprint_debug("%s: detected %d word EEPROM\n",
541	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
542#endif
543
544	/*
545	 * Get info about the primary PHY
546	 */
547	fxp_read_eeprom(sc, &data, 6, 1);
548	sc->phy_primary_device =
549	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
550
551	/*
552	 * Read MAC address.
553	 */
554	fxp_read_eeprom(sc, myea, 0, 3);
555	enaddr[0] = myea[0] & 0xff;
556	enaddr[1] = myea[0] >> 8;
557	enaddr[2] = myea[1] & 0xff;
558	enaddr[3] = myea[1] >> 8;
559	enaddr[4] = myea[2] & 0xff;
560	enaddr[5] = myea[2] >> 8;
561
562	/*
563	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
564	 * as some i82559 designs, have a defect where the chip can
565	 * cause a PCI protocol violation if it receives a CU_RESUME
566	 * command when it is entering the IDLE state.
567	 *
568	 * The work-around is to disable Dynamic Standby Mode, so that
569	 * the chip never deasserts #CLKRUN, and always remains in the
570	 * active state.
571	 *
572	 * Unfortunately, the only way to disable Dynamic Standby is
573	 * to frob an EEPROM setting and reboot (the EEPROM setting
574	 * is only consulted when the PCI bus comes out of reset).
575	 *
576	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577	 */
578	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
579		fxp_read_eeprom(sc, &data, 10, 1);
580		if (data & 0x02) {		/* STB enable */
581			aprint_error("%s: WARNING: "
582			    "Disabling dynamic standby mode in EEPROM "
583			    "to work around a\n",
584			    sc->sc_dev.dv_xname);
585			aprint_normal(
586			    "%s: WARNING: hardware bug.  You must reset "
587			    "the system before using this\n",
588			    sc->sc_dev.dv_xname);
589			aprint_normal("%s: WARNING: interface.\n",
590			    sc->sc_dev.dv_xname);
591			data &= ~0x02;
592			fxp_write_eeprom(sc, &data, 10, 1);
593			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
594			    sc->sc_dev.dv_xname, data);
595			fxp_eeprom_update_cksum(sc);
596		}
597	}
598
599	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
600	/* Due to false positives we make it conditional on setting link1 */
601	fxp_read_eeprom(sc, &data, 3, 1);
602	if ((data & 0x03) != 0x03) {
603		aprint_verbose("%s: May need receiver lock-up workaround\n",
604		    sc->sc_dev.dv_xname);
605	}
606}
607
608static void
609fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
610{
611	uint16_t reg;
612	int x;
613
614	for (x = 1 << (len - 1); x != 0; x >>= 1) {
615		DELAY(40);
616		if (data & x)
617			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
618		else
619			reg = FXP_EEPROM_EECS;
620		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
621		DELAY(40);
622		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
623		    reg | FXP_EEPROM_EESK);
624		DELAY(40);
625		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
626	}
627	DELAY(40);
628}
629
630/*
631 * Figure out EEPROM size.
632 *
633 * 559's can have either 64-word or 256-word EEPROMs, the 558
634 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
635 * talks about the existence of 16 to 256 word EEPROMs.
636 *
637 * The only known sizes are 64 and 256, where the 256 version is used
638 * by CardBus cards to store CIS information.
639 *
640 * The address is shifted in msb-to-lsb, and after the last
641 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
642 * after which follows the actual data. We try to detect this zero, by
643 * probing the data-out bit in the EEPROM control register just after
644 * having shifted in a bit. If the bit is zero, we assume we've
645 * shifted enough address bits. The data-out should be tri-state,
646 * before this, which should translate to a logical one.
647 *
648 * Other ways to do this would be to try to read a register with known
649 * contents with a varying number of address bits, but no such
650 * register seem to be available. The high bits of register 10 are 01
651 * on the 558 and 559, but apparently not on the 557.
652 *
653 * The Linux driver computes a checksum on the EEPROM data, but the
654 * value of this checksum is not very well documented.
655 */
656
657void
658fxp_autosize_eeprom(struct fxp_softc *sc)
659{
660	int x;
661
662	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
663	DELAY(40);
664
665	/* Shift in read opcode. */
666	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
667
668	/*
669	 * Shift in address, wait for the dummy zero following a correct
670	 * address shift.
671	 */
672	for (x = 1; x <= 8; x++) {
673		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
674		DELAY(40);
675		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
676		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
677		DELAY(40);
678		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
679		    FXP_EEPROM_EEDO) == 0)
680			break;
681		DELAY(40);
682		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
683		DELAY(40);
684	}
685	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
686	DELAY(40);
687	if (x != 6 && x != 8) {
688#ifdef DEBUG
689		printf("%s: strange EEPROM size (%d)\n",
690		    sc->sc_dev.dv_xname, 1 << x);
691#endif
692	} else
693		sc->sc_eeprom_size = x;
694}
695
696/*
697 * Read from the serial EEPROM. Basically, you manually shift in
698 * the read opcode (one bit at a time) and then shift in the address,
699 * and then you shift out the data (all of this one bit at a time).
700 * The word size is 16 bits, so you have to provide the address for
701 * every 16 bits of data.
702 */
703void
704fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
705{
706	u_int16_t reg;
707	int i, x;
708
709	for (i = 0; i < words; i++) {
710		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
711
712		/* Shift in read opcode. */
713		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
714
715		/* Shift in address. */
716		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
717
718		reg = FXP_EEPROM_EECS;
719		data[i] = 0;
720
721		/* Shift out data. */
722		for (x = 16; x > 0; x--) {
723			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
724			    reg | FXP_EEPROM_EESK);
725			DELAY(40);
726			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
727			    FXP_EEPROM_EEDO)
728				data[i] |= (1 << (x - 1));
729			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
730			DELAY(40);
731		}
732		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
733		DELAY(40);
734	}
735}
736
737/*
738 * Write data to the serial EEPROM.
739 */
740void
741fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
742{
743	int i, j;
744
745	for (i = 0; i < words; i++) {
746		/* Erase/write enable. */
747		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
748		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
749		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
750		    sc->sc_eeprom_size);
751		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752		DELAY(4);
753
754		/* Shift in write opcode, address, data. */
755		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
756		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
757		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
758		fxp_eeprom_shiftin(sc, data[i], 16);
759		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
760		DELAY(4);
761
762		/* Wait for the EEPROM to finish up. */
763		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
764		DELAY(4);
765		for (j = 0; j < 1000; j++) {
766			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
767			    FXP_EEPROM_EEDO)
768				break;
769			DELAY(50);
770		}
771		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
772		DELAY(4);
773
774		/* Erase/write disable. */
775		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
776		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
777		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
778		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
779		DELAY(4);
780	}
781}
782
783/*
784 * Update the checksum of the EEPROM.
785 */
786void
787fxp_eeprom_update_cksum(struct fxp_softc *sc)
788{
789	int i;
790	uint16_t data, cksum;
791
792	cksum = 0;
793	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
794		fxp_read_eeprom(sc, &data, i, 1);
795		cksum += data;
796	}
797	i = (1 << sc->sc_eeprom_size) - 1;
798	cksum = 0xbaba - cksum;
799	fxp_read_eeprom(sc, &data, i, 1);
800	fxp_write_eeprom(sc, &cksum, i, 1);
801	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
802	    sc->sc_dev.dv_xname, i, data, cksum);
803}
804
805/*
806 * Start packet transmission on the interface.
807 */
808void
809fxp_start(struct ifnet *ifp)
810{
811	struct fxp_softc *sc = ifp->if_softc;
812	struct mbuf *m0, *m;
813	struct fxp_txdesc *txd;
814	struct fxp_txsoft *txs;
815	bus_dmamap_t dmamap;
816	int error, lasttx, nexttx, opending, seg;
817
818	/*
819	 * If we want a re-init, bail out now.
820	 */
821	if (sc->sc_flags & FXPF_WANTINIT) {
822		ifp->if_flags |= IFF_OACTIVE;
823		return;
824	}
825
826	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
827		return;
828
829	/*
830	 * Remember the previous txpending and the current lasttx.
831	 */
832	opending = sc->sc_txpending;
833	lasttx = sc->sc_txlast;
834
835	/*
836	 * Loop through the send queue, setting up transmit descriptors
837	 * until we drain the queue, or use up all available transmit
838	 * descriptors.
839	 */
840	for (;;) {
841		struct fxp_tbd *tbdp;
842		int csum_flags;
843
844		/*
845		 * Grab a packet off the queue.
846		 */
847		IFQ_POLL(&ifp->if_snd, m0);
848		if (m0 == NULL)
849			break;
850		m = NULL;
851
852		if (sc->sc_txpending == FXP_NTXCB - 1) {
853			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
854			break;
855		}
856
857		/*
858		 * Get the next available transmit descriptor.
859		 */
860		nexttx = FXP_NEXTTX(sc->sc_txlast);
861		txd = FXP_CDTX(sc, nexttx);
862		txs = FXP_DSTX(sc, nexttx);
863		dmamap = txs->txs_dmamap;
864
865		/*
866		 * Load the DMA map.  If this fails, the packet either
867		 * didn't fit in the allotted number of frags, or we were
868		 * short on resources.  In this case, we'll copy and try
869		 * again.
870		 */
871		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
872		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
873			MGETHDR(m, M_DONTWAIT, MT_DATA);
874			if (m == NULL) {
875				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
876				    sc->sc_dev.dv_xname);
877				break;
878			}
879			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
880			if (m0->m_pkthdr.len > MHLEN) {
881				MCLGET(m, M_DONTWAIT);
882				if ((m->m_flags & M_EXT) == 0) {
883					log(LOG_ERR,
884					    "%s: unable to allocate Tx "
885					    "cluster\n", sc->sc_dev.dv_xname);
886					m_freem(m);
887					break;
888				}
889			}
890			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
891			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
892			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
893			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
894			if (error) {
895				log(LOG_ERR, "%s: unable to load Tx buffer, "
896				    "error = %d\n", sc->sc_dev.dv_xname, error);
897				break;
898			}
899		}
900
901		IFQ_DEQUEUE(&ifp->if_snd, m0);
902		csum_flags = m0->m_pkthdr.csum_flags;
903		if (m != NULL) {
904			m_freem(m0);
905			m0 = m;
906		}
907
908		/* Initialize the fraglist. */
909		tbdp = txd->txd_tbd;
910		if (sc->sc_flags & FXPF_IPCB)
911			tbdp++;
912		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
913			tbdp[seg].tb_addr =
914			    htole32(dmamap->dm_segs[seg].ds_addr);
915			tbdp[seg].tb_size =
916			    htole32(dmamap->dm_segs[seg].ds_len);
917		}
918
919		/* Sync the DMA map. */
920		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
921		    BUS_DMASYNC_PREWRITE);
922
923		/*
924		 * Store a pointer to the packet so we can free it later.
925		 */
926		txs->txs_mbuf = m0;
927
928		/*
929		 * Initialize the transmit descriptor.
930		 */
931		/* BIG_ENDIAN: no need to swap to store 0 */
932		txd->txd_txcb.cb_status = 0;
933		txd->txd_txcb.cb_command =
934		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
935		txd->txd_txcb.tx_threshold = tx_threshold;
936		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
937
938		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
939		if (sc->sc_flags & FXPF_IPCB) {
940			struct m_tag *vtag;
941			struct fxp_ipcb *ipcb;
942			/*
943			 * Deal with TCP/IP checksum offload. Note that
944			 * in order for TCP checksum offload to work,
945			 * the pseudo header checksum must have already
946			 * been computed and stored in the checksum field
947			 * in the TCP header. The stack should have
948			 * already done this for us.
949			 */
950			ipcb = &txd->txd_u.txdu_ipcb;
951			memset(ipcb, 0, sizeof(*ipcb));
952			/*
953			 * always do hardware parsing.
954			 */
955			ipcb->ipcb_ip_activation_high =
956			    FXP_IPCB_HARDWAREPARSING_ENABLE;
957			/*
958			 * ip checksum offloading.
959			 */
960			if (csum_flags & M_CSUM_IPv4) {
961				ipcb->ipcb_ip_schedule |=
962				    FXP_IPCB_IP_CHECKSUM_ENABLE;
963			}
964			/*
965			 * TCP/UDP checksum offloading.
966			 */
967			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
968				ipcb->ipcb_ip_schedule |=
969				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
970			}
971
972			/*
973			 * request VLAN tag insertion if needed.
974			 */
975			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
976			if (vtag) {
977				ipcb->ipcb_vlan_id =
978				    htobe16(*(u_int *)(vtag + 1));
979				ipcb->ipcb_ip_activation_high |=
980				    FXP_IPCB_INSERTVLAN_ENABLE;
981			}
982		} else {
983			KASSERT((csum_flags &
984			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
985		}
986
987		FXP_CDTXSYNC(sc, nexttx,
988		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
989
990		/* Advance the tx pointer. */
991		sc->sc_txpending++;
992		sc->sc_txlast = nexttx;
993
994#if NBPFILTER > 0
995		/*
996		 * Pass packet to bpf if there is a listener.
997		 */
998		if (ifp->if_bpf)
999			bpf_mtap(ifp->if_bpf, m0);
1000#endif
1001	}
1002
1003	if (sc->sc_txpending == FXP_NTXCB - 1) {
1004		/* No more slots; notify upper layer. */
1005		ifp->if_flags |= IFF_OACTIVE;
1006	}
1007
1008	if (sc->sc_txpending != opending) {
1009		/*
1010		 * We enqueued packets.  If the transmitter was idle,
1011		 * reset the txdirty pointer.
1012		 */
1013		if (opending == 0)
1014			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1015
1016		/*
1017		 * Cause the chip to interrupt and suspend command
1018		 * processing once the last packet we've enqueued
1019		 * has been transmitted.
1020		 *
1021		 * To avoid a race between updating status bits
1022		 * by the fxp chip and clearing command bits
1023		 * by this function on machines which don't have
1024		 * atomic methods to clear/set bits in memory
1025		 * smaller than 32bits (both cb_status and cb_command
1026		 * members are uint16_t and in the same 32bit word),
1027		 * we have to prepare a dummy TX descriptor which has
1028		 * NOP command and just causes a TX completion interrupt.
1029		 */
1030		sc->sc_txpending++;
1031		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1032		txd = FXP_CDTX(sc, sc->sc_txlast);
1033		/* BIG_ENDIAN: no need to swap to store 0 */
1034		txd->txd_txcb.cb_status = 0;
1035		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1036		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1037		FXP_CDTXSYNC(sc, sc->sc_txlast,
1038		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1039
1040		/*
1041		 * The entire packet chain is set up.  Clear the suspend bit
1042		 * on the command prior to the first packet we set up.
1043		 */
1044		FXP_CDTXSYNC(sc, lasttx,
1045		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1047		    htole16(~FXP_CB_COMMAND_S);
1048		FXP_CDTXSYNC(sc, lasttx,
1049		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050
1051		/*
1052		 * Issue a Resume command in case the chip was suspended.
1053		 */
1054		fxp_scb_wait(sc);
1055		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1056
1057		/* Set a watchdog timer in case the chip flakes out. */
1058		ifp->if_timer = 5;
1059	}
1060}
1061
1062/*
1063 * Process interface interrupts.
1064 */
1065int
1066fxp_intr(void *arg)
1067{
1068	struct fxp_softc *sc = arg;
1069	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1070	bus_dmamap_t rxmap;
1071	int claimed = 0, rnr;
1072	u_int8_t statack;
1073
1074	if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1075		return (0);
1076	/*
1077	 * If the interface isn't running, don't try to
1078	 * service the interrupt.. just ack it and bail.
1079	 */
1080	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1081		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1082		if (statack) {
1083			claimed = 1;
1084			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1085		}
1086		return (claimed);
1087	}
1088
1089	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1090		claimed = 1;
1091
1092		/*
1093		 * First ACK all the interrupts in this pass.
1094		 */
1095		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1096
1097		/*
1098		 * Process receiver interrupts. If a no-resource (RNR)
1099		 * condition exists, get whatever packets we can and
1100		 * re-start the receiver.
1101		 */
1102		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1103		    1 : 0;
1104		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1105		    FXP_SCB_STATACK_SWI)) {
1106			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1107			rnr |= fxp_rxintr(sc);
1108		}
1109
1110		/*
1111		 * Free any finished transmit mbuf chains.
1112		 */
1113		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1114			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1115			fxp_txintr(sc);
1116
1117			/*
1118			 * Try to get more packets going.
1119			 */
1120			fxp_start(ifp);
1121
1122			if (sc->sc_txpending == 0) {
1123				/*
1124				 * If we want a re-init, do that now.
1125				 */
1126				if (sc->sc_flags & FXPF_WANTINIT)
1127					(void) fxp_init(ifp);
1128			}
1129		}
1130
1131		if (rnr) {
1132			fxp_scb_wait(sc);
1133			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1134			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1135			fxp_scb_wait(sc);
1136			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1137			    rxmap->dm_segs[0].ds_addr +
1138			    RFA_ALIGNMENT_FUDGE);
1139			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1140		}
1141	}
1142
1143#if NRND > 0
1144	if (claimed)
1145		rnd_add_uint32(&sc->rnd_source, statack);
1146#endif
1147	return (claimed);
1148}
1149
1150/*
1151 * Handle transmit completion interrupts.
1152 */
1153void
1154fxp_txintr(struct fxp_softc *sc)
1155{
1156	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1157	struct fxp_txdesc *txd;
1158	struct fxp_txsoft *txs;
1159	int i;
1160	u_int16_t txstat;
1161
1162	ifp->if_flags &= ~IFF_OACTIVE;
1163	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1164	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1165		txd = FXP_CDTX(sc, i);
1166		txs = FXP_DSTX(sc, i);
1167
1168		FXP_CDTXSYNC(sc, i,
1169		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1170
1171		/* skip dummy NOP TX descriptor */
1172		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1173		    == FXP_CB_COMMAND_NOP)
1174			continue;
1175
1176		txstat = le16toh(txd->txd_txcb.cb_status);
1177
1178		if ((txstat & FXP_CB_STATUS_C) == 0)
1179			break;
1180
1181		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1182		    0, txs->txs_dmamap->dm_mapsize,
1183		    BUS_DMASYNC_POSTWRITE);
1184		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1185		m_freem(txs->txs_mbuf);
1186		txs->txs_mbuf = NULL;
1187	}
1188
1189	/* Update the dirty transmit buffer pointer. */
1190	sc->sc_txdirty = i;
1191
1192	/*
1193	 * Cancel the watchdog timer if there are no pending
1194	 * transmissions.
1195	 */
1196	if (sc->sc_txpending == 0)
1197		ifp->if_timer = 0;
1198}
1199
1200/*
1201 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1202 */
1203
1204int
1205fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1206{
1207	u_int16_t rxparsestat;
1208	u_int16_t csum_stat;
1209	u_int32_t csum_data;
1210	int csum_flags;
1211
1212	/*
1213	 * check VLAN tag stripping.
1214	 */
1215
1216	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1217		struct m_tag *vtag;
1218
1219		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1220		if (vtag == NULL)
1221			return ENOMEM;
1222		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1223		m_tag_prepend(m, vtag);
1224	}
1225
1226	/*
1227	 * check H/W Checksumming.
1228	 */
1229
1230	csum_stat = le16toh(rfa->cksum_stat);
1231	rxparsestat = le16toh(rfa->rx_parse_stat);
1232	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1233		return 0;
1234
1235	csum_flags = 0;
1236	csum_data = 0;
1237
1238	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1239		csum_flags = M_CSUM_IPv4;
1240		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1241			csum_flags |= M_CSUM_IPv4_BAD;
1242	}
1243
1244	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1245		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1246		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1247			csum_flags |= M_CSUM_TCP_UDP_BAD;
1248	}
1249
1250	m->m_pkthdr.csum_flags = csum_flags;
1251	m->m_pkthdr.csum_data = csum_data;
1252
1253	return 0;
1254}
1255
1256/*
1257 * Handle receive interrupts.
1258 */
1259int
1260fxp_rxintr(struct fxp_softc *sc)
1261{
1262	struct ethercom *ec = &sc->sc_ethercom;
1263	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1264	struct mbuf *m, *m0;
1265	bus_dmamap_t rxmap;
1266	struct fxp_rfa *rfa;
1267	int rnr;
1268	u_int16_t len, rxstat;
1269
1270	rnr = 0;
1271
1272	for (;;) {
1273		m = sc->sc_rxq.ifq_head;
1274		rfa = FXP_MTORFA(m);
1275		rxmap = M_GETCTX(m, bus_dmamap_t);
1276
1277		FXP_RFASYNC(sc, m,
1278		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1279
1280		rxstat = le16toh(rfa->rfa_status);
1281
1282		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1283			rnr = 1;
1284
1285		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1286			/*
1287			 * We have processed all of the
1288			 * receive buffers.
1289			 */
1290			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1291			return rnr;
1292		}
1293
1294		IF_DEQUEUE(&sc->sc_rxq, m);
1295
1296		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1297
1298		len = le16toh(rfa->actual_size) &
1299		    (m->m_ext.ext_size - 1);
1300
1301		if (len < sizeof(struct ether_header)) {
1302			/*
1303			 * Runt packet; drop it now.
1304			 */
1305			FXP_INIT_RFABUF(sc, m);
1306			continue;
1307		}
1308
1309		/*
1310		 * If support for 802.1Q VLAN sized frames is
1311		 * enabled, we need to do some additional error
1312		 * checking (as we are saving bad frames, in
1313		 * order to receive the larger ones).
1314		 */
1315		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1316		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1317			       FXP_RFA_STATUS_RNR|
1318			       FXP_RFA_STATUS_ALIGN|
1319			       FXP_RFA_STATUS_CRC)) != 0) {
1320			FXP_INIT_RFABUF(sc, m);
1321			continue;
1322		}
1323
1324		/* Do checksum checking. */
1325		m->m_pkthdr.csum_flags = 0;
1326		if (sc->sc_flags & FXPF_EXT_RFA)
1327			if (fxp_rx_hwcksum(m, rfa))
1328				goto dropit;
1329
1330		/*
1331		 * If the packet is small enough to fit in a
1332		 * single header mbuf, allocate one and copy
1333		 * the data into it.  This greatly reduces
1334		 * memory consumption when we receive lots
1335		 * of small packets.
1336		 *
1337		 * Otherwise, we add a new buffer to the receive
1338		 * chain.  If this fails, we drop the packet and
1339		 * recycle the old buffer.
1340		 */
1341		if (fxp_copy_small != 0 && len <= MHLEN) {
1342			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1343			if (m0 == NULL)
1344				goto dropit;
1345			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1346			memcpy(mtod(m0, void *),
1347			    mtod(m, void *), len);
1348			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1349			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1350			FXP_INIT_RFABUF(sc, m);
1351			m = m0;
1352		} else {
1353			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1354 dropit:
1355				ifp->if_ierrors++;
1356				FXP_INIT_RFABUF(sc, m);
1357				continue;
1358			}
1359		}
1360
1361		m->m_pkthdr.rcvif = ifp;
1362		m->m_pkthdr.len = m->m_len = len;
1363
1364#if NBPFILTER > 0
1365		/*
1366		 * Pass this up to any BPF listeners, but only
1367		 * pass it up the stack if it's for us.
1368		 */
1369		if (ifp->if_bpf)
1370			bpf_mtap(ifp->if_bpf, m);
1371#endif
1372
1373		/* Pass it on. */
1374		(*ifp->if_input)(ifp, m);
1375	}
1376}
1377
1378/*
1379 * Update packet in/out/collision statistics. The i82557 doesn't
1380 * allow you to access these counters without doing a fairly
1381 * expensive DMA to get _all_ of the statistics it maintains, so
1382 * we do this operation here only once per second. The statistics
1383 * counters in the kernel are updated from the previous dump-stats
1384 * DMA and then a new dump-stats DMA is started. The on-chip
1385 * counters are zeroed when the DMA completes. If we can't start
1386 * the DMA immediately, we don't wait - we just prepare to read
1387 * them again next time.
1388 */
1389void
1390fxp_tick(void *arg)
1391{
1392	struct fxp_softc *sc = arg;
1393	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1394	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1395	int s;
1396
1397	if (!device_is_active(&sc->sc_dev))
1398		return;
1399
1400	s = splnet();
1401
1402	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1403
1404	ifp->if_opackets += le32toh(sp->tx_good);
1405	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1406	if (sp->rx_good) {
1407		ifp->if_ipackets += le32toh(sp->rx_good);
1408		sc->sc_rxidle = 0;
1409	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1410		sc->sc_rxidle++;
1411	}
1412	ifp->if_ierrors +=
1413	    le32toh(sp->rx_crc_errors) +
1414	    le32toh(sp->rx_alignment_errors) +
1415	    le32toh(sp->rx_rnr_errors) +
1416	    le32toh(sp->rx_overrun_errors);
1417	/*
1418	 * If any transmit underruns occurred, bump up the transmit
1419	 * threshold by another 512 bytes (64 * 8).
1420	 */
1421	if (sp->tx_underruns) {
1422		ifp->if_oerrors += le32toh(sp->tx_underruns);
1423		if (tx_threshold < 192)
1424			tx_threshold += 64;
1425	}
1426#ifdef FXP_EVENT_COUNTERS
1427	if (sc->sc_rev >= FXP_REV_82558_A4) {
1428		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1429		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1430	}
1431#endif
1432
1433	/*
1434	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1435	 * then assume the receiver has locked up and attempt to clear
1436	 * the condition by reprogramming the multicast filter (actually,
1437	 * resetting the interface). This is a work-around for a bug in
1438	 * the 82557 where the receiver locks up if it gets certain types
1439	 * of garbage in the synchronization bits prior to the packet header.
1440	 * This bug is supposed to only occur in 10Mbps mode, but has been
1441	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1442	 * speed transition).
1443	 */
1444	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1445		(void) fxp_init(ifp);
1446		splx(s);
1447		return;
1448	}
1449	/*
1450	 * If there is no pending command, start another stats
1451	 * dump. Otherwise punt for now.
1452	 */
1453	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1454		/*
1455		 * Start another stats dump.
1456		 */
1457		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1458		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1459	} else {
1460		/*
1461		 * A previous command is still waiting to be accepted.
1462		 * Just zero our copy of the stats and wait for the
1463		 * next timer event to update them.
1464		 */
1465		/* BIG_ENDIAN: no swap required to store 0 */
1466		sp->tx_good = 0;
1467		sp->tx_underruns = 0;
1468		sp->tx_total_collisions = 0;
1469
1470		sp->rx_good = 0;
1471		sp->rx_crc_errors = 0;
1472		sp->rx_alignment_errors = 0;
1473		sp->rx_rnr_errors = 0;
1474		sp->rx_overrun_errors = 0;
1475		if (sc->sc_rev >= FXP_REV_82558_A4) {
1476			sp->tx_pauseframes = 0;
1477			sp->rx_pauseframes = 0;
1478		}
1479	}
1480
1481	if (sc->sc_flags & FXPF_MII) {
1482		/* Tick the MII clock. */
1483		mii_tick(&sc->sc_mii);
1484	}
1485
1486	splx(s);
1487
1488	/*
1489	 * Schedule another timeout one second from now.
1490	 */
1491	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1492}
1493
1494/*
1495 * Drain the receive queue.
1496 */
1497void
1498fxp_rxdrain(struct fxp_softc *sc)
1499{
1500	bus_dmamap_t rxmap;
1501	struct mbuf *m;
1502
1503	for (;;) {
1504		IF_DEQUEUE(&sc->sc_rxq, m);
1505		if (m == NULL)
1506			break;
1507		rxmap = M_GETCTX(m, bus_dmamap_t);
1508		bus_dmamap_unload(sc->sc_dmat, rxmap);
1509		FXP_RXMAP_PUT(sc, rxmap);
1510		m_freem(m);
1511	}
1512}
1513
1514/*
1515 * Stop the interface. Cancels the statistics updater and resets
1516 * the interface.
1517 */
1518void
1519fxp_stop(struct ifnet *ifp, int disable)
1520{
1521	struct fxp_softc *sc = ifp->if_softc;
1522	struct fxp_txsoft *txs;
1523	int i;
1524
1525	/*
1526	 * Turn down interface (done early to avoid bad interactions
1527	 * between panics, shutdown hooks, and the watchdog timer)
1528	 */
1529	ifp->if_timer = 0;
1530	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1531
1532	/*
1533	 * Cancel stats updater.
1534	 */
1535	callout_stop(&sc->sc_callout);
1536	if (sc->sc_flags & FXPF_MII) {
1537		/* Down the MII. */
1538		mii_down(&sc->sc_mii);
1539	}
1540
1541	/*
1542	 * Issue software reset.  This unloads any microcode that
1543	 * might already be loaded.
1544	 */
1545	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1546	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1547	DELAY(50);
1548
1549	/*
1550	 * Release any xmit buffers.
1551	 */
1552	for (i = 0; i < FXP_NTXCB; i++) {
1553		txs = FXP_DSTX(sc, i);
1554		if (txs->txs_mbuf != NULL) {
1555			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1556			m_freem(txs->txs_mbuf);
1557			txs->txs_mbuf = NULL;
1558		}
1559	}
1560	sc->sc_txpending = 0;
1561
1562	if (disable) {
1563		fxp_rxdrain(sc);
1564		fxp_disable(sc);
1565	}
1566
1567}
1568
1569/*
1570 * Watchdog/transmission transmit timeout handler. Called when a
1571 * transmission is started on the interface, but no interrupt is
1572 * received before the timeout. This usually indicates that the
1573 * card has wedged for some reason.
1574 */
1575void
1576fxp_watchdog(struct ifnet *ifp)
1577{
1578	struct fxp_softc *sc = ifp->if_softc;
1579
1580	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1581	ifp->if_oerrors++;
1582
1583	(void) fxp_init(ifp);
1584}
1585
1586/*
1587 * Initialize the interface.  Must be called at splnet().
1588 */
1589int
1590fxp_init(struct ifnet *ifp)
1591{
1592	struct fxp_softc *sc = ifp->if_softc;
1593	struct fxp_cb_config *cbp;
1594	struct fxp_cb_ias *cb_ias;
1595	struct fxp_txdesc *txd;
1596	bus_dmamap_t rxmap;
1597	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1598
1599	if ((error = fxp_enable(sc)) != 0)
1600		goto out;
1601
1602	/*
1603	 * Cancel any pending I/O
1604	 */
1605	fxp_stop(ifp, 0);
1606
1607	/*
1608	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1609	 * flag, and this prevents the MII from detaching resulting in
1610	 * a panic. The flags field should perhaps be split in runtime
1611	 * flags and more static information. For now, just clear the
1612	 * only other flag set.
1613	 */
1614
1615	sc->sc_flags &= ~FXPF_WANTINIT;
1616
1617	/*
1618	 * Initialize base of CBL and RFA memory. Loading with zero
1619	 * sets it up for regular linear addressing.
1620	 */
1621	fxp_scb_wait(sc);
1622	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1623	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1624
1625	fxp_scb_wait(sc);
1626	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1627
1628	/*
1629	 * Initialize the multicast filter.  Do this now, since we might
1630	 * have to setup the config block differently.
1631	 */
1632	fxp_mc_setup(sc);
1633
1634	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1635	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1636
1637	/*
1638	 * In order to support receiving 802.1Q VLAN frames, we have to
1639	 * enable "save bad frames", since they are 4 bytes larger than
1640	 * the normal Ethernet maximum frame length.  On i82558 and later,
1641	 * we have a better mechanism for this.
1642	 */
1643	save_bf = 0;
1644	lrxen = 0;
1645	vlan_drop = 0;
1646	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1647		if (sc->sc_rev < FXP_REV_82558_A4)
1648			save_bf = 1;
1649		else
1650			lrxen = 1;
1651		if (sc->sc_rev >= FXP_REV_82550)
1652			vlan_drop = 1;
1653	}
1654
1655	/*
1656	 * Initialize base of dump-stats buffer.
1657	 */
1658	fxp_scb_wait(sc);
1659	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1660	    sc->sc_cddma + FXP_CDSTATSOFF);
1661	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1662	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1663
1664	cbp = &sc->sc_control_data->fcd_configcb;
1665	memset(cbp, 0, sizeof(struct fxp_cb_config));
1666
1667	/*
1668	 * Load microcode for this controller.
1669	 */
1670	fxp_load_ucode(sc);
1671
1672	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1673		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1674	else
1675		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1676
1677	/*
1678	 * This copy is kind of disgusting, but there are a bunch of must be
1679	 * zero and must be one bits in this structure and this is the easiest
1680	 * way to initialize them all to proper values.
1681	 */
1682	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1683
1684	/* BIG_ENDIAN: no need to swap to store 0 */
1685	cbp->cb_status =	0;
1686	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1687				    FXP_CB_COMMAND_EL);
1688	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1689	cbp->link_addr =	0xffffffff; /* (no) next command */
1690					/* bytes in config block */
1691	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1692				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1693	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1694	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1695	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1696	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1697	cbp->type_enable =	0;	/* actually reserved */
1698	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1699	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1700	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1701	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1702	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1703	cbp->late_scb =		0;	/* (don't) defer SCB update */
1704	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1705	cbp->ci_int =		1;	/* interrupt on CU idle */
1706	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1707	cbp->ext_stats_dis =	1;	/* disable extended counters */
1708	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1709	cbp->save_bf =		save_bf;/* save bad frames */
1710	cbp->disc_short_rx =	!prm;	/* discard short packets */
1711	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1712	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1713	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1714	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1715					/* interface mode */
1716	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1717	cbp->csma_dis =		0;	/* (don't) disable link */
1718	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1719	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1720	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1721	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1722	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1723	cbp->nsai =		1;	/* (don't) disable source addr insert */
1724	cbp->preamble_length =	2;	/* (7 byte) preamble */
1725	cbp->loopback =		0;	/* (don't) loopback */
1726	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1727	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1728	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1729	cbp->promiscuous =	prm;	/* promiscuous mode */
1730	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1731	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1732	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1733	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1734	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1735	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1736	cbp->padding =		1;	/* (do) pad short tx packets */
1737	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1738	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1739	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1740	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1741					/* must set wake_en in PMCSR also */
1742	cbp->force_fdx =	0;	/* (don't) force full duplex */
1743	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1744	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1745	cbp->mc_all =		allm;	/* accept all multicasts */
1746	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1747	cbp->vlan_drop_en =	vlan_drop;
1748
1749	if (sc->sc_rev < FXP_REV_82558_A4) {
1750		/*
1751		 * The i82557 has no hardware flow control, the values
1752		 * here are the defaults for the chip.
1753		 */
1754		cbp->fc_delay_lsb =	0;
1755		cbp->fc_delay_msb =	0x40;
1756		cbp->pri_fc_thresh =	3;
1757		cbp->tx_fc_dis =	0;
1758		cbp->rx_fc_restop =	0;
1759		cbp->rx_fc_restart =	0;
1760		cbp->fc_filter =	0;
1761		cbp->pri_fc_loc =	1;
1762	} else {
1763		cbp->fc_delay_lsb =	0x1f;
1764		cbp->fc_delay_msb =	0x01;
1765		cbp->pri_fc_thresh =	3;
1766		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1767		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1768		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1769		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1770		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1771		cbp->ext_stats_dis =	0;	/* enable extended stats */
1772	}
1773
1774	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1775
1776	/*
1777	 * Start the config command/DMA.
1778	 */
1779	fxp_scb_wait(sc);
1780	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1781	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1782	/* ...and wait for it to complete. */
1783	i = 1000;
1784	do {
1785		FXP_CDCONFIGSYNC(sc,
1786		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1787		DELAY(1);
1788	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1789	if (i == 0) {
1790		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1791		    sc->sc_dev.dv_xname, __LINE__);
1792		return (ETIMEDOUT);
1793	}
1794
1795	/*
1796	 * Initialize the station address.
1797	 */
1798	cb_ias = &sc->sc_control_data->fcd_iascb;
1799	/* BIG_ENDIAN: no need to swap to store 0 */
1800	cb_ias->cb_status = 0;
1801	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1802	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1803	cb_ias->link_addr = 0xffffffff;
1804	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1805
1806	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1807
1808	/*
1809	 * Start the IAS (Individual Address Setup) command/DMA.
1810	 */
1811	fxp_scb_wait(sc);
1812	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1813	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1814	/* ...and wait for it to complete. */
1815	i = 1000;
1816	do {
1817		FXP_CDIASSYNC(sc,
1818		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1819		DELAY(1);
1820	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1821	if (i == 0) {
1822		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1823		    sc->sc_dev.dv_xname, __LINE__);
1824		return (ETIMEDOUT);
1825	}
1826
1827	/*
1828	 * Initialize the transmit descriptor ring.  txlast is initialized
1829	 * to the end of the list so that it will wrap around to the first
1830	 * descriptor when the first packet is transmitted.
1831	 */
1832	for (i = 0; i < FXP_NTXCB; i++) {
1833		txd = FXP_CDTX(sc, i);
1834		memset(txd, 0, sizeof(*txd));
1835		txd->txd_txcb.cb_command =
1836		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1837		txd->txd_txcb.link_addr =
1838		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1839		if (sc->sc_flags & FXPF_EXT_TXCB)
1840			txd->txd_txcb.tbd_array_addr =
1841			    htole32(FXP_CDTBDADDR(sc, i) +
1842				    (2 * sizeof(struct fxp_tbd)));
1843		else
1844			txd->txd_txcb.tbd_array_addr =
1845			    htole32(FXP_CDTBDADDR(sc, i));
1846		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1847	}
1848	sc->sc_txpending = 0;
1849	sc->sc_txdirty = 0;
1850	sc->sc_txlast = FXP_NTXCB - 1;
1851
1852	/*
1853	 * Initialize the receive buffer list.
1854	 */
1855	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1856	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1857		rxmap = FXP_RXMAP_GET(sc);
1858		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1859			log(LOG_ERR, "%s: unable to allocate or map rx "
1860			    "buffer %d, error = %d\n",
1861			    sc->sc_dev.dv_xname,
1862			    sc->sc_rxq.ifq_len, error);
1863			/*
1864			 * XXX Should attempt to run with fewer receive
1865			 * XXX buffers instead of just failing.
1866			 */
1867			FXP_RXMAP_PUT(sc, rxmap);
1868			fxp_rxdrain(sc);
1869			goto out;
1870		}
1871	}
1872	sc->sc_rxidle = 0;
1873
1874	/*
1875	 * Give the transmit ring to the chip.  We do this by pointing
1876	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1877	 * issuing a start command.  It will execute the NOP and then
1878	 * suspend, pointing at the first descriptor.
1879	 */
1880	fxp_scb_wait(sc);
1881	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1882	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1883
1884	/*
1885	 * Initialize receiver buffer area - RFA.
1886	 */
1887#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1888	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1889	fxp_scb_wait(sc);
1890	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1891	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1892	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1893#endif
1894
1895	if (sc->sc_flags & FXPF_MII) {
1896		/*
1897		 * Set current media.
1898		 */
1899		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1900			goto out;
1901	}
1902
1903	/*
1904	 * ...all done!
1905	 */
1906	ifp->if_flags |= IFF_RUNNING;
1907	ifp->if_flags &= ~IFF_OACTIVE;
1908
1909	/*
1910	 * Request a software generated interrupt that will be used to
1911	 * (re)start the RU processing.  If we direct the chip to start
1912	 * receiving from the start of queue now, instead of letting the
1913	 * interrupt handler first process all received packets, we run
1914	 * the risk of having it overwrite mbuf clusters while they are
1915	 * being processed or after they have been returned to the pool.
1916	 */
1917	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1918
1919	/*
1920	 * Start the one second timer.
1921	 */
1922	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1923
1924	/*
1925	 * Attempt to start output on the interface.
1926	 */
1927	fxp_start(ifp);
1928
1929 out:
1930	if (error) {
1931		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1932		ifp->if_timer = 0;
1933		log(LOG_ERR, "%s: interface not running\n",
1934		    sc->sc_dev.dv_xname);
1935	}
1936	return (error);
1937}
1938
1939/*
1940 * Notify the world which media we're using.
1941 */
1942void
1943fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1944{
1945	struct fxp_softc *sc = ifp->if_softc;
1946
1947	if (sc->sc_enabled == 0) {
1948		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1949		ifmr->ifm_status = 0;
1950		return;
1951	}
1952
1953	ether_mediastatus(ifp, ifmr);
1954
1955	/*
1956	 * XXX Flow control is always turned on if the chip supports
1957	 * XXX it; we can't easily control it dynamically, since it
1958	 * XXX requires sending a setup packet.
1959	 */
1960	if (sc->sc_rev >= FXP_REV_82558_A4)
1961		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1962}
1963
1964int
1965fxp_80c24_mediachange(struct ifnet *ifp)
1966{
1967
1968	/* Nothing to do here. */
1969	return (0);
1970}
1971
1972void
1973fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1974{
1975	struct fxp_softc *sc = ifp->if_softc;
1976
1977	/*
1978	 * Media is currently-selected media.  We cannot determine
1979	 * the link status.
1980	 */
1981	ifmr->ifm_status = 0;
1982	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1983}
1984
1985/*
1986 * Add a buffer to the end of the RFA buffer list.
1987 * Return 0 if successful, error code on failure.
1988 *
1989 * The RFA struct is stuck at the beginning of mbuf cluster and the
1990 * data pointer is fixed up to point just past it.
1991 */
1992int
1993fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1994{
1995	struct mbuf *m;
1996	int error;
1997
1998	MGETHDR(m, M_DONTWAIT, MT_DATA);
1999	if (m == NULL)
2000		return (ENOBUFS);
2001
2002	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2003	MCLGET(m, M_DONTWAIT);
2004	if ((m->m_flags & M_EXT) == 0) {
2005		m_freem(m);
2006		return (ENOBUFS);
2007	}
2008
2009	if (unload)
2010		bus_dmamap_unload(sc->sc_dmat, rxmap);
2011
2012	M_SETCTX(m, rxmap);
2013
2014	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2015	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2016	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2017	if (error) {
2018		/* XXX XXX XXX */
2019		printf("%s: can't load rx DMA map %d, error = %d\n",
2020		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2021		panic("fxp_add_rfabuf");
2022	}
2023
2024	FXP_INIT_RFABUF(sc, m);
2025
2026	return (0);
2027}
2028
2029int
2030fxp_mdi_read(struct device *self, int phy, int reg)
2031{
2032	struct fxp_softc *sc = (struct fxp_softc *)self;
2033	int count = 10000;
2034	int value;
2035
2036	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2037	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2038
2039	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2040	    0x10000000) == 0 && count--)
2041		DELAY(10);
2042
2043	if (count <= 0)
2044		log(LOG_WARNING,
2045		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2046
2047	return (value & 0xffff);
2048}
2049
2050void
2051fxp_statchg(struct device *self)
2052{
2053
2054	/* Nothing to do. */
2055}
2056
2057void
2058fxp_mdi_write(struct device *self, int phy, int reg, int value)
2059{
2060	struct fxp_softc *sc = (struct fxp_softc *)self;
2061	int count = 10000;
2062
2063	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2064	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2065	    (value & 0xffff));
2066
2067	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2068	    count--)
2069		DELAY(10);
2070
2071	if (count <= 0)
2072		log(LOG_WARNING,
2073		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2074}
2075
2076int
2077fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2078{
2079	struct fxp_softc *sc = ifp->if_softc;
2080	struct ifreq *ifr = (struct ifreq *)data;
2081	int s, error;
2082
2083	s = splnet();
2084
2085	switch (cmd) {
2086	case SIOCSIFMEDIA:
2087	case SIOCGIFMEDIA:
2088		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2089		break;
2090
2091	default:
2092		error = ether_ioctl(ifp, cmd, data);
2093		if (error == ENETRESET) {
2094			if (ifp->if_flags & IFF_RUNNING) {
2095				/*
2096				 * Multicast list has changed; set the
2097				 * hardware filter accordingly.
2098				 */
2099				if (sc->sc_txpending) {
2100					sc->sc_flags |= FXPF_WANTINIT;
2101					error = 0;
2102				} else
2103					error = fxp_init(ifp);
2104			} else
2105				error = 0;
2106		}
2107		break;
2108	}
2109
2110	/* Try to get more packets going. */
2111	if (sc->sc_enabled)
2112		fxp_start(ifp);
2113
2114	splx(s);
2115	return (error);
2116}
2117
2118/*
2119 * Program the multicast filter.
2120 *
2121 * This function must be called at splnet().
2122 */
2123void
2124fxp_mc_setup(struct fxp_softc *sc)
2125{
2126	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2127	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2128	struct ethercom *ec = &sc->sc_ethercom;
2129	struct ether_multi *enm;
2130	struct ether_multistep step;
2131	int count, nmcasts;
2132
2133#ifdef DIAGNOSTIC
2134	if (sc->sc_txpending)
2135		panic("fxp_mc_setup: pending transmissions");
2136#endif
2137
2138	ifp->if_flags &= ~IFF_ALLMULTI;
2139
2140	/*
2141	 * Initialize multicast setup descriptor.
2142	 */
2143	nmcasts = 0;
2144	ETHER_FIRST_MULTI(step, ec, enm);
2145	while (enm != NULL) {
2146		/*
2147		 * Check for too many multicast addresses or if we're
2148		 * listening to a range.  Either way, we simply have
2149		 * to accept all multicasts.
2150		 */
2151		if (nmcasts >= MAXMCADDR ||
2152		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2153		    ETHER_ADDR_LEN) != 0) {
2154			/*
2155			 * Callers of this function must do the
2156			 * right thing with this.  If we're called
2157			 * from outside fxp_init(), the caller must
2158			 * detect if the state if IFF_ALLMULTI changes.
2159			 * If it does, the caller must then call
2160			 * fxp_init(), since allmulti is handled by
2161			 * the config block.
2162			 */
2163			ifp->if_flags |= IFF_ALLMULTI;
2164			return;
2165		}
2166		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2167		    ETHER_ADDR_LEN);
2168		nmcasts++;
2169		ETHER_NEXT_MULTI(step, enm);
2170	}
2171
2172	/* BIG_ENDIAN: no need to swap to store 0 */
2173	mcsp->cb_status = 0;
2174	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2175	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2176	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2177
2178	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2179
2180	/*
2181	 * Wait until the command unit is not active.  This should never
2182	 * happen since nothing is queued, but make sure anyway.
2183	 */
2184	count = 100;
2185	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2186	    FXP_SCB_CUS_ACTIVE && --count)
2187		DELAY(1);
2188	if (count == 0) {
2189		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2190		    sc->sc_dev.dv_xname, __LINE__);
2191		return;
2192	}
2193
2194	/*
2195	 * Start the multicast setup command/DMA.
2196	 */
2197	fxp_scb_wait(sc);
2198	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2199	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2200
2201	/* ...and wait for it to complete. */
2202	count = 1000;
2203	do {
2204		FXP_CDMCSSYNC(sc,
2205		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2206		DELAY(1);
2207	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2208	if (count == 0) {
2209		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2210		    sc->sc_dev.dv_xname, __LINE__);
2211		return;
2212	}
2213}
2214
2215static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2216static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2217static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2218static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2219static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2220static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2221
2222#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2223
2224static const struct ucode {
2225	int32_t		revision;
2226	const uint32_t	*ucode;
2227	size_t		length;
2228	uint16_t	int_delay_offset;
2229	uint16_t	bundle_max_offset;
2230} ucode_table[] = {
2231	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2232	  D101_CPUSAVER_DWORD, 0 },
2233
2234	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2235	  D101_CPUSAVER_DWORD, 0 },
2236
2237	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2238	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2239
2240	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2241	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2242
2243	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2244	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2245
2246	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2247	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2248
2249	{ 0, NULL, 0, 0, 0 }
2250};
2251
2252void
2253fxp_load_ucode(struct fxp_softc *sc)
2254{
2255	const struct ucode *uc;
2256	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2257	int count, i;
2258
2259	if (sc->sc_flags & FXPF_UCODE_LOADED)
2260		return;
2261
2262	/*
2263	 * Only load the uCode if the user has requested that
2264	 * we do so.
2265	 */
2266	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2267		sc->sc_int_delay = 0;
2268		sc->sc_bundle_max = 0;
2269		return;
2270	}
2271
2272	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2273		if (sc->sc_rev == uc->revision)
2274			break;
2275	}
2276	if (uc->ucode == NULL)
2277		return;
2278
2279	/* BIG ENDIAN: no need to swap to store 0 */
2280	cbp->cb_status = 0;
2281	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2282	cbp->link_addr = 0xffffffff;		/* (no) next command */
2283	for (i = 0; i < uc->length; i++)
2284		cbp->ucode[i] = htole32(uc->ucode[i]);
2285
2286	if (uc->int_delay_offset)
2287		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2288		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2289
2290	if (uc->bundle_max_offset)
2291		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2292		    htole16(fxp_bundle_max);
2293
2294	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2295
2296	/*
2297	 * Download the uCode to the chip.
2298	 */
2299	fxp_scb_wait(sc);
2300	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2301	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2302
2303	/* ...and wait for it to complete. */
2304	count = 10000;
2305	do {
2306		FXP_CDUCODESYNC(sc,
2307		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2308		DELAY(2);
2309	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2310	if (count == 0) {
2311		sc->sc_int_delay = 0;
2312		sc->sc_bundle_max = 0;
2313		log(LOG_WARNING, "%s: timeout loading microcode\n",
2314		    sc->sc_dev.dv_xname);
2315		return;
2316	}
2317
2318	if (sc->sc_int_delay != fxp_int_delay ||
2319	    sc->sc_bundle_max != fxp_bundle_max) {
2320		sc->sc_int_delay = fxp_int_delay;
2321		sc->sc_bundle_max = fxp_bundle_max;
2322		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2323		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2324		    sc->sc_int_delay,
2325		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2326	}
2327
2328	sc->sc_flags |= FXPF_UCODE_LOADED;
2329}
2330
2331int
2332fxp_enable(struct fxp_softc *sc)
2333{
2334
2335	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2336		if ((*sc->sc_enable)(sc) != 0) {
2337			log(LOG_ERR, "%s: device enable failed\n",
2338			    sc->sc_dev.dv_xname);
2339			return (EIO);
2340		}
2341	}
2342
2343	sc->sc_enabled = 1;
2344	return (0);
2345}
2346
2347void
2348fxp_disable(struct fxp_softc *sc)
2349{
2350
2351	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2352		(*sc->sc_disable)(sc);
2353		sc->sc_enabled = 0;
2354	}
2355}
2356
2357/*
2358 * fxp_activate:
2359 *
2360 *	Handle device activation/deactivation requests.
2361 */
2362int
2363fxp_activate(struct device *self, enum devact act)
2364{
2365	struct fxp_softc *sc = (void *) self;
2366	int s, error = 0;
2367
2368	s = splnet();
2369	switch (act) {
2370	case DVACT_ACTIVATE:
2371		error = EOPNOTSUPP;
2372		break;
2373
2374	case DVACT_DEACTIVATE:
2375		if (sc->sc_flags & FXPF_MII)
2376			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2377			    MII_OFFSET_ANY);
2378		if_deactivate(&sc->sc_ethercom.ec_if);
2379		break;
2380	}
2381	splx(s);
2382
2383	return (error);
2384}
2385
2386/*
2387 * fxp_detach:
2388 *
2389 *	Detach an i82557 interface.
2390 */
2391int
2392fxp_detach(struct fxp_softc *sc)
2393{
2394	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2395	int i;
2396
2397	/* Succeed now if there's no work to do. */
2398	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2399		return (0);
2400
2401	/* Unhook our tick handler. */
2402	callout_stop(&sc->sc_callout);
2403
2404	if (sc->sc_flags & FXPF_MII) {
2405		/* Detach all PHYs */
2406		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2407	}
2408
2409	/* Delete all remaining media. */
2410	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2411
2412#if NRND > 0
2413	rnd_detach_source(&sc->rnd_source);
2414#endif
2415	ether_ifdetach(ifp);
2416	if_detach(ifp);
2417
2418	for (i = 0; i < FXP_NRFABUFS; i++) {
2419		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2420		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2421	}
2422
2423	for (i = 0; i < FXP_NTXCB; i++) {
2424		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2425		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2426	}
2427
2428	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2429	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2430	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2431	    sizeof(struct fxp_control_data));
2432	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2433
2434	return (0);
2435}
2436