i82557.c revision 1.107
1/*	$NetBSD: i82557.c,v 1.107 2007/12/13 19:58:42 degroote Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.107 2007/12/13 19:58:42 degroote Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91#include <sys/syslog.h>
92
93#include <machine/endian.h>
94
95#include <uvm/uvm_extern.h>
96
97#if NRND > 0
98#include <sys/rnd.h>
99#endif
100
101#include <net/if.h>
102#include <net/if_dl.h>
103#include <net/if_media.h>
104#include <net/if_ether.h>
105
106#if NBPFILTER > 0
107#include <net/bpf.h>
108#endif
109
110#include <sys/bus.h>
111#include <sys/intr.h>
112
113#include <dev/mii/miivar.h>
114
115#include <dev/ic/i82557reg.h>
116#include <dev/ic/i82557var.h>
117
118#include <dev/microcode/i8255x/rcvbundl.h>
119
120/*
121 * NOTE!  On the Alpha, we have an alignment constraint.  The
122 * card DMAs the packet immediately following the RFA.  However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned.  To compensate,
125 * we actually offset the RFA 2 bytes into the cluster.  This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary.  HOWEVER!  This means that the RFA is misaligned!
128 */
129#define	RFA_ALIGNMENT_FUDGE	2
130
131/*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero.  Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139const u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x0, 0x0,		/* cb_command */
142	0x0, 0x0, 0x0, 0x0,	/* link_addr */
143	0x0,	/*  0 */
144	0x0,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x0,	/*  5 */
149	0x32,	/*  6 */
150	0x0,	/*  7 */
151	0x0,	/*  8 */
152	0x0,	/*  9 */
153	0x6,	/* 10 */
154	0x0,	/* 11 */
155	0x0,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf0,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5,	/* 21 */
165	0x0,	/* 22 */
166	0x0,	/* 23 */
167	0x0,	/* 24 */
168	0x0,	/* 25 */
169	0x0,	/* 26 */
170	0x0,	/* 27 */
171	0x0,	/* 28 */
172	0x0,	/* 29 */
173	0x0,	/* 30 */
174	0x0,	/* 31 */
175};
176
177void	fxp_mii_initmedia(struct fxp_softc *);
178int	fxp_mii_mediachange(struct ifnet *);
179void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181void	fxp_80c24_initmedia(struct fxp_softc *);
182int	fxp_80c24_mediachange(struct ifnet *);
183void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185void	fxp_start(struct ifnet *);
186int	fxp_ioctl(struct ifnet *, u_long, void *);
187void	fxp_watchdog(struct ifnet *);
188int	fxp_init(struct ifnet *);
189void	fxp_stop(struct ifnet *, int);
190
191void	fxp_txintr(struct fxp_softc *);
192int	fxp_rxintr(struct fxp_softc *);
193
194int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196void	fxp_rxdrain(struct fxp_softc *);
197int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198int	fxp_mdi_read(struct device *, int, int);
199void	fxp_statchg(struct device *);
200void	fxp_mdi_write(struct device *, int, int, int);
201void	fxp_autosize_eeprom(struct fxp_softc*);
202void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204void	fxp_eeprom_update_cksum(struct fxp_softc *);
205void	fxp_get_info(struct fxp_softc *, u_int8_t *);
206void	fxp_tick(void *);
207void	fxp_mc_setup(struct fxp_softc *);
208void	fxp_load_ucode(struct fxp_softc *);
209
210int	fxp_copy_small = 0;
211
212/*
213 * Variables for interrupt mitigating microcode.
214 */
215int	fxp_int_delay = 1000;		/* usec */
216int	fxp_bundle_max = 6;		/* packets */
217
218struct fxp_phytype {
219	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
220	void	(*fp_init)(struct fxp_softc *);
221} fxp_phytype_table[] = {
222	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
223	{ -1,				fxp_mii_initmedia },
224};
225
226/*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231static int tx_threshold = 64;
232
233/*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237static inline void
238fxp_scb_wait(struct fxp_softc *sc)
239{
240	int i = 10000;
241
242	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243		delay(2);
244	if (i == 0)
245		log(LOG_WARNING,
246		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
247}
248
249/*
250 * Submit a command to the i82557.
251 */
252static inline void
253fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
254{
255
256	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
257}
258
259/*
260 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
261 */
262void
263fxp_attach(struct fxp_softc *sc)
264{
265	u_int8_t enaddr[ETHER_ADDR_LEN];
266	struct ifnet *ifp;
267	bus_dma_segment_t seg;
268	int rseg, i, error;
269	struct fxp_phytype *fp;
270
271	callout_init(&sc->sc_callout, 0);
272
273	/*
274	 * Enable some good stuff on i82558 and later.
275	 */
276	if (sc->sc_rev >= FXP_REV_82558_A4) {
277		/* Enable the extended TxCB. */
278		sc->sc_flags |= FXPF_EXT_TXCB;
279	}
280
281        /*
282	 * Enable use of extended RFDs and TCBs for 82550
283	 * and later chips. Note: we need extended TXCB support
284	 * too, but that's already enabled by the code above.
285	 * Be careful to do this only on the right devices.
286	 */
287	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
288		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
289		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
290	} else {
291		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
292	}
293
294	sc->sc_rfa_size =
295	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
296
297	/*
298	 * Allocate the control data structures, and create and load the
299	 * DMA map for it.
300	 */
301	if ((error = bus_dmamem_alloc(sc->sc_dmat,
302	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
303	    0)) != 0) {
304		aprint_error(
305		    "%s: unable to allocate control data, error = %d\n",
306		    sc->sc_dev.dv_xname, error);
307		goto fail_0;
308	}
309
310	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
311	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
312	    BUS_DMA_COHERENT)) != 0) {
313		aprint_error("%s: unable to map control data, error = %d\n",
314		    sc->sc_dev.dv_xname, error);
315		goto fail_1;
316	}
317	sc->sc_cdseg = seg;
318	sc->sc_cdnseg = rseg;
319
320	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
321
322	if ((error = bus_dmamap_create(sc->sc_dmat,
323	    sizeof(struct fxp_control_data), 1,
324	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
325		aprint_error("%s: unable to create control data DMA map, "
326		    "error = %d\n", sc->sc_dev.dv_xname, error);
327		goto fail_2;
328	}
329
330	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
331	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
332	    0)) != 0) {
333		aprint_error(
334		    "%s: can't load control data DMA map, error = %d\n",
335		    sc->sc_dev.dv_xname, error);
336		goto fail_3;
337	}
338
339	/*
340	 * Create the transmit buffer DMA maps.
341	 */
342	for (i = 0; i < FXP_NTXCB; i++) {
343		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
344		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
345		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
346			aprint_error("%s: unable to create tx DMA map %d, "
347			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
348			goto fail_4;
349		}
350	}
351
352	/*
353	 * Create the receive buffer DMA maps.
354	 */
355	for (i = 0; i < FXP_NRFABUFS; i++) {
356		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
357		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
358			aprint_error("%s: unable to create rx DMA map %d, "
359			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
360			goto fail_5;
361		}
362	}
363
364	/* Initialize MAC address and media structures. */
365	fxp_get_info(sc, enaddr);
366
367	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
368	    ether_sprintf(enaddr));
369
370	ifp = &sc->sc_ethercom.ec_if;
371
372	/*
373	 * Get info about our media interface, and initialize it.  Note
374	 * the table terminates itself with a phy of -1, indicating
375	 * that we're using MII.
376	 */
377	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
378		if (fp->fp_phy == sc->phy_primary_device)
379			break;
380	(*fp->fp_init)(sc);
381
382	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
383	ifp->if_softc = sc;
384	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
385	ifp->if_ioctl = fxp_ioctl;
386	ifp->if_start = fxp_start;
387	ifp->if_watchdog = fxp_watchdog;
388	ifp->if_init = fxp_init;
389	ifp->if_stop = fxp_stop;
390	IFQ_SET_READY(&ifp->if_snd);
391
392	if (sc->sc_flags & FXPF_IPCB) {
393		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
394		/*
395		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
396		 * at least, on i82550 rev.12.
397		 * specifically, it doesn't calculate ipv4 checksum correctly
398		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
399		 * FreeBSD driver has related comments.
400		 */
401		ifp->if_capabilities =
402		    IFCAP_CSUM_IPv4_Rx |
403		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
404		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
405		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
406	}
407
408	/*
409	 * We can support 802.1Q VLAN-sized frames.
410	 */
411	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
412
413	/*
414	 * Attach the interface.
415	 */
416	if_attach(ifp);
417	ether_ifattach(ifp, enaddr);
418#if NRND > 0
419	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
420	    RND_TYPE_NET, 0);
421#endif
422
423#ifdef FXP_EVENT_COUNTERS
424	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
425	    NULL, sc->sc_dev.dv_xname, "txstall");
426	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
427	    NULL, sc->sc_dev.dv_xname, "txintr");
428	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
429	    NULL, sc->sc_dev.dv_xname, "rxintr");
430	if (sc->sc_rev >= FXP_REV_82558_A4) {
431		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
432		    NULL, sc->sc_dev.dv_xname, "txpause");
433		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
434		    NULL, sc->sc_dev.dv_xname, "rxpause");
435	}
436#endif /* FXP_EVENT_COUNTERS */
437
438	/* The attach is successful. */
439	sc->sc_flags |= FXPF_ATTACHED;
440
441	return;
442
443	/*
444	 * Free any resources we've allocated during the failed attach
445	 * attempt.  Do this in reverse order and fall though.
446	 */
447 fail_5:
448	for (i = 0; i < FXP_NRFABUFS; i++) {
449		if (sc->sc_rxmaps[i] != NULL)
450			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
451	}
452 fail_4:
453	for (i = 0; i < FXP_NTXCB; i++) {
454		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
455			bus_dmamap_destroy(sc->sc_dmat,
456			    FXP_DSTX(sc, i)->txs_dmamap);
457	}
458	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
459 fail_3:
460	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
461 fail_2:
462	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
463	    sizeof(struct fxp_control_data));
464 fail_1:
465	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
466 fail_0:
467	return;
468}
469
470void
471fxp_mii_initmedia(struct fxp_softc *sc)
472{
473	int flags;
474
475	sc->sc_flags |= FXPF_MII;
476
477	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
478	sc->sc_mii.mii_readreg = fxp_mdi_read;
479	sc->sc_mii.mii_writereg = fxp_mdi_write;
480	sc->sc_mii.mii_statchg = fxp_statchg;
481	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
482	    fxp_mii_mediastatus);
483
484	flags = MIIF_NOISOLATE;
485	if (sc->sc_rev >= FXP_REV_82558_A4)
486		flags |= MIIF_DOPAUSE;
487	/*
488	 * The i82557 wedges if all of its PHYs are isolated!
489	 */
490	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
491	    MII_OFFSET_ANY, flags);
492	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
493		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
494		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
495	} else
496		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497}
498
499void
500fxp_80c24_initmedia(struct fxp_softc *sc)
501{
502
503	/*
504	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
505	 * doesn't have a programming interface of any sort.  The
506	 * media is sensed automatically based on how the link partner
507	 * is configured.  This is, in essence, manual configuration.
508	 */
509	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
510	    sc->sc_dev.dv_xname);
511	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
512	    fxp_80c24_mediastatus);
513	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
514	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
515}
516
517/*
518 * Initialize the interface media.
519 */
520void
521fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
522{
523	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
524
525	/*
526	 * Reset to a stable state.
527	 */
528	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
529	DELAY(100);
530
531	sc->sc_eeprom_size = 0;
532	fxp_autosize_eeprom(sc);
533	if (sc->sc_eeprom_size == 0) {
534		aprint_error("%s: failed to detect EEPROM size\n",
535		    sc->sc_dev.dv_xname);
536		sc->sc_eeprom_size = 6; /* XXX panic here? */
537	}
538#ifdef DEBUG
539	aprint_debug("%s: detected %d word EEPROM\n",
540	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
541#endif
542
543	/*
544	 * Get info about the primary PHY
545	 */
546	fxp_read_eeprom(sc, &data, 6, 1);
547	sc->phy_primary_device =
548	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
549
550	/*
551	 * Read MAC address.
552	 */
553	fxp_read_eeprom(sc, myea, 0, 3);
554	enaddr[0] = myea[0] & 0xff;
555	enaddr[1] = myea[0] >> 8;
556	enaddr[2] = myea[1] & 0xff;
557	enaddr[3] = myea[1] >> 8;
558	enaddr[4] = myea[2] & 0xff;
559	enaddr[5] = myea[2] >> 8;
560
561	/*
562	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
563	 * as some i82559 designs, have a defect where the chip can
564	 * cause a PCI protocol violation if it receives a CU_RESUME
565	 * command when it is entering the IDLE state.
566	 *
567	 * The work-around is to disable Dynamic Standby Mode, so that
568	 * the chip never deasserts #CLKRUN, and always remains in the
569	 * active state.
570	 *
571	 * Unfortunately, the only way to disable Dynamic Standby is
572	 * to frob an EEPROM setting and reboot (the EEPROM setting
573	 * is only consulted when the PCI bus comes out of reset).
574	 *
575	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
576	 */
577	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
578		fxp_read_eeprom(sc, &data, 10, 1);
579		if (data & 0x02) {		/* STB enable */
580			aprint_error("%s: WARNING: "
581			    "Disabling dynamic standby mode in EEPROM "
582			    "to work around a\n",
583			    sc->sc_dev.dv_xname);
584			aprint_normal(
585			    "%s: WARNING: hardware bug.  You must reset "
586			    "the system before using this\n",
587			    sc->sc_dev.dv_xname);
588			aprint_normal("%s: WARNING: interface.\n",
589			    sc->sc_dev.dv_xname);
590			data &= ~0x02;
591			fxp_write_eeprom(sc, &data, 10, 1);
592			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
593			    sc->sc_dev.dv_xname, data);
594			fxp_eeprom_update_cksum(sc);
595		}
596	}
597
598	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
599	/* Due to false positives we make it conditional on setting link1 */
600	fxp_read_eeprom(sc, &data, 3, 1);
601	if ((data & 0x03) != 0x03) {
602		aprint_verbose("%s: May need receiver lock-up workaround\n",
603		    sc->sc_dev.dv_xname);
604	}
605}
606
607static void
608fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
609{
610	uint16_t reg;
611	int x;
612
613	for (x = 1 << (len - 1); x != 0; x >>= 1) {
614		DELAY(40);
615		if (data & x)
616			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
617		else
618			reg = FXP_EEPROM_EECS;
619		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
620		DELAY(40);
621		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
622		    reg | FXP_EEPROM_EESK);
623		DELAY(40);
624		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
625	}
626	DELAY(40);
627}
628
629/*
630 * Figure out EEPROM size.
631 *
632 * 559's can have either 64-word or 256-word EEPROMs, the 558
633 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
634 * talks about the existence of 16 to 256 word EEPROMs.
635 *
636 * The only known sizes are 64 and 256, where the 256 version is used
637 * by CardBus cards to store CIS information.
638 *
639 * The address is shifted in msb-to-lsb, and after the last
640 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
641 * after which follows the actual data. We try to detect this zero, by
642 * probing the data-out bit in the EEPROM control register just after
643 * having shifted in a bit. If the bit is zero, we assume we've
644 * shifted enough address bits. The data-out should be tri-state,
645 * before this, which should translate to a logical one.
646 *
647 * Other ways to do this would be to try to read a register with known
648 * contents with a varying number of address bits, but no such
649 * register seem to be available. The high bits of register 10 are 01
650 * on the 558 and 559, but apparently not on the 557.
651 *
652 * The Linux driver computes a checksum on the EEPROM data, but the
653 * value of this checksum is not very well documented.
654 */
655
656void
657fxp_autosize_eeprom(struct fxp_softc *sc)
658{
659	int x;
660
661	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
662	DELAY(40);
663
664	/* Shift in read opcode. */
665	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
666
667	/*
668	 * Shift in address, wait for the dummy zero following a correct
669	 * address shift.
670	 */
671	for (x = 1; x <= 8; x++) {
672		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
673		DELAY(40);
674		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
675		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
676		DELAY(40);
677		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
678		    FXP_EEPROM_EEDO) == 0)
679			break;
680		DELAY(40);
681		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
682		DELAY(40);
683	}
684	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
685	DELAY(40);
686	if (x != 6 && x != 8) {
687#ifdef DEBUG
688		printf("%s: strange EEPROM size (%d)\n",
689		    sc->sc_dev.dv_xname, 1 << x);
690#endif
691	} else
692		sc->sc_eeprom_size = x;
693}
694
695/*
696 * Read from the serial EEPROM. Basically, you manually shift in
697 * the read opcode (one bit at a time) and then shift in the address,
698 * and then you shift out the data (all of this one bit at a time).
699 * The word size is 16 bits, so you have to provide the address for
700 * every 16 bits of data.
701 */
702void
703fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
704{
705	u_int16_t reg;
706	int i, x;
707
708	for (i = 0; i < words; i++) {
709		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
710
711		/* Shift in read opcode. */
712		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
713
714		/* Shift in address. */
715		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
716
717		reg = FXP_EEPROM_EECS;
718		data[i] = 0;
719
720		/* Shift out data. */
721		for (x = 16; x > 0; x--) {
722			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
723			    reg | FXP_EEPROM_EESK);
724			DELAY(40);
725			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
726			    FXP_EEPROM_EEDO)
727				data[i] |= (1 << (x - 1));
728			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
729			DELAY(40);
730		}
731		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
732		DELAY(40);
733	}
734}
735
736/*
737 * Write data to the serial EEPROM.
738 */
739void
740fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
741{
742	int i, j;
743
744	for (i = 0; i < words; i++) {
745		/* Erase/write enable. */
746		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
747		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
748		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
749		    sc->sc_eeprom_size);
750		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
751		DELAY(4);
752
753		/* Shift in write opcode, address, data. */
754		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
755		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
756		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
757		fxp_eeprom_shiftin(sc, data[i], 16);
758		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
759		DELAY(4);
760
761		/* Wait for the EEPROM to finish up. */
762		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
763		DELAY(4);
764		for (j = 0; j < 1000; j++) {
765			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
766			    FXP_EEPROM_EEDO)
767				break;
768			DELAY(50);
769		}
770		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
771		DELAY(4);
772
773		/* Erase/write disable. */
774		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
775		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
776		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
777		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
778		DELAY(4);
779	}
780}
781
782/*
783 * Update the checksum of the EEPROM.
784 */
785void
786fxp_eeprom_update_cksum(struct fxp_softc *sc)
787{
788	int i;
789	uint16_t data, cksum;
790
791	cksum = 0;
792	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
793		fxp_read_eeprom(sc, &data, i, 1);
794		cksum += data;
795	}
796	i = (1 << sc->sc_eeprom_size) - 1;
797	cksum = 0xbaba - cksum;
798	fxp_read_eeprom(sc, &data, i, 1);
799	fxp_write_eeprom(sc, &cksum, i, 1);
800	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
801	    sc->sc_dev.dv_xname, i, data, cksum);
802}
803
804/*
805 * Start packet transmission on the interface.
806 */
807void
808fxp_start(struct ifnet *ifp)
809{
810	struct fxp_softc *sc = ifp->if_softc;
811	struct mbuf *m0, *m;
812	struct fxp_txdesc *txd;
813	struct fxp_txsoft *txs;
814	bus_dmamap_t dmamap;
815	int error, lasttx, nexttx, opending, seg;
816
817	/*
818	 * If we want a re-init, bail out now.
819	 */
820	if (sc->sc_flags & FXPF_WANTINIT) {
821		ifp->if_flags |= IFF_OACTIVE;
822		return;
823	}
824
825	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
826		return;
827
828	/*
829	 * Remember the previous txpending and the current lasttx.
830	 */
831	opending = sc->sc_txpending;
832	lasttx = sc->sc_txlast;
833
834	/*
835	 * Loop through the send queue, setting up transmit descriptors
836	 * until we drain the queue, or use up all available transmit
837	 * descriptors.
838	 */
839	for (;;) {
840		struct fxp_tbd *tbdp;
841		int csum_flags;
842
843		/*
844		 * Grab a packet off the queue.
845		 */
846		IFQ_POLL(&ifp->if_snd, m0);
847		if (m0 == NULL)
848			break;
849		m = NULL;
850
851		if (sc->sc_txpending == FXP_NTXCB - 1) {
852			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
853			break;
854		}
855
856		/*
857		 * Get the next available transmit descriptor.
858		 */
859		nexttx = FXP_NEXTTX(sc->sc_txlast);
860		txd = FXP_CDTX(sc, nexttx);
861		txs = FXP_DSTX(sc, nexttx);
862		dmamap = txs->txs_dmamap;
863
864		/*
865		 * Load the DMA map.  If this fails, the packet either
866		 * didn't fit in the allotted number of frags, or we were
867		 * short on resources.  In this case, we'll copy and try
868		 * again.
869		 */
870		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
871		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
872			MGETHDR(m, M_DONTWAIT, MT_DATA);
873			if (m == NULL) {
874				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
875				    sc->sc_dev.dv_xname);
876				break;
877			}
878			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
879			if (m0->m_pkthdr.len > MHLEN) {
880				MCLGET(m, M_DONTWAIT);
881				if ((m->m_flags & M_EXT) == 0) {
882					log(LOG_ERR,
883					    "%s: unable to allocate Tx "
884					    "cluster\n", sc->sc_dev.dv_xname);
885					m_freem(m);
886					break;
887				}
888			}
889			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
890			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
891			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
892			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
893			if (error) {
894				log(LOG_ERR, "%s: unable to load Tx buffer, "
895				    "error = %d\n", sc->sc_dev.dv_xname, error);
896				break;
897			}
898		}
899
900		IFQ_DEQUEUE(&ifp->if_snd, m0);
901		csum_flags = m0->m_pkthdr.csum_flags;
902		if (m != NULL) {
903			m_freem(m0);
904			m0 = m;
905		}
906
907		/* Initialize the fraglist. */
908		tbdp = txd->txd_tbd;
909		if (sc->sc_flags & FXPF_IPCB)
910			tbdp++;
911		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
912			tbdp[seg].tb_addr =
913			    htole32(dmamap->dm_segs[seg].ds_addr);
914			tbdp[seg].tb_size =
915			    htole32(dmamap->dm_segs[seg].ds_len);
916		}
917
918		/* Sync the DMA map. */
919		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
920		    BUS_DMASYNC_PREWRITE);
921
922		/*
923		 * Store a pointer to the packet so we can free it later.
924		 */
925		txs->txs_mbuf = m0;
926
927		/*
928		 * Initialize the transmit descriptor.
929		 */
930		/* BIG_ENDIAN: no need to swap to store 0 */
931		txd->txd_txcb.cb_status = 0;
932		txd->txd_txcb.cb_command =
933		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
934		txd->txd_txcb.tx_threshold = tx_threshold;
935		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
936
937		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
938		if (sc->sc_flags & FXPF_IPCB) {
939			struct m_tag *vtag;
940			struct fxp_ipcb *ipcb;
941			/*
942			 * Deal with TCP/IP checksum offload. Note that
943			 * in order for TCP checksum offload to work,
944			 * the pseudo header checksum must have already
945			 * been computed and stored in the checksum field
946			 * in the TCP header. The stack should have
947			 * already done this for us.
948			 */
949			ipcb = &txd->txd_u.txdu_ipcb;
950			memset(ipcb, 0, sizeof(*ipcb));
951			/*
952			 * always do hardware parsing.
953			 */
954			ipcb->ipcb_ip_activation_high =
955			    FXP_IPCB_HARDWAREPARSING_ENABLE;
956			/*
957			 * ip checksum offloading.
958			 */
959			if (csum_flags & M_CSUM_IPv4) {
960				ipcb->ipcb_ip_schedule |=
961				    FXP_IPCB_IP_CHECKSUM_ENABLE;
962			}
963			/*
964			 * TCP/UDP checksum offloading.
965			 */
966			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
967				ipcb->ipcb_ip_schedule |=
968				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
969			}
970
971			/*
972			 * request VLAN tag insertion if needed.
973			 */
974			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
975			if (vtag) {
976				ipcb->ipcb_vlan_id =
977				    htobe16(*(u_int *)(vtag + 1));
978				ipcb->ipcb_ip_activation_high |=
979				    FXP_IPCB_INSERTVLAN_ENABLE;
980			}
981		} else {
982			KASSERT((csum_flags &
983			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
984		}
985
986		FXP_CDTXSYNC(sc, nexttx,
987		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
988
989		/* Advance the tx pointer. */
990		sc->sc_txpending++;
991		sc->sc_txlast = nexttx;
992
993#if NBPFILTER > 0
994		/*
995		 * Pass packet to bpf if there is a listener.
996		 */
997		if (ifp->if_bpf)
998			bpf_mtap(ifp->if_bpf, m0);
999#endif
1000	}
1001
1002	if (sc->sc_txpending == FXP_NTXCB - 1) {
1003		/* No more slots; notify upper layer. */
1004		ifp->if_flags |= IFF_OACTIVE;
1005	}
1006
1007	if (sc->sc_txpending != opending) {
1008		/*
1009		 * We enqueued packets.  If the transmitter was idle,
1010		 * reset the txdirty pointer.
1011		 */
1012		if (opending == 0)
1013			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1014
1015		/*
1016		 * Cause the chip to interrupt and suspend command
1017		 * processing once the last packet we've enqueued
1018		 * has been transmitted.
1019		 *
1020		 * To avoid a race between updating status bits
1021		 * by the fxp chip and clearing command bits
1022		 * by this function on machines which don't have
1023		 * atomic methods to clear/set bits in memory
1024		 * smaller than 32bits (both cb_status and cb_command
1025		 * members are uint16_t and in the same 32bit word),
1026		 * we have to prepare a dummy TX descriptor which has
1027		 * NOP command and just causes a TX completion interrupt.
1028		 */
1029		sc->sc_txpending++;
1030		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1031		txd = FXP_CDTX(sc, sc->sc_txlast);
1032		/* BIG_ENDIAN: no need to swap to store 0 */
1033		txd->txd_txcb.cb_status = 0;
1034		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1035		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1036		FXP_CDTXSYNC(sc, sc->sc_txlast,
1037		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1038
1039		/*
1040		 * The entire packet chain is set up.  Clear the suspend bit
1041		 * on the command prior to the first packet we set up.
1042		 */
1043		FXP_CDTXSYNC(sc, lasttx,
1044		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1045		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1046		    htole16(~FXP_CB_COMMAND_S);
1047		FXP_CDTXSYNC(sc, lasttx,
1048		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1049
1050		/*
1051		 * Issue a Resume command in case the chip was suspended.
1052		 */
1053		fxp_scb_wait(sc);
1054		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1055
1056		/* Set a watchdog timer in case the chip flakes out. */
1057		ifp->if_timer = 5;
1058	}
1059}
1060
1061/*
1062 * Process interface interrupts.
1063 */
1064int
1065fxp_intr(void *arg)
1066{
1067	struct fxp_softc *sc = arg;
1068	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1069	bus_dmamap_t rxmap;
1070	int claimed = 0, rnr;
1071	u_int8_t statack;
1072
1073	if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1074		return (0);
1075	/*
1076	 * If the interface isn't running, don't try to
1077	 * service the interrupt.. just ack it and bail.
1078	 */
1079	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1080		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1081		if (statack) {
1082			claimed = 1;
1083			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1084		}
1085		return (claimed);
1086	}
1087
1088	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1089		claimed = 1;
1090
1091		/*
1092		 * First ACK all the interrupts in this pass.
1093		 */
1094		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1095
1096		/*
1097		 * Process receiver interrupts. If a no-resource (RNR)
1098		 * condition exists, get whatever packets we can and
1099		 * re-start the receiver.
1100		 */
1101		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1102		    1 : 0;
1103		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1104		    FXP_SCB_STATACK_SWI)) {
1105			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1106			rnr |= fxp_rxintr(sc);
1107		}
1108
1109		/*
1110		 * Free any finished transmit mbuf chains.
1111		 */
1112		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1113			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1114			fxp_txintr(sc);
1115
1116			/*
1117			 * Try to get more packets going.
1118			 */
1119			fxp_start(ifp);
1120
1121			if (sc->sc_txpending == 0) {
1122				/*
1123				 * If we want a re-init, do that now.
1124				 */
1125				if (sc->sc_flags & FXPF_WANTINIT)
1126					(void) fxp_init(ifp);
1127			}
1128		}
1129
1130		if (rnr) {
1131			fxp_scb_wait(sc);
1132			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1133			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1134			fxp_scb_wait(sc);
1135			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1136			    rxmap->dm_segs[0].ds_addr +
1137			    RFA_ALIGNMENT_FUDGE);
1138			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1139		}
1140	}
1141
1142#if NRND > 0
1143	if (claimed)
1144		rnd_add_uint32(&sc->rnd_source, statack);
1145#endif
1146	return (claimed);
1147}
1148
1149/*
1150 * Handle transmit completion interrupts.
1151 */
1152void
1153fxp_txintr(struct fxp_softc *sc)
1154{
1155	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1156	struct fxp_txdesc *txd;
1157	struct fxp_txsoft *txs;
1158	int i;
1159	u_int16_t txstat;
1160
1161	ifp->if_flags &= ~IFF_OACTIVE;
1162	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1163	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1164		txd = FXP_CDTX(sc, i);
1165		txs = FXP_DSTX(sc, i);
1166
1167		FXP_CDTXSYNC(sc, i,
1168		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1169
1170		/* skip dummy NOP TX descriptor */
1171		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1172		    == FXP_CB_COMMAND_NOP)
1173			continue;
1174
1175		txstat = le16toh(txd->txd_txcb.cb_status);
1176
1177		if ((txstat & FXP_CB_STATUS_C) == 0)
1178			break;
1179
1180		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1181		    0, txs->txs_dmamap->dm_mapsize,
1182		    BUS_DMASYNC_POSTWRITE);
1183		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1184		m_freem(txs->txs_mbuf);
1185		txs->txs_mbuf = NULL;
1186	}
1187
1188	/* Update the dirty transmit buffer pointer. */
1189	sc->sc_txdirty = i;
1190
1191	/*
1192	 * Cancel the watchdog timer if there are no pending
1193	 * transmissions.
1194	 */
1195	if (sc->sc_txpending == 0)
1196		ifp->if_timer = 0;
1197}
1198
1199/*
1200 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1201 */
1202
1203int
1204fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1205{
1206	u_int16_t rxparsestat;
1207	u_int16_t csum_stat;
1208	u_int32_t csum_data;
1209	int csum_flags;
1210
1211	/*
1212	 * check VLAN tag stripping.
1213	 */
1214
1215	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1216		struct m_tag *vtag;
1217
1218		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1219		if (vtag == NULL)
1220			return ENOMEM;
1221		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1222		m_tag_prepend(m, vtag);
1223	}
1224
1225	/*
1226	 * check H/W Checksumming.
1227	 */
1228
1229	csum_stat = le16toh(rfa->cksum_stat);
1230	rxparsestat = le16toh(rfa->rx_parse_stat);
1231	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1232		return 0;
1233
1234	csum_flags = 0;
1235	csum_data = 0;
1236
1237	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1238		csum_flags = M_CSUM_IPv4;
1239		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1240			csum_flags |= M_CSUM_IPv4_BAD;
1241	}
1242
1243	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1244		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1245		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1246			csum_flags |= M_CSUM_TCP_UDP_BAD;
1247	}
1248
1249	m->m_pkthdr.csum_flags = csum_flags;
1250	m->m_pkthdr.csum_data = csum_data;
1251
1252	return 0;
1253}
1254
1255/*
1256 * Handle receive interrupts.
1257 */
1258int
1259fxp_rxintr(struct fxp_softc *sc)
1260{
1261	struct ethercom *ec = &sc->sc_ethercom;
1262	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1263	struct mbuf *m, *m0;
1264	bus_dmamap_t rxmap;
1265	struct fxp_rfa *rfa;
1266	int rnr;
1267	u_int16_t len, rxstat;
1268
1269	rnr = 0;
1270
1271	for (;;) {
1272		m = sc->sc_rxq.ifq_head;
1273		rfa = FXP_MTORFA(m);
1274		rxmap = M_GETCTX(m, bus_dmamap_t);
1275
1276		FXP_RFASYNC(sc, m,
1277		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1278
1279		rxstat = le16toh(rfa->rfa_status);
1280
1281		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1282			rnr = 1;
1283
1284		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1285			/*
1286			 * We have processed all of the
1287			 * receive buffers.
1288			 */
1289			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1290			return rnr;
1291		}
1292
1293		IF_DEQUEUE(&sc->sc_rxq, m);
1294
1295		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1296
1297		len = le16toh(rfa->actual_size) &
1298		    (m->m_ext.ext_size - 1);
1299
1300		if (len < sizeof(struct ether_header)) {
1301			/*
1302			 * Runt packet; drop it now.
1303			 */
1304			FXP_INIT_RFABUF(sc, m);
1305			continue;
1306		}
1307
1308		/*
1309		 * If support for 802.1Q VLAN sized frames is
1310		 * enabled, we need to do some additional error
1311		 * checking (as we are saving bad frames, in
1312		 * order to receive the larger ones).
1313		 */
1314		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1315		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1316			       FXP_RFA_STATUS_RNR|
1317			       FXP_RFA_STATUS_ALIGN|
1318			       FXP_RFA_STATUS_CRC)) != 0) {
1319			FXP_INIT_RFABUF(sc, m);
1320			continue;
1321		}
1322
1323		/* Do checksum checking. */
1324		m->m_pkthdr.csum_flags = 0;
1325		if (sc->sc_flags & FXPF_EXT_RFA)
1326			if (fxp_rx_hwcksum(m, rfa))
1327				goto dropit;
1328
1329		/*
1330		 * If the packet is small enough to fit in a
1331		 * single header mbuf, allocate one and copy
1332		 * the data into it.  This greatly reduces
1333		 * memory consumption when we receive lots
1334		 * of small packets.
1335		 *
1336		 * Otherwise, we add a new buffer to the receive
1337		 * chain.  If this fails, we drop the packet and
1338		 * recycle the old buffer.
1339		 */
1340		if (fxp_copy_small != 0 && len <= MHLEN) {
1341			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1342			if (m0 == NULL)
1343				goto dropit;
1344			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1345			memcpy(mtod(m0, void *),
1346			    mtod(m, void *), len);
1347			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1348			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1349			FXP_INIT_RFABUF(sc, m);
1350			m = m0;
1351		} else {
1352			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1353 dropit:
1354				ifp->if_ierrors++;
1355				FXP_INIT_RFABUF(sc, m);
1356				continue;
1357			}
1358		}
1359
1360		m->m_pkthdr.rcvif = ifp;
1361		m->m_pkthdr.len = m->m_len = len;
1362
1363#if NBPFILTER > 0
1364		/*
1365		 * Pass this up to any BPF listeners, but only
1366		 * pass it up the stack it its for us.
1367		 */
1368		if (ifp->if_bpf)
1369			bpf_mtap(ifp->if_bpf, m);
1370#endif
1371
1372		/* Pass it on. */
1373		(*ifp->if_input)(ifp, m);
1374	}
1375}
1376
1377/*
1378 * Update packet in/out/collision statistics. The i82557 doesn't
1379 * allow you to access these counters without doing a fairly
1380 * expensive DMA to get _all_ of the statistics it maintains, so
1381 * we do this operation here only once per second. The statistics
1382 * counters in the kernel are updated from the previous dump-stats
1383 * DMA and then a new dump-stats DMA is started. The on-chip
1384 * counters are zeroed when the DMA completes. If we can't start
1385 * the DMA immediately, we don't wait - we just prepare to read
1386 * them again next time.
1387 */
1388void
1389fxp_tick(void *arg)
1390{
1391	struct fxp_softc *sc = arg;
1392	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1393	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1394	int s;
1395
1396	if (!device_is_active(&sc->sc_dev))
1397		return;
1398
1399	s = splnet();
1400
1401	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1402
1403	ifp->if_opackets += le32toh(sp->tx_good);
1404	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1405	if (sp->rx_good) {
1406		ifp->if_ipackets += le32toh(sp->rx_good);
1407		sc->sc_rxidle = 0;
1408	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1409		sc->sc_rxidle++;
1410	}
1411	ifp->if_ierrors +=
1412	    le32toh(sp->rx_crc_errors) +
1413	    le32toh(sp->rx_alignment_errors) +
1414	    le32toh(sp->rx_rnr_errors) +
1415	    le32toh(sp->rx_overrun_errors);
1416	/*
1417	 * If any transmit underruns occurred, bump up the transmit
1418	 * threshold by another 512 bytes (64 * 8).
1419	 */
1420	if (sp->tx_underruns) {
1421		ifp->if_oerrors += le32toh(sp->tx_underruns);
1422		if (tx_threshold < 192)
1423			tx_threshold += 64;
1424	}
1425#ifdef FXP_EVENT_COUNTERS
1426	if (sc->sc_rev >= FXP_REV_82558_A4) {
1427		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1428		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1429	}
1430#endif
1431
1432	/*
1433	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1434	 * then assume the receiver has locked up and attempt to clear
1435	 * the condition by reprogramming the multicast filter (actually,
1436	 * resetting the interface). This is a work-around for a bug in
1437	 * the 82557 where the receiver locks up if it gets certain types
1438	 * of garbage in the synchronization bits prior to the packet header.
1439	 * This bug is supposed to only occur in 10Mbps mode, but has been
1440	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1441	 * speed transition).
1442	 */
1443	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1444		(void) fxp_init(ifp);
1445		splx(s);
1446		return;
1447	}
1448	/*
1449	 * If there is no pending command, start another stats
1450	 * dump. Otherwise punt for now.
1451	 */
1452	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1453		/*
1454		 * Start another stats dump.
1455		 */
1456		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1457		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1458	} else {
1459		/*
1460		 * A previous command is still waiting to be accepted.
1461		 * Just zero our copy of the stats and wait for the
1462		 * next timer event to update them.
1463		 */
1464		/* BIG_ENDIAN: no swap required to store 0 */
1465		sp->tx_good = 0;
1466		sp->tx_underruns = 0;
1467		sp->tx_total_collisions = 0;
1468
1469		sp->rx_good = 0;
1470		sp->rx_crc_errors = 0;
1471		sp->rx_alignment_errors = 0;
1472		sp->rx_rnr_errors = 0;
1473		sp->rx_overrun_errors = 0;
1474		if (sc->sc_rev >= FXP_REV_82558_A4) {
1475			sp->tx_pauseframes = 0;
1476			sp->rx_pauseframes = 0;
1477		}
1478	}
1479
1480	if (sc->sc_flags & FXPF_MII) {
1481		/* Tick the MII clock. */
1482		mii_tick(&sc->sc_mii);
1483	}
1484
1485	splx(s);
1486
1487	/*
1488	 * Schedule another timeout one second from now.
1489	 */
1490	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1491}
1492
1493/*
1494 * Drain the receive queue.
1495 */
1496void
1497fxp_rxdrain(struct fxp_softc *sc)
1498{
1499	bus_dmamap_t rxmap;
1500	struct mbuf *m;
1501
1502	for (;;) {
1503		IF_DEQUEUE(&sc->sc_rxq, m);
1504		if (m == NULL)
1505			break;
1506		rxmap = M_GETCTX(m, bus_dmamap_t);
1507		bus_dmamap_unload(sc->sc_dmat, rxmap);
1508		FXP_RXMAP_PUT(sc, rxmap);
1509		m_freem(m);
1510	}
1511}
1512
1513/*
1514 * Stop the interface. Cancels the statistics updater and resets
1515 * the interface.
1516 */
1517void
1518fxp_stop(struct ifnet *ifp, int disable)
1519{
1520	struct fxp_softc *sc = ifp->if_softc;
1521	struct fxp_txsoft *txs;
1522	int i;
1523
1524	/*
1525	 * Turn down interface (done early to avoid bad interactions
1526	 * between panics, shutdown hooks, and the watchdog timer)
1527	 */
1528	ifp->if_timer = 0;
1529	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1530
1531	/*
1532	 * Cancel stats updater.
1533	 */
1534	callout_stop(&sc->sc_callout);
1535	if (sc->sc_flags & FXPF_MII) {
1536		/* Down the MII. */
1537		mii_down(&sc->sc_mii);
1538	}
1539
1540	/*
1541	 * Issue software reset.  This unloads any microcode that
1542	 * might already be loaded.
1543	 */
1544	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1545	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1546	DELAY(50);
1547
1548	/*
1549	 * Release any xmit buffers.
1550	 */
1551	for (i = 0; i < FXP_NTXCB; i++) {
1552		txs = FXP_DSTX(sc, i);
1553		if (txs->txs_mbuf != NULL) {
1554			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1555			m_freem(txs->txs_mbuf);
1556			txs->txs_mbuf = NULL;
1557		}
1558	}
1559	sc->sc_txpending = 0;
1560
1561	if (disable) {
1562		fxp_rxdrain(sc);
1563		fxp_disable(sc);
1564	}
1565
1566}
1567
1568/*
1569 * Watchdog/transmission transmit timeout handler. Called when a
1570 * transmission is started on the interface, but no interrupt is
1571 * received before the timeout. This usually indicates that the
1572 * card has wedged for some reason.
1573 */
1574void
1575fxp_watchdog(struct ifnet *ifp)
1576{
1577	struct fxp_softc *sc = ifp->if_softc;
1578
1579	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1580	ifp->if_oerrors++;
1581
1582	(void) fxp_init(ifp);
1583}
1584
1585/*
1586 * Initialize the interface.  Must be called at splnet().
1587 */
1588int
1589fxp_init(struct ifnet *ifp)
1590{
1591	struct fxp_softc *sc = ifp->if_softc;
1592	struct fxp_cb_config *cbp;
1593	struct fxp_cb_ias *cb_ias;
1594	struct fxp_txdesc *txd;
1595	bus_dmamap_t rxmap;
1596	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1597
1598	if ((error = fxp_enable(sc)) != 0)
1599		goto out;
1600
1601	/*
1602	 * Cancel any pending I/O
1603	 */
1604	fxp_stop(ifp, 0);
1605
1606	/*
1607	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1608	 * flag, and this prevents the MII from detaching resulting in
1609	 * a panic. The flags field should perhaps be split in runtime
1610	 * flags and more static information. For now, just clear the
1611	 * only other flag set.
1612	 */
1613
1614	sc->sc_flags &= ~FXPF_WANTINIT;
1615
1616	/*
1617	 * Initialize base of CBL and RFA memory. Loading with zero
1618	 * sets it up for regular linear addressing.
1619	 */
1620	fxp_scb_wait(sc);
1621	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1622	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1623
1624	fxp_scb_wait(sc);
1625	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1626
1627	/*
1628	 * Initialize the multicast filter.  Do this now, since we might
1629	 * have to setup the config block differently.
1630	 */
1631	fxp_mc_setup(sc);
1632
1633	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1634	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1635
1636	/*
1637	 * In order to support receiving 802.1Q VLAN frames, we have to
1638	 * enable "save bad frames", since they are 4 bytes larger than
1639	 * the normal Ethernet maximum frame length.  On i82558 and later,
1640	 * we have a better mechanism for this.
1641	 */
1642	save_bf = 0;
1643	lrxen = 0;
1644	vlan_drop = 0;
1645	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1646		if (sc->sc_rev < FXP_REV_82558_A4)
1647			save_bf = 1;
1648		else
1649			lrxen = 1;
1650		if (sc->sc_rev >= FXP_REV_82550)
1651			vlan_drop = 1;
1652	}
1653
1654	/*
1655	 * Initialize base of dump-stats buffer.
1656	 */
1657	fxp_scb_wait(sc);
1658	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1659	    sc->sc_cddma + FXP_CDSTATSOFF);
1660	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1661	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1662
1663	cbp = &sc->sc_control_data->fcd_configcb;
1664	memset(cbp, 0, sizeof(struct fxp_cb_config));
1665
1666	/*
1667	 * Load microcode for this controller.
1668	 */
1669	fxp_load_ucode(sc);
1670
1671	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1672		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1673	else
1674		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1675
1676	/*
1677	 * This copy is kind of disgusting, but there are a bunch of must be
1678	 * zero and must be one bits in this structure and this is the easiest
1679	 * way to initialize them all to proper values.
1680	 */
1681	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1682
1683	/* BIG_ENDIAN: no need to swap to store 0 */
1684	cbp->cb_status =	0;
1685	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1686				    FXP_CB_COMMAND_EL);
1687	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1688	cbp->link_addr =	0xffffffff; /* (no) next command */
1689					/* bytes in config block */
1690	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1691				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1692	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1693	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1694	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1695	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1696	cbp->type_enable =	0;	/* actually reserved */
1697	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1698	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1699	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1700	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1701	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1702	cbp->late_scb =		0;	/* (don't) defer SCB update */
1703	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1704	cbp->ci_int =		1;	/* interrupt on CU idle */
1705	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1706	cbp->ext_stats_dis =	1;	/* disable extended counters */
1707	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1708	cbp->save_bf =		save_bf;/* save bad frames */
1709	cbp->disc_short_rx =	!prm;	/* discard short packets */
1710	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1711	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1712	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1713	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1714					/* interface mode */
1715	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1716	cbp->csma_dis =		0;	/* (don't) disable link */
1717	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1718	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1719	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1720	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1721	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1722	cbp->nsai =		1;	/* (don't) disable source addr insert */
1723	cbp->preamble_length =	2;	/* (7 byte) preamble */
1724	cbp->loopback =		0;	/* (don't) loopback */
1725	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1726	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1727	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1728	cbp->promiscuous =	prm;	/* promiscuous mode */
1729	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1730	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1731	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1732	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1733	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1734	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1735	cbp->padding =		1;	/* (do) pad short tx packets */
1736	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1737	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1738	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1739	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1740					/* must set wake_en in PMCSR also */
1741	cbp->force_fdx =	0;	/* (don't) force full duplex */
1742	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1743	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1744	cbp->mc_all =		allm;	/* accept all multicasts */
1745	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1746	cbp->vlan_drop_en =	vlan_drop;
1747
1748	if (sc->sc_rev < FXP_REV_82558_A4) {
1749		/*
1750		 * The i82557 has no hardware flow control, the values
1751		 * here are the defaults for the chip.
1752		 */
1753		cbp->fc_delay_lsb =	0;
1754		cbp->fc_delay_msb =	0x40;
1755		cbp->pri_fc_thresh =	3;
1756		cbp->tx_fc_dis =	0;
1757		cbp->rx_fc_restop =	0;
1758		cbp->rx_fc_restart =	0;
1759		cbp->fc_filter =	0;
1760		cbp->pri_fc_loc =	1;
1761	} else {
1762		cbp->fc_delay_lsb =	0x1f;
1763		cbp->fc_delay_msb =	0x01;
1764		cbp->pri_fc_thresh =	3;
1765		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1766		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1767		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1768		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1769		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1770		cbp->ext_stats_dis =	0;	/* enable extended stats */
1771	}
1772
1773	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1774
1775	/*
1776	 * Start the config command/DMA.
1777	 */
1778	fxp_scb_wait(sc);
1779	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1780	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1781	/* ...and wait for it to complete. */
1782	i = 1000;
1783	do {
1784		FXP_CDCONFIGSYNC(sc,
1785		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1786		DELAY(1);
1787	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1788	if (i == 0) {
1789		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1790		    sc->sc_dev.dv_xname, __LINE__);
1791		return (ETIMEDOUT);
1792	}
1793
1794	/*
1795	 * Initialize the station address.
1796	 */
1797	cb_ias = &sc->sc_control_data->fcd_iascb;
1798	/* BIG_ENDIAN: no need to swap to store 0 */
1799	cb_ias->cb_status = 0;
1800	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1801	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1802	cb_ias->link_addr = 0xffffffff;
1803	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1804
1805	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1806
1807	/*
1808	 * Start the IAS (Individual Address Setup) command/DMA.
1809	 */
1810	fxp_scb_wait(sc);
1811	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1812	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1813	/* ...and wait for it to complete. */
1814	i = 1000;
1815	do {
1816		FXP_CDIASSYNC(sc,
1817		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1818		DELAY(1);
1819	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1820	if (i == 0) {
1821		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1822		    sc->sc_dev.dv_xname, __LINE__);
1823		return (ETIMEDOUT);
1824	}
1825
1826	/*
1827	 * Initialize the transmit descriptor ring.  txlast is initialized
1828	 * to the end of the list so that it will wrap around to the first
1829	 * descriptor when the first packet is transmitted.
1830	 */
1831	for (i = 0; i < FXP_NTXCB; i++) {
1832		txd = FXP_CDTX(sc, i);
1833		memset(txd, 0, sizeof(*txd));
1834		txd->txd_txcb.cb_command =
1835		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1836		txd->txd_txcb.link_addr =
1837		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1838		if (sc->sc_flags & FXPF_EXT_TXCB)
1839			txd->txd_txcb.tbd_array_addr =
1840			    htole32(FXP_CDTBDADDR(sc, i) +
1841				    (2 * sizeof(struct fxp_tbd)));
1842		else
1843			txd->txd_txcb.tbd_array_addr =
1844			    htole32(FXP_CDTBDADDR(sc, i));
1845		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846	}
1847	sc->sc_txpending = 0;
1848	sc->sc_txdirty = 0;
1849	sc->sc_txlast = FXP_NTXCB - 1;
1850
1851	/*
1852	 * Initialize the receive buffer list.
1853	 */
1854	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1855	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1856		rxmap = FXP_RXMAP_GET(sc);
1857		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1858			log(LOG_ERR, "%s: unable to allocate or map rx "
1859			    "buffer %d, error = %d\n",
1860			    sc->sc_dev.dv_xname,
1861			    sc->sc_rxq.ifq_len, error);
1862			/*
1863			 * XXX Should attempt to run with fewer receive
1864			 * XXX buffers instead of just failing.
1865			 */
1866			FXP_RXMAP_PUT(sc, rxmap);
1867			fxp_rxdrain(sc);
1868			goto out;
1869		}
1870	}
1871	sc->sc_rxidle = 0;
1872
1873	/*
1874	 * Give the transmit ring to the chip.  We do this by pointing
1875	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1876	 * issuing a start command.  It will execute the NOP and then
1877	 * suspend, pointing at the first descriptor.
1878	 */
1879	fxp_scb_wait(sc);
1880	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1881	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1882
1883	/*
1884	 * Initialize receiver buffer area - RFA.
1885	 */
1886#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1887	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1888	fxp_scb_wait(sc);
1889	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1890	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1891	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1892#endif
1893
1894	if (sc->sc_flags & FXPF_MII) {
1895		/*
1896		 * Set current media.
1897		 */
1898		mii_mediachg(&sc->sc_mii);
1899	}
1900
1901	/*
1902	 * ...all done!
1903	 */
1904	ifp->if_flags |= IFF_RUNNING;
1905	ifp->if_flags &= ~IFF_OACTIVE;
1906
1907	/*
1908	 * Request a software generated interrupt that will be used to
1909	 * (re)start the RU processing.  If we direct the chip to start
1910	 * receiving from the start of queue now, instead of letting the
1911	 * interrupt handler first process all received packets, we run
1912	 * the risk of having it overwrite mbuf clusters while they are
1913	 * being processed or after they have been returned to the pool.
1914	 */
1915	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1916
1917	/*
1918	 * Start the one second timer.
1919	 */
1920	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1921
1922	/*
1923	 * Attempt to start output on the interface.
1924	 */
1925	fxp_start(ifp);
1926
1927 out:
1928	if (error) {
1929		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1930		ifp->if_timer = 0;
1931		log(LOG_ERR, "%s: interface not running\n",
1932		    sc->sc_dev.dv_xname);
1933	}
1934	return (error);
1935}
1936
1937/*
1938 * Change media according to request.
1939 */
1940int
1941fxp_mii_mediachange(struct ifnet *ifp)
1942{
1943	struct fxp_softc *sc = ifp->if_softc;
1944
1945	if (ifp->if_flags & IFF_UP)
1946		mii_mediachg(&sc->sc_mii);
1947	return (0);
1948}
1949
1950/*
1951 * Notify the world which media we're using.
1952 */
1953void
1954fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1955{
1956	struct fxp_softc *sc = ifp->if_softc;
1957
1958	if (sc->sc_enabled == 0) {
1959		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1960		ifmr->ifm_status = 0;
1961		return;
1962	}
1963
1964	mii_pollstat(&sc->sc_mii);
1965	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1966	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1967
1968	/*
1969	 * XXX Flow control is always turned on if the chip supports
1970	 * XXX it; we can't easily control it dynamically, since it
1971	 * XXX requires sending a setup packet.
1972	 */
1973	if (sc->sc_rev >= FXP_REV_82558_A4)
1974		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1975}
1976
1977int
1978fxp_80c24_mediachange(struct ifnet *ifp)
1979{
1980
1981	/* Nothing to do here. */
1982	return (0);
1983}
1984
1985void
1986fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1987{
1988	struct fxp_softc *sc = ifp->if_softc;
1989
1990	/*
1991	 * Media is currently-selected media.  We cannot determine
1992	 * the link status.
1993	 */
1994	ifmr->ifm_status = 0;
1995	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1996}
1997
1998/*
1999 * Add a buffer to the end of the RFA buffer list.
2000 * Return 0 if successful, error code on failure.
2001 *
2002 * The RFA struct is stuck at the beginning of mbuf cluster and the
2003 * data pointer is fixed up to point just past it.
2004 */
2005int
2006fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2007{
2008	struct mbuf *m;
2009	int error;
2010
2011	MGETHDR(m, M_DONTWAIT, MT_DATA);
2012	if (m == NULL)
2013		return (ENOBUFS);
2014
2015	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2016	MCLGET(m, M_DONTWAIT);
2017	if ((m->m_flags & M_EXT) == 0) {
2018		m_freem(m);
2019		return (ENOBUFS);
2020	}
2021
2022	if (unload)
2023		bus_dmamap_unload(sc->sc_dmat, rxmap);
2024
2025	M_SETCTX(m, rxmap);
2026
2027	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2028	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2029	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2030	if (error) {
2031		/* XXX XXX XXX */
2032		printf("%s: can't load rx DMA map %d, error = %d\n",
2033		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2034		panic("fxp_add_rfabuf");
2035	}
2036
2037	FXP_INIT_RFABUF(sc, m);
2038
2039	return (0);
2040}
2041
2042int
2043fxp_mdi_read(struct device *self, int phy, int reg)
2044{
2045	struct fxp_softc *sc = (struct fxp_softc *)self;
2046	int count = 10000;
2047	int value;
2048
2049	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2050	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2051
2052	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2053	    0x10000000) == 0 && count--)
2054		DELAY(10);
2055
2056	if (count <= 0)
2057		log(LOG_WARNING,
2058		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2059
2060	return (value & 0xffff);
2061}
2062
2063void
2064fxp_statchg(struct device *self)
2065{
2066
2067	/* Nothing to do. */
2068}
2069
2070void
2071fxp_mdi_write(struct device *self, int phy, int reg, int value)
2072{
2073	struct fxp_softc *sc = (struct fxp_softc *)self;
2074	int count = 10000;
2075
2076	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2077	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2078	    (value & 0xffff));
2079
2080	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2081	    count--)
2082		DELAY(10);
2083
2084	if (count <= 0)
2085		log(LOG_WARNING,
2086		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2087}
2088
2089int
2090fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2091{
2092	struct fxp_softc *sc = ifp->if_softc;
2093	struct ifreq *ifr = (struct ifreq *)data;
2094	int s, error;
2095
2096	s = splnet();
2097
2098	switch (cmd) {
2099	case SIOCSIFMEDIA:
2100	case SIOCGIFMEDIA:
2101		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2102		break;
2103
2104	default:
2105		error = ether_ioctl(ifp, cmd, data);
2106		if (error == ENETRESET) {
2107			if (ifp->if_flags & IFF_RUNNING) {
2108				/*
2109				 * Multicast list has changed; set the
2110				 * hardware filter accordingly.
2111				 */
2112				if (sc->sc_txpending) {
2113					sc->sc_flags |= FXPF_WANTINIT;
2114					error = 0;
2115				} else
2116					error = fxp_init(ifp);
2117			} else
2118				error = 0;
2119		}
2120		break;
2121	}
2122
2123	/* Try to get more packets going. */
2124	if (sc->sc_enabled)
2125		fxp_start(ifp);
2126
2127	splx(s);
2128	return (error);
2129}
2130
2131/*
2132 * Program the multicast filter.
2133 *
2134 * This function must be called at splnet().
2135 */
2136void
2137fxp_mc_setup(struct fxp_softc *sc)
2138{
2139	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2140	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2141	struct ethercom *ec = &sc->sc_ethercom;
2142	struct ether_multi *enm;
2143	struct ether_multistep step;
2144	int count, nmcasts;
2145
2146#ifdef DIAGNOSTIC
2147	if (sc->sc_txpending)
2148		panic("fxp_mc_setup: pending transmissions");
2149#endif
2150
2151	ifp->if_flags &= ~IFF_ALLMULTI;
2152
2153	/*
2154	 * Initialize multicast setup descriptor.
2155	 */
2156	nmcasts = 0;
2157	ETHER_FIRST_MULTI(step, ec, enm);
2158	while (enm != NULL) {
2159		/*
2160		 * Check for too many multicast addresses or if we're
2161		 * listening to a range.  Either way, we simply have
2162		 * to accept all multicasts.
2163		 */
2164		if (nmcasts >= MAXMCADDR ||
2165		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2166		    ETHER_ADDR_LEN) != 0) {
2167			/*
2168			 * Callers of this function must do the
2169			 * right thing with this.  If we're called
2170			 * from outside fxp_init(), the caller must
2171			 * detect if the state if IFF_ALLMULTI changes.
2172			 * If it does, the caller must then call
2173			 * fxp_init(), since allmulti is handled by
2174			 * the config block.
2175			 */
2176			ifp->if_flags |= IFF_ALLMULTI;
2177			return;
2178		}
2179		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2180		    ETHER_ADDR_LEN);
2181		nmcasts++;
2182		ETHER_NEXT_MULTI(step, enm);
2183	}
2184
2185	/* BIG_ENDIAN: no need to swap to store 0 */
2186	mcsp->cb_status = 0;
2187	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2188	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2189	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2190
2191	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2192
2193	/*
2194	 * Wait until the command unit is not active.  This should never
2195	 * happen since nothing is queued, but make sure anyway.
2196	 */
2197	count = 100;
2198	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2199	    FXP_SCB_CUS_ACTIVE && --count)
2200		DELAY(1);
2201	if (count == 0) {
2202		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2203		    sc->sc_dev.dv_xname, __LINE__);
2204		return;
2205	}
2206
2207	/*
2208	 * Start the multicast setup command/DMA.
2209	 */
2210	fxp_scb_wait(sc);
2211	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2212	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2213
2214	/* ...and wait for it to complete. */
2215	count = 1000;
2216	do {
2217		FXP_CDMCSSYNC(sc,
2218		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2219		DELAY(1);
2220	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2221	if (count == 0) {
2222		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2223		    sc->sc_dev.dv_xname, __LINE__);
2224		return;
2225	}
2226}
2227
2228static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2229static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2230static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2231static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2232static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2233static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2234
2235#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2236
2237static const struct ucode {
2238	int32_t		revision;
2239	const uint32_t	*ucode;
2240	size_t		length;
2241	uint16_t	int_delay_offset;
2242	uint16_t	bundle_max_offset;
2243} ucode_table[] = {
2244	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2245	  D101_CPUSAVER_DWORD, 0 },
2246
2247	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2248	  D101_CPUSAVER_DWORD, 0 },
2249
2250	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2251	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2252
2253	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2254	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2255
2256	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2257	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2258
2259	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2260	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2261
2262	{ 0, NULL, 0, 0, 0 }
2263};
2264
2265void
2266fxp_load_ucode(struct fxp_softc *sc)
2267{
2268	const struct ucode *uc;
2269	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2270	int count, i;
2271
2272	if (sc->sc_flags & FXPF_UCODE_LOADED)
2273		return;
2274
2275	/*
2276	 * Only load the uCode if the user has requested that
2277	 * we do so.
2278	 */
2279	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2280		sc->sc_int_delay = 0;
2281		sc->sc_bundle_max = 0;
2282		return;
2283	}
2284
2285	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2286		if (sc->sc_rev == uc->revision)
2287			break;
2288	}
2289	if (uc->ucode == NULL)
2290		return;
2291
2292	/* BIG ENDIAN: no need to swap to store 0 */
2293	cbp->cb_status = 0;
2294	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2295	cbp->link_addr = 0xffffffff;		/* (no) next command */
2296	for (i = 0; i < uc->length; i++)
2297		cbp->ucode[i] = htole32(uc->ucode[i]);
2298
2299	if (uc->int_delay_offset)
2300		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2301		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2302
2303	if (uc->bundle_max_offset)
2304		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2305		    htole16(fxp_bundle_max);
2306
2307	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2308
2309	/*
2310	 * Download the uCode to the chip.
2311	 */
2312	fxp_scb_wait(sc);
2313	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2314	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2315
2316	/* ...and wait for it to complete. */
2317	count = 10000;
2318	do {
2319		FXP_CDUCODESYNC(sc,
2320		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2321		DELAY(2);
2322	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2323	if (count == 0) {
2324		sc->sc_int_delay = 0;
2325		sc->sc_bundle_max = 0;
2326		log(LOG_WARNING, "%s: timeout loading microcode\n",
2327		    sc->sc_dev.dv_xname);
2328		return;
2329	}
2330
2331	if (sc->sc_int_delay != fxp_int_delay ||
2332	    sc->sc_bundle_max != fxp_bundle_max) {
2333		sc->sc_int_delay = fxp_int_delay;
2334		sc->sc_bundle_max = fxp_bundle_max;
2335		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2336		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2337		    sc->sc_int_delay,
2338		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2339	}
2340
2341	sc->sc_flags |= FXPF_UCODE_LOADED;
2342}
2343
2344int
2345fxp_enable(struct fxp_softc *sc)
2346{
2347
2348	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2349		if ((*sc->sc_enable)(sc) != 0) {
2350			log(LOG_ERR, "%s: device enable failed\n",
2351			    sc->sc_dev.dv_xname);
2352			return (EIO);
2353		}
2354	}
2355
2356	sc->sc_enabled = 1;
2357	return (0);
2358}
2359
2360void
2361fxp_disable(struct fxp_softc *sc)
2362{
2363
2364	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2365		(*sc->sc_disable)(sc);
2366		sc->sc_enabled = 0;
2367	}
2368}
2369
2370/*
2371 * fxp_activate:
2372 *
2373 *	Handle device activation/deactivation requests.
2374 */
2375int
2376fxp_activate(struct device *self, enum devact act)
2377{
2378	struct fxp_softc *sc = (void *) self;
2379	int s, error = 0;
2380
2381	s = splnet();
2382	switch (act) {
2383	case DVACT_ACTIVATE:
2384		error = EOPNOTSUPP;
2385		break;
2386
2387	case DVACT_DEACTIVATE:
2388		if (sc->sc_flags & FXPF_MII)
2389			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2390			    MII_OFFSET_ANY);
2391		if_deactivate(&sc->sc_ethercom.ec_if);
2392		break;
2393	}
2394	splx(s);
2395
2396	return (error);
2397}
2398
2399/*
2400 * fxp_detach:
2401 *
2402 *	Detach an i82557 interface.
2403 */
2404int
2405fxp_detach(struct fxp_softc *sc)
2406{
2407	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2408	int i;
2409
2410	/* Succeed now if there's no work to do. */
2411	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2412		return (0);
2413
2414	/* Unhook our tick handler. */
2415	callout_stop(&sc->sc_callout);
2416
2417	if (sc->sc_flags & FXPF_MII) {
2418		/* Detach all PHYs */
2419		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2420	}
2421
2422	/* Delete all remaining media. */
2423	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2424
2425#if NRND > 0
2426	rnd_detach_source(&sc->rnd_source);
2427#endif
2428	ether_ifdetach(ifp);
2429	if_detach(ifp);
2430
2431	for (i = 0; i < FXP_NRFABUFS; i++) {
2432		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2433		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2434	}
2435
2436	for (i = 0; i < FXP_NTXCB; i++) {
2437		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2438		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2439	}
2440
2441	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2442	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2443	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2444	    sizeof(struct fxp_control_data));
2445	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2446
2447	return (0);
2448}
2449