1/*	$NetBSD: gem.c,v 1.137 2024/06/29 12:11:11 riastradh Exp $ */
2
3/*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33/*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 *   http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39#include <sys/cdefs.h>
40__KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.137 2024/06/29 12:11:11 riastradh Exp $");
41
42#include "opt_inet.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/callout.h>
47#include <sys/mbuf.h>
48#include <sys/syslog.h>
49#include <sys/kernel.h>
50#include <sys/socket.h>
51#include <sys/ioctl.h>
52#include <sys/errno.h>
53#include <sys/device.h>
54
55#include <machine/endian.h>
56
57#include <net/if.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_ether.h>
61
62#ifdef INET
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/ip.h>
67#include <netinet/tcp.h>
68#include <netinet/udp.h>
69#endif
70
71#include <net/bpf.h>
72
73#include <sys/bus.h>
74#include <sys/intr.h>
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78#include <dev/mii/mii_bitbang.h>
79
80#include <dev/ic/gemreg.h>
81#include <dev/ic/gemvar.h>
82
83#define TRIES	10000
84
85static void	gem_inten(struct gem_softc *);
86static void	gem_start(struct ifnet *);
87static void	gem_stop(struct ifnet *, int);
88int		gem_ioctl(struct ifnet *, u_long, void *);
89void		gem_tick(void *);
90void		gem_watchdog(struct ifnet *);
91void		gem_rx_watchdog(void *);
92void		gem_pcs_start(struct gem_softc *sc);
93void		gem_pcs_stop(struct gem_softc *sc, int);
94int		gem_init(struct ifnet *);
95void		gem_init_regs(struct gem_softc *sc);
96static int	gem_ringsize(int sz);
97static int	gem_meminit(struct gem_softc *);
98void		gem_mifinit(struct gem_softc *);
99static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
100		    uint32_t, uint32_t);
101void		gem_reset(struct gem_softc *);
102int		gem_reset_rx(struct gem_softc *sc);
103static void	gem_reset_rxdma(struct gem_softc *sc);
104static void	gem_rx_common(struct gem_softc *sc);
105int		gem_reset_tx(struct gem_softc *sc);
106int		gem_disable_rx(struct gem_softc *sc);
107int		gem_disable_tx(struct gem_softc *sc);
108static void	gem_rxdrain(struct gem_softc *sc);
109int		gem_add_rxbuf(struct gem_softc *sc, int idx);
110void		gem_setladrf(struct gem_softc *);
111
112/* MII methods & callbacks */
113static int	gem_mii_readreg(device_t, int, int, uint16_t *);
114static int	gem_mii_writereg(device_t, int, int, uint16_t);
115static void	gem_mii_statchg(struct ifnet *);
116
117static int	gem_ifflags_cb(struct ethercom *);
118
119void		gem_statuschange(struct gem_softc *);
120
121int		gem_ser_mediachange(struct ifnet *);
122void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
123
124static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
125
126struct mbuf	*gem_get(struct gem_softc *, int, int);
127int		gem_put(struct gem_softc *, int, struct mbuf *);
128void		gem_read(struct gem_softc *, int, int);
129int		gem_pint(struct gem_softc *);
130int		gem_eint(struct gem_softc *, u_int);
131int		gem_rint(struct gem_softc *);
132int		gem_tint(struct gem_softc *);
133void		gem_power(int, void *);
134
135#ifdef GEM_DEBUG
136static void gem_txsoft_print(const struct gem_softc *, int, int);
137#define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
138				printf x
139#else
140#define	DPRINTF(sc, x)	/* nothing */
141#endif
142
143#define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
144
145int
146gem_detach(struct gem_softc *sc, int flags)
147{
148	int i;
149	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
150	bus_space_tag_t t = sc->sc_bustag;
151	bus_space_handle_t h = sc->sc_h1;
152
153	/*
154	 * Free any resources we've allocated during the attach.
155	 * Do this in reverse order and fall through.
156	 */
157	switch (sc->sc_att_stage) {
158	case GEM_ATT_BACKEND_2:
159	case GEM_ATT_BACKEND_1:
160	case GEM_ATT_FINISHED:
161		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
162		gem_stop(&sc->sc_ethercom.ec_if, 1);
163
164#ifdef GEM_COUNTERS
165		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
166			evcnt_detach(&sc->sc_ev_rxhist[i]);
167		evcnt_detach(&sc->sc_ev_rxnobuf);
168		evcnt_detach(&sc->sc_ev_rxfull);
169		evcnt_detach(&sc->sc_ev_rxint);
170		evcnt_detach(&sc->sc_ev_txint);
171		evcnt_detach(&sc->sc_ev_rxoverflow);
172#endif
173		evcnt_detach(&sc->sc_ev_intr);
174
175		rnd_detach_source(&sc->rnd_source);
176		ether_ifdetach(ifp);
177		if_detach(ifp);
178
179		callout_destroy(&sc->sc_tick_ch);
180		callout_destroy(&sc->sc_rx_watchdog);
181
182		/*FALLTHROUGH*/
183	case GEM_ATT_MII:
184		sc->sc_att_stage = GEM_ATT_MII;
185		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
186		ifmedia_fini(&sc->sc_mii.mii_media);
187
188		/*FALLTHROUGH*/
189	case GEM_ATT_7:
190		for (i = 0; i < GEM_NRXDESC; i++) {
191			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
192				bus_dmamap_destroy(sc->sc_dmatag,
193				    sc->sc_rxsoft[i].rxs_dmamap);
194		}
195		/*FALLTHROUGH*/
196	case GEM_ATT_6:
197		for (i = 0; i < GEM_TXQUEUELEN; i++) {
198			if (sc->sc_txsoft[i].txs_dmamap != NULL)
199				bus_dmamap_destroy(sc->sc_dmatag,
200				    sc->sc_txsoft[i].txs_dmamap);
201		}
202		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
203		/*FALLTHROUGH*/
204	case GEM_ATT_5:
205		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
206		/*FALLTHROUGH*/
207	case GEM_ATT_4:
208		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
209		/*FALLTHROUGH*/
210	case GEM_ATT_3:
211		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
212		/*FALLTHROUGH*/
213	case GEM_ATT_2:
214		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
215		    sizeof(struct gem_control_data));
216		/*FALLTHROUGH*/
217	case GEM_ATT_1:
218		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
219		/*FALLTHROUGH*/
220	case GEM_ATT_0:
221		sc->sc_att_stage = GEM_ATT_0;
222		/*FALLTHROUGH*/
223	case GEM_ATT_BACKEND_0:
224		break;
225	}
226	return 0;
227}
228
229static void
230gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
231{
232	cfattach_t ca = device_cfattach(sc->sc_dev);
233
234	sc->sc_att_stage = stage;
235	(*ca->ca_detach)(sc->sc_dev, 0);
236}
237
238/*
239 * gem_attach:
240 *
241 *	Attach a Gem interface to the system.
242 */
243void
244gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
245{
246	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
247	struct mii_data *mii = &sc->sc_mii;
248	bus_space_tag_t t = sc->sc_bustag;
249	bus_space_handle_t h = sc->sc_h1;
250	struct ifmedia_entry *ife;
251	int i, error, phyaddr;
252	uint32_t v;
253	char *nullbuf;
254
255	/* Make sure the chip is stopped. */
256	ifp->if_softc = sc;
257	gem_reset(sc);
258
259	/*
260	 * Allocate the control data structures, and create and load the
261	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
262	 * the padding buffer in the bus_dmamem_alloc()'d memory.
263	 */
264	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
265	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
266	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
267		aprint_error_dev(sc->sc_dev,
268		   "unable to allocate control data, error = %d\n",
269		    error);
270		gem_partial_detach(sc, GEM_ATT_0);
271		return;
272	}
273
274	/* XXX should map this in with correct endianness */
275	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
276	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
277	    BUS_DMA_COHERENT)) != 0) {
278		aprint_error_dev(sc->sc_dev,
279		    "unable to map control data, error = %d\n", error);
280		gem_partial_detach(sc, GEM_ATT_1);
281		return;
282	}
283
284	nullbuf =
285	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
286
287	if ((error = bus_dmamap_create(sc->sc_dmatag,
288	    sizeof(struct gem_control_data), 1,
289	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
290		aprint_error_dev(sc->sc_dev,
291		    "unable to create control data DMA map, error = %d\n",
292		    error);
293		gem_partial_detach(sc, GEM_ATT_2);
294		return;
295	}
296
297	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
298	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
299	    0)) != 0) {
300		aprint_error_dev(sc->sc_dev,
301		    "unable to load control data DMA map, error = %d\n",
302		    error);
303		gem_partial_detach(sc, GEM_ATT_3);
304		return;
305	}
306
307	memset(nullbuf, 0, ETHER_MIN_TX);
308	if ((error = bus_dmamap_create(sc->sc_dmatag,
309	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
310		aprint_error_dev(sc->sc_dev,
311		    "unable to create padding DMA map, error = %d\n", error);
312		gem_partial_detach(sc, GEM_ATT_4);
313		return;
314	}
315
316	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
317	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
318		aprint_error_dev(sc->sc_dev,
319		    "unable to load padding DMA map, error = %d\n", error);
320		gem_partial_detach(sc, GEM_ATT_5);
321		return;
322	}
323
324	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
325	    BUS_DMASYNC_PREWRITE);
326
327	/*
328	 * Initialize the transmit job descriptors.
329	 */
330	SIMPLEQ_INIT(&sc->sc_txfreeq);
331	SIMPLEQ_INIT(&sc->sc_txdirtyq);
332
333	/*
334	 * Create the transmit buffer DMA maps.
335	 */
336	for (i = 0; i < GEM_TXQUEUELEN; i++) {
337		struct gem_txsoft *txs;
338
339		txs = &sc->sc_txsoft[i];
340		txs->txs_mbuf = NULL;
341		if ((error = bus_dmamap_create(sc->sc_dmatag,
342		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
343		    ETHER_MAX_LEN_JUMBO, 0, 0,
344		    &txs->txs_dmamap)) != 0) {
345			aprint_error_dev(sc->sc_dev,
346			    "unable to create tx DMA map %d, error = %d\n",
347			    i, error);
348			gem_partial_detach(sc, GEM_ATT_6);
349			return;
350		}
351		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
352	}
353
354	/*
355	 * Create the receive buffer DMA maps.
356	 */
357	for (i = 0; i < GEM_NRXDESC; i++) {
358		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
359		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360			aprint_error_dev(sc->sc_dev,
361			    "unable to create rx DMA map %d, error = %d\n",
362			    i, error);
363			gem_partial_detach(sc, GEM_ATT_7);
364			return;
365		}
366		sc->sc_rxsoft[i].rxs_mbuf = NULL;
367	}
368
369	/* Initialize ifmedia structures and MII info */
370	mii->mii_ifp = ifp;
371	mii->mii_readreg = gem_mii_readreg;
372	mii->mii_writereg = gem_mii_writereg;
373	mii->mii_statchg = gem_mii_statchg;
374
375	sc->sc_ethercom.ec_mii = mii;
376
377	/*
378	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
379	 * Section 3.2.1 `Initialization Sequence'.
380	 * However, we can't assume SERDES or Serialink if neither
381	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
382	 * being set, as both are set on Sun X1141A (with SERDES).  So,
383	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
384	 * Also, for variants that report 2 PHY's, we prefer the external
385	 * PHY over the internal PHY, so we look for that first.
386	 */
387	gem_mifinit(sc);
388
389	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
390		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
391		    ether_mediastatus);
392		/* Look for external PHY */
393		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
394			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
395			bus_space_write_4(t, h, GEM_MIF_CONFIG,
396			    sc->sc_mif_config);
397			switch (sc->sc_variant) {
398			case GEM_SUN_ERI:
399				phyaddr = GEM_PHYAD_EXTERNAL;
400				break;
401			default:
402				phyaddr = MII_PHY_ANY;
403				break;
404			}
405			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
406			    MII_OFFSET_ANY, MIIF_FORCEANEG);
407		}
408#ifdef GEM_DEBUG
409		  else
410			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
411#endif
412		/* Look for internal PHY if no external PHY was found */
413		if (LIST_EMPTY(&mii->mii_phys) &&
414		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
415		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
416			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417			bus_space_write_4(t, h, GEM_MIF_CONFIG,
418			    sc->sc_mif_config);
419			switch (sc->sc_variant) {
420			case GEM_SUN_ERI:
421			case GEM_APPLE_K2_GMAC:
422				phyaddr = GEM_PHYAD_INTERNAL;
423				break;
424			case GEM_APPLE_GMAC:
425				phyaddr = GEM_PHYAD_EXTERNAL;
426				break;
427			default:
428				phyaddr = MII_PHY_ANY;
429				break;
430			}
431			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432			    MII_OFFSET_ANY, MIIF_FORCEANEG);
433#ifdef GEM_DEBUG
434			if (!LIST_EMPTY(&mii->mii_phys))
435				aprint_debug_dev(sc->sc_dev,
436				    "using internal PHY\n");
437#endif
438		}
439		if (LIST_EMPTY(&mii->mii_phys)) {
440				/* No PHY attached */
441				aprint_error_dev(sc->sc_dev,
442				    "PHY probe failed\n");
443				gem_partial_detach(sc, GEM_ATT_MII);
444				return;
445		} else {
446			struct mii_softc *child;
447
448			/*
449			 * Walk along the list of attached MII devices and
450			 * establish an `MII instance' to `PHY number'
451			 * mapping.
452			 */
453			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454				/*
455				 * Note: we support just one PHY: the internal
456				 * or external MII is already selected for us
457				 * by the GEM_MIF_CONFIG  register.
458				 */
459				if (child->mii_phy > 1 || child->mii_inst > 0) {
460					aprint_error_dev(sc->sc_dev,
461					    "cannot accommodate MII device"
462					    " %s at PHY %d, instance %d\n",
463					       device_xname(child->mii_dev),
464					       child->mii_phy, child->mii_inst);
465					continue;
466				}
467				sc->sc_phys[child->mii_inst] = child->mii_phy;
468			}
469
470			if (sc->sc_variant != GEM_SUN_ERI)
471				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472				    GEM_MII_DATAPATH_MII);
473
474			/*
475			 * XXX - we can really do the following ONLY if the
476			 * PHY indeed has the auto negotiation capability!!
477			 */
478			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
479		}
480	} else {
481		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482		    gem_ser_mediastatus);
483		/* SERDES or Serialink */
484		if (sc->sc_flags & GEM_SERDES) {
485			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486			    GEM_MII_DATAPATH_SERDES);
487		} else {
488			sc->sc_flags |= GEM_SERIAL;
489			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490			    GEM_MII_DATAPATH_SERIAL);
491		}
492
493		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495
496		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
497		/* Check for FDX and HDX capabilities */
498		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500			ifmedia_add(&mii->mii_media, IFM_ETHER |
501			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
502			aprint_normal("1000baseSX-FDX, ");
503		}
504		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505			ifmedia_add(&mii->mii_media, IFM_ETHER |
506			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
507			aprint_normal("1000baseSX-HDX, ");
508		}
509		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
510		sc->sc_mii_media = IFM_AUTO;
511		aprint_normal("auto\n");
512
513		gem_pcs_stop(sc, 1);
514	}
515
516	/*
517	 * From this point forward, the attachment cannot fail.  A failure
518	 * before this point releases all resources that may have been
519	 * allocated.
520	 */
521
522	/* Announce ourselves. */
523	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524	    ether_sprintf(enaddr));
525
526	/* Get RX FIFO size */
527	sc->sc_rxfifosize = 64 *
528	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530
531	/* Get TX FIFO size */
532	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533	aprint_normal(", %uKB TX fifo\n", v / 16);
534
535	/* Initialize ifnet structure. */
536	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537	ifp->if_softc = sc;
538	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539	sc->sc_if_flags = ifp->if_flags;
540#if 0
541	/*
542	 * The GEM hardware supports basic TCP checksum offloading only.
543	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544	 * have bugs in the receive checksum, so don't enable it for now.
545	 */
546	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547	    (GEM_IS_APPLE(sc) &&
548	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550#endif
551	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552	ifp->if_start = gem_start;
553	ifp->if_ioctl = gem_ioctl;
554	ifp->if_watchdog = gem_watchdog;
555	ifp->if_stop = gem_stop;
556	ifp->if_init = gem_init;
557	IFQ_SET_READY(&ifp->if_snd);
558
559	/*
560	 * If we support GigE media, we support jumbo frames too.
561	 * Unless we are Apple.
562	 */
563	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
564		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
565		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
566		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
567		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
568			if (!GEM_IS_APPLE(sc))
569				sc->sc_ethercom.ec_capabilities
570				    |= ETHERCAP_JUMBO_MTU;
571			sc->sc_flags |= GEM_GIGABIT;
572			break;
573		}
574	}
575
576	/* claim 802.1q capability */
577	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578
579	/* Attach the interface. */
580	if_attach(ifp);
581	if_deferred_start_init(ifp, NULL);
582	ether_ifattach(ifp, enaddr);
583	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584
585	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586			  RND_TYPE_NET, RND_FLAG_DEFAULT);
587
588	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589	    NULL, device_xname(sc->sc_dev), "interrupts");
590#ifdef GEM_COUNTERS
591	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599	evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR,
600	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow");
601	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
602	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
603	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
604	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
605	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
606	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
607	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
608	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
609	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
610	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
611	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
612	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
613	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
614	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
615	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
616	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
617	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
618	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
619#endif
620
621	callout_init(&sc->sc_tick_ch, 0);
622	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
623
624	callout_init(&sc->sc_rx_watchdog, 0);
625	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
626
627	sc->sc_att_stage = GEM_ATT_FINISHED;
628
629	return;
630}
631
632void
633gem_tick(void *arg)
634{
635	struct gem_softc *sc = arg;
636	int s;
637
638	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
639		/*
640		 * We have to reset everything if we failed to get a
641		 * PCS interrupt.  Restarting the callout is handled
642		 * in gem_pcs_start().
643		 */
644		gem_init(&sc->sc_ethercom.ec_if);
645	} else {
646		s = splnet();
647		mii_tick(&sc->sc_mii);
648		splx(s);
649		callout_schedule(&sc->sc_tick_ch, hz);
650	}
651}
652
653static int
654gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
655    uint32_t set)
656{
657	int i;
658	uint32_t reg;
659
660	for (i = TRIES; i--; DELAY(100)) {
661		reg = bus_space_read_4(sc->sc_bustag, h, r);
662		if ((reg & clr) == 0 && (reg & set) == set)
663			return (1);
664	}
665	return (0);
666}
667
668void
669gem_reset(struct gem_softc *sc)
670{
671	bus_space_tag_t t = sc->sc_bustag;
672	bus_space_handle_t h = sc->sc_h2;
673	int s;
674
675	s = splnet();
676	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
677	gem_reset_rx(sc);
678	gem_reset_tx(sc);
679
680	/* Do a full reset */
681	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
682	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
683		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
684	splx(s);
685}
686
687
688/*
689 * gem_rxdrain:
690 *
691 *	Drain the receive queue.
692 */
693static void
694gem_rxdrain(struct gem_softc *sc)
695{
696	struct gem_rxsoft *rxs;
697	int i;
698
699	for (i = 0; i < GEM_NRXDESC; i++) {
700		rxs = &sc->sc_rxsoft[i];
701		if (rxs->rxs_mbuf != NULL) {
702			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
703			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
704			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
705			m_freem(rxs->rxs_mbuf);
706			rxs->rxs_mbuf = NULL;
707		}
708	}
709}
710
711/*
712 * Reset the whole thing.
713 */
714static void
715gem_stop(struct ifnet *ifp, int disable)
716{
717	struct gem_softc *sc = ifp->if_softc;
718	struct gem_txsoft *txs;
719
720	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
721
722	callout_halt(&sc->sc_tick_ch, NULL);
723	callout_halt(&sc->sc_rx_watchdog, NULL);
724	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
725		gem_pcs_stop(sc, disable);
726	else
727		mii_down(&sc->sc_mii);
728
729	/* XXX - Should we reset these instead? */
730	gem_disable_tx(sc);
731	gem_disable_rx(sc);
732
733	/*
734	 * Release any queued transmit buffers.
735	 */
736	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
737		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
738		if (txs->txs_mbuf != NULL) {
739			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
740			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
741			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
742			m_freem(txs->txs_mbuf);
743			txs->txs_mbuf = NULL;
744		}
745		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
746	}
747
748	/*
749	 * Mark the interface down and cancel the watchdog timer.
750	 */
751	ifp->if_flags &= ~IFF_RUNNING;
752	sc->sc_if_flags = ifp->if_flags;
753	ifp->if_timer = 0;
754
755	if (disable)
756		gem_rxdrain(sc);
757}
758
759
760/*
761 * Reset the receiver
762 */
763int
764gem_reset_rx(struct gem_softc *sc)
765{
766	bus_space_tag_t t = sc->sc_bustag;
767	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
768
769	/*
770	 * Resetting while DMA is in progress can cause a bus hang, so we
771	 * disable DMA first.
772	 */
773	gem_disable_rx(sc);
774	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
775	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
776	/* Wait till it finishes */
777	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
778		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
779	/* Wait 5ms extra. */
780	delay(5000);
781
782	/* Finally, reset the ERX */
783	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
784	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
785	/* Wait till it finishes */
786	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
787		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
788		return (1);
789	}
790	return (0);
791}
792
793
794/*
795 * Reset the receiver DMA engine.
796 *
797 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
798 * etc in order to reset the receiver DMA engine only and not do a full
799 * reset which amongst others also downs the link and clears the FIFOs.
800 */
801static void
802gem_reset_rxdma(struct gem_softc *sc)
803{
804	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
805	bus_space_tag_t t = sc->sc_bustag;
806	bus_space_handle_t h = sc->sc_h1;
807	int i;
808
809	if (gem_reset_rx(sc) != 0) {
810		gem_init(ifp);
811		return;
812	}
813	for (i = 0; i < GEM_NRXDESC; i++)
814		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
815			GEM_UPDATE_RXDESC(sc, i);
816	sc->sc_rxptr = 0;
817	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
818	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
819
820	/* Reprogram Descriptor Ring Base Addresses */
821	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
822	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
823	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
824
825	/* Redo ERX Configuration */
826	gem_rx_common(sc);
827
828	/* Give the receiver a swift kick */
829	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
830}
831
832/*
833 * Common RX configuration for gem_init() and gem_reset_rxdma().
834 */
835static void
836gem_rx_common(struct gem_softc *sc)
837{
838	bus_space_tag_t t = sc->sc_bustag;
839	bus_space_handle_t h = sc->sc_h1;
840	uint32_t v;
841
842	/* Encode Receive Descriptor ring size: four possible values */
843	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
844
845	/* Set receive h/w checksum offset */
846#ifdef INET
847	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
848	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
849	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
850#endif
851
852	/* Enable RX DMA */
853	bus_space_write_4(t, h, GEM_RX_CONFIG,
854	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
855	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
856
857	/*
858	 * The following value is for an OFF Threshold of about 3/4 full
859	 * and an ON Threshold of 1/4 full.
860	 */
861	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
862	    (3 * sc->sc_rxfifosize / 256) |
863	    ((sc->sc_rxfifosize / 256) << 12));
864	bus_space_write_4(t, h, GEM_RX_BLANKING,
865	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
866}
867
868/*
869 * Reset the transmitter
870 */
871int
872gem_reset_tx(struct gem_softc *sc)
873{
874	bus_space_tag_t t = sc->sc_bustag;
875	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
876
877	/*
878	 * Resetting while DMA is in progress can cause a bus hang, so we
879	 * disable DMA first.
880	 */
881	gem_disable_tx(sc);
882	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
883	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
884	/* Wait till it finishes */
885	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
886		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
887	/* Wait 5ms extra. */
888	delay(5000);
889
890	/* Finally, reset the ETX */
891	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
892	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
893	/* Wait till it finishes */
894	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
895		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
896		return (1);
897	}
898	return (0);
899}
900
901/*
902 * disable receiver.
903 */
904int
905gem_disable_rx(struct gem_softc *sc)
906{
907	bus_space_tag_t t = sc->sc_bustag;
908	bus_space_handle_t h = sc->sc_h1;
909	uint32_t cfg;
910
911	/* Flip the enable bit */
912	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
913	cfg &= ~GEM_MAC_RX_ENABLE;
914	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
915	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
916	/* Wait for it to finish */
917	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
918}
919
920/*
921 * disable transmitter.
922 */
923int
924gem_disable_tx(struct gem_softc *sc)
925{
926	bus_space_tag_t t = sc->sc_bustag;
927	bus_space_handle_t h = sc->sc_h1;
928	uint32_t cfg;
929
930	/* Flip the enable bit */
931	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
932	cfg &= ~GEM_MAC_TX_ENABLE;
933	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
934	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
935	/* Wait for it to finish */
936	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
937}
938
939/*
940 * Initialize interface.
941 */
942int
943gem_meminit(struct gem_softc *sc)
944{
945	struct gem_rxsoft *rxs;
946	int i, error;
947
948	/*
949	 * Initialize the transmit descriptor ring.
950	 */
951	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
952	for (i = 0; i < GEM_NTXDESC; i++) {
953		sc->sc_txdescs[i].gd_flags = 0;
954		sc->sc_txdescs[i].gd_addr = 0;
955	}
956	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
957	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
958	sc->sc_txfree = GEM_NTXDESC-1;
959	sc->sc_txnext = 0;
960	sc->sc_txwin = 0;
961
962	/*
963	 * Initialize the receive descriptor and receive job
964	 * descriptor rings.
965	 */
966	for (i = 0; i < GEM_NRXDESC; i++) {
967		rxs = &sc->sc_rxsoft[i];
968		if (rxs->rxs_mbuf == NULL) {
969			if ((error = gem_add_rxbuf(sc, i)) != 0) {
970				aprint_error_dev(sc->sc_dev,
971				    "unable to allocate or map rx "
972				    "buffer %d, error = %d\n",
973				    i, error);
974				/*
975				 * XXX Should attempt to run with fewer receive
976				 * XXX buffers instead of just failing.
977				 */
978				gem_rxdrain(sc);
979				return (1);
980			}
981		} else
982			GEM_INIT_RXDESC(sc, i);
983	}
984	sc->sc_rxptr = 0;
985	sc->sc_meminited = 1;
986	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
987	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
988
989	return (0);
990}
991
992static int
993gem_ringsize(int sz)
994{
995	switch (sz) {
996	case 32:
997		return GEM_RING_SZ_32;
998	case 64:
999		return GEM_RING_SZ_64;
1000	case 128:
1001		return GEM_RING_SZ_128;
1002	case 256:
1003		return GEM_RING_SZ_256;
1004	case 512:
1005		return GEM_RING_SZ_512;
1006	case 1024:
1007		return GEM_RING_SZ_1024;
1008	case 2048:
1009		return GEM_RING_SZ_2048;
1010	case 4096:
1011		return GEM_RING_SZ_4096;
1012	case 8192:
1013		return GEM_RING_SZ_8192;
1014	default:
1015		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1016		return GEM_RING_SZ_32;
1017	}
1018}
1019
1020
1021/*
1022 * Start PCS
1023 */
1024void
1025gem_pcs_start(struct gem_softc *sc)
1026{
1027	bus_space_tag_t t = sc->sc_bustag;
1028	bus_space_handle_t h = sc->sc_h1;
1029	uint32_t v;
1030
1031#ifdef GEM_DEBUG
1032	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1033#endif
1034
1035	/*
1036	 * Set up.  We must disable the MII before modifying the
1037	 * GEM_MII_ANAR register
1038	 */
1039	if (sc->sc_flags & GEM_SERDES) {
1040		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041		    GEM_MII_DATAPATH_SERDES);
1042		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1043		    GEM_MII_SLINK_LOOPBACK);
1044	} else {
1045		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1046		    GEM_MII_DATAPATH_SERIAL);
1047		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1048	}
1049	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1050	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1051	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1052	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1053		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1054	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1055		v |= GEM_MII_ANEG_FUL_DUPLX;
1056		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1057	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1058		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1059		v |= GEM_MII_ANEG_HLF_DUPLX;
1060	}
1061
1062	/* Configure link. */
1063	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1064	bus_space_write_4(t, h, GEM_MII_CONTROL,
1065	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1066	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1067	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1068
1069	/* Start the 10 second timer */
1070	callout_schedule(&sc->sc_tick_ch, hz * 10);
1071}
1072
1073/*
1074 * Stop PCS
1075 */
1076void
1077gem_pcs_stop(struct gem_softc *sc, int disable)
1078{
1079	bus_space_tag_t t = sc->sc_bustag;
1080	bus_space_handle_t h = sc->sc_h1;
1081
1082#ifdef GEM_DEBUG
1083	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1084#endif
1085
1086	/* Tell link partner that we're going away */
1087	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1088
1089	/*
1090	 * Disable PCS MII.  The documentation suggests that setting
1091	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1092	 * negotiation will shut down the link.  However, it appears
1093	 * that we also need to unset the datapath mode.
1094	 */
1095	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1096	bus_space_write_4(t, h, GEM_MII_CONTROL,
1097	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1098	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1099	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1100
1101	if (disable) {
1102		if (sc->sc_flags & GEM_SERDES)
1103			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1104				GEM_MII_SLINK_POWER_OFF);
1105		else
1106			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1107			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1108	}
1109
1110	sc->sc_flags &= ~GEM_LINK;
1111	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1112	sc->sc_mii.mii_media_status = IFM_AVALID;
1113}
1114
1115
1116/*
1117 * Initialization of interface; set up initialization block
1118 * and transmit/receive descriptor rings.
1119 */
1120int
1121gem_init(struct ifnet *ifp)
1122{
1123	struct gem_softc *sc = ifp->if_softc;
1124	bus_space_tag_t t = sc->sc_bustag;
1125	bus_space_handle_t h = sc->sc_h1;
1126	int rc = 0, s;
1127	u_int max_frame_size;
1128	uint32_t v;
1129
1130	s = splnet();
1131
1132	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1133	/*
1134	 * Initialization sequence. The numbered steps below correspond
1135	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1136	 * Channel Engine manual (part of the PCIO manual).
1137	 * See also the STP2002-STQ document from Sun Microsystems.
1138	 */
1139
1140	/* step 1 & 2. Reset the Ethernet Channel */
1141	gem_stop(ifp, 0);
1142	gem_reset(sc);
1143	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1144
1145	/* Re-initialize the MIF */
1146	gem_mifinit(sc);
1147
1148	/* Set up correct datapath for non-SERDES/Serialink */
1149	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1150	    sc->sc_variant != GEM_SUN_ERI)
1151		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1152		    GEM_MII_DATAPATH_MII);
1153
1154	/* Call MI reset function if any */
1155	if (sc->sc_hwreset)
1156		(*sc->sc_hwreset)(sc);
1157
1158	/* step 3. Setup data structures in host memory */
1159	if (gem_meminit(sc) != 0) {
1160		splx(s);
1161		return 1;
1162	}
1163
1164	/* step 4. TX MAC registers & counters */
1165	gem_init_regs(sc);
1166	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1167	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1168	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1169		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1170	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1171	    max_frame_size|/* burst size */(0x2000<<16));
1172
1173	/* step 5. RX MAC registers & counters */
1174	gem_setladrf(sc);
1175
1176	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1177	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1178	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1179	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1180
1181	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1182	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1183	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1184
1185	/* step 8. Global Configuration & Interrupt Mask */
1186	gem_inten(sc);
1187	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1188			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1189	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1190	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1191	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1192
1193	/* step 9. ETX Configuration: use mostly default values */
1194
1195	/* Enable TX DMA */
1196	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1197	bus_space_write_4(t, h, GEM_TX_CONFIG,
1198	    v | GEM_TX_CONFIG_TXDMA_EN |
1199	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1200	    GEM_TX_CONFIG_TXFIFO_TH));
1201	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1202
1203	/* step 10. ERX Configuration */
1204	gem_rx_common(sc);
1205
1206	/* step 11. Configure Media */
1207	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1208	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1209		goto out;
1210
1211	/* step 12. RX_MAC Configuration Register */
1212	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1213	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1214	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1215
1216	/* step 14. Issue Transmit Pending command */
1217
1218	/* Call MI initialization function if any */
1219	if (sc->sc_hwinit)
1220		(*sc->sc_hwinit)(sc);
1221
1222	/* step 15.  Give the receiver a swift kick */
1223	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1224
1225	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1226		/* Configure PCS */
1227		gem_pcs_start(sc);
1228	else
1229		/* Start the one second timer. */
1230		callout_schedule(&sc->sc_tick_ch, hz);
1231
1232	sc->sc_flags &= ~GEM_LINK;
1233	ifp->if_flags |= IFF_RUNNING;
1234	ifp->if_timer = 0;
1235	sc->sc_if_flags = ifp->if_flags;
1236out:
1237	splx(s);
1238
1239	return (0);
1240}
1241
1242void
1243gem_init_regs(struct gem_softc *sc)
1244{
1245	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1246	bus_space_tag_t t = sc->sc_bustag;
1247	bus_space_handle_t h = sc->sc_h1;
1248	const u_char *laddr = CLLADDR(ifp->if_sadl);
1249	uint32_t v;
1250
1251	/* These regs are not cleared on reset */
1252	if (!sc->sc_inited) {
1253
1254		/* Load recommended values */
1255		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1256		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1257		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1258
1259		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1260		/* Max frame and max burst size */
1261		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1262		    ETHER_MAX_LEN | (0x2000<<16));
1263
1264		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1265		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1266		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1267		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1268		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1269		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1270
1271		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1272		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1273		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1274		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1275
1276		/* MAC control addr set to 01:80:c2:00:00:01 */
1277		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1278		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1279		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1280
1281		/* MAC filter addr set to 0:0:0:0:0:0 */
1282		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1283		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1284		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1285
1286		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1287		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1288
1289		sc->sc_inited = 1;
1290	}
1291
1292	/* Counters need to be zeroed */
1293	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1294	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1295	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1296	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1297	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1298	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1299	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1300	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1301	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1302	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1303	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1304
1305	/* Set XOFF PAUSE time. */
1306	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1307
1308	/*
1309	 * Set the internal arbitration to "infinite" bursts of the
1310	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1311	 * split up in cache line size chunks. This greatly improves
1312	 * especially RX performance.
1313	 * Enable silicon bug workarounds for the Apple variants.
1314	 */
1315	bus_space_write_4(t, h, GEM_CONFIG,
1316	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1317	    ((sc->sc_flags & GEM_PCI) ?
1318	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1319	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1320
1321	/*
1322	 * Set the station address.
1323	 */
1324	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1325	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1326	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1327
1328	/*
1329	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1330	 */
1331	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1332	v = GEM_MAC_XIF_TX_MII_ENA;
1333	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1334		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1335			v |= GEM_MAC_XIF_FDPLX_LED;
1336				if (sc->sc_flags & GEM_GIGABIT)
1337					v |= GEM_MAC_XIF_GMII_MODE;
1338		}
1339	} else {
1340		v |= GEM_MAC_XIF_GMII_MODE;
1341	}
1342	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1343}
1344
1345#ifdef GEM_DEBUG
1346static void
1347gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1348{
1349	int i;
1350
1351	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1352		printf("descriptor %d:\t", i);
1353		printf("gd_flags:   0x%016" PRIx64 "\t",
1354			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1355		printf("gd_addr: 0x%016" PRIx64 "\n",
1356			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1357		if (i == lastdesc)
1358			break;
1359	}
1360}
1361#endif
1362
1363static void
1364gem_start(struct ifnet *ifp)
1365{
1366	struct gem_softc *sc = ifp->if_softc;
1367	struct mbuf *m0, *m;
1368	struct gem_txsoft *txs;
1369	bus_dmamap_t dmamap;
1370	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1371#ifdef GEM_DEBUG
1372	int otxnext;
1373#endif
1374	uint64_t flags = 0;
1375
1376	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1377		return;
1378
1379	/*
1380	 * Remember the previous number of free descriptors and
1381	 * the first descriptor we'll use.
1382	 */
1383	ofree = sc->sc_txfree;
1384#ifdef GEM_DEBUG
1385	otxnext = sc->sc_txnext;
1386#endif
1387
1388	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1389	    device_xname(sc->sc_dev), ofree, otxnext));
1390
1391	/*
1392	 * Loop through the send queue, setting up transmit descriptors
1393	 * until we drain the queue, or use up all available transmit
1394	 * descriptors.
1395	 */
1396#ifdef INET
1397next:
1398#endif
1399	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1400	    sc->sc_txfree != 0) {
1401		/*
1402		 * Grab a packet off the queue.
1403		 */
1404		IFQ_POLL(&ifp->if_snd, m0);
1405		if (m0 == NULL)
1406			break;
1407		m = NULL;
1408
1409		dmamap = txs->txs_dmamap;
1410
1411		/*
1412		 * Load the DMA map.  If this fails, the packet either
1413		 * didn't fit in the allotted number of segments, or we were
1414		 * short on resources.  In this case, we'll copy and try
1415		 * again.
1416		 */
1417		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1418		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1419		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1420		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1421			if (m0->m_pkthdr.len > MCLBYTES) {
1422				aprint_error_dev(sc->sc_dev,
1423				    "unable to allocate jumbo Tx cluster\n");
1424				IFQ_DEQUEUE(&ifp->if_snd, m0);
1425				m_freem(m0);
1426				continue;
1427			}
1428			MGETHDR(m, M_DONTWAIT, MT_DATA);
1429			if (m == NULL) {
1430				aprint_error_dev(sc->sc_dev,
1431				    "unable to allocate Tx mbuf\n");
1432				break;
1433			}
1434			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1435			if (m0->m_pkthdr.len > MHLEN) {
1436				MCLGET(m, M_DONTWAIT);
1437				if ((m->m_flags & M_EXT) == 0) {
1438					aprint_error_dev(sc->sc_dev,
1439					    "unable to allocate Tx cluster\n");
1440					m_freem(m);
1441					break;
1442				}
1443			}
1444			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1445			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1446			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1447			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1448			if (error) {
1449				aprint_error_dev(sc->sc_dev,
1450				    "unable to load Tx buffer, error = %d\n",
1451				    error);
1452				break;
1453			}
1454		}
1455
1456		/*
1457		 * Ensure we have enough descriptors free to describe
1458		 * the packet.
1459		 */
1460		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1461		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1462			/*
1463			 * Not enough free descriptors to transmit this
1464			 * packet.
1465			 */
1466			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1467			if (m != NULL)
1468				m_freem(m);
1469			break;
1470		}
1471
1472		IFQ_DEQUEUE(&ifp->if_snd, m0);
1473		if (m != NULL) {
1474			m_freem(m0);
1475			m0 = m;
1476		}
1477
1478		/*
1479		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1480		 */
1481
1482		/* Sync the DMA map. */
1483		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1484		    BUS_DMASYNC_PREWRITE);
1485
1486		/*
1487		 * Initialize the transmit descriptors.
1488		 */
1489		firsttx = sc->sc_txnext;
1490		for (nexttx = firsttx, seg = 0;
1491		     seg < dmamap->dm_nsegs;
1492		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1493
1494			/*
1495			 * If this is the first descriptor we're
1496			 * enqueueing, set the start of packet flag,
1497			 * and the checksum stuff if we want the hardware
1498			 * to do it.
1499			 */
1500			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1501			if (nexttx == firsttx) {
1502				flags |= GEM_TD_START_OF_PACKET;
1503#ifdef INET
1504				/* h/w checksum */
1505				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1506				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1507					struct ether_header *eh;
1508					uint16_t offset, start;
1509
1510					eh = mtod(m0, struct ether_header *);
1511					switch (ntohs(eh->ether_type)) {
1512					case ETHERTYPE_IP:
1513						start = ETHER_HDR_LEN;
1514						break;
1515					case ETHERTYPE_VLAN:
1516						start = ETHER_HDR_LEN +
1517							ETHER_VLAN_ENCAP_LEN;
1518						break;
1519					default:
1520						/* unsupported, drop it */
1521						bus_dmamap_unload(sc->sc_dmatag,
1522							dmamap);
1523						m_freem(m0);
1524						goto next;
1525					}
1526					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1527					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1528					flags |= (start <<
1529						  GEM_TD_CXSUM_STARTSHFT) |
1530						 (offset <<
1531						  GEM_TD_CXSUM_STUFFSHFT) |
1532						 GEM_TD_CXSUM_ENABLE;
1533				}
1534#endif
1535				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1536					sc->sc_txwin = 0;
1537					flags |= GEM_TD_INTERRUPT_ME;
1538				}
1539			}
1540			sc->sc_txdescs[nexttx].gd_addr =
1541			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1542			if (seg == dmamap->dm_nsegs - 1) {
1543				flags |= GEM_TD_END_OF_PACKET;
1544			} else {
1545				/* last flag set outside of loop */
1546				sc->sc_txdescs[nexttx].gd_flags =
1547					GEM_DMA_WRITE(sc, flags);
1548			}
1549			lasttx = nexttx;
1550		}
1551		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1552			/* add padding buffer at end of chain */
1553			flags &= ~GEM_TD_END_OF_PACKET;
1554			sc->sc_txdescs[lasttx].gd_flags =
1555			    GEM_DMA_WRITE(sc, flags);
1556
1557			sc->sc_txdescs[nexttx].gd_addr =
1558			    GEM_DMA_WRITE(sc,
1559			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1560			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1561			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1562			lasttx = nexttx;
1563			nexttx = GEM_NEXTTX(nexttx);
1564			seg++;
1565		}
1566		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1567
1568		KASSERT(lasttx != -1);
1569
1570		/*
1571		 * Store a pointer to the packet so we can free it later,
1572		 * and remember what txdirty will be once the packet is
1573		 * done.
1574		 */
1575		txs->txs_mbuf = m0;
1576		txs->txs_firstdesc = sc->sc_txnext;
1577		txs->txs_lastdesc = lasttx;
1578		txs->txs_ndescs = seg;
1579
1580#ifdef GEM_DEBUG
1581		if (ifp->if_flags & IFF_DEBUG) {
1582			printf("     gem_start %p transmit chain:\n", txs);
1583			gem_txsoft_print(sc, txs->txs_firstdesc,
1584			    txs->txs_lastdesc);
1585		}
1586#endif
1587
1588		/* Sync the descriptors we're using. */
1589		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1590		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591
1592		/* Advance the tx pointer. */
1593		sc->sc_txfree -= txs->txs_ndescs;
1594		sc->sc_txnext = nexttx;
1595
1596		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1597		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1598
1599		/*
1600		 * Pass the packet to any BPF listeners.
1601		 */
1602		bpf_mtap(ifp, m0, BPF_D_OUT);
1603	}
1604
1605	if (sc->sc_txfree != ofree) {
1606		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1607		    device_xname(sc->sc_dev), lasttx, otxnext));
1608		/*
1609		 * The entire packet chain is set up.
1610		 * Kick the transmitter.
1611		 */
1612		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1613			device_xname(sc->sc_dev), nexttx));
1614		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1615			sc->sc_txnext);
1616
1617		/* Set a watchdog timer in case the chip flakes out. */
1618		ifp->if_timer = 5;
1619		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1620			device_xname(sc->sc_dev), ifp->if_timer));
1621	}
1622}
1623
1624/*
1625 * Transmit interrupt.
1626 */
1627int
1628gem_tint(struct gem_softc *sc)
1629{
1630	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1631	bus_space_tag_t t = sc->sc_bustag;
1632	bus_space_handle_t mac = sc->sc_h1;
1633	struct gem_txsoft *txs;
1634	int txlast;
1635	int progress = 0;
1636	uint32_t v;
1637
1638	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1639
1640	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1641
1642	/* Unload collision counters ... */
1643	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1644	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1645	if_statadd_ref(ifp, nsr, if_collisions, v +
1646	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1647	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1648	if_statadd_ref(ifp, nsr, if_oerrors, v);
1649
1650	/* ... then clear the hardware counters. */
1651	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1652	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1653	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1654	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1655
1656	/*
1657	 * Go through our Tx list and free mbufs for those
1658	 * frames that have been transmitted.
1659	 */
1660	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1661		/*
1662		 * In theory, we could harvest some descriptors before
1663		 * the ring is empty, but that's a bit complicated.
1664		 *
1665		 * GEM_TX_COMPLETION points to the last descriptor
1666		 * processed +1.
1667		 *
1668		 * Let's assume that the NIC writes back to the Tx
1669		 * descriptors before it updates the completion
1670		 * register.  If the NIC has posted writes to the
1671		 * Tx descriptors, PCI ordering requires that the
1672		 * posted writes flush to RAM before the register-read
1673		 * finishes.  So let's read the completion register,
1674		 * before syncing the descriptors, so that we
1675		 * examine Tx descriptors that are at least as
1676		 * current as the completion register.
1677		 */
1678		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1679		DPRINTF(sc,
1680			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1681				txs->txs_lastdesc, txlast));
1682		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1683			if (txlast >= txs->txs_firstdesc &&
1684			    txlast <= txs->txs_lastdesc)
1685				break;
1686		} else if (txlast >= txs->txs_firstdesc ||
1687			   txlast <= txs->txs_lastdesc)
1688			break;
1689
1690		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1691		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1692
1693#ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1694		if (ifp->if_flags & IFF_DEBUG) {
1695			printf("    txsoft %p transmit chain:\n", txs);
1696			gem_txsoft_print(sc, txs->txs_firstdesc,
1697			    txs->txs_lastdesc);
1698		}
1699#endif
1700
1701
1702		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1703		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1704
1705		sc->sc_txfree += txs->txs_ndescs;
1706
1707		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1708		    0, txs->txs_dmamap->dm_mapsize,
1709		    BUS_DMASYNC_POSTWRITE);
1710		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1711		if (txs->txs_mbuf != NULL) {
1712			m_freem(txs->txs_mbuf);
1713			txs->txs_mbuf = NULL;
1714		}
1715
1716		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1717
1718		if_statinc_ref(ifp, nsr, if_opackets);
1719		progress = 1;
1720	}
1721
1722	IF_STAT_PUTREF(ifp);
1723
1724#if 0
1725	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1726		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1727		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1728		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1729			GEM_TX_DATA_PTR_HI) << 32) |
1730			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1731			GEM_TX_DATA_PTR_LO),
1732		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1733#endif
1734
1735	if (progress) {
1736		if (sc->sc_txfree == GEM_NTXDESC - 1)
1737			sc->sc_txwin = 0;
1738
1739		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1740		if_schedule_deferred_start(ifp);
1741	}
1742	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1743		device_xname(sc->sc_dev), ifp->if_timer));
1744
1745	return (1);
1746}
1747
1748/*
1749 * Receive interrupt.
1750 */
1751int
1752gem_rint(struct gem_softc *sc)
1753{
1754	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1755	bus_space_tag_t t = sc->sc_bustag;
1756	bus_space_handle_t h = sc->sc_h1;
1757	struct gem_rxsoft *rxs;
1758	struct mbuf *m;
1759	uint64_t rxstat;
1760	uint32_t rxcomp;
1761	int i, len, progress = 0;
1762
1763	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1764
1765	/*
1766	 * Ignore spurious interrupt that sometimes occurs before
1767	 * we are set up when we network boot.
1768	 */
1769	if (!sc->sc_meminited)
1770		return 1;
1771
1772	/*
1773	 * Read the completion register once.  This limits
1774	 * how long the following loop can execute.
1775	 */
1776	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1777
1778	/*
1779	 * XXX Read the lastrx only once at the top for speed.
1780	 */
1781	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1782		sc->sc_rxptr, rxcomp));
1783
1784	/*
1785	 * Go into the loop at least once.
1786	 */
1787	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1788	     i = GEM_NEXTRX(i)) {
1789		rxs = &sc->sc_rxsoft[i];
1790
1791		GEM_CDRXSYNC(sc, i,
1792		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1793
1794		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1795
1796		if (rxstat & GEM_RD_OWN) {
1797			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1798			/*
1799			 * We have processed all of the receive buffers.
1800			 */
1801			break;
1802		}
1803
1804		progress++;
1805
1806		if (rxstat & GEM_RD_BAD_CRC) {
1807			if_statinc(ifp, if_ierrors);
1808			DPRINTF(sc, ("%s: receive error: CRC error\n",
1809			    device_xname(sc->sc_dev)));
1810			GEM_INIT_RXDESC(sc, i);
1811			continue;
1812		}
1813
1814		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1815		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1816#ifdef GEM_DEBUG
1817		if (ifp->if_flags & IFF_DEBUG) {
1818			printf("    rxsoft %p descriptor %d: ", rxs, i);
1819			printf("gd_flags: 0x%016llx\t", (long long)
1820				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1821			printf("gd_addr: 0x%016llx\n", (long long)
1822				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1823		}
1824#endif
1825
1826		/* No errors; receive the packet. */
1827		len = GEM_RD_BUFLEN(rxstat);
1828
1829		/*
1830		 * Allocate a new mbuf cluster.  If that fails, we are
1831		 * out of memory, and must drop the packet and recycle
1832		 * the buffer that's already attached to this descriptor.
1833		 */
1834		m = rxs->rxs_mbuf;
1835		if (gem_add_rxbuf(sc, i) != 0) {
1836			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1837			if_statinc(ifp, if_ierrors);
1838			aprint_error_dev(sc->sc_dev,
1839			    "receive error: RX no buffer space\n");
1840			GEM_INIT_RXDESC(sc, i);
1841			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1842			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1843			continue;
1844		}
1845		m->m_data += 2; /* We're already off by two */
1846
1847		m_set_rcvif(m, ifp);
1848		m->m_pkthdr.len = m->m_len = len;
1849
1850#ifdef INET
1851		/* hardware checksum */
1852		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1853			struct ether_header *eh;
1854			struct ip *ip;
1855			int32_t hlen, pktlen;
1856
1857			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1858				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1859					 ETHER_VLAN_ENCAP_LEN;
1860				eh = (struct ether_header *) (mtod(m, char *) +
1861					ETHER_VLAN_ENCAP_LEN);
1862			} else {
1863				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1864				eh = mtod(m, struct ether_header *);
1865			}
1866			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1867				goto swcsum;
1868			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1869
1870			/* IPv4 only */
1871			if (ip->ip_v != IPVERSION)
1872				goto swcsum;
1873
1874			hlen = ip->ip_hl << 2;
1875			if (hlen < sizeof(struct ip))
1876				goto swcsum;
1877
1878			/*
1879			 * bail if too short, has random trailing garbage,
1880			 * truncated, fragment, or has ethernet pad.
1881			 */
1882			if ((ntohs(ip->ip_len) < hlen) ||
1883			    (ntohs(ip->ip_len) != pktlen) ||
1884			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1885				goto swcsum;
1886
1887			switch (ip->ip_p) {
1888			case IPPROTO_TCP:
1889				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1890					goto swcsum;
1891				if (pktlen < (hlen + sizeof(struct tcphdr)))
1892					goto swcsum;
1893				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1894				break;
1895			case IPPROTO_UDP:
1896				/* FALLTHROUGH */
1897			default:
1898				goto swcsum;
1899			}
1900
1901			/* the uncomplemented sum is expected */
1902			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1903
1904			/* if the pkt had ip options, we have to deduct them */
1905			if (hlen > sizeof(struct ip)) {
1906				uint16_t *opts;
1907				uint32_t optsum, temp;
1908
1909				optsum = 0;
1910				temp = hlen - sizeof(struct ip);
1911				opts = (uint16_t *) ((char *) ip +
1912					sizeof(struct ip));
1913
1914				while (temp > 1) {
1915					optsum += ntohs(*opts++);
1916					temp -= 2;
1917				}
1918				while (optsum >> 16)
1919					optsum = (optsum >> 16) +
1920						 (optsum & 0xffff);
1921
1922				/* Deduct ip opts sum from hwsum. */
1923				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1924
1925				while (m->m_pkthdr.csum_data >> 16)
1926					m->m_pkthdr.csum_data =
1927						(m->m_pkthdr.csum_data >> 16) +
1928						(m->m_pkthdr.csum_data &
1929						 0xffff);
1930			}
1931
1932			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1933						  M_CSUM_NO_PSEUDOHDR;
1934		} else
1935swcsum:
1936			m->m_pkthdr.csum_flags = 0;
1937#endif
1938		/* Pass it on. */
1939		if_percpuq_enqueue(ifp->if_percpuq, m);
1940	}
1941
1942	if (progress) {
1943		/* Update the receive pointer. */
1944		if (i == sc->sc_rxptr) {
1945			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1946#ifdef GEM_DEBUG
1947			if (ifp->if_flags & IFF_DEBUG)
1948				printf("%s: rint: ring wrap\n",
1949				    device_xname(sc->sc_dev));
1950#endif
1951		}
1952		sc->sc_rxptr = i;
1953		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1954	}
1955#ifdef GEM_COUNTERS
1956	if (progress <= 4) {
1957		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1958	} else if (progress < 32) {
1959		if (progress < 16)
1960			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1961		else
1962			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1963
1964	} else {
1965		if (progress < 64)
1966			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1967		else
1968			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1969	}
1970#endif
1971
1972	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1973		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1974
1975	/* Read error counters ... */
1976	if_statadd(ifp, if_ierrors,
1977	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1978	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1979	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1980	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1981
1982	/* ... then clear the hardware counters. */
1983	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1984	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1985	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1986	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1987
1988	return (1);
1989}
1990
1991
1992/*
1993 * gem_add_rxbuf:
1994 *
1995 *	Add a receive buffer to the indicated descriptor.
1996 */
1997int
1998gem_add_rxbuf(struct gem_softc *sc, int idx)
1999{
2000	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2001	struct mbuf *m;
2002	int error;
2003
2004	MGETHDR(m, M_DONTWAIT, MT_DATA);
2005	if (m == NULL)
2006		return (ENOBUFS);
2007
2008	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2009	MCLGET(m, M_DONTWAIT);
2010	if ((m->m_flags & M_EXT) == 0) {
2011		m_freem(m);
2012		return (ENOBUFS);
2013	}
2014
2015#ifdef GEM_DEBUG
2016/* bzero the packet to check DMA */
2017	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2018#endif
2019
2020	if (rxs->rxs_mbuf != NULL)
2021		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2022
2023	rxs->rxs_mbuf = m;
2024
2025	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2026	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2027	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2028	if (error) {
2029		aprint_error_dev(sc->sc_dev,
2030		    "can't load rx DMA map %d, error = %d\n", idx, error);
2031		panic("gem_add_rxbuf");	/* XXX */
2032	}
2033
2034	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2035	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2036
2037	GEM_INIT_RXDESC(sc, idx);
2038
2039	return (0);
2040}
2041
2042
2043int
2044gem_eint(struct gem_softc *sc, u_int status)
2045{
2046	char bits[128];
2047	uint32_t r, v;
2048
2049	if ((status & GEM_INTR_MIF) != 0) {
2050		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2051		return (1);
2052	}
2053
2054	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2055		gem_reset_rxdma(sc);
2056		return (1);
2057	}
2058
2059	if (status & GEM_INTR_BERR) {
2060		if (sc->sc_flags & GEM_PCI)
2061			r = GEM_ERROR_STATUS;
2062		else
2063			r = GEM_SBUS_ERROR_STATUS;
2064		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2065		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2066		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2067		    v);
2068		return (1);
2069	}
2070	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2071	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2072
2073	return (1);
2074}
2075
2076
2077/*
2078 * PCS interrupts.
2079 * We should receive these when the link status changes, but sometimes
2080 * we don't receive them for link up.  We compensate for this in the
2081 * gem_tick() callout.
2082 */
2083int
2084gem_pint(struct gem_softc *sc)
2085{
2086	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2087	bus_space_tag_t t = sc->sc_bustag;
2088	bus_space_handle_t h = sc->sc_h1;
2089	uint32_t v, v2;
2090
2091	/*
2092	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2093	 * latched, so we have to read it twice.  There is only one bit in
2094	 * use, so the value is meaningless.
2095	 */
2096	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2097	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2098
2099	if ((ifp->if_flags & IFF_UP) == 0)
2100		return 1;
2101
2102	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2103		return 1;
2104
2105	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2106	/* If we see remote fault, our link partner is probably going away */
2107	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2108		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2109		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2110	/* Otherwise, we may need to wait after auto-negotiation completes */
2111	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2112	    GEM_MII_STATUS_ANEG_CPT) {
2113		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2114		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2115	}
2116	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2117		if (sc->sc_flags & GEM_LINK) {
2118			return 1;
2119		}
2120		callout_stop(&sc->sc_tick_ch);
2121		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2122		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2123		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2124		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2125		v &= v2;
2126		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2127			sc->sc_mii.mii_media_active |= IFM_FDX;
2128#ifdef GEM_DEBUG
2129			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2130#endif
2131		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2132			sc->sc_mii.mii_media_active |= IFM_HDX;
2133#ifdef GEM_DEBUG
2134			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2135#endif
2136		} else {
2137#ifdef GEM_DEBUG
2138			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2139#endif
2140		}
2141		gem_statuschange(sc);
2142	} else {
2143		if ((sc->sc_flags & GEM_LINK) == 0) {
2144			return 1;
2145		}
2146		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2147		sc->sc_mii.mii_media_status = IFM_AVALID;
2148#ifdef GEM_DEBUG
2149			aprint_debug_dev(sc->sc_dev, "link down\n");
2150#endif
2151		gem_statuschange(sc);
2152
2153		/* Start the 10 second timer */
2154		callout_schedule(&sc->sc_tick_ch, hz * 10);
2155	}
2156	return 1;
2157}
2158
2159
2160
2161int
2162gem_intr(void *v)
2163{
2164	struct gem_softc *sc = v;
2165	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2166	bus_space_tag_t t = sc->sc_bustag;
2167	bus_space_handle_t h = sc->sc_h1;
2168	uint32_t status;
2169	int r = 0;
2170#ifdef GEM_DEBUG
2171	char bits[128];
2172#endif
2173
2174	/* XXX We should probably mask out interrupts until we're done */
2175
2176	sc->sc_ev_intr.ev_count++;
2177
2178	status = bus_space_read_4(t, h, GEM_STATUS);
2179#ifdef GEM_DEBUG
2180	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2181#endif
2182	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2183		device_xname(sc->sc_dev), (status >> 19), bits));
2184
2185	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2186		r |= gem_eint(sc, status);
2187
2188	/* We don't bother with GEM_INTR_TX_DONE */
2189	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2190		GEM_COUNTER_INCR(sc, sc_ev_txint);
2191		r |= gem_tint(sc);
2192	}
2193
2194	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2195		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2196		r |= gem_rint(sc);
2197	}
2198
2199	/* We should eventually do more than just print out error stats. */
2200	if (status & GEM_INTR_TX_MAC) {
2201		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2202		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2203			printf("%s: MAC tx fault, status %x\n",
2204			    device_xname(sc->sc_dev), txstat);
2205		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2206			gem_init(ifp);
2207	}
2208	if (status & GEM_INTR_RX_MAC) {
2209		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2210		/*
2211		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2212		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2213		 * silicon bug so handle them silently.  So if we detect
2214		 * an RX FIFO overflow, we fire off a timer, and check
2215		 * whether we're still making progress by looking at the
2216		 * RX FIFO write and read pointers.
2217		 */
2218		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2219			if_statinc(ifp, if_ierrors);
2220			GEM_COUNTER_INCR(sc, sc_ev_rxoverflow);
2221#ifdef GEM_DEBUG
2222			aprint_error_dev(sc->sc_dev,
2223			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2224#endif
2225			sc->sc_rx_fifo_wr_ptr =
2226				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2227			sc->sc_rx_fifo_rd_ptr =
2228				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2229			callout_schedule(&sc->sc_rx_watchdog, 400);
2230		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2231			printf("%s: MAC rx fault, status 0x%02x\n",
2232			    device_xname(sc->sc_dev), rxstat);
2233	}
2234	if (status & GEM_INTR_PCS) {
2235		r |= gem_pint(sc);
2236	}
2237
2238/* Do we need to do anything with these?
2239	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2240		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2241		if ((status2 & GEM_MAC_PAUSED) != 0)
2242			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2243			    GEM_MAC_PAUSE_TIME(status2));
2244		if ((status2 & GEM_MAC_PAUSE) != 0)
2245			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2246		if ((status2 & GEM_MAC_RESUME) != 0)
2247			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2248	}
2249	if ((status & GEM_INTR_MIF) != 0)
2250		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2251*/
2252	rnd_add_uint32(&sc->rnd_source, status);
2253	return (r);
2254}
2255
2256void
2257gem_rx_watchdog(void *arg)
2258{
2259	struct gem_softc *sc = arg;
2260	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2261	bus_space_tag_t t = sc->sc_bustag;
2262	bus_space_handle_t h = sc->sc_h1;
2263	uint32_t rx_fifo_wr_ptr;
2264	uint32_t rx_fifo_rd_ptr;
2265	uint32_t state;
2266
2267	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2268		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2269		return;
2270	}
2271
2272	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2273	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2274	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2275	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2276	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2277	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2278	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2279	{
2280		/*
2281		 * The RX state machine is still in overflow state and
2282		 * the RX FIFO write and read pointers seem to be
2283		 * stuck.  Whack the chip over the head to get things
2284		 * going again.
2285		 */
2286		aprint_error_dev(sc->sc_dev,
2287		    "receiver stuck in overflow, resetting\n");
2288		gem_init(ifp);
2289	} else {
2290		int needreset = 1;
2291		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2292			DPRINTF(sc,
2293			    ("%s: rx_watchdog: not in overflow state: 0x%x\n",
2294			    device_xname(sc->sc_dev), state));
2295		}
2296		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2297			DPRINTF(sc,
2298			    ("%s: rx_watchdog: wr & rd ptr different\n",
2299			    device_xname(sc->sc_dev)));
2300			needreset = 0;
2301		}
2302		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2303			DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n",
2304			    device_xname(sc->sc_dev)));
2305			needreset = 0;
2306		}
2307		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2308			DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n",
2309			    device_xname(sc->sc_dev)));
2310			needreset = 0;
2311		}
2312		if (needreset) {
2313			aprint_error_dev(sc->sc_dev,
2314			    "rx_watchdog: resetting anyway\n");
2315			gem_init(ifp);
2316		}
2317	}
2318}
2319
2320void
2321gem_watchdog(struct ifnet *ifp)
2322{
2323	struct gem_softc *sc = ifp->if_softc;
2324
2325	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2326		"GEM_MAC_RX_CONFIG %x\n",
2327		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2328		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2329		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2330
2331	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2332	if_statinc(ifp, if_oerrors);
2333
2334	/* Try to get more packets going. */
2335	gem_init(ifp);
2336	gem_start(ifp);
2337}
2338
2339/*
2340 * Initialize the MII Management Interface
2341 */
2342void
2343gem_mifinit(struct gem_softc *sc)
2344{
2345	bus_space_tag_t t = sc->sc_bustag;
2346	bus_space_handle_t mif = sc->sc_h1;
2347
2348	/* Configure the MIF in frame mode */
2349	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2350	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2351	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2352}
2353
2354/*
2355 * MII interface
2356 *
2357 * The GEM MII interface supports at least three different operating modes:
2358 *
2359 * Bitbang mode is implemented using data, clock and output enable registers.
2360 *
2361 * Frame mode is implemented by loading a complete frame into the frame
2362 * register and polling the valid bit for completion.
2363 *
2364 * Polling mode uses the frame register but completion is indicated by
2365 * an interrupt.
2366 *
2367 */
2368static int
2369gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2370{
2371	struct gem_softc *sc = device_private(self);
2372	bus_space_tag_t t = sc->sc_bustag;
2373	bus_space_handle_t mif = sc->sc_h1;
2374	int n;
2375	uint32_t v;
2376
2377#ifdef GEM_DEBUG1
2378	if (sc->sc_debug)
2379		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2380#endif
2381
2382	/* Construct the frame command */
2383	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2384		GEM_MIF_FRAME_READ;
2385
2386	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2387	for (n = 0; n < 100; n++) {
2388		DELAY(1);
2389		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2390		if (v & GEM_MIF_FRAME_TA0) {
2391			*val = v & GEM_MIF_FRAME_DATA;
2392			return 0;
2393		}
2394	}
2395
2396	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2397	return ETIMEDOUT;
2398}
2399
2400static int
2401gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2402{
2403	struct gem_softc *sc = device_private(self);
2404	bus_space_tag_t t = sc->sc_bustag;
2405	bus_space_handle_t mif = sc->sc_h1;
2406	int n;
2407	uint32_t v;
2408
2409#ifdef GEM_DEBUG1
2410	if (sc->sc_debug)
2411		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2412			phy, reg, val);
2413#endif
2414
2415	/* Construct the frame command */
2416	v = GEM_MIF_FRAME_WRITE			|
2417	    (phy << GEM_MIF_PHY_SHIFT)		|
2418	    (reg << GEM_MIF_REG_SHIFT)		|
2419	    (val & GEM_MIF_FRAME_DATA);
2420
2421	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2422	for (n = 0; n < 100; n++) {
2423		DELAY(1);
2424		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2425		if (v & GEM_MIF_FRAME_TA0)
2426			return 0;
2427	}
2428
2429	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2430	return ETIMEDOUT;
2431}
2432
2433static void
2434gem_mii_statchg(struct ifnet *ifp)
2435{
2436	struct gem_softc *sc = ifp->if_softc;
2437#ifdef GEM_DEBUG
2438	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2439#endif
2440
2441#ifdef GEM_DEBUG
2442	if (sc->sc_debug)
2443		printf("gem_mii_statchg: status change: phy = %d\n",
2444			sc->sc_phys[instance]);
2445#endif
2446	gem_statuschange(sc);
2447}
2448
2449/*
2450 * Common status change for gem_mii_statchg() and gem_pint()
2451 */
2452void
2453gem_statuschange(struct gem_softc* sc)
2454{
2455	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2456	bus_space_tag_t t = sc->sc_bustag;
2457	bus_space_handle_t mac = sc->sc_h1;
2458	int gigabit;
2459	uint32_t rxcfg, txcfg, v;
2460
2461	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2462	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2463		sc->sc_flags |= GEM_LINK;
2464	else
2465		sc->sc_flags &= ~GEM_LINK;
2466
2467	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2468		gigabit = 1;
2469	else
2470		gigabit = 0;
2471
2472	/*
2473	 * The configuration done here corresponds to the steps F) and
2474	 * G) and as far as enabling of RX and TX MAC goes also step H)
2475	 * of the initialization sequence outlined in section 3.2.1 of
2476	 * the GEM Gigabit Ethernet ASIC Specification.
2477	 */
2478
2479	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2480	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2481	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2482	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2483		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2484	else if (gigabit) {
2485		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2486		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2487	}
2488	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2489	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2490	    BUS_SPACE_BARRIER_WRITE);
2491	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2492		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2493	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2494	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2495	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2496	    BUS_SPACE_BARRIER_WRITE);
2497	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2498		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2499	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2500
2501	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2502	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2503	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2504
2505	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2506	    gigabit != 0)
2507		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2508		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2509	else
2510		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2511		    GEM_MAC_SLOT_TIME_NORMAL);
2512
2513	/* XIF Configuration */
2514	if (sc->sc_flags & GEM_LINK)
2515		v = GEM_MAC_XIF_LINK_LED;
2516	else
2517		v = 0;
2518	v |= GEM_MAC_XIF_TX_MII_ENA;
2519
2520	/* If an external transceiver is connected, enable its MII drivers */
2521	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2522	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2523		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2524			if (gigabit)
2525				v |= GEM_MAC_XIF_GMII_MODE;
2526			else
2527				v &= ~GEM_MAC_XIF_GMII_MODE;
2528		} else
2529			/* Internal MII needs buf enable */
2530			v |= GEM_MAC_XIF_MII_BUF_ENA;
2531		/* MII needs echo disable if half duplex. */
2532		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2533			/* turn on full duplex LED */
2534			v |= GEM_MAC_XIF_FDPLX_LED;
2535		else
2536			/* half duplex -- disable echo */
2537			v |= GEM_MAC_XIF_ECHO_DISABL;
2538	} else {
2539		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2540			v |= GEM_MAC_XIF_FDPLX_LED;
2541		v |= GEM_MAC_XIF_GMII_MODE;
2542	}
2543	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2544
2545	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2546	    (sc->sc_flags & GEM_LINK) != 0) {
2547		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2548		    txcfg | GEM_MAC_TX_ENABLE);
2549		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2550		    rxcfg | GEM_MAC_RX_ENABLE);
2551	}
2552}
2553
2554int
2555gem_ser_mediachange(struct ifnet *ifp)
2556{
2557	struct gem_softc *sc = ifp->if_softc;
2558	u_int s, t;
2559
2560	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2561		return EINVAL;
2562
2563	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2564	if (s == IFM_AUTO) {
2565		if (sc->sc_mii_media != s) {
2566#ifdef GEM_DEBUG
2567			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2568#endif
2569			sc->sc_mii_media = s;
2570			if (ifp->if_flags & IFF_UP) {
2571				gem_pcs_stop(sc, 0);
2572				gem_pcs_start(sc);
2573			}
2574		}
2575		return 0;
2576	}
2577	if (s == IFM_1000_SX) {
2578		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2579		    & (IFM_FDX | IFM_HDX);
2580		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2581			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2582			sc->sc_mii_media |= t;
2583#ifdef GEM_DEBUG
2584			aprint_debug_dev(sc->sc_dev,
2585			    "setting media to 1000baseSX-%s\n",
2586			    t == IFM_FDX ? "FDX" : "HDX");
2587#endif
2588			if (ifp->if_flags & IFF_UP) {
2589				gem_pcs_stop(sc, 0);
2590				gem_pcs_start(sc);
2591			}
2592		}
2593		return 0;
2594	}
2595	return EINVAL;
2596}
2597
2598void
2599gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2600{
2601	struct gem_softc *sc = ifp->if_softc;
2602
2603	if ((ifp->if_flags & IFF_UP) == 0)
2604		return;
2605	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2606	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2607}
2608
2609static int
2610gem_ifflags_cb(struct ethercom *ec)
2611{
2612	struct ifnet *ifp = &ec->ec_if;
2613	struct gem_softc *sc = ifp->if_softc;
2614	u_short change = ifp->if_flags ^ sc->sc_if_flags;
2615
2616	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2617		return ENETRESET;
2618	else if ((change & IFF_PROMISC) != 0)
2619		gem_setladrf(sc);
2620	return 0;
2621}
2622
2623/*
2624 * Process an ioctl request.
2625 */
2626int
2627gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2628{
2629	struct gem_softc *sc = ifp->if_softc;
2630	int s, error = 0;
2631
2632	s = splnet();
2633
2634	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2635		error = 0;
2636		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2637			;
2638		else if (ifp->if_flags & IFF_RUNNING) {
2639			/*
2640			 * Multicast list has changed; set the hardware filter
2641			 * accordingly.
2642			 */
2643			gem_setladrf(sc);
2644		}
2645	}
2646
2647	/* Try to get things going again */
2648	if (ifp->if_flags & IFF_UP)
2649		gem_start(ifp);
2650	splx(s);
2651	return (error);
2652}
2653
2654static void
2655gem_inten(struct gem_softc *sc)
2656{
2657	bus_space_tag_t t = sc->sc_bustag;
2658	bus_space_handle_t h = sc->sc_h1;
2659	uint32_t v;
2660
2661	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2662		v = GEM_INTR_PCS;
2663	else
2664		v = GEM_INTR_MIF;
2665	bus_space_write_4(t, h, GEM_INTMASK,
2666		      ~(GEM_INTR_TX_INTME |
2667			GEM_INTR_TX_EMPTY |
2668			GEM_INTR_TX_MAC |
2669			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2670			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2671			GEM_INTR_BERR | v));
2672}
2673
2674bool
2675gem_resume(device_t self, const pmf_qual_t *qual)
2676{
2677	struct gem_softc *sc = device_private(self);
2678
2679	gem_inten(sc);
2680
2681	return true;
2682}
2683
2684bool
2685gem_suspend(device_t self, const pmf_qual_t *qual)
2686{
2687	struct gem_softc *sc = device_private(self);
2688	bus_space_tag_t t = sc->sc_bustag;
2689	bus_space_handle_t h = sc->sc_h1;
2690
2691	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2692
2693	return true;
2694}
2695
2696bool
2697gem_shutdown(device_t self, int howto)
2698{
2699	struct gem_softc *sc = device_private(self);
2700	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2701
2702	gem_stop(ifp, 1);
2703
2704	return true;
2705}
2706
2707/*
2708 * Set up the logical address filter.
2709 */
2710void
2711gem_setladrf(struct gem_softc *sc)
2712{
2713	struct ethercom *ec = &sc->sc_ethercom;
2714	struct ifnet *ifp = &ec->ec_if;
2715	struct ether_multi *enm;
2716	struct ether_multistep step;
2717	bus_space_tag_t t = sc->sc_bustag;
2718	bus_space_handle_t h = sc->sc_h1;
2719	uint32_t crc;
2720	uint32_t hash[16];
2721	uint32_t v;
2722	int i;
2723
2724	/* Get current RX configuration */
2725	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2726
2727	/*
2728	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2729	 * and hash filter.  Depending on the case, the right bit will be
2730	 * enabled.
2731	 */
2732	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2733	    GEM_MAC_RX_PROMISC_GRP);
2734
2735	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2736		/* Turn on promiscuous mode */
2737		v |= GEM_MAC_RX_PROMISCUOUS;
2738		ifp->if_flags |= IFF_ALLMULTI;
2739		goto chipit;
2740	}
2741
2742	/*
2743	 * Set up multicast address filter by passing all multicast addresses
2744	 * through a crc generator, and then using the high order 8 bits as an
2745	 * index into the 256 bit logical address filter.  The high order 4
2746	 * bits selects the word, while the other 4 bits select the bit within
2747	 * the word (where bit 0 is the MSB).
2748	 */
2749
2750	/* Clear hash table */
2751	memset(hash, 0, sizeof(hash));
2752
2753	ETHER_LOCK(ec);
2754	ETHER_FIRST_MULTI(step, ec, enm);
2755	while (enm != NULL) {
2756		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2757			/*
2758			 * We must listen to a range of multicast addresses.
2759			 * For now, just accept all multicasts, rather than
2760			 * trying to set only those filter bits needed to match
2761			 * the range.  (At this time, the only use of address
2762			 * ranges is for IP multicast routing, for which the
2763			 * range is big enough to require all bits set.)
2764			 * XXX should use the address filters for this
2765			 */
2766			ifp->if_flags |= IFF_ALLMULTI;
2767			v |= GEM_MAC_RX_PROMISC_GRP;
2768			ETHER_UNLOCK(ec);
2769			goto chipit;
2770		}
2771
2772		/* Get the LE CRC32 of the address */
2773		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2774
2775		/* Just want the 8 most significant bits. */
2776		crc >>= 24;
2777
2778		/* Set the corresponding bit in the filter. */
2779		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2780
2781		ETHER_NEXT_MULTI(step, enm);
2782	}
2783	ETHER_UNLOCK(ec);
2784
2785	v |= GEM_MAC_RX_HASH_FILTER;
2786	ifp->if_flags &= ~IFF_ALLMULTI;
2787
2788	/* Now load the hash table into the chip (if we are using it) */
2789	for (i = 0; i < 16; i++) {
2790		bus_space_write_4(t, h,
2791		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2792		    hash[i]);
2793	}
2794
2795chipit:
2796	sc->sc_if_flags = ifp->if_flags;
2797	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2798}
2799