i82557.c revision 1.106
1/*	$NetBSD: i82557.c,v 1.106 2007/12/10 16:15:02 degroote Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.106 2007/12/10 16:15:02 degroote Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91#include <sys/syslog.h>
92
93#include <machine/endian.h>
94
95#include <uvm/uvm_extern.h>
96
97#if NRND > 0
98#include <sys/rnd.h>
99#endif
100
101#include <net/if.h>
102#include <net/if_dl.h>
103#include <net/if_media.h>
104#include <net/if_ether.h>
105
106#if NBPFILTER > 0
107#include <net/bpf.h>
108#endif
109
110#include <sys/bus.h>
111#include <sys/intr.h>
112
113#include <dev/mii/miivar.h>
114
115#include <dev/ic/i82557reg.h>
116#include <dev/ic/i82557var.h>
117
118#include <dev/microcode/i8255x/rcvbundl.h>
119
120/*
121 * NOTE!  On the Alpha, we have an alignment constraint.  The
122 * card DMAs the packet immediately following the RFA.  However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned.  To compensate,
125 * we actually offset the RFA 2 bytes into the cluster.  This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary.  HOWEVER!  This means that the RFA is misaligned!
128 */
129#define	RFA_ALIGNMENT_FUDGE	2
130
131/*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero.  Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139const u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x0, 0x0,		/* cb_command */
142	0x0, 0x0, 0x0, 0x0,	/* link_addr */
143	0x0,	/*  0 */
144	0x0,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x0,	/*  5 */
149	0x32,	/*  6 */
150	0x0,	/*  7 */
151	0x0,	/*  8 */
152	0x0,	/*  9 */
153	0x6,	/* 10 */
154	0x0,	/* 11 */
155	0x0,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf0,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5,	/* 21 */
165	0x0,	/* 22 */
166	0x0,	/* 23 */
167	0x0,	/* 24 */
168	0x0,	/* 25 */
169	0x0,	/* 26 */
170	0x0,	/* 27 */
171	0x0,	/* 28 */
172	0x0,	/* 29 */
173	0x0,	/* 30 */
174	0x0,	/* 31 */
175};
176
177void	fxp_mii_initmedia(struct fxp_softc *);
178int	fxp_mii_mediachange(struct ifnet *);
179void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181void	fxp_80c24_initmedia(struct fxp_softc *);
182int	fxp_80c24_mediachange(struct ifnet *);
183void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185void	fxp_start(struct ifnet *);
186int	fxp_ioctl(struct ifnet *, u_long, void *);
187void	fxp_watchdog(struct ifnet *);
188int	fxp_init(struct ifnet *);
189void	fxp_stop(struct ifnet *, int);
190
191void	fxp_txintr(struct fxp_softc *);
192int	fxp_rxintr(struct fxp_softc *);
193
194int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196void	fxp_rxdrain(struct fxp_softc *);
197int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198int	fxp_mdi_read(struct device *, int, int);
199void	fxp_statchg(struct device *);
200void	fxp_mdi_write(struct device *, int, int, int);
201void	fxp_autosize_eeprom(struct fxp_softc*);
202void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204void	fxp_eeprom_update_cksum(struct fxp_softc *);
205void	fxp_get_info(struct fxp_softc *, u_int8_t *);
206void	fxp_tick(void *);
207void	fxp_mc_setup(struct fxp_softc *);
208void	fxp_load_ucode(struct fxp_softc *);
209
210void	fxp_shutdown(void *);
211
212int	fxp_copy_small = 0;
213
214/*
215 * Variables for interrupt mitigating microcode.
216 */
217int	fxp_int_delay = 1000;		/* usec */
218int	fxp_bundle_max = 6;		/* packets */
219
220struct fxp_phytype {
221	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
222	void	(*fp_init)(struct fxp_softc *);
223} fxp_phytype_table[] = {
224	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
225	{ -1,				fxp_mii_initmedia },
226};
227
228/*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233static int tx_threshold = 64;
234
235/*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239static inline void
240fxp_scb_wait(struct fxp_softc *sc)
241{
242	int i = 10000;
243
244	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245		delay(2);
246	if (i == 0)
247		log(LOG_WARNING,
248		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
249}
250
251/*
252 * Submit a command to the i82557.
253 */
254static inline void
255fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
256{
257
258	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
259}
260
261/*
262 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
263 */
264void
265fxp_attach(struct fxp_softc *sc)
266{
267	u_int8_t enaddr[ETHER_ADDR_LEN];
268	struct ifnet *ifp;
269	bus_dma_segment_t seg;
270	int rseg, i, error;
271	struct fxp_phytype *fp;
272
273	callout_init(&sc->sc_callout, 0);
274
275	/*
276	 * Enable some good stuff on i82558 and later.
277	 */
278	if (sc->sc_rev >= FXP_REV_82558_A4) {
279		/* Enable the extended TxCB. */
280		sc->sc_flags |= FXPF_EXT_TXCB;
281	}
282
283        /*
284	 * Enable use of extended RFDs and TCBs for 82550
285	 * and later chips. Note: we need extended TXCB support
286	 * too, but that's already enabled by the code above.
287	 * Be careful to do this only on the right devices.
288	 */
289	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
290		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
291		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
292	} else {
293		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
294	}
295
296	sc->sc_rfa_size =
297	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
298
299	/*
300	 * Allocate the control data structures, and create and load the
301	 * DMA map for it.
302	 */
303	if ((error = bus_dmamem_alloc(sc->sc_dmat,
304	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
305	    0)) != 0) {
306		aprint_error(
307		    "%s: unable to allocate control data, error = %d\n",
308		    sc->sc_dev.dv_xname, error);
309		goto fail_0;
310	}
311
312	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
313	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
314	    BUS_DMA_COHERENT)) != 0) {
315		aprint_error("%s: unable to map control data, error = %d\n",
316		    sc->sc_dev.dv_xname, error);
317		goto fail_1;
318	}
319	sc->sc_cdseg = seg;
320	sc->sc_cdnseg = rseg;
321
322	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
323
324	if ((error = bus_dmamap_create(sc->sc_dmat,
325	    sizeof(struct fxp_control_data), 1,
326	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
327		aprint_error("%s: unable to create control data DMA map, "
328		    "error = %d\n", sc->sc_dev.dv_xname, error);
329		goto fail_2;
330	}
331
332	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
333	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
334	    0)) != 0) {
335		aprint_error(
336		    "%s: can't load control data DMA map, error = %d\n",
337		    sc->sc_dev.dv_xname, error);
338		goto fail_3;
339	}
340
341	/*
342	 * Create the transmit buffer DMA maps.
343	 */
344	for (i = 0; i < FXP_NTXCB; i++) {
345		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
346		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
347		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
348			aprint_error("%s: unable to create tx DMA map %d, "
349			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
350			goto fail_4;
351		}
352	}
353
354	/*
355	 * Create the receive buffer DMA maps.
356	 */
357	for (i = 0; i < FXP_NRFABUFS; i++) {
358		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
359		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
360			aprint_error("%s: unable to create rx DMA map %d, "
361			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
362			goto fail_5;
363		}
364	}
365
366	/* Initialize MAC address and media structures. */
367	fxp_get_info(sc, enaddr);
368
369	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
370	    ether_sprintf(enaddr));
371
372	ifp = &sc->sc_ethercom.ec_if;
373
374	/*
375	 * Get info about our media interface, and initialize it.  Note
376	 * the table terminates itself with a phy of -1, indicating
377	 * that we're using MII.
378	 */
379	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
380		if (fp->fp_phy == sc->phy_primary_device)
381			break;
382	(*fp->fp_init)(sc);
383
384	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
385	ifp->if_softc = sc;
386	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
387	ifp->if_ioctl = fxp_ioctl;
388	ifp->if_start = fxp_start;
389	ifp->if_watchdog = fxp_watchdog;
390	ifp->if_init = fxp_init;
391	ifp->if_stop = fxp_stop;
392	IFQ_SET_READY(&ifp->if_snd);
393
394	if (sc->sc_flags & FXPF_IPCB) {
395		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
396		/*
397		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
398		 * at least, on i82550 rev.12.
399		 * specifically, it doesn't calculate ipv4 checksum correctly
400		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
401		 * FreeBSD driver has related comments.
402		 */
403		ifp->if_capabilities =
404		    IFCAP_CSUM_IPv4_Rx |
405		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
406		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
407		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
408	}
409
410	/*
411	 * We can support 802.1Q VLAN-sized frames.
412	 */
413	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
414
415	/*
416	 * Attach the interface.
417	 */
418	if_attach(ifp);
419	ether_ifattach(ifp, enaddr);
420#if NRND > 0
421	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
422	    RND_TYPE_NET, 0);
423#endif
424
425#ifdef FXP_EVENT_COUNTERS
426	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
427	    NULL, sc->sc_dev.dv_xname, "txstall");
428	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
429	    NULL, sc->sc_dev.dv_xname, "txintr");
430	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
431	    NULL, sc->sc_dev.dv_xname, "rxintr");
432	if (sc->sc_rev >= FXP_REV_82558_A4) {
433		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
434		    NULL, sc->sc_dev.dv_xname, "txpause");
435		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
436		    NULL, sc->sc_dev.dv_xname, "rxpause");
437	}
438#endif /* FXP_EVENT_COUNTERS */
439
440	/*
441	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
442	 * doing do could allow DMA to corrupt kernel memory during the
443	 * reboot before the driver initializes.
444	 */
445	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
446	if (sc->sc_sdhook == NULL)
447		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
448		    sc->sc_dev.dv_xname);
449
450	/* The attach is successful. */
451	sc->sc_flags |= FXPF_ATTACHED;
452
453	return;
454
455	/*
456	 * Free any resources we've allocated during the failed attach
457	 * attempt.  Do this in reverse order and fall though.
458	 */
459 fail_5:
460	for (i = 0; i < FXP_NRFABUFS; i++) {
461		if (sc->sc_rxmaps[i] != NULL)
462			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
463	}
464 fail_4:
465	for (i = 0; i < FXP_NTXCB; i++) {
466		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
467			bus_dmamap_destroy(sc->sc_dmat,
468			    FXP_DSTX(sc, i)->txs_dmamap);
469	}
470	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
471 fail_3:
472	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
473 fail_2:
474	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
475	    sizeof(struct fxp_control_data));
476 fail_1:
477	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
478 fail_0:
479	return;
480}
481
482void
483fxp_mii_initmedia(struct fxp_softc *sc)
484{
485	int flags;
486
487	sc->sc_flags |= FXPF_MII;
488
489	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
490	sc->sc_mii.mii_readreg = fxp_mdi_read;
491	sc->sc_mii.mii_writereg = fxp_mdi_write;
492	sc->sc_mii.mii_statchg = fxp_statchg;
493	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
494	    fxp_mii_mediastatus);
495
496	flags = MIIF_NOISOLATE;
497	if (sc->sc_rev >= FXP_REV_82558_A4)
498		flags |= MIIF_DOPAUSE;
499	/*
500	 * The i82557 wedges if all of its PHYs are isolated!
501	 */
502	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
503	    MII_OFFSET_ANY, flags);
504	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
505		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
506		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
507	} else
508		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509}
510
511void
512fxp_80c24_initmedia(struct fxp_softc *sc)
513{
514
515	/*
516	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
517	 * doesn't have a programming interface of any sort.  The
518	 * media is sensed automatically based on how the link partner
519	 * is configured.  This is, in essence, manual configuration.
520	 */
521	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
522	    sc->sc_dev.dv_xname);
523	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
524	    fxp_80c24_mediastatus);
525	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
526	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
527}
528
529/*
530 * Device shutdown routine. Called at system shutdown after sync. The
531 * main purpose of this routine is to shut off receiver DMA so that
532 * kernel memory doesn't get clobbered during warmboot.
533 */
534void
535fxp_shutdown(void *arg)
536{
537	struct fxp_softc *sc = arg;
538
539	/*
540	 * Since the system's going to halt shortly, don't bother
541	 * freeing mbufs.
542	 */
543	fxp_stop(&sc->sc_ethercom.ec_if, 0);
544}
545
546/*
547 * Initialize the interface media.
548 */
549void
550fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
551{
552	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
553
554	/*
555	 * Reset to a stable state.
556	 */
557	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
558	DELAY(100);
559
560	sc->sc_eeprom_size = 0;
561	fxp_autosize_eeprom(sc);
562	if (sc->sc_eeprom_size == 0) {
563		aprint_error("%s: failed to detect EEPROM size\n",
564		    sc->sc_dev.dv_xname);
565		sc->sc_eeprom_size = 6; /* XXX panic here? */
566	}
567#ifdef DEBUG
568	aprint_debug("%s: detected %d word EEPROM\n",
569	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
570#endif
571
572	/*
573	 * Get info about the primary PHY
574	 */
575	fxp_read_eeprom(sc, &data, 6, 1);
576	sc->phy_primary_device =
577	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
578
579	/*
580	 * Read MAC address.
581	 */
582	fxp_read_eeprom(sc, myea, 0, 3);
583	enaddr[0] = myea[0] & 0xff;
584	enaddr[1] = myea[0] >> 8;
585	enaddr[2] = myea[1] & 0xff;
586	enaddr[3] = myea[1] >> 8;
587	enaddr[4] = myea[2] & 0xff;
588	enaddr[5] = myea[2] >> 8;
589
590	/*
591	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
592	 * as some i82559 designs, have a defect where the chip can
593	 * cause a PCI protocol violation if it receives a CU_RESUME
594	 * command when it is entering the IDLE state.
595	 *
596	 * The work-around is to disable Dynamic Standby Mode, so that
597	 * the chip never deasserts #CLKRUN, and always remains in the
598	 * active state.
599	 *
600	 * Unfortunately, the only way to disable Dynamic Standby is
601	 * to frob an EEPROM setting and reboot (the EEPROM setting
602	 * is only consulted when the PCI bus comes out of reset).
603	 *
604	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
605	 */
606	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
607		fxp_read_eeprom(sc, &data, 10, 1);
608		if (data & 0x02) {		/* STB enable */
609			aprint_error("%s: WARNING: "
610			    "Disabling dynamic standby mode in EEPROM "
611			    "to work around a\n",
612			    sc->sc_dev.dv_xname);
613			aprint_normal(
614			    "%s: WARNING: hardware bug.  You must reset "
615			    "the system before using this\n",
616			    sc->sc_dev.dv_xname);
617			aprint_normal("%s: WARNING: interface.\n",
618			    sc->sc_dev.dv_xname);
619			data &= ~0x02;
620			fxp_write_eeprom(sc, &data, 10, 1);
621			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
622			    sc->sc_dev.dv_xname, data);
623			fxp_eeprom_update_cksum(sc);
624		}
625	}
626
627	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
628	/* Due to false positives we make it conditional on setting link1 */
629	fxp_read_eeprom(sc, &data, 3, 1);
630	if ((data & 0x03) != 0x03) {
631		aprint_verbose("%s: May need receiver lock-up workaround\n",
632		    sc->sc_dev.dv_xname);
633	}
634}
635
636static void
637fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
638{
639	uint16_t reg;
640	int x;
641
642	for (x = 1 << (len - 1); x != 0; x >>= 1) {
643		DELAY(40);
644		if (data & x)
645			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
646		else
647			reg = FXP_EEPROM_EECS;
648		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
649		DELAY(40);
650		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
651		    reg | FXP_EEPROM_EESK);
652		DELAY(40);
653		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
654	}
655	DELAY(40);
656}
657
658/*
659 * Figure out EEPROM size.
660 *
661 * 559's can have either 64-word or 256-word EEPROMs, the 558
662 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
663 * talks about the existence of 16 to 256 word EEPROMs.
664 *
665 * The only known sizes are 64 and 256, where the 256 version is used
666 * by CardBus cards to store CIS information.
667 *
668 * The address is shifted in msb-to-lsb, and after the last
669 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
670 * after which follows the actual data. We try to detect this zero, by
671 * probing the data-out bit in the EEPROM control register just after
672 * having shifted in a bit. If the bit is zero, we assume we've
673 * shifted enough address bits. The data-out should be tri-state,
674 * before this, which should translate to a logical one.
675 *
676 * Other ways to do this would be to try to read a register with known
677 * contents with a varying number of address bits, but no such
678 * register seem to be available. The high bits of register 10 are 01
679 * on the 558 and 559, but apparently not on the 557.
680 *
681 * The Linux driver computes a checksum on the EEPROM data, but the
682 * value of this checksum is not very well documented.
683 */
684
685void
686fxp_autosize_eeprom(struct fxp_softc *sc)
687{
688	int x;
689
690	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
691	DELAY(40);
692
693	/* Shift in read opcode. */
694	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
695
696	/*
697	 * Shift in address, wait for the dummy zero following a correct
698	 * address shift.
699	 */
700	for (x = 1; x <= 8; x++) {
701		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
702		DELAY(40);
703		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
704		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
705		DELAY(40);
706		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
707		    FXP_EEPROM_EEDO) == 0)
708			break;
709		DELAY(40);
710		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
711		DELAY(40);
712	}
713	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
714	DELAY(40);
715	if (x != 6 && x != 8) {
716#ifdef DEBUG
717		printf("%s: strange EEPROM size (%d)\n",
718		    sc->sc_dev.dv_xname, 1 << x);
719#endif
720	} else
721		sc->sc_eeprom_size = x;
722}
723
724/*
725 * Read from the serial EEPROM. Basically, you manually shift in
726 * the read opcode (one bit at a time) and then shift in the address,
727 * and then you shift out the data (all of this one bit at a time).
728 * The word size is 16 bits, so you have to provide the address for
729 * every 16 bits of data.
730 */
731void
732fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
733{
734	u_int16_t reg;
735	int i, x;
736
737	for (i = 0; i < words; i++) {
738		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
739
740		/* Shift in read opcode. */
741		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
742
743		/* Shift in address. */
744		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
745
746		reg = FXP_EEPROM_EECS;
747		data[i] = 0;
748
749		/* Shift out data. */
750		for (x = 16; x > 0; x--) {
751			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
752			    reg | FXP_EEPROM_EESK);
753			DELAY(40);
754			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
755			    FXP_EEPROM_EEDO)
756				data[i] |= (1 << (x - 1));
757			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
758			DELAY(40);
759		}
760		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
761		DELAY(40);
762	}
763}
764
765/*
766 * Write data to the serial EEPROM.
767 */
768void
769fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
770{
771	int i, j;
772
773	for (i = 0; i < words; i++) {
774		/* Erase/write enable. */
775		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
776		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
777		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
778		    sc->sc_eeprom_size);
779		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
780		DELAY(4);
781
782		/* Shift in write opcode, address, data. */
783		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
784		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
785		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
786		fxp_eeprom_shiftin(sc, data[i], 16);
787		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
788		DELAY(4);
789
790		/* Wait for the EEPROM to finish up. */
791		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
792		DELAY(4);
793		for (j = 0; j < 1000; j++) {
794			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
795			    FXP_EEPROM_EEDO)
796				break;
797			DELAY(50);
798		}
799		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
800		DELAY(4);
801
802		/* Erase/write disable. */
803		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
804		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
805		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
806		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
807		DELAY(4);
808	}
809}
810
811/*
812 * Update the checksum of the EEPROM.
813 */
814void
815fxp_eeprom_update_cksum(struct fxp_softc *sc)
816{
817	int i;
818	uint16_t data, cksum;
819
820	cksum = 0;
821	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
822		fxp_read_eeprom(sc, &data, i, 1);
823		cksum += data;
824	}
825	i = (1 << sc->sc_eeprom_size) - 1;
826	cksum = 0xbaba - cksum;
827	fxp_read_eeprom(sc, &data, i, 1);
828	fxp_write_eeprom(sc, &cksum, i, 1);
829	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
830	    sc->sc_dev.dv_xname, i, data, cksum);
831}
832
833/*
834 * Start packet transmission on the interface.
835 */
836void
837fxp_start(struct ifnet *ifp)
838{
839	struct fxp_softc *sc = ifp->if_softc;
840	struct mbuf *m0, *m;
841	struct fxp_txdesc *txd;
842	struct fxp_txsoft *txs;
843	bus_dmamap_t dmamap;
844	int error, lasttx, nexttx, opending, seg;
845
846	/*
847	 * If we want a re-init, bail out now.
848	 */
849	if (sc->sc_flags & FXPF_WANTINIT) {
850		ifp->if_flags |= IFF_OACTIVE;
851		return;
852	}
853
854	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
855		return;
856
857	/*
858	 * Remember the previous txpending and the current lasttx.
859	 */
860	opending = sc->sc_txpending;
861	lasttx = sc->sc_txlast;
862
863	/*
864	 * Loop through the send queue, setting up transmit descriptors
865	 * until we drain the queue, or use up all available transmit
866	 * descriptors.
867	 */
868	for (;;) {
869		struct fxp_tbd *tbdp;
870		int csum_flags;
871
872		/*
873		 * Grab a packet off the queue.
874		 */
875		IFQ_POLL(&ifp->if_snd, m0);
876		if (m0 == NULL)
877			break;
878		m = NULL;
879
880		if (sc->sc_txpending == FXP_NTXCB - 1) {
881			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
882			break;
883		}
884
885		/*
886		 * Get the next available transmit descriptor.
887		 */
888		nexttx = FXP_NEXTTX(sc->sc_txlast);
889		txd = FXP_CDTX(sc, nexttx);
890		txs = FXP_DSTX(sc, nexttx);
891		dmamap = txs->txs_dmamap;
892
893		/*
894		 * Load the DMA map.  If this fails, the packet either
895		 * didn't fit in the allotted number of frags, or we were
896		 * short on resources.  In this case, we'll copy and try
897		 * again.
898		 */
899		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
900		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
901			MGETHDR(m, M_DONTWAIT, MT_DATA);
902			if (m == NULL) {
903				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
904				    sc->sc_dev.dv_xname);
905				break;
906			}
907			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
908			if (m0->m_pkthdr.len > MHLEN) {
909				MCLGET(m, M_DONTWAIT);
910				if ((m->m_flags & M_EXT) == 0) {
911					log(LOG_ERR,
912					    "%s: unable to allocate Tx "
913					    "cluster\n", sc->sc_dev.dv_xname);
914					m_freem(m);
915					break;
916				}
917			}
918			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
919			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
920			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
921			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
922			if (error) {
923				log(LOG_ERR, "%s: unable to load Tx buffer, "
924				    "error = %d\n", sc->sc_dev.dv_xname, error);
925				break;
926			}
927		}
928
929		IFQ_DEQUEUE(&ifp->if_snd, m0);
930		csum_flags = m0->m_pkthdr.csum_flags;
931		if (m != NULL) {
932			m_freem(m0);
933			m0 = m;
934		}
935
936		/* Initialize the fraglist. */
937		tbdp = txd->txd_tbd;
938		if (sc->sc_flags & FXPF_IPCB)
939			tbdp++;
940		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
941			tbdp[seg].tb_addr =
942			    htole32(dmamap->dm_segs[seg].ds_addr);
943			tbdp[seg].tb_size =
944			    htole32(dmamap->dm_segs[seg].ds_len);
945		}
946
947		/* Sync the DMA map. */
948		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
949		    BUS_DMASYNC_PREWRITE);
950
951		/*
952		 * Store a pointer to the packet so we can free it later.
953		 */
954		txs->txs_mbuf = m0;
955
956		/*
957		 * Initialize the transmit descriptor.
958		 */
959		/* BIG_ENDIAN: no need to swap to store 0 */
960		txd->txd_txcb.cb_status = 0;
961		txd->txd_txcb.cb_command =
962		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
963		txd->txd_txcb.tx_threshold = tx_threshold;
964		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
965
966		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
967		if (sc->sc_flags & FXPF_IPCB) {
968			struct m_tag *vtag;
969			struct fxp_ipcb *ipcb;
970			/*
971			 * Deal with TCP/IP checksum offload. Note that
972			 * in order for TCP checksum offload to work,
973			 * the pseudo header checksum must have already
974			 * been computed and stored in the checksum field
975			 * in the TCP header. The stack should have
976			 * already done this for us.
977			 */
978			ipcb = &txd->txd_u.txdu_ipcb;
979			memset(ipcb, 0, sizeof(*ipcb));
980			/*
981			 * always do hardware parsing.
982			 */
983			ipcb->ipcb_ip_activation_high =
984			    FXP_IPCB_HARDWAREPARSING_ENABLE;
985			/*
986			 * ip checksum offloading.
987			 */
988			if (csum_flags & M_CSUM_IPv4) {
989				ipcb->ipcb_ip_schedule |=
990				    FXP_IPCB_IP_CHECKSUM_ENABLE;
991			}
992			/*
993			 * TCP/UDP checksum offloading.
994			 */
995			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
996				ipcb->ipcb_ip_schedule |=
997				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
998			}
999
1000			/*
1001			 * request VLAN tag insertion if needed.
1002			 */
1003			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
1004			if (vtag) {
1005				ipcb->ipcb_vlan_id =
1006				    htobe16(*(u_int *)(vtag + 1));
1007				ipcb->ipcb_ip_activation_high |=
1008				    FXP_IPCB_INSERTVLAN_ENABLE;
1009			}
1010		} else {
1011			KASSERT((csum_flags &
1012			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1013		}
1014
1015		FXP_CDTXSYNC(sc, nexttx,
1016		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1017
1018		/* Advance the tx pointer. */
1019		sc->sc_txpending++;
1020		sc->sc_txlast = nexttx;
1021
1022#if NBPFILTER > 0
1023		/*
1024		 * Pass packet to bpf if there is a listener.
1025		 */
1026		if (ifp->if_bpf)
1027			bpf_mtap(ifp->if_bpf, m0);
1028#endif
1029	}
1030
1031	if (sc->sc_txpending == FXP_NTXCB - 1) {
1032		/* No more slots; notify upper layer. */
1033		ifp->if_flags |= IFF_OACTIVE;
1034	}
1035
1036	if (sc->sc_txpending != opending) {
1037		/*
1038		 * We enqueued packets.  If the transmitter was idle,
1039		 * reset the txdirty pointer.
1040		 */
1041		if (opending == 0)
1042			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1043
1044		/*
1045		 * Cause the chip to interrupt and suspend command
1046		 * processing once the last packet we've enqueued
1047		 * has been transmitted.
1048		 *
1049		 * To avoid a race between updating status bits
1050		 * by the fxp chip and clearing command bits
1051		 * by this function on machines which don't have
1052		 * atomic methods to clear/set bits in memory
1053		 * smaller than 32bits (both cb_status and cb_command
1054		 * members are uint16_t and in the same 32bit word),
1055		 * we have to prepare a dummy TX descriptor which has
1056		 * NOP command and just causes a TX completion interrupt.
1057		 */
1058		sc->sc_txpending++;
1059		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1060		txd = FXP_CDTX(sc, sc->sc_txlast);
1061		/* BIG_ENDIAN: no need to swap to store 0 */
1062		txd->txd_txcb.cb_status = 0;
1063		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1064		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1065		FXP_CDTXSYNC(sc, sc->sc_txlast,
1066		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1067
1068		/*
1069		 * The entire packet chain is set up.  Clear the suspend bit
1070		 * on the command prior to the first packet we set up.
1071		 */
1072		FXP_CDTXSYNC(sc, lasttx,
1073		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1074		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1075		    htole16(~FXP_CB_COMMAND_S);
1076		FXP_CDTXSYNC(sc, lasttx,
1077		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078
1079		/*
1080		 * Issue a Resume command in case the chip was suspended.
1081		 */
1082		fxp_scb_wait(sc);
1083		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1084
1085		/* Set a watchdog timer in case the chip flakes out. */
1086		ifp->if_timer = 5;
1087	}
1088}
1089
1090/*
1091 * Process interface interrupts.
1092 */
1093int
1094fxp_intr(void *arg)
1095{
1096	struct fxp_softc *sc = arg;
1097	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1098	bus_dmamap_t rxmap;
1099	int claimed = 0, rnr;
1100	u_int8_t statack;
1101
1102	if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1103		return (0);
1104	/*
1105	 * If the interface isn't running, don't try to
1106	 * service the interrupt.. just ack it and bail.
1107	 */
1108	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1109		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1110		if (statack) {
1111			claimed = 1;
1112			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1113		}
1114		return (claimed);
1115	}
1116
1117	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1118		claimed = 1;
1119
1120		/*
1121		 * First ACK all the interrupts in this pass.
1122		 */
1123		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1124
1125		/*
1126		 * Process receiver interrupts. If a no-resource (RNR)
1127		 * condition exists, get whatever packets we can and
1128		 * re-start the receiver.
1129		 */
1130		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1131		    1 : 0;
1132		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1133		    FXP_SCB_STATACK_SWI)) {
1134			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1135			rnr |= fxp_rxintr(sc);
1136		}
1137
1138		/*
1139		 * Free any finished transmit mbuf chains.
1140		 */
1141		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1142			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1143			fxp_txintr(sc);
1144
1145			/*
1146			 * Try to get more packets going.
1147			 */
1148			fxp_start(ifp);
1149
1150			if (sc->sc_txpending == 0) {
1151				/*
1152				 * If we want a re-init, do that now.
1153				 */
1154				if (sc->sc_flags & FXPF_WANTINIT)
1155					(void) fxp_init(ifp);
1156			}
1157		}
1158
1159		if (rnr) {
1160			fxp_scb_wait(sc);
1161			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1162			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1163			fxp_scb_wait(sc);
1164			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1165			    rxmap->dm_segs[0].ds_addr +
1166			    RFA_ALIGNMENT_FUDGE);
1167			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1168		}
1169	}
1170
1171#if NRND > 0
1172	if (claimed)
1173		rnd_add_uint32(&sc->rnd_source, statack);
1174#endif
1175	return (claimed);
1176}
1177
1178/*
1179 * Handle transmit completion interrupts.
1180 */
1181void
1182fxp_txintr(struct fxp_softc *sc)
1183{
1184	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1185	struct fxp_txdesc *txd;
1186	struct fxp_txsoft *txs;
1187	int i;
1188	u_int16_t txstat;
1189
1190	ifp->if_flags &= ~IFF_OACTIVE;
1191	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1192	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1193		txd = FXP_CDTX(sc, i);
1194		txs = FXP_DSTX(sc, i);
1195
1196		FXP_CDTXSYNC(sc, i,
1197		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1198
1199		/* skip dummy NOP TX descriptor */
1200		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1201		    == FXP_CB_COMMAND_NOP)
1202			continue;
1203
1204		txstat = le16toh(txd->txd_txcb.cb_status);
1205
1206		if ((txstat & FXP_CB_STATUS_C) == 0)
1207			break;
1208
1209		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1210		    0, txs->txs_dmamap->dm_mapsize,
1211		    BUS_DMASYNC_POSTWRITE);
1212		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1213		m_freem(txs->txs_mbuf);
1214		txs->txs_mbuf = NULL;
1215	}
1216
1217	/* Update the dirty transmit buffer pointer. */
1218	sc->sc_txdirty = i;
1219
1220	/*
1221	 * Cancel the watchdog timer if there are no pending
1222	 * transmissions.
1223	 */
1224	if (sc->sc_txpending == 0)
1225		ifp->if_timer = 0;
1226}
1227
1228/*
1229 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1230 */
1231
1232int
1233fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1234{
1235	u_int16_t rxparsestat;
1236	u_int16_t csum_stat;
1237	u_int32_t csum_data;
1238	int csum_flags;
1239
1240	/*
1241	 * check VLAN tag stripping.
1242	 */
1243
1244	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1245		struct m_tag *vtag;
1246
1247		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1248		if (vtag == NULL)
1249			return ENOMEM;
1250		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1251		m_tag_prepend(m, vtag);
1252	}
1253
1254	/*
1255	 * check H/W Checksumming.
1256	 */
1257
1258	csum_stat = le16toh(rfa->cksum_stat);
1259	rxparsestat = le16toh(rfa->rx_parse_stat);
1260	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1261		return 0;
1262
1263	csum_flags = 0;
1264	csum_data = 0;
1265
1266	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1267		csum_flags = M_CSUM_IPv4;
1268		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1269			csum_flags |= M_CSUM_IPv4_BAD;
1270	}
1271
1272	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1273		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1274		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1275			csum_flags |= M_CSUM_TCP_UDP_BAD;
1276	}
1277
1278	m->m_pkthdr.csum_flags = csum_flags;
1279	m->m_pkthdr.csum_data = csum_data;
1280
1281	return 0;
1282}
1283
1284/*
1285 * Handle receive interrupts.
1286 */
1287int
1288fxp_rxintr(struct fxp_softc *sc)
1289{
1290	struct ethercom *ec = &sc->sc_ethercom;
1291	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1292	struct mbuf *m, *m0;
1293	bus_dmamap_t rxmap;
1294	struct fxp_rfa *rfa;
1295	int rnr;
1296	u_int16_t len, rxstat;
1297
1298	rnr = 0;
1299
1300	for (;;) {
1301		m = sc->sc_rxq.ifq_head;
1302		rfa = FXP_MTORFA(m);
1303		rxmap = M_GETCTX(m, bus_dmamap_t);
1304
1305		FXP_RFASYNC(sc, m,
1306		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1307
1308		rxstat = le16toh(rfa->rfa_status);
1309
1310		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1311			rnr = 1;
1312
1313		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1314			/*
1315			 * We have processed all of the
1316			 * receive buffers.
1317			 */
1318			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1319			return rnr;
1320		}
1321
1322		IF_DEQUEUE(&sc->sc_rxq, m);
1323
1324		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1325
1326		len = le16toh(rfa->actual_size) &
1327		    (m->m_ext.ext_size - 1);
1328
1329		if (len < sizeof(struct ether_header)) {
1330			/*
1331			 * Runt packet; drop it now.
1332			 */
1333			FXP_INIT_RFABUF(sc, m);
1334			continue;
1335		}
1336
1337		/*
1338		 * If support for 802.1Q VLAN sized frames is
1339		 * enabled, we need to do some additional error
1340		 * checking (as we are saving bad frames, in
1341		 * order to receive the larger ones).
1342		 */
1343		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1344		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1345			       FXP_RFA_STATUS_RNR|
1346			       FXP_RFA_STATUS_ALIGN|
1347			       FXP_RFA_STATUS_CRC)) != 0) {
1348			FXP_INIT_RFABUF(sc, m);
1349			continue;
1350		}
1351
1352		/* Do checksum checking. */
1353		m->m_pkthdr.csum_flags = 0;
1354		if (sc->sc_flags & FXPF_EXT_RFA)
1355			if (fxp_rx_hwcksum(m, rfa))
1356				goto dropit;
1357
1358		/*
1359		 * If the packet is small enough to fit in a
1360		 * single header mbuf, allocate one and copy
1361		 * the data into it.  This greatly reduces
1362		 * memory consumption when we receive lots
1363		 * of small packets.
1364		 *
1365		 * Otherwise, we add a new buffer to the receive
1366		 * chain.  If this fails, we drop the packet and
1367		 * recycle the old buffer.
1368		 */
1369		if (fxp_copy_small != 0 && len <= MHLEN) {
1370			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1371			if (m0 == NULL)
1372				goto dropit;
1373			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1374			memcpy(mtod(m0, void *),
1375			    mtod(m, void *), len);
1376			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1377			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1378			FXP_INIT_RFABUF(sc, m);
1379			m = m0;
1380		} else {
1381			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1382 dropit:
1383				ifp->if_ierrors++;
1384				FXP_INIT_RFABUF(sc, m);
1385				continue;
1386			}
1387		}
1388
1389		m->m_pkthdr.rcvif = ifp;
1390		m->m_pkthdr.len = m->m_len = len;
1391
1392#if NBPFILTER > 0
1393		/*
1394		 * Pass this up to any BPF listeners, but only
1395		 * pass it up the stack it its for us.
1396		 */
1397		if (ifp->if_bpf)
1398			bpf_mtap(ifp->if_bpf, m);
1399#endif
1400
1401		/* Pass it on. */
1402		(*ifp->if_input)(ifp, m);
1403	}
1404}
1405
1406/*
1407 * Update packet in/out/collision statistics. The i82557 doesn't
1408 * allow you to access these counters without doing a fairly
1409 * expensive DMA to get _all_ of the statistics it maintains, so
1410 * we do this operation here only once per second. The statistics
1411 * counters in the kernel are updated from the previous dump-stats
1412 * DMA and then a new dump-stats DMA is started. The on-chip
1413 * counters are zeroed when the DMA completes. If we can't start
1414 * the DMA immediately, we don't wait - we just prepare to read
1415 * them again next time.
1416 */
1417void
1418fxp_tick(void *arg)
1419{
1420	struct fxp_softc *sc = arg;
1421	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1422	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1423	int s;
1424
1425	if (!device_is_active(&sc->sc_dev))
1426		return;
1427
1428	s = splnet();
1429
1430	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1431
1432	ifp->if_opackets += le32toh(sp->tx_good);
1433	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1434	if (sp->rx_good) {
1435		ifp->if_ipackets += le32toh(sp->rx_good);
1436		sc->sc_rxidle = 0;
1437	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1438		sc->sc_rxidle++;
1439	}
1440	ifp->if_ierrors +=
1441	    le32toh(sp->rx_crc_errors) +
1442	    le32toh(sp->rx_alignment_errors) +
1443	    le32toh(sp->rx_rnr_errors) +
1444	    le32toh(sp->rx_overrun_errors);
1445	/*
1446	 * If any transmit underruns occurred, bump up the transmit
1447	 * threshold by another 512 bytes (64 * 8).
1448	 */
1449	if (sp->tx_underruns) {
1450		ifp->if_oerrors += le32toh(sp->tx_underruns);
1451		if (tx_threshold < 192)
1452			tx_threshold += 64;
1453	}
1454#ifdef FXP_EVENT_COUNTERS
1455	if (sc->sc_rev >= FXP_REV_82558_A4) {
1456		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1457		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1458	}
1459#endif
1460
1461	/*
1462	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1463	 * then assume the receiver has locked up and attempt to clear
1464	 * the condition by reprogramming the multicast filter (actually,
1465	 * resetting the interface). This is a work-around for a bug in
1466	 * the 82557 where the receiver locks up if it gets certain types
1467	 * of garbage in the synchronization bits prior to the packet header.
1468	 * This bug is supposed to only occur in 10Mbps mode, but has been
1469	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1470	 * speed transition).
1471	 */
1472	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1473		(void) fxp_init(ifp);
1474		splx(s);
1475		return;
1476	}
1477	/*
1478	 * If there is no pending command, start another stats
1479	 * dump. Otherwise punt for now.
1480	 */
1481	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1482		/*
1483		 * Start another stats dump.
1484		 */
1485		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1486		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1487	} else {
1488		/*
1489		 * A previous command is still waiting to be accepted.
1490		 * Just zero our copy of the stats and wait for the
1491		 * next timer event to update them.
1492		 */
1493		/* BIG_ENDIAN: no swap required to store 0 */
1494		sp->tx_good = 0;
1495		sp->tx_underruns = 0;
1496		sp->tx_total_collisions = 0;
1497
1498		sp->rx_good = 0;
1499		sp->rx_crc_errors = 0;
1500		sp->rx_alignment_errors = 0;
1501		sp->rx_rnr_errors = 0;
1502		sp->rx_overrun_errors = 0;
1503		if (sc->sc_rev >= FXP_REV_82558_A4) {
1504			sp->tx_pauseframes = 0;
1505			sp->rx_pauseframes = 0;
1506		}
1507	}
1508
1509	if (sc->sc_flags & FXPF_MII) {
1510		/* Tick the MII clock. */
1511		mii_tick(&sc->sc_mii);
1512	}
1513
1514	splx(s);
1515
1516	/*
1517	 * Schedule another timeout one second from now.
1518	 */
1519	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1520}
1521
1522/*
1523 * Drain the receive queue.
1524 */
1525void
1526fxp_rxdrain(struct fxp_softc *sc)
1527{
1528	bus_dmamap_t rxmap;
1529	struct mbuf *m;
1530
1531	for (;;) {
1532		IF_DEQUEUE(&sc->sc_rxq, m);
1533		if (m == NULL)
1534			break;
1535		rxmap = M_GETCTX(m, bus_dmamap_t);
1536		bus_dmamap_unload(sc->sc_dmat, rxmap);
1537		FXP_RXMAP_PUT(sc, rxmap);
1538		m_freem(m);
1539	}
1540}
1541
1542/*
1543 * Stop the interface. Cancels the statistics updater and resets
1544 * the interface.
1545 */
1546void
1547fxp_stop(struct ifnet *ifp, int disable)
1548{
1549	struct fxp_softc *sc = ifp->if_softc;
1550	struct fxp_txsoft *txs;
1551	int i;
1552
1553	/*
1554	 * Turn down interface (done early to avoid bad interactions
1555	 * between panics, shutdown hooks, and the watchdog timer)
1556	 */
1557	ifp->if_timer = 0;
1558	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1559
1560	/*
1561	 * Cancel stats updater.
1562	 */
1563	callout_stop(&sc->sc_callout);
1564	if (sc->sc_flags & FXPF_MII) {
1565		/* Down the MII. */
1566		mii_down(&sc->sc_mii);
1567	}
1568
1569	/*
1570	 * Issue software reset.  This unloads any microcode that
1571	 * might already be loaded.
1572	 */
1573	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1574	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1575	DELAY(50);
1576
1577	/*
1578	 * Release any xmit buffers.
1579	 */
1580	for (i = 0; i < FXP_NTXCB; i++) {
1581		txs = FXP_DSTX(sc, i);
1582		if (txs->txs_mbuf != NULL) {
1583			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1584			m_freem(txs->txs_mbuf);
1585			txs->txs_mbuf = NULL;
1586		}
1587	}
1588	sc->sc_txpending = 0;
1589
1590	if (disable) {
1591		fxp_rxdrain(sc);
1592		fxp_disable(sc);
1593	}
1594
1595}
1596
1597/*
1598 * Watchdog/transmission transmit timeout handler. Called when a
1599 * transmission is started on the interface, but no interrupt is
1600 * received before the timeout. This usually indicates that the
1601 * card has wedged for some reason.
1602 */
1603void
1604fxp_watchdog(struct ifnet *ifp)
1605{
1606	struct fxp_softc *sc = ifp->if_softc;
1607
1608	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1609	ifp->if_oerrors++;
1610
1611	(void) fxp_init(ifp);
1612}
1613
1614/*
1615 * Initialize the interface.  Must be called at splnet().
1616 */
1617int
1618fxp_init(struct ifnet *ifp)
1619{
1620	struct fxp_softc *sc = ifp->if_softc;
1621	struct fxp_cb_config *cbp;
1622	struct fxp_cb_ias *cb_ias;
1623	struct fxp_txdesc *txd;
1624	bus_dmamap_t rxmap;
1625	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1626
1627	if ((error = fxp_enable(sc)) != 0)
1628		goto out;
1629
1630	/*
1631	 * Cancel any pending I/O
1632	 */
1633	fxp_stop(ifp, 0);
1634
1635	/*
1636	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1637	 * flag, and this prevents the MII from detaching resulting in
1638	 * a panic. The flags field should perhaps be split in runtime
1639	 * flags and more static information. For now, just clear the
1640	 * only other flag set.
1641	 */
1642
1643	sc->sc_flags &= ~FXPF_WANTINIT;
1644
1645	/*
1646	 * Initialize base of CBL and RFA memory. Loading with zero
1647	 * sets it up for regular linear addressing.
1648	 */
1649	fxp_scb_wait(sc);
1650	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1651	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1652
1653	fxp_scb_wait(sc);
1654	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1655
1656	/*
1657	 * Initialize the multicast filter.  Do this now, since we might
1658	 * have to setup the config block differently.
1659	 */
1660	fxp_mc_setup(sc);
1661
1662	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1663	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1664
1665	/*
1666	 * In order to support receiving 802.1Q VLAN frames, we have to
1667	 * enable "save bad frames", since they are 4 bytes larger than
1668	 * the normal Ethernet maximum frame length.  On i82558 and later,
1669	 * we have a better mechanism for this.
1670	 */
1671	save_bf = 0;
1672	lrxen = 0;
1673	vlan_drop = 0;
1674	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1675		if (sc->sc_rev < FXP_REV_82558_A4)
1676			save_bf = 1;
1677		else
1678			lrxen = 1;
1679		if (sc->sc_rev >= FXP_REV_82550)
1680			vlan_drop = 1;
1681	}
1682
1683	/*
1684	 * Initialize base of dump-stats buffer.
1685	 */
1686	fxp_scb_wait(sc);
1687	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1688	    sc->sc_cddma + FXP_CDSTATSOFF);
1689	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1690	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1691
1692	cbp = &sc->sc_control_data->fcd_configcb;
1693	memset(cbp, 0, sizeof(struct fxp_cb_config));
1694
1695	/*
1696	 * Load microcode for this controller.
1697	 */
1698	fxp_load_ucode(sc);
1699
1700	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1701		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1702	else
1703		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1704
1705	/*
1706	 * This copy is kind of disgusting, but there are a bunch of must be
1707	 * zero and must be one bits in this structure and this is the easiest
1708	 * way to initialize them all to proper values.
1709	 */
1710	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1711
1712	/* BIG_ENDIAN: no need to swap to store 0 */
1713	cbp->cb_status =	0;
1714	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1715				    FXP_CB_COMMAND_EL);
1716	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1717	cbp->link_addr =	0xffffffff; /* (no) next command */
1718					/* bytes in config block */
1719	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1720				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1721	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1722	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1723	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1724	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1725	cbp->type_enable =	0;	/* actually reserved */
1726	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1727	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1728	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1729	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1730	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1731	cbp->late_scb =		0;	/* (don't) defer SCB update */
1732	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1733	cbp->ci_int =		1;	/* interrupt on CU idle */
1734	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1735	cbp->ext_stats_dis =	1;	/* disable extended counters */
1736	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1737	cbp->save_bf =		save_bf;/* save bad frames */
1738	cbp->disc_short_rx =	!prm;	/* discard short packets */
1739	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1740	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1741	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1742	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1743					/* interface mode */
1744	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1745	cbp->csma_dis =		0;	/* (don't) disable link */
1746	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1747	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1748	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1749	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1750	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1751	cbp->nsai =		1;	/* (don't) disable source addr insert */
1752	cbp->preamble_length =	2;	/* (7 byte) preamble */
1753	cbp->loopback =		0;	/* (don't) loopback */
1754	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1755	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1756	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1757	cbp->promiscuous =	prm;	/* promiscuous mode */
1758	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1759	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1760	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1761	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1762	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1763	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1764	cbp->padding =		1;	/* (do) pad short tx packets */
1765	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1766	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1767	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1768	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1769					/* must set wake_en in PMCSR also */
1770	cbp->force_fdx =	0;	/* (don't) force full duplex */
1771	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1772	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1773	cbp->mc_all =		allm;	/* accept all multicasts */
1774	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1775	cbp->vlan_drop_en =	vlan_drop;
1776
1777	if (sc->sc_rev < FXP_REV_82558_A4) {
1778		/*
1779		 * The i82557 has no hardware flow control, the values
1780		 * here are the defaults for the chip.
1781		 */
1782		cbp->fc_delay_lsb =	0;
1783		cbp->fc_delay_msb =	0x40;
1784		cbp->pri_fc_thresh =	3;
1785		cbp->tx_fc_dis =	0;
1786		cbp->rx_fc_restop =	0;
1787		cbp->rx_fc_restart =	0;
1788		cbp->fc_filter =	0;
1789		cbp->pri_fc_loc =	1;
1790	} else {
1791		cbp->fc_delay_lsb =	0x1f;
1792		cbp->fc_delay_msb =	0x01;
1793		cbp->pri_fc_thresh =	3;
1794		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1795		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1796		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1797		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1798		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1799		cbp->ext_stats_dis =	0;	/* enable extended stats */
1800	}
1801
1802	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1803
1804	/*
1805	 * Start the config command/DMA.
1806	 */
1807	fxp_scb_wait(sc);
1808	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1809	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1810	/* ...and wait for it to complete. */
1811	i = 1000;
1812	do {
1813		FXP_CDCONFIGSYNC(sc,
1814		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1815		DELAY(1);
1816	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1817	if (i == 0) {
1818		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1819		    sc->sc_dev.dv_xname, __LINE__);
1820		return (ETIMEDOUT);
1821	}
1822
1823	/*
1824	 * Initialize the station address.
1825	 */
1826	cb_ias = &sc->sc_control_data->fcd_iascb;
1827	/* BIG_ENDIAN: no need to swap to store 0 */
1828	cb_ias->cb_status = 0;
1829	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1830	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1831	cb_ias->link_addr = 0xffffffff;
1832	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1833
1834	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1835
1836	/*
1837	 * Start the IAS (Individual Address Setup) command/DMA.
1838	 */
1839	fxp_scb_wait(sc);
1840	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1841	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1842	/* ...and wait for it to complete. */
1843	i = 1000;
1844	do {
1845		FXP_CDIASSYNC(sc,
1846		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1847		DELAY(1);
1848	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1849	if (i == 0) {
1850		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1851		    sc->sc_dev.dv_xname, __LINE__);
1852		return (ETIMEDOUT);
1853	}
1854
1855	/*
1856	 * Initialize the transmit descriptor ring.  txlast is initialized
1857	 * to the end of the list so that it will wrap around to the first
1858	 * descriptor when the first packet is transmitted.
1859	 */
1860	for (i = 0; i < FXP_NTXCB; i++) {
1861		txd = FXP_CDTX(sc, i);
1862		memset(txd, 0, sizeof(*txd));
1863		txd->txd_txcb.cb_command =
1864		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1865		txd->txd_txcb.link_addr =
1866		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1867		if (sc->sc_flags & FXPF_EXT_TXCB)
1868			txd->txd_txcb.tbd_array_addr =
1869			    htole32(FXP_CDTBDADDR(sc, i) +
1870				    (2 * sizeof(struct fxp_tbd)));
1871		else
1872			txd->txd_txcb.tbd_array_addr =
1873			    htole32(FXP_CDTBDADDR(sc, i));
1874		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1875	}
1876	sc->sc_txpending = 0;
1877	sc->sc_txdirty = 0;
1878	sc->sc_txlast = FXP_NTXCB - 1;
1879
1880	/*
1881	 * Initialize the receive buffer list.
1882	 */
1883	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1884	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1885		rxmap = FXP_RXMAP_GET(sc);
1886		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1887			log(LOG_ERR, "%s: unable to allocate or map rx "
1888			    "buffer %d, error = %d\n",
1889			    sc->sc_dev.dv_xname,
1890			    sc->sc_rxq.ifq_len, error);
1891			/*
1892			 * XXX Should attempt to run with fewer receive
1893			 * XXX buffers instead of just failing.
1894			 */
1895			FXP_RXMAP_PUT(sc, rxmap);
1896			fxp_rxdrain(sc);
1897			goto out;
1898		}
1899	}
1900	sc->sc_rxidle = 0;
1901
1902	/*
1903	 * Give the transmit ring to the chip.  We do this by pointing
1904	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1905	 * issuing a start command.  It will execute the NOP and then
1906	 * suspend, pointing at the first descriptor.
1907	 */
1908	fxp_scb_wait(sc);
1909	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1910	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1911
1912	/*
1913	 * Initialize receiver buffer area - RFA.
1914	 */
1915#if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1916	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1917	fxp_scb_wait(sc);
1918	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1919	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1920	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1921#endif
1922
1923	if (sc->sc_flags & FXPF_MII) {
1924		/*
1925		 * Set current media.
1926		 */
1927		mii_mediachg(&sc->sc_mii);
1928	}
1929
1930	/*
1931	 * ...all done!
1932	 */
1933	ifp->if_flags |= IFF_RUNNING;
1934	ifp->if_flags &= ~IFF_OACTIVE;
1935
1936	/*
1937	 * Request a software generated interrupt that will be used to
1938	 * (re)start the RU processing.  If we direct the chip to start
1939	 * receiving from the start of queue now, instead of letting the
1940	 * interrupt handler first process all received packets, we run
1941	 * the risk of having it overwrite mbuf clusters while they are
1942	 * being processed or after they have been returned to the pool.
1943	 */
1944	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1945
1946	/*
1947	 * Start the one second timer.
1948	 */
1949	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1950
1951	/*
1952	 * Attempt to start output on the interface.
1953	 */
1954	fxp_start(ifp);
1955
1956 out:
1957	if (error) {
1958		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1959		ifp->if_timer = 0;
1960		log(LOG_ERR, "%s: interface not running\n",
1961		    sc->sc_dev.dv_xname);
1962	}
1963	return (error);
1964}
1965
1966/*
1967 * Change media according to request.
1968 */
1969int
1970fxp_mii_mediachange(struct ifnet *ifp)
1971{
1972	struct fxp_softc *sc = ifp->if_softc;
1973
1974	if (ifp->if_flags & IFF_UP)
1975		mii_mediachg(&sc->sc_mii);
1976	return (0);
1977}
1978
1979/*
1980 * Notify the world which media we're using.
1981 */
1982void
1983fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1984{
1985	struct fxp_softc *sc = ifp->if_softc;
1986
1987	if (sc->sc_enabled == 0) {
1988		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1989		ifmr->ifm_status = 0;
1990		return;
1991	}
1992
1993	mii_pollstat(&sc->sc_mii);
1994	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1995	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1996
1997	/*
1998	 * XXX Flow control is always turned on if the chip supports
1999	 * XXX it; we can't easily control it dynamically, since it
2000	 * XXX requires sending a setup packet.
2001	 */
2002	if (sc->sc_rev >= FXP_REV_82558_A4)
2003		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
2004}
2005
2006int
2007fxp_80c24_mediachange(struct ifnet *ifp)
2008{
2009
2010	/* Nothing to do here. */
2011	return (0);
2012}
2013
2014void
2015fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2016{
2017	struct fxp_softc *sc = ifp->if_softc;
2018
2019	/*
2020	 * Media is currently-selected media.  We cannot determine
2021	 * the link status.
2022	 */
2023	ifmr->ifm_status = 0;
2024	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2025}
2026
2027/*
2028 * Add a buffer to the end of the RFA buffer list.
2029 * Return 0 if successful, error code on failure.
2030 *
2031 * The RFA struct is stuck at the beginning of mbuf cluster and the
2032 * data pointer is fixed up to point just past it.
2033 */
2034int
2035fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2036{
2037	struct mbuf *m;
2038	int error;
2039
2040	MGETHDR(m, M_DONTWAIT, MT_DATA);
2041	if (m == NULL)
2042		return (ENOBUFS);
2043
2044	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2045	MCLGET(m, M_DONTWAIT);
2046	if ((m->m_flags & M_EXT) == 0) {
2047		m_freem(m);
2048		return (ENOBUFS);
2049	}
2050
2051	if (unload)
2052		bus_dmamap_unload(sc->sc_dmat, rxmap);
2053
2054	M_SETCTX(m, rxmap);
2055
2056	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2057	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2058	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2059	if (error) {
2060		/* XXX XXX XXX */
2061		printf("%s: can't load rx DMA map %d, error = %d\n",
2062		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2063		panic("fxp_add_rfabuf");
2064	}
2065
2066	FXP_INIT_RFABUF(sc, m);
2067
2068	return (0);
2069}
2070
2071int
2072fxp_mdi_read(struct device *self, int phy, int reg)
2073{
2074	struct fxp_softc *sc = (struct fxp_softc *)self;
2075	int count = 10000;
2076	int value;
2077
2078	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2079	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2080
2081	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2082	    0x10000000) == 0 && count--)
2083		DELAY(10);
2084
2085	if (count <= 0)
2086		log(LOG_WARNING,
2087		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2088
2089	return (value & 0xffff);
2090}
2091
2092void
2093fxp_statchg(struct device *self)
2094{
2095
2096	/* Nothing to do. */
2097}
2098
2099void
2100fxp_mdi_write(struct device *self, int phy, int reg, int value)
2101{
2102	struct fxp_softc *sc = (struct fxp_softc *)self;
2103	int count = 10000;
2104
2105	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2106	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2107	    (value & 0xffff));
2108
2109	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2110	    count--)
2111		DELAY(10);
2112
2113	if (count <= 0)
2114		log(LOG_WARNING,
2115		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2116}
2117
2118int
2119fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2120{
2121	struct fxp_softc *sc = ifp->if_softc;
2122	struct ifreq *ifr = (struct ifreq *)data;
2123	int s, error;
2124
2125	s = splnet();
2126
2127	switch (cmd) {
2128	case SIOCSIFMEDIA:
2129	case SIOCGIFMEDIA:
2130		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2131		break;
2132
2133	default:
2134		error = ether_ioctl(ifp, cmd, data);
2135		if (error == ENETRESET) {
2136			if (ifp->if_flags & IFF_RUNNING) {
2137				/*
2138				 * Multicast list has changed; set the
2139				 * hardware filter accordingly.
2140				 */
2141				if (sc->sc_txpending) {
2142					sc->sc_flags |= FXPF_WANTINIT;
2143					error = 0;
2144				} else
2145					error = fxp_init(ifp);
2146			} else
2147				error = 0;
2148		}
2149		break;
2150	}
2151
2152	/* Try to get more packets going. */
2153	if (sc->sc_enabled)
2154		fxp_start(ifp);
2155
2156	splx(s);
2157	return (error);
2158}
2159
2160/*
2161 * Program the multicast filter.
2162 *
2163 * This function must be called at splnet().
2164 */
2165void
2166fxp_mc_setup(struct fxp_softc *sc)
2167{
2168	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2169	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2170	struct ethercom *ec = &sc->sc_ethercom;
2171	struct ether_multi *enm;
2172	struct ether_multistep step;
2173	int count, nmcasts;
2174
2175#ifdef DIAGNOSTIC
2176	if (sc->sc_txpending)
2177		panic("fxp_mc_setup: pending transmissions");
2178#endif
2179
2180	ifp->if_flags &= ~IFF_ALLMULTI;
2181
2182	/*
2183	 * Initialize multicast setup descriptor.
2184	 */
2185	nmcasts = 0;
2186	ETHER_FIRST_MULTI(step, ec, enm);
2187	while (enm != NULL) {
2188		/*
2189		 * Check for too many multicast addresses or if we're
2190		 * listening to a range.  Either way, we simply have
2191		 * to accept all multicasts.
2192		 */
2193		if (nmcasts >= MAXMCADDR ||
2194		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2195		    ETHER_ADDR_LEN) != 0) {
2196			/*
2197			 * Callers of this function must do the
2198			 * right thing with this.  If we're called
2199			 * from outside fxp_init(), the caller must
2200			 * detect if the state if IFF_ALLMULTI changes.
2201			 * If it does, the caller must then call
2202			 * fxp_init(), since allmulti is handled by
2203			 * the config block.
2204			 */
2205			ifp->if_flags |= IFF_ALLMULTI;
2206			return;
2207		}
2208		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2209		    ETHER_ADDR_LEN);
2210		nmcasts++;
2211		ETHER_NEXT_MULTI(step, enm);
2212	}
2213
2214	/* BIG_ENDIAN: no need to swap to store 0 */
2215	mcsp->cb_status = 0;
2216	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2217	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2218	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2219
2220	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2221
2222	/*
2223	 * Wait until the command unit is not active.  This should never
2224	 * happen since nothing is queued, but make sure anyway.
2225	 */
2226	count = 100;
2227	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2228	    FXP_SCB_CUS_ACTIVE && --count)
2229		DELAY(1);
2230	if (count == 0) {
2231		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2232		    sc->sc_dev.dv_xname, __LINE__);
2233		return;
2234	}
2235
2236	/*
2237	 * Start the multicast setup command/DMA.
2238	 */
2239	fxp_scb_wait(sc);
2240	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2241	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2242
2243	/* ...and wait for it to complete. */
2244	count = 1000;
2245	do {
2246		FXP_CDMCSSYNC(sc,
2247		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2248		DELAY(1);
2249	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2250	if (count == 0) {
2251		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2252		    sc->sc_dev.dv_xname, __LINE__);
2253		return;
2254	}
2255}
2256
2257static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2258static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2259static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2260static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2261static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2262static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2263
2264#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2265
2266static const struct ucode {
2267	int32_t		revision;
2268	const uint32_t	*ucode;
2269	size_t		length;
2270	uint16_t	int_delay_offset;
2271	uint16_t	bundle_max_offset;
2272} ucode_table[] = {
2273	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2274	  D101_CPUSAVER_DWORD, 0 },
2275
2276	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2277	  D101_CPUSAVER_DWORD, 0 },
2278
2279	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2280	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2281
2282	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2283	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2284
2285	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2286	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2287
2288	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2289	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2290
2291	{ 0, NULL, 0, 0, 0 }
2292};
2293
2294void
2295fxp_load_ucode(struct fxp_softc *sc)
2296{
2297	const struct ucode *uc;
2298	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2299	int count, i;
2300
2301	if (sc->sc_flags & FXPF_UCODE_LOADED)
2302		return;
2303
2304	/*
2305	 * Only load the uCode if the user has requested that
2306	 * we do so.
2307	 */
2308	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2309		sc->sc_int_delay = 0;
2310		sc->sc_bundle_max = 0;
2311		return;
2312	}
2313
2314	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2315		if (sc->sc_rev == uc->revision)
2316			break;
2317	}
2318	if (uc->ucode == NULL)
2319		return;
2320
2321	/* BIG ENDIAN: no need to swap to store 0 */
2322	cbp->cb_status = 0;
2323	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2324	cbp->link_addr = 0xffffffff;		/* (no) next command */
2325	for (i = 0; i < uc->length; i++)
2326		cbp->ucode[i] = htole32(uc->ucode[i]);
2327
2328	if (uc->int_delay_offset)
2329		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2330		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2331
2332	if (uc->bundle_max_offset)
2333		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2334		    htole16(fxp_bundle_max);
2335
2336	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2337
2338	/*
2339	 * Download the uCode to the chip.
2340	 */
2341	fxp_scb_wait(sc);
2342	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2343	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2344
2345	/* ...and wait for it to complete. */
2346	count = 10000;
2347	do {
2348		FXP_CDUCODESYNC(sc,
2349		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2350		DELAY(2);
2351	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2352	if (count == 0) {
2353		sc->sc_int_delay = 0;
2354		sc->sc_bundle_max = 0;
2355		log(LOG_WARNING, "%s: timeout loading microcode\n",
2356		    sc->sc_dev.dv_xname);
2357		return;
2358	}
2359
2360	if (sc->sc_int_delay != fxp_int_delay ||
2361	    sc->sc_bundle_max != fxp_bundle_max) {
2362		sc->sc_int_delay = fxp_int_delay;
2363		sc->sc_bundle_max = fxp_bundle_max;
2364		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2365		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2366		    sc->sc_int_delay,
2367		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2368	}
2369
2370	sc->sc_flags |= FXPF_UCODE_LOADED;
2371}
2372
2373int
2374fxp_enable(struct fxp_softc *sc)
2375{
2376
2377	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2378		if ((*sc->sc_enable)(sc) != 0) {
2379			log(LOG_ERR, "%s: device enable failed\n",
2380			    sc->sc_dev.dv_xname);
2381			return (EIO);
2382		}
2383	}
2384
2385	sc->sc_enabled = 1;
2386	return (0);
2387}
2388
2389void
2390fxp_disable(struct fxp_softc *sc)
2391{
2392
2393	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2394		(*sc->sc_disable)(sc);
2395		sc->sc_enabled = 0;
2396	}
2397}
2398
2399/*
2400 * fxp_activate:
2401 *
2402 *	Handle device activation/deactivation requests.
2403 */
2404int
2405fxp_activate(struct device *self, enum devact act)
2406{
2407	struct fxp_softc *sc = (void *) self;
2408	int s, error = 0;
2409
2410	s = splnet();
2411	switch (act) {
2412	case DVACT_ACTIVATE:
2413		error = EOPNOTSUPP;
2414		break;
2415
2416	case DVACT_DEACTIVATE:
2417		if (sc->sc_flags & FXPF_MII)
2418			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2419			    MII_OFFSET_ANY);
2420		if_deactivate(&sc->sc_ethercom.ec_if);
2421		break;
2422	}
2423	splx(s);
2424
2425	return (error);
2426}
2427
2428/*
2429 * fxp_detach:
2430 *
2431 *	Detach an i82557 interface.
2432 */
2433int
2434fxp_detach(struct fxp_softc *sc)
2435{
2436	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2437	int i;
2438
2439	/* Succeed now if there's no work to do. */
2440	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2441		return (0);
2442
2443	/* Unhook our tick handler. */
2444	callout_stop(&sc->sc_callout);
2445
2446	if (sc->sc_flags & FXPF_MII) {
2447		/* Detach all PHYs */
2448		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2449	}
2450
2451	/* Delete all remaining media. */
2452	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2453
2454#if NRND > 0
2455	rnd_detach_source(&sc->rnd_source);
2456#endif
2457	ether_ifdetach(ifp);
2458	if_detach(ifp);
2459
2460	for (i = 0; i < FXP_NRFABUFS; i++) {
2461		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2462		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2463	}
2464
2465	for (i = 0; i < FXP_NTXCB; i++) {
2466		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2467		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2468	}
2469
2470	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2471	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2472	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2473	    sizeof(struct fxp_control_data));
2474	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2475
2476	shutdownhook_disestablish(sc->sc_sdhook);
2477
2478	return (0);
2479}
2480