i82557.c revision 1.102
1/*	$NetBSD: i82557.c,v 1.102 2007/07/09 21:00:36 ad Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the NetBSD
22 *	Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 *    notice unmodified, this list of conditions, and the following
50 *    disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 *    notice, this list of conditions and the following disclaimer in the
53 *    documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70/*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75#include <sys/cdefs.h>
76__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.102 2007/07/09 21:00:36 ad Exp $");
77
78#include "bpfilter.h"
79#include "rnd.h"
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/callout.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/ioctl.h>
89#include <sys/errno.h>
90#include <sys/device.h>
91#include <sys/syslog.h>
92
93#include <machine/endian.h>
94
95#include <uvm/uvm_extern.h>
96
97#if NRND > 0
98#include <sys/rnd.h>
99#endif
100
101#include <net/if.h>
102#include <net/if_dl.h>
103#include <net/if_media.h>
104#include <net/if_ether.h>
105
106#if NBPFILTER > 0
107#include <net/bpf.h>
108#endif
109
110#include <machine/bus.h>
111#include <machine/intr.h>
112
113#include <dev/mii/miivar.h>
114
115#include <dev/ic/i82557reg.h>
116#include <dev/ic/i82557var.h>
117
118#include <dev/microcode/i8255x/rcvbundl.h>
119
120/*
121 * NOTE!  On the Alpha, we have an alignment constraint.  The
122 * card DMAs the packet immediately following the RFA.  However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned.  To compensate,
125 * we actually offset the RFA 2 bytes into the cluster.  This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary.  HOWEVER!  This means that the RFA is misaligned!
128 */
129#define	RFA_ALIGNMENT_FUDGE	2
130
131/*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero.  Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139const u_int8_t fxp_cb_config_template[] = {
140	0x0, 0x0,		/* cb_status */
141	0x0, 0x0,		/* cb_command */
142	0x0, 0x0, 0x0, 0x0,	/* link_addr */
143	0x0,	/*  0 */
144	0x0,	/*  1 */
145	0x0,	/*  2 */
146	0x0,	/*  3 */
147	0x0,	/*  4 */
148	0x0,	/*  5 */
149	0x32,	/*  6 */
150	0x0,	/*  7 */
151	0x0,	/*  8 */
152	0x0,	/*  9 */
153	0x6,	/* 10 */
154	0x0,	/* 11 */
155	0x0,	/* 12 */
156	0x0,	/* 13 */
157	0xf2,	/* 14 */
158	0x48,	/* 15 */
159	0x0,	/* 16 */
160	0x40,	/* 17 */
161	0xf0,	/* 18 */
162	0x0,	/* 19 */
163	0x3f,	/* 20 */
164	0x5,	/* 21 */
165	0x0,	/* 22 */
166	0x0,	/* 23 */
167	0x0,	/* 24 */
168	0x0,	/* 25 */
169	0x0,	/* 26 */
170	0x0,	/* 27 */
171	0x0,	/* 28 */
172	0x0,	/* 29 */
173	0x0,	/* 30 */
174	0x0,	/* 31 */
175};
176
177void	fxp_mii_initmedia(struct fxp_softc *);
178int	fxp_mii_mediachange(struct ifnet *);
179void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181void	fxp_80c24_initmedia(struct fxp_softc *);
182int	fxp_80c24_mediachange(struct ifnet *);
183void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185void	fxp_start(struct ifnet *);
186int	fxp_ioctl(struct ifnet *, u_long, void *);
187void	fxp_watchdog(struct ifnet *);
188int	fxp_init(struct ifnet *);
189void	fxp_stop(struct ifnet *, int);
190
191void	fxp_txintr(struct fxp_softc *);
192void	fxp_rxintr(struct fxp_softc *);
193
194int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196void	fxp_rxdrain(struct fxp_softc *);
197int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198int	fxp_mdi_read(struct device *, int, int);
199void	fxp_statchg(struct device *);
200void	fxp_mdi_write(struct device *, int, int, int);
201void	fxp_autosize_eeprom(struct fxp_softc*);
202void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204void	fxp_eeprom_update_cksum(struct fxp_softc *);
205void	fxp_get_info(struct fxp_softc *, u_int8_t *);
206void	fxp_tick(void *);
207void	fxp_mc_setup(struct fxp_softc *);
208void	fxp_load_ucode(struct fxp_softc *);
209
210void	fxp_shutdown(void *);
211void	fxp_power(int, void *);
212
213int	fxp_copy_small = 0;
214
215/*
216 * Variables for interrupt mitigating microcode.
217 */
218int	fxp_int_delay = 1000;		/* usec */
219int	fxp_bundle_max = 6;		/* packets */
220
221struct fxp_phytype {
222	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
223	void	(*fp_init)(struct fxp_softc *);
224} fxp_phytype_table[] = {
225	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
226	{ -1,				fxp_mii_initmedia },
227};
228
229/*
230 * Set initial transmit threshold at 64 (512 bytes). This is
231 * increased by 64 (512 bytes) at a time, to maximum of 192
232 * (1536 bytes), if an underrun occurs.
233 */
234static int tx_threshold = 64;
235
236/*
237 * Wait for the previous command to be accepted (but not necessarily
238 * completed).
239 */
240static inline void
241fxp_scb_wait(struct fxp_softc *sc)
242{
243	int i = 10000;
244
245	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
246		delay(2);
247	if (i == 0)
248		log(LOG_WARNING,
249		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
250}
251
252/*
253 * Submit a command to the i82557.
254 */
255static inline void
256fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
257{
258
259	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
260}
261
262/*
263 * Finish attaching an i82557 interface.  Called by bus-specific front-end.
264 */
265void
266fxp_attach(struct fxp_softc *sc)
267{
268	u_int8_t enaddr[ETHER_ADDR_LEN];
269	struct ifnet *ifp;
270	bus_dma_segment_t seg;
271	int rseg, i, error;
272	struct fxp_phytype *fp;
273
274	callout_init(&sc->sc_callout, 0);
275
276	/*
277	 * Enable some good stuff on i82558 and later.
278	 */
279	if (sc->sc_rev >= FXP_REV_82558_A4) {
280		/* Enable the extended TxCB. */
281		sc->sc_flags |= FXPF_EXT_TXCB;
282	}
283
284        /*
285	 * Enable use of extended RFDs and TCBs for 82550
286	 * and later chips. Note: we need extended TXCB support
287	 * too, but that's already enabled by the code above.
288	 * Be careful to do this only on the right devices.
289	 */
290	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
291		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
292		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
293	} else {
294		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
295	}
296
297	sc->sc_rfa_size =
298	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
299
300	/*
301	 * Allocate the control data structures, and create and load the
302	 * DMA map for it.
303	 */
304	if ((error = bus_dmamem_alloc(sc->sc_dmat,
305	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
306	    0)) != 0) {
307		aprint_error(
308		    "%s: unable to allocate control data, error = %d\n",
309		    sc->sc_dev.dv_xname, error);
310		goto fail_0;
311	}
312
313	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
314	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
315	    BUS_DMA_COHERENT)) != 0) {
316		aprint_error("%s: unable to map control data, error = %d\n",
317		    sc->sc_dev.dv_xname, error);
318		goto fail_1;
319	}
320	sc->sc_cdseg = seg;
321	sc->sc_cdnseg = rseg;
322
323	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
324
325	if ((error = bus_dmamap_create(sc->sc_dmat,
326	    sizeof(struct fxp_control_data), 1,
327	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
328		aprint_error("%s: unable to create control data DMA map, "
329		    "error = %d\n", sc->sc_dev.dv_xname, error);
330		goto fail_2;
331	}
332
333	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
334	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
335	    0)) != 0) {
336		aprint_error(
337		    "%s: can't load control data DMA map, error = %d\n",
338		    sc->sc_dev.dv_xname, error);
339		goto fail_3;
340	}
341
342	/*
343	 * Create the transmit buffer DMA maps.
344	 */
345	for (i = 0; i < FXP_NTXCB; i++) {
346		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
348		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
349			aprint_error("%s: unable to create tx DMA map %d, "
350			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
351			goto fail_4;
352		}
353	}
354
355	/*
356	 * Create the receive buffer DMA maps.
357	 */
358	for (i = 0; i < FXP_NRFABUFS; i++) {
359		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
360		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
361			aprint_error("%s: unable to create rx DMA map %d, "
362			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
363			goto fail_5;
364		}
365	}
366
367	/* Initialize MAC address and media structures. */
368	fxp_get_info(sc, enaddr);
369
370	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
371	    ether_sprintf(enaddr));
372
373	ifp = &sc->sc_ethercom.ec_if;
374
375	/*
376	 * Get info about our media interface, and initialize it.  Note
377	 * the table terminates itself with a phy of -1, indicating
378	 * that we're using MII.
379	 */
380	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
381		if (fp->fp_phy == sc->phy_primary_device)
382			break;
383	(*fp->fp_init)(sc);
384
385	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
386	ifp->if_softc = sc;
387	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
388	ifp->if_ioctl = fxp_ioctl;
389	ifp->if_start = fxp_start;
390	ifp->if_watchdog = fxp_watchdog;
391	ifp->if_init = fxp_init;
392	ifp->if_stop = fxp_stop;
393	IFQ_SET_READY(&ifp->if_snd);
394
395	if (sc->sc_flags & FXPF_IPCB) {
396		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
397		/*
398		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
399		 * at least, on i82550 rev.12.
400		 * specifically, it doesn't calculate ipv4 checksum correctly
401		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
402		 * FreeBSD driver has related comments.
403		 */
404		ifp->if_capabilities =
405		    IFCAP_CSUM_IPv4_Rx |
406		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
407		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
408		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
409	}
410
411	/*
412	 * We can support 802.1Q VLAN-sized frames.
413	 */
414	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
415
416	/*
417	 * Attach the interface.
418	 */
419	if_attach(ifp);
420	ether_ifattach(ifp, enaddr);
421#if NRND > 0
422	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
423	    RND_TYPE_NET, 0);
424#endif
425
426#ifdef FXP_EVENT_COUNTERS
427	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
428	    NULL, sc->sc_dev.dv_xname, "txstall");
429	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
430	    NULL, sc->sc_dev.dv_xname, "txintr");
431	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
432	    NULL, sc->sc_dev.dv_xname, "rxintr");
433	if (sc->sc_rev >= FXP_REV_82558_A4) {
434		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
435		    NULL, sc->sc_dev.dv_xname, "txpause");
436		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
437		    NULL, sc->sc_dev.dv_xname, "rxpause");
438	}
439#endif /* FXP_EVENT_COUNTERS */
440
441	/*
442	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
443	 * doing do could allow DMA to corrupt kernel memory during the
444	 * reboot before the driver initializes.
445	 */
446	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
447	if (sc->sc_sdhook == NULL)
448		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
449		    sc->sc_dev.dv_xname);
450	/*
451  	 * Add suspend hook, for similar reasons..
452	 */
453	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
454	    fxp_power, sc);
455	if (sc->sc_powerhook == NULL)
456		aprint_error("%s: WARNING: unable to establish power hook\n",
457		    sc->sc_dev.dv_xname);
458
459	/* The attach is successful. */
460	sc->sc_flags |= FXPF_ATTACHED;
461
462	return;
463
464	/*
465	 * Free any resources we've allocated during the failed attach
466	 * attempt.  Do this in reverse order and fall though.
467	 */
468 fail_5:
469	for (i = 0; i < FXP_NRFABUFS; i++) {
470		if (sc->sc_rxmaps[i] != NULL)
471			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
472	}
473 fail_4:
474	for (i = 0; i < FXP_NTXCB; i++) {
475		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
476			bus_dmamap_destroy(sc->sc_dmat,
477			    FXP_DSTX(sc, i)->txs_dmamap);
478	}
479	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
480 fail_3:
481	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
482 fail_2:
483	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
484	    sizeof(struct fxp_control_data));
485 fail_1:
486	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
487 fail_0:
488	return;
489}
490
491void
492fxp_mii_initmedia(struct fxp_softc *sc)
493{
494	int flags;
495
496	sc->sc_flags |= FXPF_MII;
497
498	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
499	sc->sc_mii.mii_readreg = fxp_mdi_read;
500	sc->sc_mii.mii_writereg = fxp_mdi_write;
501	sc->sc_mii.mii_statchg = fxp_statchg;
502	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
503	    fxp_mii_mediastatus);
504
505	flags = MIIF_NOISOLATE;
506	if (sc->sc_rev >= FXP_REV_82558_A4)
507		flags |= MIIF_DOPAUSE;
508	/*
509	 * The i82557 wedges if all of its PHYs are isolated!
510	 */
511	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
512	    MII_OFFSET_ANY, flags);
513	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
514		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
515		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
516	} else
517		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
518}
519
520void
521fxp_80c24_initmedia(struct fxp_softc *sc)
522{
523
524	/*
525	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
526	 * doesn't have a programming interface of any sort.  The
527	 * media is sensed automatically based on how the link partner
528	 * is configured.  This is, in essence, manual configuration.
529	 */
530	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
531	    sc->sc_dev.dv_xname);
532	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
533	    fxp_80c24_mediastatus);
534	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
535	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
536}
537
538/*
539 * Device shutdown routine. Called at system shutdown after sync. The
540 * main purpose of this routine is to shut off receiver DMA so that
541 * kernel memory doesn't get clobbered during warmboot.
542 */
543void
544fxp_shutdown(void *arg)
545{
546	struct fxp_softc *sc = arg;
547
548	/*
549	 * Since the system's going to halt shortly, don't bother
550	 * freeing mbufs.
551	 */
552	fxp_stop(&sc->sc_ethercom.ec_if, 0);
553}
554/*
555 * Power handler routine. Called when the system is transitioning
556 * into/out of power save modes.  As with fxp_shutdown, the main
557 * purpose of this routine is to shut off receiver DMA so it doesn't
558 * clobber kernel memory at the wrong time.
559 */
560void
561fxp_power(int why, void *arg)
562{
563	struct fxp_softc *sc = arg;
564	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
565	int s;
566
567	s = splnet();
568	switch (why) {
569	case PWR_SUSPEND:
570	case PWR_STANDBY:
571		fxp_stop(ifp, 0);
572		break;
573	case PWR_RESUME:
574		if (ifp->if_flags & IFF_UP)
575			fxp_init(ifp);
576		break;
577	case PWR_SOFTSUSPEND:
578	case PWR_SOFTSTANDBY:
579	case PWR_SOFTRESUME:
580		break;
581	}
582	splx(s);
583}
584
585/*
586 * Initialize the interface media.
587 */
588void
589fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
590{
591	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
592
593	/*
594	 * Reset to a stable state.
595	 */
596	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
597	DELAY(100);
598
599	sc->sc_eeprom_size = 0;
600	fxp_autosize_eeprom(sc);
601	if (sc->sc_eeprom_size == 0) {
602		aprint_error("%s: failed to detect EEPROM size\n",
603		    sc->sc_dev.dv_xname);
604		sc->sc_eeprom_size = 6; /* XXX panic here? */
605	}
606#ifdef DEBUG
607	aprint_debug("%s: detected %d word EEPROM\n",
608	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
609#endif
610
611	/*
612	 * Get info about the primary PHY
613	 */
614	fxp_read_eeprom(sc, &data, 6, 1);
615	sc->phy_primary_device =
616	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
617
618	/*
619	 * Read MAC address.
620	 */
621	fxp_read_eeprom(sc, myea, 0, 3);
622	enaddr[0] = myea[0] & 0xff;
623	enaddr[1] = myea[0] >> 8;
624	enaddr[2] = myea[1] & 0xff;
625	enaddr[3] = myea[1] >> 8;
626	enaddr[4] = myea[2] & 0xff;
627	enaddr[5] = myea[2] >> 8;
628
629	/*
630	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
631	 * as some i82559 designs, have a defect where the chip can
632	 * cause a PCI protocol violation if it receives a CU_RESUME
633	 * command when it is entering the IDLE state.
634	 *
635	 * The work-around is to disable Dynamic Standby Mode, so that
636	 * the chip never deasserts #CLKRUN, and always remains in the
637	 * active state.
638	 *
639	 * Unfortunately, the only way to disable Dynamic Standby is
640	 * to frob an EEPROM setting and reboot (the EEPROM setting
641	 * is only consulted when the PCI bus comes out of reset).
642	 *
643	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
644	 */
645	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
646		fxp_read_eeprom(sc, &data, 10, 1);
647		if (data & 0x02) {		/* STB enable */
648			aprint_error("%s: WARNING: "
649			    "Disabling dynamic standby mode in EEPROM "
650			    "to work around a\n",
651			    sc->sc_dev.dv_xname);
652			aprint_normal(
653			    "%s: WARNING: hardware bug.  You must reset "
654			    "the system before using this\n",
655			    sc->sc_dev.dv_xname);
656			aprint_normal("%s: WARNING: interface.\n",
657			    sc->sc_dev.dv_xname);
658			data &= ~0x02;
659			fxp_write_eeprom(sc, &data, 10, 1);
660			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
661			    sc->sc_dev.dv_xname, data);
662			fxp_eeprom_update_cksum(sc);
663		}
664	}
665
666	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
667	/* Due to false positives we make it conditional on setting link1 */
668	fxp_read_eeprom(sc, &data, 3, 1);
669	if ((data & 0x03) != 0x03) {
670		aprint_verbose("%s: May need receiver lock-up workaround\n",
671		    sc->sc_dev.dv_xname);
672	}
673}
674
675static void
676fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
677{
678	uint16_t reg;
679	int x;
680
681	for (x = 1 << (len - 1); x != 0; x >>= 1) {
682		DELAY(40);
683		if (data & x)
684			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
685		else
686			reg = FXP_EEPROM_EECS;
687		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
688		DELAY(40);
689		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
690		    reg | FXP_EEPROM_EESK);
691		DELAY(40);
692		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
693	}
694	DELAY(40);
695}
696
697/*
698 * Figure out EEPROM size.
699 *
700 * 559's can have either 64-word or 256-word EEPROMs, the 558
701 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
702 * talks about the existence of 16 to 256 word EEPROMs.
703 *
704 * The only known sizes are 64 and 256, where the 256 version is used
705 * by CardBus cards to store CIS information.
706 *
707 * The address is shifted in msb-to-lsb, and after the last
708 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
709 * after which follows the actual data. We try to detect this zero, by
710 * probing the data-out bit in the EEPROM control register just after
711 * having shifted in a bit. If the bit is zero, we assume we've
712 * shifted enough address bits. The data-out should be tri-state,
713 * before this, which should translate to a logical one.
714 *
715 * Other ways to do this would be to try to read a register with known
716 * contents with a varying number of address bits, but no such
717 * register seem to be available. The high bits of register 10 are 01
718 * on the 558 and 559, but apparently not on the 557.
719 *
720 * The Linux driver computes a checksum on the EEPROM data, but the
721 * value of this checksum is not very well documented.
722 */
723
724void
725fxp_autosize_eeprom(struct fxp_softc *sc)
726{
727	int x;
728
729	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
730	DELAY(40);
731
732	/* Shift in read opcode. */
733	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
734
735	/*
736	 * Shift in address, wait for the dummy zero following a correct
737	 * address shift.
738	 */
739	for (x = 1; x <= 8; x++) {
740		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
741		DELAY(40);
742		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
743		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
744		DELAY(40);
745		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
746		    FXP_EEPROM_EEDO) == 0)
747			break;
748		DELAY(40);
749		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750		DELAY(40);
751	}
752	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
753	DELAY(40);
754	if (x != 6 && x != 8) {
755#ifdef DEBUG
756		printf("%s: strange EEPROM size (%d)\n",
757		    sc->sc_dev.dv_xname, 1 << x);
758#endif
759	} else
760		sc->sc_eeprom_size = x;
761}
762
763/*
764 * Read from the serial EEPROM. Basically, you manually shift in
765 * the read opcode (one bit at a time) and then shift in the address,
766 * and then you shift out the data (all of this one bit at a time).
767 * The word size is 16 bits, so you have to provide the address for
768 * every 16 bits of data.
769 */
770void
771fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
772{
773	u_int16_t reg;
774	int i, x;
775
776	for (i = 0; i < words; i++) {
777		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
778
779		/* Shift in read opcode. */
780		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
781
782		/* Shift in address. */
783		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
784
785		reg = FXP_EEPROM_EECS;
786		data[i] = 0;
787
788		/* Shift out data. */
789		for (x = 16; x > 0; x--) {
790			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
791			    reg | FXP_EEPROM_EESK);
792			DELAY(40);
793			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
794			    FXP_EEPROM_EEDO)
795				data[i] |= (1 << (x - 1));
796			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
797			DELAY(40);
798		}
799		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
800		DELAY(40);
801	}
802}
803
804/*
805 * Write data to the serial EEPROM.
806 */
807void
808fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
809{
810	int i, j;
811
812	for (i = 0; i < words; i++) {
813		/* Erase/write enable. */
814		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
815		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
816		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
817		    sc->sc_eeprom_size);
818		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
819		DELAY(4);
820
821		/* Shift in write opcode, address, data. */
822		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
823		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
824		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
825		fxp_eeprom_shiftin(sc, data[i], 16);
826		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
827		DELAY(4);
828
829		/* Wait for the EEPROM to finish up. */
830		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
831		DELAY(4);
832		for (j = 0; j < 1000; j++) {
833			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
834			    FXP_EEPROM_EEDO)
835				break;
836			DELAY(50);
837		}
838		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
839		DELAY(4);
840
841		/* Erase/write disable. */
842		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
843		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
844		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
845		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
846		DELAY(4);
847	}
848}
849
850/*
851 * Update the checksum of the EEPROM.
852 */
853void
854fxp_eeprom_update_cksum(struct fxp_softc *sc)
855{
856	int i;
857	uint16_t data, cksum;
858
859	cksum = 0;
860	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
861		fxp_read_eeprom(sc, &data, i, 1);
862		cksum += data;
863	}
864	i = (1 << sc->sc_eeprom_size) - 1;
865	cksum = 0xbaba - cksum;
866	fxp_read_eeprom(sc, &data, i, 1);
867	fxp_write_eeprom(sc, &cksum, i, 1);
868	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
869	    sc->sc_dev.dv_xname, i, data, cksum);
870}
871
872/*
873 * Start packet transmission on the interface.
874 */
875void
876fxp_start(struct ifnet *ifp)
877{
878	struct fxp_softc *sc = ifp->if_softc;
879	struct mbuf *m0, *m;
880	struct fxp_txdesc *txd;
881	struct fxp_txsoft *txs;
882	bus_dmamap_t dmamap;
883	int error, lasttx, nexttx, opending, seg;
884
885	/*
886	 * If we want a re-init, bail out now.
887	 */
888	if (sc->sc_flags & FXPF_WANTINIT) {
889		ifp->if_flags |= IFF_OACTIVE;
890		return;
891	}
892
893	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
894		return;
895
896	/*
897	 * Remember the previous txpending and the current lasttx.
898	 */
899	opending = sc->sc_txpending;
900	lasttx = sc->sc_txlast;
901
902	/*
903	 * Loop through the send queue, setting up transmit descriptors
904	 * until we drain the queue, or use up all available transmit
905	 * descriptors.
906	 */
907	for (;;) {
908		struct fxp_tbd *tbdp;
909		int csum_flags;
910
911		/*
912		 * Grab a packet off the queue.
913		 */
914		IFQ_POLL(&ifp->if_snd, m0);
915		if (m0 == NULL)
916			break;
917		m = NULL;
918
919		if (sc->sc_txpending == FXP_NTXCB) {
920			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
921			break;
922		}
923
924		/*
925		 * Get the next available transmit descriptor.
926		 */
927		nexttx = FXP_NEXTTX(sc->sc_txlast);
928		txd = FXP_CDTX(sc, nexttx);
929		txs = FXP_DSTX(sc, nexttx);
930		dmamap = txs->txs_dmamap;
931
932		/*
933		 * Load the DMA map.  If this fails, the packet either
934		 * didn't fit in the allotted number of frags, or we were
935		 * short on resources.  In this case, we'll copy and try
936		 * again.
937		 */
938		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
939		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
940			MGETHDR(m, M_DONTWAIT, MT_DATA);
941			if (m == NULL) {
942				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
943				    sc->sc_dev.dv_xname);
944				break;
945			}
946			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
947			if (m0->m_pkthdr.len > MHLEN) {
948				MCLGET(m, M_DONTWAIT);
949				if ((m->m_flags & M_EXT) == 0) {
950					log(LOG_ERR,
951					    "%s: unable to allocate Tx "
952					    "cluster\n", sc->sc_dev.dv_xname);
953					m_freem(m);
954					break;
955				}
956			}
957			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
958			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
959			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
960			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
961			if (error) {
962				log(LOG_ERR, "%s: unable to load Tx buffer, "
963				    "error = %d\n", sc->sc_dev.dv_xname, error);
964				break;
965			}
966		}
967
968		IFQ_DEQUEUE(&ifp->if_snd, m0);
969		csum_flags = m0->m_pkthdr.csum_flags;
970		if (m != NULL) {
971			m_freem(m0);
972			m0 = m;
973		}
974
975		/* Initialize the fraglist. */
976		tbdp = txd->txd_tbd;
977		if (sc->sc_flags & FXPF_IPCB)
978			tbdp++;
979		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
980			tbdp[seg].tb_addr =
981			    htole32(dmamap->dm_segs[seg].ds_addr);
982			tbdp[seg].tb_size =
983			    htole32(dmamap->dm_segs[seg].ds_len);
984		}
985
986		/* Sync the DMA map. */
987		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
988		    BUS_DMASYNC_PREWRITE);
989
990		/*
991		 * Store a pointer to the packet so we can free it later.
992		 */
993		txs->txs_mbuf = m0;
994
995		/*
996		 * Initialize the transmit descriptor.
997		 */
998		/* BIG_ENDIAN: no need to swap to store 0 */
999		txd->txd_txcb.cb_status = 0;
1000		txd->txd_txcb.cb_command =
1001		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
1002		txd->txd_txcb.tx_threshold = tx_threshold;
1003		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1004
1005		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1006		if (sc->sc_flags & FXPF_IPCB) {
1007			struct m_tag *vtag;
1008			struct fxp_ipcb *ipcb;
1009			/*
1010			 * Deal with TCP/IP checksum offload. Note that
1011			 * in order for TCP checksum offload to work,
1012			 * the pseudo header checksum must have already
1013			 * been computed and stored in the checksum field
1014			 * in the TCP header. The stack should have
1015			 * already done this for us.
1016			 */
1017			ipcb = &txd->txd_u.txdu_ipcb;
1018			memset(ipcb, 0, sizeof(*ipcb));
1019			/*
1020			 * always do hardware parsing.
1021			 */
1022			ipcb->ipcb_ip_activation_high =
1023			    FXP_IPCB_HARDWAREPARSING_ENABLE;
1024			/*
1025			 * ip checksum offloading.
1026			 */
1027			if (csum_flags & M_CSUM_IPv4) {
1028				ipcb->ipcb_ip_schedule |=
1029				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1030			}
1031			/*
1032			 * TCP/UDP checksum offloading.
1033			 */
1034			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1035				ipcb->ipcb_ip_schedule |=
1036				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1037			}
1038
1039			/*
1040			 * request VLAN tag insertion if needed.
1041			 */
1042			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
1043			if (vtag) {
1044				ipcb->ipcb_vlan_id =
1045				    htobe16(*(u_int *)(vtag + 1));
1046				ipcb->ipcb_ip_activation_high |=
1047				    FXP_IPCB_INSERTVLAN_ENABLE;
1048			}
1049		} else {
1050			KASSERT((csum_flags &
1051			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1052		}
1053
1054		FXP_CDTXSYNC(sc, nexttx,
1055		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1056
1057		/* Advance the tx pointer. */
1058		sc->sc_txpending++;
1059		sc->sc_txlast = nexttx;
1060
1061#if NBPFILTER > 0
1062		/*
1063		 * Pass packet to bpf if there is a listener.
1064		 */
1065		if (ifp->if_bpf)
1066			bpf_mtap(ifp->if_bpf, m0);
1067#endif
1068	}
1069
1070	if (sc->sc_txpending == FXP_NTXCB) {
1071		/* No more slots; notify upper layer. */
1072		ifp->if_flags |= IFF_OACTIVE;
1073	}
1074
1075	if (sc->sc_txpending != opending) {
1076		/*
1077		 * We enqueued packets.  If the transmitter was idle,
1078		 * reset the txdirty pointer.
1079		 */
1080		if (opending == 0)
1081			sc->sc_txdirty = FXP_NEXTTX(lasttx);
1082
1083		/*
1084		 * Cause the chip to interrupt and suspend command
1085		 * processing once the last packet we've enqueued
1086		 * has been transmitted.
1087		 */
1088		FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1089		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1090		FXP_CDTXSYNC(sc, sc->sc_txlast,
1091		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1092
1093		/*
1094		 * The entire packet chain is set up.  Clear the suspend bit
1095		 * on the command prior to the first packet we set up.
1096		 */
1097		FXP_CDTXSYNC(sc, lasttx,
1098		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1099		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1100		    htole16(~FXP_CB_COMMAND_S);
1101		FXP_CDTXSYNC(sc, lasttx,
1102		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1103
1104		/*
1105		 * Issue a Resume command in case the chip was suspended.
1106		 */
1107		fxp_scb_wait(sc);
1108		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1109
1110		/* Set a watchdog timer in case the chip flakes out. */
1111		ifp->if_timer = 5;
1112	}
1113}
1114
1115/*
1116 * Process interface interrupts.
1117 */
1118int
1119fxp_intr(void *arg)
1120{
1121	struct fxp_softc *sc = arg;
1122	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1123	bus_dmamap_t rxmap;
1124	int claimed = 0;
1125	u_int8_t statack;
1126
1127	if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1128		return (0);
1129	/*
1130	 * If the interface isn't running, don't try to
1131	 * service the interrupt.. just ack it and bail.
1132	 */
1133	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1134		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1135		if (statack) {
1136			claimed = 1;
1137			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1138		}
1139		return (claimed);
1140	}
1141
1142	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1143		claimed = 1;
1144
1145		/*
1146		 * First ACK all the interrupts in this pass.
1147		 */
1148		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1149
1150		/*
1151		 * Process receiver interrupts. If a no-resource (RNR)
1152		 * condition exists, get whatever packets we can and
1153		 * re-start the receiver.
1154		 */
1155		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1156			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1157			fxp_rxintr(sc);
1158		}
1159
1160		if (statack & FXP_SCB_STATACK_RNR) {
1161			fxp_scb_wait(sc);
1162			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1163			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1164			fxp_scb_wait(sc);
1165			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1166			    rxmap->dm_segs[0].ds_addr +
1167			    RFA_ALIGNMENT_FUDGE);
1168			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1169		}
1170
1171		/*
1172		 * Free any finished transmit mbuf chains.
1173		 */
1174		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1175			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1176			fxp_txintr(sc);
1177
1178			/*
1179			 * Try to get more packets going.
1180			 */
1181			fxp_start(ifp);
1182
1183			if (sc->sc_txpending == 0) {
1184				/*
1185				 * If we want a re-init, do that now.
1186				 */
1187				if (sc->sc_flags & FXPF_WANTINIT)
1188					(void) fxp_init(ifp);
1189			}
1190		}
1191	}
1192
1193#if NRND > 0
1194	if (claimed)
1195		rnd_add_uint32(&sc->rnd_source, statack);
1196#endif
1197	return (claimed);
1198}
1199
1200/*
1201 * Handle transmit completion interrupts.
1202 */
1203void
1204fxp_txintr(struct fxp_softc *sc)
1205{
1206	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207	struct fxp_txdesc *txd;
1208	struct fxp_txsoft *txs;
1209	int i;
1210	u_int16_t txstat;
1211
1212	ifp->if_flags &= ~IFF_OACTIVE;
1213	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1214	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
1215		txd = FXP_CDTX(sc, i);
1216		txs = FXP_DSTX(sc, i);
1217
1218		FXP_CDTXSYNC(sc, i,
1219		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1220
1221		txstat = le16toh(txd->txd_txcb.cb_status);
1222
1223		if ((txstat & FXP_CB_STATUS_C) == 0)
1224			break;
1225
1226		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1227		    0, txs->txs_dmamap->dm_mapsize,
1228		    BUS_DMASYNC_POSTWRITE);
1229		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1230		m_freem(txs->txs_mbuf);
1231		txs->txs_mbuf = NULL;
1232	}
1233
1234	/* Update the dirty transmit buffer pointer. */
1235	sc->sc_txdirty = i;
1236
1237	/*
1238	 * Cancel the watchdog timer if there are no pending
1239	 * transmissions.
1240	 */
1241	if (sc->sc_txpending == 0)
1242		ifp->if_timer = 0;
1243}
1244
1245/*
1246 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1247 */
1248
1249int
1250fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1251{
1252	u_int16_t rxparsestat;
1253	u_int16_t csum_stat;
1254	u_int32_t csum_data;
1255	int csum_flags;
1256
1257	/*
1258	 * check VLAN tag stripping.
1259	 */
1260
1261	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1262		struct m_tag *vtag;
1263
1264		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1265		if (vtag == NULL)
1266			return ENOMEM;
1267		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1268		m_tag_prepend(m, vtag);
1269	}
1270
1271	/*
1272	 * check H/W Checksumming.
1273	 */
1274
1275	csum_stat = le16toh(rfa->cksum_stat);
1276	rxparsestat = le16toh(rfa->rx_parse_stat);
1277	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1278		return 0;
1279
1280	csum_flags = 0;
1281	csum_data = 0;
1282
1283	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1284		csum_flags = M_CSUM_IPv4;
1285		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1286			csum_flags |= M_CSUM_IPv4_BAD;
1287	}
1288
1289	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1290		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1291		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1292			csum_flags |= M_CSUM_TCP_UDP_BAD;
1293	}
1294
1295	m->m_pkthdr.csum_flags = csum_flags;
1296	m->m_pkthdr.csum_data = csum_data;
1297
1298	return 0;
1299}
1300
1301/*
1302 * Handle receive interrupts.
1303 */
1304void
1305fxp_rxintr(struct fxp_softc *sc)
1306{
1307	struct ethercom *ec = &sc->sc_ethercom;
1308	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1309	struct mbuf *m, *m0;
1310	bus_dmamap_t rxmap;
1311	struct fxp_rfa *rfa;
1312	u_int16_t len, rxstat;
1313
1314	for (;;) {
1315		m = sc->sc_rxq.ifq_head;
1316		rfa = FXP_MTORFA(m);
1317		rxmap = M_GETCTX(m, bus_dmamap_t);
1318
1319		FXP_RFASYNC(sc, m,
1320		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1321
1322		rxstat = le16toh(rfa->rfa_status);
1323
1324		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1325			/*
1326			 * We have processed all of the
1327			 * receive buffers.
1328			 */
1329			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1330			return;
1331		}
1332
1333		IF_DEQUEUE(&sc->sc_rxq, m);
1334
1335		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1336
1337		len = le16toh(rfa->actual_size) &
1338		    (m->m_ext.ext_size - 1);
1339
1340		if (len < sizeof(struct ether_header)) {
1341			/*
1342			 * Runt packet; drop it now.
1343			 */
1344			FXP_INIT_RFABUF(sc, m);
1345			continue;
1346		}
1347
1348		/*
1349		 * If support for 802.1Q VLAN sized frames is
1350		 * enabled, we need to do some additional error
1351		 * checking (as we are saving bad frames, in
1352		 * order to receive the larger ones).
1353		 */
1354		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1355		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
1356			       FXP_RFA_STATUS_RNR|
1357			       FXP_RFA_STATUS_ALIGN|
1358			       FXP_RFA_STATUS_CRC)) != 0) {
1359			FXP_INIT_RFABUF(sc, m);
1360			continue;
1361		}
1362
1363		/* Do checksum checking. */
1364		m->m_pkthdr.csum_flags = 0;
1365		if (sc->sc_flags & FXPF_EXT_RFA)
1366			if (fxp_rx_hwcksum(m, rfa))
1367				goto dropit;
1368
1369		/*
1370		 * If the packet is small enough to fit in a
1371		 * single header mbuf, allocate one and copy
1372		 * the data into it.  This greatly reduces
1373		 * memory consumption when we receive lots
1374		 * of small packets.
1375		 *
1376		 * Otherwise, we add a new buffer to the receive
1377		 * chain.  If this fails, we drop the packet and
1378		 * recycle the old buffer.
1379		 */
1380		if (fxp_copy_small != 0 && len <= MHLEN) {
1381			MGETHDR(m0, M_DONTWAIT, MT_DATA);
1382			if (m0 == NULL)
1383				goto dropit;
1384			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1385			memcpy(mtod(m0, void *),
1386			    mtod(m, void *), len);
1387			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1388			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1389			FXP_INIT_RFABUF(sc, m);
1390			m = m0;
1391		} else {
1392			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1393 dropit:
1394				ifp->if_ierrors++;
1395				FXP_INIT_RFABUF(sc, m);
1396				continue;
1397			}
1398		}
1399
1400		m->m_pkthdr.rcvif = ifp;
1401		m->m_pkthdr.len = m->m_len = len;
1402
1403#if NBPFILTER > 0
1404		/*
1405		 * Pass this up to any BPF listeners, but only
1406		 * pass it up the stack it its for us.
1407		 */
1408		if (ifp->if_bpf)
1409			bpf_mtap(ifp->if_bpf, m);
1410#endif
1411
1412		/* Pass it on. */
1413		(*ifp->if_input)(ifp, m);
1414	}
1415}
1416
1417/*
1418 * Update packet in/out/collision statistics. The i82557 doesn't
1419 * allow you to access these counters without doing a fairly
1420 * expensive DMA to get _all_ of the statistics it maintains, so
1421 * we do this operation here only once per second. The statistics
1422 * counters in the kernel are updated from the previous dump-stats
1423 * DMA and then a new dump-stats DMA is started. The on-chip
1424 * counters are zeroed when the DMA completes. If we can't start
1425 * the DMA immediately, we don't wait - we just prepare to read
1426 * them again next time.
1427 */
1428void
1429fxp_tick(void *arg)
1430{
1431	struct fxp_softc *sc = arg;
1432	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1434	int s;
1435
1436	if (!device_is_active(&sc->sc_dev))
1437		return;
1438
1439	s = splnet();
1440
1441	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1442
1443	ifp->if_opackets += le32toh(sp->tx_good);
1444	ifp->if_collisions += le32toh(sp->tx_total_collisions);
1445	if (sp->rx_good) {
1446		ifp->if_ipackets += le32toh(sp->rx_good);
1447		sc->sc_rxidle = 0;
1448	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1449		sc->sc_rxidle++;
1450	}
1451	ifp->if_ierrors +=
1452	    le32toh(sp->rx_crc_errors) +
1453	    le32toh(sp->rx_alignment_errors) +
1454	    le32toh(sp->rx_rnr_errors) +
1455	    le32toh(sp->rx_overrun_errors);
1456	/*
1457	 * If any transmit underruns occurred, bump up the transmit
1458	 * threshold by another 512 bytes (64 * 8).
1459	 */
1460	if (sp->tx_underruns) {
1461		ifp->if_oerrors += le32toh(sp->tx_underruns);
1462		if (tx_threshold < 192)
1463			tx_threshold += 64;
1464	}
1465#ifdef FXP_EVENT_COUNTERS
1466	if (sc->sc_rev >= FXP_REV_82558_A4) {
1467		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1468		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1469	}
1470#endif
1471
1472	/*
1473	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1474	 * then assume the receiver has locked up and attempt to clear
1475	 * the condition by reprogramming the multicast filter (actually,
1476	 * resetting the interface). This is a work-around for a bug in
1477	 * the 82557 where the receiver locks up if it gets certain types
1478	 * of garbage in the synchronization bits prior to the packet header.
1479	 * This bug is supposed to only occur in 10Mbps mode, but has been
1480	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1481	 * speed transition).
1482	 */
1483	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1484		(void) fxp_init(ifp);
1485		splx(s);
1486		return;
1487	}
1488	/*
1489	 * If there is no pending command, start another stats
1490	 * dump. Otherwise punt for now.
1491	 */
1492	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1493		/*
1494		 * Start another stats dump.
1495		 */
1496		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1497		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1498	} else {
1499		/*
1500		 * A previous command is still waiting to be accepted.
1501		 * Just zero our copy of the stats and wait for the
1502		 * next timer event to update them.
1503		 */
1504		/* BIG_ENDIAN: no swap required to store 0 */
1505		sp->tx_good = 0;
1506		sp->tx_underruns = 0;
1507		sp->tx_total_collisions = 0;
1508
1509		sp->rx_good = 0;
1510		sp->rx_crc_errors = 0;
1511		sp->rx_alignment_errors = 0;
1512		sp->rx_rnr_errors = 0;
1513		sp->rx_overrun_errors = 0;
1514		if (sc->sc_rev >= FXP_REV_82558_A4) {
1515			sp->tx_pauseframes = 0;
1516			sp->rx_pauseframes = 0;
1517		}
1518	}
1519
1520	if (sc->sc_flags & FXPF_MII) {
1521		/* Tick the MII clock. */
1522		mii_tick(&sc->sc_mii);
1523	}
1524
1525	splx(s);
1526
1527	/*
1528	 * Schedule another timeout one second from now.
1529	 */
1530	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1531}
1532
1533/*
1534 * Drain the receive queue.
1535 */
1536void
1537fxp_rxdrain(struct fxp_softc *sc)
1538{
1539	bus_dmamap_t rxmap;
1540	struct mbuf *m;
1541
1542	for (;;) {
1543		IF_DEQUEUE(&sc->sc_rxq, m);
1544		if (m == NULL)
1545			break;
1546		rxmap = M_GETCTX(m, bus_dmamap_t);
1547		bus_dmamap_unload(sc->sc_dmat, rxmap);
1548		FXP_RXMAP_PUT(sc, rxmap);
1549		m_freem(m);
1550	}
1551}
1552
1553/*
1554 * Stop the interface. Cancels the statistics updater and resets
1555 * the interface.
1556 */
1557void
1558fxp_stop(struct ifnet *ifp, int disable)
1559{
1560	struct fxp_softc *sc = ifp->if_softc;
1561	struct fxp_txsoft *txs;
1562	int i;
1563
1564	/*
1565	 * Turn down interface (done early to avoid bad interactions
1566	 * between panics, shutdown hooks, and the watchdog timer)
1567	 */
1568	ifp->if_timer = 0;
1569	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1570
1571	/*
1572	 * Cancel stats updater.
1573	 */
1574	callout_stop(&sc->sc_callout);
1575	if (sc->sc_flags & FXPF_MII) {
1576		/* Down the MII. */
1577		mii_down(&sc->sc_mii);
1578	}
1579
1580	/*
1581	 * Issue software reset.  This unloads any microcode that
1582	 * might already be loaded.
1583	 */
1584	sc->sc_flags &= ~FXPF_UCODE_LOADED;
1585	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1586	DELAY(50);
1587
1588	/*
1589	 * Release any xmit buffers.
1590	 */
1591	for (i = 0; i < FXP_NTXCB; i++) {
1592		txs = FXP_DSTX(sc, i);
1593		if (txs->txs_mbuf != NULL) {
1594			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1595			m_freem(txs->txs_mbuf);
1596			txs->txs_mbuf = NULL;
1597		}
1598	}
1599	sc->sc_txpending = 0;
1600
1601	if (disable) {
1602		fxp_rxdrain(sc);
1603		fxp_disable(sc);
1604	}
1605
1606}
1607
1608/*
1609 * Watchdog/transmission transmit timeout handler. Called when a
1610 * transmission is started on the interface, but no interrupt is
1611 * received before the timeout. This usually indicates that the
1612 * card has wedged for some reason.
1613 */
1614void
1615fxp_watchdog(struct ifnet *ifp)
1616{
1617	struct fxp_softc *sc = ifp->if_softc;
1618
1619	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1620	ifp->if_oerrors++;
1621
1622	(void) fxp_init(ifp);
1623}
1624
1625/*
1626 * Initialize the interface.  Must be called at splnet().
1627 */
1628int
1629fxp_init(struct ifnet *ifp)
1630{
1631	struct fxp_softc *sc = ifp->if_softc;
1632	struct fxp_cb_config *cbp;
1633	struct fxp_cb_ias *cb_ias;
1634	struct fxp_txdesc *txd;
1635	bus_dmamap_t rxmap;
1636	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1637
1638	if ((error = fxp_enable(sc)) != 0)
1639		goto out;
1640
1641	/*
1642	 * Cancel any pending I/O
1643	 */
1644	fxp_stop(ifp, 0);
1645
1646	/*
1647	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1648	 * flag, and this prevents the MII from detaching resulting in
1649	 * a panic. The flags field should perhaps be split in runtime
1650	 * flags and more static information. For now, just clear the
1651	 * only other flag set.
1652	 */
1653
1654	sc->sc_flags &= ~FXPF_WANTINIT;
1655
1656	/*
1657	 * Initialize base of CBL and RFA memory. Loading with zero
1658	 * sets it up for regular linear addressing.
1659	 */
1660	fxp_scb_wait(sc);
1661	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1662	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1663
1664	fxp_scb_wait(sc);
1665	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1666
1667	/*
1668	 * Initialize the multicast filter.  Do this now, since we might
1669	 * have to setup the config block differently.
1670	 */
1671	fxp_mc_setup(sc);
1672
1673	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1674	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1675
1676	/*
1677	 * In order to support receiving 802.1Q VLAN frames, we have to
1678	 * enable "save bad frames", since they are 4 bytes larger than
1679	 * the normal Ethernet maximum frame length.  On i82558 and later,
1680	 * we have a better mechanism for this.
1681	 */
1682	save_bf = 0;
1683	lrxen = 0;
1684	vlan_drop = 0;
1685	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1686		if (sc->sc_rev < FXP_REV_82558_A4)
1687			save_bf = 1;
1688		else
1689			lrxen = 1;
1690		if (sc->sc_rev >= FXP_REV_82550)
1691			vlan_drop = 1;
1692	}
1693
1694	/*
1695	 * Initialize base of dump-stats buffer.
1696	 */
1697	fxp_scb_wait(sc);
1698	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1699	    sc->sc_cddma + FXP_CDSTATSOFF);
1700	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1701	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1702
1703	cbp = &sc->sc_control_data->fcd_configcb;
1704	memset(cbp, 0, sizeof(struct fxp_cb_config));
1705
1706	/*
1707	 * Load microcode for this controller.
1708	 */
1709	fxp_load_ucode(sc);
1710
1711	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1712		sc->sc_flags |= FXPF_RECV_WORKAROUND;
1713	else
1714		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1715
1716	/*
1717	 * This copy is kind of disgusting, but there are a bunch of must be
1718	 * zero and must be one bits in this structure and this is the easiest
1719	 * way to initialize them all to proper values.
1720	 */
1721	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1722
1723	/* BIG_ENDIAN: no need to swap to store 0 */
1724	cbp->cb_status =	0;
1725	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
1726				    FXP_CB_COMMAND_EL);
1727	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1728	cbp->link_addr =	0xffffffff; /* (no) next command */
1729					/* bytes in config block */
1730	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
1731				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1732	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1733	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1734	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1735	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
1736	cbp->type_enable =	0;	/* actually reserved */
1737	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1738	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1739	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1740	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1741	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1742	cbp->late_scb =		0;	/* (don't) defer SCB update */
1743	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1744	cbp->ci_int =		1;	/* interrupt on CU idle */
1745	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1746	cbp->ext_stats_dis =	1;	/* disable extended counters */
1747	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
1748	cbp->save_bf =		save_bf;/* save bad frames */
1749	cbp->disc_short_rx =	!prm;	/* discard short packets */
1750	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
1751	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1752	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1753	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1754					/* interface mode */
1755	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
1756	cbp->csma_dis =		0;	/* (don't) disable link */
1757	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1758	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1759	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1760	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1761	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
1762	cbp->nsai =		1;	/* (don't) disable source addr insert */
1763	cbp->preamble_length =	2;	/* (7 byte) preamble */
1764	cbp->loopback =		0;	/* (don't) loopback */
1765	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1766	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1767	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1768	cbp->promiscuous =	prm;	/* promiscuous mode */
1769	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1770	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1771	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1772	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1773	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
1774	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1775	cbp->padding =		1;	/* (do) pad short tx packets */
1776	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1777	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
1778	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1779	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1780					/* must set wake_en in PMCSR also */
1781	cbp->force_fdx =	0;	/* (don't) force full duplex */
1782	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1783	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1784	cbp->mc_all =		allm;	/* accept all multicasts */
1785	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1786	cbp->vlan_drop_en =	vlan_drop;
1787
1788	if (sc->sc_rev < FXP_REV_82558_A4) {
1789		/*
1790		 * The i82557 has no hardware flow control, the values
1791		 * here are the defaults for the chip.
1792		 */
1793		cbp->fc_delay_lsb =	0;
1794		cbp->fc_delay_msb =	0x40;
1795		cbp->pri_fc_thresh =	3;
1796		cbp->tx_fc_dis =	0;
1797		cbp->rx_fc_restop =	0;
1798		cbp->rx_fc_restart =	0;
1799		cbp->fc_filter =	0;
1800		cbp->pri_fc_loc =	1;
1801	} else {
1802		cbp->fc_delay_lsb =	0x1f;
1803		cbp->fc_delay_msb =	0x01;
1804		cbp->pri_fc_thresh =	3;
1805		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1806		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1807		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1808		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1809		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1810		cbp->ext_stats_dis =	0;	/* enable extended stats */
1811	}
1812
1813	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1814
1815	/*
1816	 * Start the config command/DMA.
1817	 */
1818	fxp_scb_wait(sc);
1819	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1820	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1821	/* ...and wait for it to complete. */
1822	i = 1000;
1823	do {
1824		FXP_CDCONFIGSYNC(sc,
1825		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1826		DELAY(1);
1827	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1828	if (i == 0) {
1829		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1830		    sc->sc_dev.dv_xname, __LINE__);
1831		return (ETIMEDOUT);
1832	}
1833
1834	/*
1835	 * Initialize the station address.
1836	 */
1837	cb_ias = &sc->sc_control_data->fcd_iascb;
1838	/* BIG_ENDIAN: no need to swap to store 0 */
1839	cb_ias->cb_status = 0;
1840	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1841	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
1842	cb_ias->link_addr = 0xffffffff;
1843	memcpy(cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1844
1845	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846
1847	/*
1848	 * Start the IAS (Individual Address Setup) command/DMA.
1849	 */
1850	fxp_scb_wait(sc);
1851	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1852	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1853	/* ...and wait for it to complete. */
1854	i = 1000;
1855	do {
1856		FXP_CDIASSYNC(sc,
1857		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1858		DELAY(1);
1859	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1860	if (i == 0) {
1861		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1862		    sc->sc_dev.dv_xname, __LINE__);
1863		return (ETIMEDOUT);
1864	}
1865
1866	/*
1867	 * Initialize the transmit descriptor ring.  txlast is initialized
1868	 * to the end of the list so that it will wrap around to the first
1869	 * descriptor when the first packet is transmitted.
1870	 */
1871	for (i = 0; i < FXP_NTXCB; i++) {
1872		txd = FXP_CDTX(sc, i);
1873		memset(txd, 0, sizeof(*txd));
1874		txd->txd_txcb.cb_command =
1875		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1876		txd->txd_txcb.link_addr =
1877		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1878		if (sc->sc_flags & FXPF_EXT_TXCB)
1879			txd->txd_txcb.tbd_array_addr =
1880			    htole32(FXP_CDTBDADDR(sc, i) +
1881				    (2 * sizeof(struct fxp_tbd)));
1882		else
1883			txd->txd_txcb.tbd_array_addr =
1884			    htole32(FXP_CDTBDADDR(sc, i));
1885		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1886	}
1887	sc->sc_txpending = 0;
1888	sc->sc_txdirty = 0;
1889	sc->sc_txlast = FXP_NTXCB - 1;
1890
1891	/*
1892	 * Initialize the receive buffer list.
1893	 */
1894	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1895	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1896		rxmap = FXP_RXMAP_GET(sc);
1897		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1898			log(LOG_ERR, "%s: unable to allocate or map rx "
1899			    "buffer %d, error = %d\n",
1900			    sc->sc_dev.dv_xname,
1901			    sc->sc_rxq.ifq_len, error);
1902			/*
1903			 * XXX Should attempt to run with fewer receive
1904			 * XXX buffers instead of just failing.
1905			 */
1906			FXP_RXMAP_PUT(sc, rxmap);
1907			fxp_rxdrain(sc);
1908			goto out;
1909		}
1910	}
1911	sc->sc_rxidle = 0;
1912
1913	/*
1914	 * Give the transmit ring to the chip.  We do this by pointing
1915	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1916	 * issuing a start command.  It will execute the NOP and then
1917	 * suspend, pointing at the first descriptor.
1918	 */
1919	fxp_scb_wait(sc);
1920	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1921	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1922
1923	/*
1924	 * Initialize receiver buffer area - RFA.
1925	 */
1926	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1927	fxp_scb_wait(sc);
1928	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1929	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1930	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1931
1932	if (sc->sc_flags & FXPF_MII) {
1933		/*
1934		 * Set current media.
1935		 */
1936		mii_mediachg(&sc->sc_mii);
1937	}
1938
1939	/*
1940	 * ...all done!
1941	 */
1942	ifp->if_flags |= IFF_RUNNING;
1943	ifp->if_flags &= ~IFF_OACTIVE;
1944
1945	/*
1946	 * Start the one second timer.
1947	 */
1948	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1949
1950	/*
1951	 * Attempt to start output on the interface.
1952	 */
1953	fxp_start(ifp);
1954
1955 out:
1956	if (error) {
1957		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1958		ifp->if_timer = 0;
1959		log(LOG_ERR, "%s: interface not running\n",
1960		    sc->sc_dev.dv_xname);
1961	}
1962	return (error);
1963}
1964
1965/*
1966 * Change media according to request.
1967 */
1968int
1969fxp_mii_mediachange(struct ifnet *ifp)
1970{
1971	struct fxp_softc *sc = ifp->if_softc;
1972
1973	if (ifp->if_flags & IFF_UP)
1974		mii_mediachg(&sc->sc_mii);
1975	return (0);
1976}
1977
1978/*
1979 * Notify the world which media we're using.
1980 */
1981void
1982fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1983{
1984	struct fxp_softc *sc = ifp->if_softc;
1985
1986	if (sc->sc_enabled == 0) {
1987		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1988		ifmr->ifm_status = 0;
1989		return;
1990	}
1991
1992	mii_pollstat(&sc->sc_mii);
1993	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1994	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1995
1996	/*
1997	 * XXX Flow control is always turned on if the chip supports
1998	 * XXX it; we can't easily control it dynamically, since it
1999	 * XXX requires sending a setup packet.
2000	 */
2001	if (sc->sc_rev >= FXP_REV_82558_A4)
2002		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
2003}
2004
2005int
2006fxp_80c24_mediachange(struct ifnet *ifp)
2007{
2008
2009	/* Nothing to do here. */
2010	return (0);
2011}
2012
2013void
2014fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2015{
2016	struct fxp_softc *sc = ifp->if_softc;
2017
2018	/*
2019	 * Media is currently-selected media.  We cannot determine
2020	 * the link status.
2021	 */
2022	ifmr->ifm_status = 0;
2023	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2024}
2025
2026/*
2027 * Add a buffer to the end of the RFA buffer list.
2028 * Return 0 if successful, error code on failure.
2029 *
2030 * The RFA struct is stuck at the beginning of mbuf cluster and the
2031 * data pointer is fixed up to point just past it.
2032 */
2033int
2034fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2035{
2036	struct mbuf *m;
2037	int error;
2038
2039	MGETHDR(m, M_DONTWAIT, MT_DATA);
2040	if (m == NULL)
2041		return (ENOBUFS);
2042
2043	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2044	MCLGET(m, M_DONTWAIT);
2045	if ((m->m_flags & M_EXT) == 0) {
2046		m_freem(m);
2047		return (ENOBUFS);
2048	}
2049
2050	if (unload)
2051		bus_dmamap_unload(sc->sc_dmat, rxmap);
2052
2053	M_SETCTX(m, rxmap);
2054
2055	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2056	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2057	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2058	if (error) {
2059		/* XXX XXX XXX */
2060		printf("%s: can't load rx DMA map %d, error = %d\n",
2061		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2062		panic("fxp_add_rfabuf");
2063	}
2064
2065	FXP_INIT_RFABUF(sc, m);
2066
2067	return (0);
2068}
2069
2070int
2071fxp_mdi_read(struct device *self, int phy, int reg)
2072{
2073	struct fxp_softc *sc = (struct fxp_softc *)self;
2074	int count = 10000;
2075	int value;
2076
2077	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2078	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2079
2080	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2081	    0x10000000) == 0 && count--)
2082		DELAY(10);
2083
2084	if (count <= 0)
2085		log(LOG_WARNING,
2086		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2087
2088	return (value & 0xffff);
2089}
2090
2091void
2092fxp_statchg(struct device *self)
2093{
2094
2095	/* Nothing to do. */
2096}
2097
2098void
2099fxp_mdi_write(struct device *self, int phy, int reg, int value)
2100{
2101	struct fxp_softc *sc = (struct fxp_softc *)self;
2102	int count = 10000;
2103
2104	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2105	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2106	    (value & 0xffff));
2107
2108	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2109	    count--)
2110		DELAY(10);
2111
2112	if (count <= 0)
2113		log(LOG_WARNING,
2114		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2115}
2116
2117int
2118fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2119{
2120	struct fxp_softc *sc = ifp->if_softc;
2121	struct ifreq *ifr = (struct ifreq *)data;
2122	int s, error;
2123
2124	s = splnet();
2125
2126	switch (cmd) {
2127	case SIOCSIFMEDIA:
2128	case SIOCGIFMEDIA:
2129		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2130		break;
2131
2132	default:
2133		error = ether_ioctl(ifp, cmd, data);
2134		if (error == ENETRESET) {
2135			if (ifp->if_flags & IFF_RUNNING) {
2136				/*
2137				 * Multicast list has changed; set the
2138				 * hardware filter accordingly.
2139				 */
2140				if (sc->sc_txpending) {
2141					sc->sc_flags |= FXPF_WANTINIT;
2142					error = 0;
2143				} else
2144					error = fxp_init(ifp);
2145			} else
2146				error = 0;
2147		}
2148		break;
2149	}
2150
2151	/* Try to get more packets going. */
2152	if (sc->sc_enabled)
2153		fxp_start(ifp);
2154
2155	splx(s);
2156	return (error);
2157}
2158
2159/*
2160 * Program the multicast filter.
2161 *
2162 * This function must be called at splnet().
2163 */
2164void
2165fxp_mc_setup(struct fxp_softc *sc)
2166{
2167	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2168	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2169	struct ethercom *ec = &sc->sc_ethercom;
2170	struct ether_multi *enm;
2171	struct ether_multistep step;
2172	int count, nmcasts;
2173
2174#ifdef DIAGNOSTIC
2175	if (sc->sc_txpending)
2176		panic("fxp_mc_setup: pending transmissions");
2177#endif
2178
2179	ifp->if_flags &= ~IFF_ALLMULTI;
2180
2181	/*
2182	 * Initialize multicast setup descriptor.
2183	 */
2184	nmcasts = 0;
2185	ETHER_FIRST_MULTI(step, ec, enm);
2186	while (enm != NULL) {
2187		/*
2188		 * Check for too many multicast addresses or if we're
2189		 * listening to a range.  Either way, we simply have
2190		 * to accept all multicasts.
2191		 */
2192		if (nmcasts >= MAXMCADDR ||
2193		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
2194		    ETHER_ADDR_LEN) != 0) {
2195			/*
2196			 * Callers of this function must do the
2197			 * right thing with this.  If we're called
2198			 * from outside fxp_init(), the caller must
2199			 * detect if the state if IFF_ALLMULTI changes.
2200			 * If it does, the caller must then call
2201			 * fxp_init(), since allmulti is handled by
2202			 * the config block.
2203			 */
2204			ifp->if_flags |= IFF_ALLMULTI;
2205			return;
2206		}
2207		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2208		    ETHER_ADDR_LEN);
2209		nmcasts++;
2210		ETHER_NEXT_MULTI(step, enm);
2211	}
2212
2213	/* BIG_ENDIAN: no need to swap to store 0 */
2214	mcsp->cb_status = 0;
2215	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2216	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2217	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2218
2219	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2220
2221	/*
2222	 * Wait until the command unit is not active.  This should never
2223	 * happen since nothing is queued, but make sure anyway.
2224	 */
2225	count = 100;
2226	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2227	    FXP_SCB_CUS_ACTIVE && --count)
2228		DELAY(1);
2229	if (count == 0) {
2230		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2231		    sc->sc_dev.dv_xname, __LINE__);
2232		return;
2233	}
2234
2235	/*
2236	 * Start the multicast setup command/DMA.
2237	 */
2238	fxp_scb_wait(sc);
2239	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2240	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2241
2242	/* ...and wait for it to complete. */
2243	count = 1000;
2244	do {
2245		FXP_CDMCSSYNC(sc,
2246		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2247		DELAY(1);
2248	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2249	if (count == 0) {
2250		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2251		    sc->sc_dev.dv_xname, __LINE__);
2252		return;
2253	}
2254}
2255
2256static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2257static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2258static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2259static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2260static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2261static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2262
2263#define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
2264
2265static const struct ucode {
2266	int32_t		revision;
2267	const uint32_t	*ucode;
2268	size_t		length;
2269	uint16_t	int_delay_offset;
2270	uint16_t	bundle_max_offset;
2271} ucode_table[] = {
2272	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2273	  D101_CPUSAVER_DWORD, 0 },
2274
2275	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2276	  D101_CPUSAVER_DWORD, 0 },
2277
2278	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2279	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2280
2281	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2282	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2283
2284	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2285	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2286
2287	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2288	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2289
2290	{ 0, NULL, 0, 0, 0 }
2291};
2292
2293void
2294fxp_load_ucode(struct fxp_softc *sc)
2295{
2296	const struct ucode *uc;
2297	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2298	int count, i;
2299
2300	if (sc->sc_flags & FXPF_UCODE_LOADED)
2301		return;
2302
2303	/*
2304	 * Only load the uCode if the user has requested that
2305	 * we do so.
2306	 */
2307	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2308		sc->sc_int_delay = 0;
2309		sc->sc_bundle_max = 0;
2310		return;
2311	}
2312
2313	for (uc = ucode_table; uc->ucode != NULL; uc++) {
2314		if (sc->sc_rev == uc->revision)
2315			break;
2316	}
2317	if (uc->ucode == NULL)
2318		return;
2319
2320	/* BIG ENDIAN: no need to swap to store 0 */
2321	cbp->cb_status = 0;
2322	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2323	cbp->link_addr = 0xffffffff;		/* (no) next command */
2324	for (i = 0; i < uc->length; i++)
2325		cbp->ucode[i] = htole32(uc->ucode[i]);
2326
2327	if (uc->int_delay_offset)
2328		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2329		    htole16(fxp_int_delay + (fxp_int_delay / 2));
2330
2331	if (uc->bundle_max_offset)
2332		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2333		    htole16(fxp_bundle_max);
2334
2335	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2336
2337	/*
2338	 * Download the uCode to the chip.
2339	 */
2340	fxp_scb_wait(sc);
2341	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2342	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2343
2344	/* ...and wait for it to complete. */
2345	count = 10000;
2346	do {
2347		FXP_CDUCODESYNC(sc,
2348		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2349		DELAY(2);
2350	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2351	if (count == 0) {
2352		sc->sc_int_delay = 0;
2353		sc->sc_bundle_max = 0;
2354		log(LOG_WARNING, "%s: timeout loading microcode\n",
2355		    sc->sc_dev.dv_xname);
2356		return;
2357	}
2358
2359	if (sc->sc_int_delay != fxp_int_delay ||
2360	    sc->sc_bundle_max != fxp_bundle_max) {
2361		sc->sc_int_delay = fxp_int_delay;
2362		sc->sc_bundle_max = fxp_bundle_max;
2363		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2364		    "max bundle: %d\n", sc->sc_dev.dv_xname,
2365		    sc->sc_int_delay,
2366		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2367	}
2368
2369	sc->sc_flags |= FXPF_UCODE_LOADED;
2370}
2371
2372int
2373fxp_enable(struct fxp_softc *sc)
2374{
2375
2376	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2377		if ((*sc->sc_enable)(sc) != 0) {
2378			log(LOG_ERR, "%s: device enable failed\n",
2379			    sc->sc_dev.dv_xname);
2380			return (EIO);
2381		}
2382	}
2383
2384	sc->sc_enabled = 1;
2385	return (0);
2386}
2387
2388void
2389fxp_disable(struct fxp_softc *sc)
2390{
2391
2392	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2393		(*sc->sc_disable)(sc);
2394		sc->sc_enabled = 0;
2395	}
2396}
2397
2398/*
2399 * fxp_activate:
2400 *
2401 *	Handle device activation/deactivation requests.
2402 */
2403int
2404fxp_activate(struct device *self, enum devact act)
2405{
2406	struct fxp_softc *sc = (void *) self;
2407	int s, error = 0;
2408
2409	s = splnet();
2410	switch (act) {
2411	case DVACT_ACTIVATE:
2412		error = EOPNOTSUPP;
2413		break;
2414
2415	case DVACT_DEACTIVATE:
2416		if (sc->sc_flags & FXPF_MII)
2417			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2418			    MII_OFFSET_ANY);
2419		if_deactivate(&sc->sc_ethercom.ec_if);
2420		break;
2421	}
2422	splx(s);
2423
2424	return (error);
2425}
2426
2427/*
2428 * fxp_detach:
2429 *
2430 *	Detach an i82557 interface.
2431 */
2432int
2433fxp_detach(struct fxp_softc *sc)
2434{
2435	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2436	int i;
2437
2438	/* Succeed now if there's no work to do. */
2439	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2440		return (0);
2441
2442	/* Unhook our tick handler. */
2443	callout_stop(&sc->sc_callout);
2444
2445	if (sc->sc_flags & FXPF_MII) {
2446		/* Detach all PHYs */
2447		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2448	}
2449
2450	/* Delete all remaining media. */
2451	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2452
2453#if NRND > 0
2454	rnd_detach_source(&sc->rnd_source);
2455#endif
2456	ether_ifdetach(ifp);
2457	if_detach(ifp);
2458
2459	for (i = 0; i < FXP_NRFABUFS; i++) {
2460		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2461		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2462	}
2463
2464	for (i = 0; i < FXP_NTXCB; i++) {
2465		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2466		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2467	}
2468
2469	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2470	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2471	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2472	    sizeof(struct fxp_control_data));
2473	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2474
2475	shutdownhook_disestablish(sc->sc_sdhook);
2476	powerhook_disestablish(sc->sc_powerhook);
2477
2478	return (0);
2479}
2480