1/*	$NetBSD: dm9000.c,v 1.36 2023/07/07 07:22:18 martin Exp $	*/
2
3/*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 *    endorse or promote products derived from this software without specific
14 *    prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* based on sys/dev/ic/cs89x0.c */
30/*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 *    notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 *    notice, this list of conditions and the following disclaimer in the
38 *    documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 *    endorse or promote products derived from this software without specific
41 *    prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56/*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 *    and retain this copyright notice and list of conditions as
68 *    they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 *    Digital Equipment Corporation. Neither the "Digital Equipment
72 *    Corporation" name nor any trademark or logo of Digital Equipment
73 *    Corporation may be used to endorse or promote products derived
74 *    from this software without the prior written permission of
75 *    Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 *    warranties, including but not limited to, any implied warranties
79 *    of merchantability, fitness for a particular purpose, or
80 *    non-infringement are disclaimed. In no event shall DIGITAL be
81 *    liable for any damages whatsoever, and in particular, DIGITAL
82 *    shall not be liable for special, indirect, consequential, or
83 *    incidental damages or damages for lost profits, loss of
84 *    revenue or loss of use, whether such damages arise in contract,
85 *    negligence, tort, under statute, in equity, at law or otherwise,
86 *    even if advised of the possibility of such damage.
87 */
88
89#include <sys/cdefs.h>
90
91#include <sys/param.h>
92#include <sys/bus.h>
93#include <sys/intr.h>
94#include <sys/device.h>
95#include <sys/mbuf.h>
96#include <sys/sockio.h>
97#include <sys/errno.h>
98#include <sys/cprng.h>
99#include <sys/rndsource.h>
100#include <sys/kernel.h>
101#include <sys/systm.h>
102
103#include <net/if.h>
104#include <net/if_dl.h>
105#include <net/if_ether.h>
106#include <net/if_media.h>
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109#include <net/bpf.h>
110
111#include <dev/ic/dm9000var.h>
112#include <dev/ic/dm9000reg.h>
113
114#if 1
115#undef DM9000_DEBUG
116#undef DM9000_TX_DEBUG
117#undef DM9000_TX_DATA_DEBUG
118#undef DM9000_RX_DEBUG
119#undef  DM9000_RX_DATA_DEBUG
120#else
121#define DM9000_DEBUG
122#define  DM9000_TX_DEBUG
123#define DM9000_TX_DATA_DEBUG
124#define DM9000_RX_DEBUG
125#define  DM9000_RX_DATA_DEBUG
126#endif
127
128#ifdef DM9000_DEBUG
129#define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
130#else
131#define DPRINTF(s) do {} while (/*CONSTCOND*/0)
132#endif
133
134#ifdef DM9000_TX_DEBUG
135#define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
136#else
137#define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
138#endif
139
140#ifdef DM9000_RX_DEBUG
141#define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
142#else
143#define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
144#endif
145
146#ifdef DM9000_RX_DATA_DEBUG
147#define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
148#else
149#define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
150#endif
151
152#ifdef DM9000_TX_DATA_DEBUG
153#define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
154#else
155#define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
156#endif
157
158static void dme_reset(struct dme_softc *);
159static int dme_init(struct ifnet *);
160static void dme_stop(struct ifnet *, int);
161static void dme_start(struct ifnet *);
162static int dme_ioctl(struct ifnet *, u_long, void *);
163
164static void dme_set_rcvfilt(struct dme_softc *);
165static void mii_statchg(struct ifnet *);
166static void lnkchg(struct dme_softc *);
167static void phy_tick(void *);
168static int mii_readreg(device_t, int, int, uint16_t *);
169static int mii_writereg(device_t, int, int, uint16_t);
170
171static void dme_prepare(struct ifnet *);
172static void dme_transmit(struct ifnet *);
173static void dme_receive(struct ifnet *);
174
175static int pkt_read_2(struct dme_softc *, struct mbuf **);
176static int pkt_write_2(struct dme_softc *, struct mbuf *);
177static int pkt_read_1(struct dme_softc *, struct mbuf **);
178static int pkt_write_1(struct dme_softc *, struct mbuf *);
179#define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
180#define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
181
182#define ETHER_IS_ONE(x) \
183	   (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
184#define ETHER_IS_ZERO(x) \
185	   (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
186
187int
188dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
189{
190	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
191	struct mii_data *mii = &sc->sc_mii;
192	struct ifmedia *ifm = &mii->mii_media;
193	uint8_t b[2];
194	uint16_t io_mode;
195	uint8_t enaddr[ETHER_ADDR_LEN];
196	prop_dictionary_t dict;
197	prop_data_t ea;
198
199	dme_read_c(sc, DM9000_VID0, b, 2);
200	sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
201	dme_read_c(sc, DM9000_PID0, b, 2);
202	sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
203
204	/* TODO: Check the vendor ID as well */
205	if (sc->sc_product_id != 0x9000) {
206		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
207		    sc->sc_product_id);
208	}
209#if 1 || DM9000_DEBUG
210	{
211		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
212		aprint_normal_dev(sc->sc_dev,
213		    "DM9000 was configured with MAC address: %s\n",
214		    ether_sprintf(enaddr));
215	}
216#endif
217	dict = device_properties(sc->sc_dev);
218	ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
219	if (ea != NULL) {
220	       /*
221		 * If the MAC address is overridden by a device property,
222		 * use that.
223		 */
224		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
225		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
226		memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
227		aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
228	} else {
229		/*
230		 * If we did not get an externaly configure address,
231		 * try to read one from the current setup, before
232		 * resetting the chip.
233		 */
234		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
235		if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
236			/* make a random MAC address */
237			uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
238			uint32_t machi = cprng_strong32();
239			enaddr[0] = maclo;
240			enaddr[1] = maclo >> 8;
241			enaddr[2] = maclo >> 16;
242			enaddr[3] = maclo >> 26;
243			enaddr[4] = machi;
244			enaddr[5] = machi >> 8;
245		}
246	}
247	/* TODO: perform explicit EEPROM read op if it's availble */
248
249	dme_reset(sc);
250
251	mii->mii_ifp = ifp;
252	mii->mii_readreg = mii_readreg;
253	mii->mii_writereg = mii_writereg;
254	mii->mii_statchg = mii_statchg;
255
256	/* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
257	sc->sc_ethercom.ec_mii = mii;
258	ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
259	mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
260		MII_OFFSET_ANY, 0);
261	if (LIST_FIRST(&mii->mii_phys) == NULL) {
262		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
263		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
264	} else
265		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
266	ifm->ifm_media = ifm->ifm_cur->ifm_media;
267
268	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
269	ifp->if_softc = sc;
270	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
271	ifp->if_init = dme_init;
272	ifp->if_start = dme_start;
273	ifp->if_stop = dme_stop;
274	ifp->if_ioctl = dme_ioctl;
275	ifp->if_watchdog = NULL; /* no watchdog used */
276	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
277	IFQ_SET_READY(&ifp->if_snd);
278
279	if_attach(ifp);
280	ether_ifattach(ifp, enaddr);
281	if_deferred_start_init(ifp, NULL);
282
283	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
284            RND_TYPE_NET, RND_FLAG_DEFAULT);
285
286	/* might be unnecessary as link change interrupt works well */
287	callout_init(&sc->sc_link_callout, 0);
288	callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
289
290	io_mode = (dme_read(sc, DM9000_ISR) &
291	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
292
293	/* frame body read/write ops in 2 byte quantity or byte-wise. */
294	DPRINTF(("DM9000 Operation Mode: "));
295	switch (io_mode) {
296	case DM9000_MODE_8BIT:
297		DPRINTF(("8-bit mode"));
298		sc->sc_data_width = 1;
299		sc->sc_pkt_write = pkt_write_1;
300		sc->sc_pkt_read = pkt_read_1;
301		break;
302	case DM9000_MODE_16BIT:
303		DPRINTF(("16-bit mode"));
304		sc->sc_data_width = 2;
305		sc->sc_pkt_write = pkt_write_2;
306		sc->sc_pkt_read = pkt_read_2;
307		break;
308	case DM9000_MODE_32BIT:
309		DPRINTF(("32-bit mode"));
310		sc->sc_data_width = 4;
311		panic("32bit mode is unsupported\n");
312		break;
313	default:
314		DPRINTF(("Invalid mode"));
315		break;
316	}
317	DPRINTF(("\n"));
318
319	return 0;
320}
321
322int
323dme_detach(struct dme_softc *sc)
324{
325	return 0;
326}
327
328/* Software Initialize/Reset of the DM9000 */
329static void
330dme_reset(struct dme_softc *sc)
331{
332	uint8_t misc;
333
334	/* We only re-initialized the PHY in this function the first time it is
335	 * called. */
336	if (!sc->sc_phy_initialized) {
337		/* PHY Reset */
338		mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
339
340		/* PHY Power Down */
341		misc = dme_read(sc, DM9000_GPR);
342		dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
343	}
344
345	/* Reset the DM9000 twice, as described in section 2 of the Programming
346	 * Guide.
347	 * The PHY is initialized and enabled between those two resets.
348	 */
349
350	/* Software Reset */
351	dme_write(sc, DM9000_NCR,
352	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
353	delay(20);
354	dme_write(sc, DM9000_NCR, 0x0);
355
356	if (!sc->sc_phy_initialized) {
357		/* PHY Enable */
358		misc = dme_read(sc, DM9000_GPR);
359		dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
360		misc = dme_read(sc, DM9000_GPCR);
361		dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
362
363		dme_write(sc, DM9000_NCR,
364		    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
365		delay(20);
366		dme_write(sc, DM9000_NCR, 0x0);
367	}
368
369	/* Select internal PHY, no wakeup event, no collosion mode,
370	 * normal loopback mode.
371	 */
372	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
373
374	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
375	dme_read(sc, DM9000_NSR);
376
377	/* Enable wraparound of read/write pointer, frame received latch,
378	 * and frame transmitted latch.
379	 */
380	dme_write(sc, DM9000_IMR,
381	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
382
383	dme_write(sc, DM9000_RCR,
384	    DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
385
386	sc->sc_phy_initialized = 1;
387}
388
389static int
390dme_init(struct ifnet *ifp)
391{
392	struct dme_softc *sc = ifp->if_softc;
393
394	dme_stop(ifp, 0);
395	dme_reset(sc);
396	dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
397	dme_set_rcvfilt(sc);
398	(void)ether_mediachange(ifp);
399
400	sc->txbusy = sc->txready = 0;
401
402	ifp->if_flags |= IFF_RUNNING;
403	callout_schedule(&sc->sc_link_callout, hz);
404
405	return 0;
406}
407
408/* Configure multicast filter */
409static void
410dme_set_rcvfilt(struct dme_softc *sc)
411{
412	struct ethercom	*ec = &sc->sc_ethercom;
413	struct ifnet *ifp = &ec->ec_if;
414	struct ether_multi *enm;
415	struct ether_multistep step;
416	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
417	uint32_t h = 0;
418	int rcr;
419
420	rcr = dme_read(sc, DM9000_RCR);
421	rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
422	dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
423
424	ETHER_LOCK(ec);
425	if (ifp->if_flags & IFF_PROMISC) {
426		ec->ec_flags |= ETHER_F_ALLMULTI;
427		ETHER_UNLOCK(ec);
428		/* run promisc. mode */
429		rcr |= DM9000_RCR_PRMSC;
430		goto update;
431	}
432	ec->ec_flags &= ~ETHER_F_ALLMULTI;
433	ETHER_FIRST_MULTI(step, ec, enm);
434	while (enm != NULL) {
435		if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
436			/*
437			 * We must listen to a range of multicast addresses.
438			 * For now, just accept all multicasts, rather than
439			 * trying to set only those filter bits needed to match
440			 * the range.  (At this time, the only use of address
441			 * ranges is for IP multicast routing, for which the
442			 * range is big enough to require all bits set.)
443			 */
444			ec->ec_flags |= ETHER_F_ALLMULTI;
445			ETHER_UNLOCK(ec);
446			memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
447			/* accept all mulicast frame */
448			rcr |= DM9000_RCR_ALL;
449			goto update;
450		}
451		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
452		/* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
453		mchash[h / 8] |= 1 << (h % 8);
454		ETHER_NEXT_MULTI(step, enm);
455	}
456	ETHER_UNLOCK(ec);
457	/* DM9000 receive filter is always on */
458	mchash[7] |= 0x80; /* to catch bcast frame */
459 update:
460	dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
461	dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
462	return;
463}
464
465void
466lnkchg(struct dme_softc *sc)
467{
468	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469	struct ifmediareq ifmr;
470
471	ether_mediastatus(ifp, &ifmr);
472}
473
474static void
475mii_statchg(struct ifnet *ifp)
476{
477	struct dme_softc *sc = ifp->if_softc;
478	struct mii_data *mii = &sc->sc_mii;
479	uint8_t fcr, ncr;
480
481#if 0
482	const uint8_t Mbps[2] = { 10, 100 };
483	uint8_t nsr = dme_read(sc, DM9000_NSR);
484	int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
485	/* speed/duplexity available also in reg 0x11 of internal PHY */
486	if (nsr & DM9000_NSR_LINKST)
487		printf("link up,spd%d", spd);
488	else
489		printf("link down");
490
491	/* show resolved mii(4) parameters */
492	printf("MII spd%d",
493	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
494	if (mii->mii_media_active & IFM_FDX)
495		printf(",full-duplex");
496	printf("\n");
497#endif
498
499	/* Adjust duplexity and PAUSE flow control. */
500	fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
501	ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
502	if ((mii->mii_media_active & IFM_FDX)
503	    && (mii->mii_media_active & IFM_FLOW)) {
504		fcr |= DM9000_FCR_FLCE;
505		ncr |= DM9000_NCR_FDX;
506	}
507	dme_write(sc, DM9000_FCR, fcr);
508	dme_write(sc, DM9000_NCR, ncr);
509}
510
511static void
512phy_tick(void *arg)
513{
514	struct dme_softc *sc = arg;
515	struct mii_data *mii = &sc->sc_mii;
516	int s;
517
518	s = splnet();
519	mii_tick(mii);
520	splx(s);
521
522	callout_schedule(&sc->sc_link_callout, hz);
523}
524
525static int
526mii_readreg(device_t self, int phy, int reg, uint16_t *val)
527{
528	struct dme_softc *sc = device_private(self);
529
530	if (phy != 1)
531		return EINVAL;
532
533	/* Select Register to read*/
534	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
535	    (reg & DM9000_EPAR_EROA_MASK));
536	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
537	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
538
539	/* Wait until access to PHY has completed */
540	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
541		;
542
543	/* Reset ERPRR-bit */
544	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
545
546	*val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
547	return 0;
548}
549
550static int
551mii_writereg(device_t self, int phy, int reg, uint16_t val)
552{
553	struct dme_softc *sc = device_private(self);
554
555	if (phy != 1)
556		return EINVAL;
557
558	/* Select Register to write */
559	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
560	    (reg & DM9000_EPAR_EROA_MASK));
561
562	/* Write data to the two data registers */
563	dme_write(sc, DM9000_EPDRL, val & 0xFF);
564	dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
565
566	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
567	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
568
569	/* Wait until access to PHY has completed */
570	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
571		;
572
573	/* Reset ERPRR-bit */
574	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
575
576	return 0;
577}
578
579void
580dme_stop(struct ifnet *ifp, int disable)
581{
582	struct dme_softc *sc = ifp->if_softc;
583
584	/* Not quite sure what to do when called with disable == 0 */
585	if (disable) {
586		/* Disable RX */
587		dme_write(sc, DM9000_RCR, 0x0);
588	}
589	mii_down(&sc->sc_mii);
590	callout_stop(&sc->sc_link_callout);
591
592	ifp->if_flags &= ~IFF_RUNNING;
593	ifp->if_timer = 0;
594}
595
596static void
597dme_start(struct ifnet *ifp)
598{
599	struct dme_softc *sc = ifp->if_softc;
600
601	if ((ifp->if_flags & IFF_RUNNING) == 0) {
602		return;
603	}
604	if (!sc->txready) {
605		dme_prepare(ifp);
606	}
607	if (sc->txbusy) {
608		/*
609		 * We need to wait until the current frame has
610		 * been transmitted.
611		 */
612		return;
613	}
614	if (sc->txready) {
615		/* We are ready to transmit right away */
616		dme_transmit(ifp);
617	}
618	dme_prepare(ifp); /* Prepare next one */
619}
620
621/* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
622static void
623dme_prepare(struct ifnet *ifp)
624{
625	struct dme_softc *sc = ifp->if_softc;
626	uint16_t length;
627	struct mbuf *m;
628
629	KASSERT(!sc->txready);
630
631	IFQ_DEQUEUE(&ifp->if_snd, m);
632	if (m == NULL) {
633		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
634		return; /* Nothing to transmit */
635	}
636
637	/* Element has now been removed from the queue, so we better send it */
638
639	bpf_mtap(ifp, m, BPF_D_OUT);
640
641	/* Setup the DM9000 to accept the writes, and then write each buf in
642	   the chain. */
643
644	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
645	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
646	length = PKT_WRITE(sc, m);
647	bpf_mtap(ifp, m, BPF_D_OUT);
648	TX_DATA_DPRINTF(("\n"));
649
650	if (length % sc->sc_data_width != 0)
651		panic("dme_prepare: length is not compatible with IO_MODE");
652
653	sc->txready_length = length;
654	sc->txready = 1;
655	m_freem(m);
656}
657
658/* Transmit prepared data */
659static void
660dme_transmit(struct ifnet *ifp)
661{
662	struct dme_softc *sc = ifp->if_softc;
663
664	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
665		sc->txready, sc->txbusy));
666
667	/* prime frame length first */
668	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
669	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
670	/* read isr next */
671	dme_read(sc, DM9000_ISR);
672	/* finally issue a request to send */
673	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
674	sc->txready = 0;
675	sc->txbusy = 1;
676	sc->txready_length = 0;
677}
678
679/* Receive data */
680static void
681dme_receive(struct ifnet *ifp)
682{
683	struct dme_softc *sc = ifp->if_softc;
684	struct mbuf *m;
685	uint8_t avail, rsr;
686
687	DPRINTF(("inside dme_receive\n"));
688
689	/* frame has just arrived, retrieve it */
690	/* called right after Rx frame available interrupt */
691	do {
692		/* "no increment" read to get the avail byte without
693		   moving past it. */
694		bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
695			DM9000_MRCMDX);
696		/* Read twice */
697		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
698		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
699		avail &= 03;	/* 1:0 we only want these bits */
700		if (avail == 01) {
701			/* Read with address increment. */
702			bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
703				DM9000_MRCMD);
704			rsr = PKT_READ(sc, &m);
705			if (m == NULL) {
706				/* failed to allocate a receive buffer */
707				RX_DPRINTF(("dme_receive: "
708					"Error allocating buffer\n"));
709				if_statinc(ifp, if_ierrors);
710				continue;
711			}
712			if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
713				/* Error while receiving the frame,
714				 * discard it and keep track of counters
715				 */
716				RX_DPRINTF(("dme_receive: "
717					"Error reciving frame\n"));
718				if_statinc(ifp, if_ierrors);
719				continue;
720			}
721			if (rsr & DM9000_RSR_LCS) {
722				if_statinc(ifp, if_collisions);
723				continue;
724			}
725			/* pick and forward this frame to ifq */
726			if_percpuq_enqueue(ifp->if_percpuq, m);
727		} else if (avail != 00) {
728			/* Should this be logged somehow? */
729			printf("%s: Resetting chip\n",
730			       device_xname(sc->sc_dev));
731			dme_reset(sc);
732			break;
733		}
734	} while (avail == 01);
735	/* frame received successfully */
736}
737
738int
739dme_intr(void *arg)
740{
741	struct dme_softc *sc = arg;
742	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
743	uint8_t isr, nsr, tsr;
744
745	DPRINTF(("dme_intr: Begin\n"));
746
747	/* Disable interrupts */
748	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
749
750	isr = dme_read(sc, DM9000_ISR);
751	dme_write(sc, DM9000_ISR, isr); /* write to clear */
752
753	if (isr & DM9000_ISR_PRS) {
754		KASSERT(ifp->if_flags & IFF_RUNNING);
755		dme_receive(ifp);
756	}
757	if (isr & DM9000_ISR_LNKCHNG)
758		lnkchg(sc);
759	if (isr & DM9000_ISR_PTS) {
760		tsr = 0x01; /* Initialize to an error value */
761
762		/* A frame has been transmitted */
763		sc->txbusy = 0;
764
765		nsr = dme_read(sc, DM9000_NSR);
766		if (nsr & DM9000_NSR_TX1END) {
767			tsr = dme_read(sc, DM9000_TSR1);
768			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
769		} else if (nsr & DM9000_NSR_TX2END) {
770			tsr = dme_read(sc, DM9000_TSR2);
771			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
772		}
773
774		if (tsr == 0x0) {
775			/* Frame successfully sent */
776			if_statinc(ifp, if_opackets);
777		} else {
778			if_statinc(ifp, if_oerrors);
779		}
780
781		/* If we have nothing ready to transmit, prepare something */
782		if (!sc->txready)
783			dme_prepare(ifp);
784
785		if (sc->txready)
786			dme_transmit(ifp);
787
788		/* Prepare the next frame */
789		dme_prepare(ifp);
790
791		if_schedule_deferred_start(ifp);
792	}
793
794	/* Enable interrupts again */
795	dme_write(sc, DM9000_IMR,
796	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
797
798	DPRINTF(("dme_intr: End\n"));
799
800	return (isr != 0);
801}
802
803static int
804dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
805{
806	struct dme_softc *sc = ifp->if_softc;
807	struct ifreq *ifr = (struct ifreq *)data;
808	struct ifmedia *ifm = &sc->sc_mii.mii_media;
809	int s, error;
810
811	s = splnet();
812	switch (cmd) {
813	case SIOCSIFMEDIA:
814		/* Flow control requires full-duplex mode. */
815		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
816		    (ifr->ifr_media & IFM_FDX) == 0)
817			ifr->ifr_media &= ~IFM_ETH_FMASK;
818		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
819			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
820				ifr->ifr_media |=
821					IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
822			}
823		}
824		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
825		break;
826	default:
827		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
828			break;
829		error = 0;
830		if (cmd == SIOCSIFCAP)
831			error = if_init(ifp);
832		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
833			;
834		else if (ifp->if_flags && IFF_RUNNING) {
835			/* Address list has changed, reconfigure filter */
836			dme_set_rcvfilt(sc);
837		}
838		break;
839	}
840	splx(s);
841	return error;
842}
843
844static struct mbuf *
845dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
846{
847	struct dme_softc *sc = ifp->if_softc;
848	struct mbuf *m;
849	int pad, quantum;
850
851	quantum = sc->sc_data_width;
852	MGETHDR(m, M_DONTWAIT, MT_DATA);
853	if (m == NULL)
854		return NULL;
855
856	m_set_rcvif(m, ifp);
857	/* Ensure that we always allocate an even number of
858	 * bytes in order to avoid writing beyond the buffer
859	 */
860	m->m_pkthdr.len = frame_length + (frame_length % quantum);
861	pad = ALIGN(sizeof(struct ether_header)) -
862		sizeof(struct ether_header);
863	/* All our frames have the CRC attached */
864	m->m_flags |= M_HASFCS;
865	if (m->m_pkthdr.len + pad > MHLEN) {
866		MCLGET(m, M_DONTWAIT);
867		if ((m->m_flags & M_EXT) == 0) {
868			m_freem(m);
869			return NULL;
870		}
871	}
872
873	m->m_data += pad;
874	m->m_len = frame_length + (frame_length % quantum);
875
876	return m;
877}
878
879static int
880pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
881{
882	int left_over_count = 0; /* Number of bytes from previous mbuf, which
883				    need to be written with the next.*/
884	uint16_t left_over_buf = 0;
885	int length = 0;
886	struct mbuf *buf;
887	uint8_t *write_ptr;
888
889	/* We expect that the DM9000 has been setup to accept writes before
890	   this function is called. */
891
892	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
893		int to_write = buf->m_len;
894
895		length += to_write;
896
897		write_ptr = buf->m_data;
898		while (to_write > 0 ||
899		    (buf->m_next == NULL && left_over_count > 0)) {
900			if (left_over_count > 0) {
901				uint8_t b = 0;
902				DPRINTF(("pkt_write_16: "
903					 "Writing left over byte\n"));
904
905				if (to_write > 0) {
906					b = *write_ptr;
907					to_write--;
908					write_ptr++;
909
910					DPRINTF(("Took single byte\n"));
911				} else {
912					DPRINTF(("Leftover in last run\n"));
913					length++;
914				}
915
916				/* Does shift direction depend on endianness? */
917				left_over_buf = left_over_buf | (b << 8);
918
919				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
920						  sc->dme_data, left_over_buf);
921				TX_DATA_DPRINTF(("%02X ", left_over_buf));
922				left_over_count = 0;
923			} else if ((long)write_ptr % 2 != 0) {
924				/* Misaligned data */
925				DPRINTF(("pkt_write_16: "
926					 "Detected misaligned data\n"));
927				left_over_buf = *write_ptr;
928				left_over_count = 1;
929				write_ptr++;
930				to_write--;
931			} else {
932				int i;
933				uint16_t *dptr = (uint16_t *)write_ptr;
934
935				/* A block of aligned data. */
936				for (i = 0; i < to_write / 2; i++) {
937					/* buf will be half-word aligned
938					 * all the time
939					 */
940					bus_space_write_2(sc->sc_iot,
941					    sc->sc_ioh, sc->dme_data, *dptr);
942					TX_DATA_DPRINTF(("%02X %02X ",
943					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
944					dptr++;
945				}
946
947				write_ptr += i * 2;
948				if (to_write % 2 != 0) {
949					DPRINTF(("pkt_write_16: "
950						 "to_write %% 2: %d\n",
951						 to_write % 2));
952					left_over_count = 1;
953					/* XXX: Does this depend on
954					 * the endianness?
955					 */
956					left_over_buf = *write_ptr;
957
958					write_ptr++;
959					to_write--;
960					DPRINTF(("pkt_write_16: "
961						 "to_write (after): %d\n",
962						 to_write));
963					DPRINTF(("pkt_write_16: i * 2: %d\n",
964						 i*2));
965				}
966				to_write -= i * 2;
967			}
968		} /* while (...) */
969	} /* for (...) */
970
971	return length;
972}
973
974static int
975pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
976{
977	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978	uint8_t rx_status;
979	struct mbuf *m;
980	uint16_t data;
981	uint16_t frame_length;
982	uint16_t i;
983	uint16_t *buf;
984
985	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
986	rx_status = data & 0xFF;
987
988	frame_length = bus_space_read_2(sc->sc_iot,
989					sc->sc_ioh, sc->dme_data);
990	if (frame_length > ETHER_MAX_LEN) {
991		printf("Got frame of length: %d\n", frame_length);
992		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
993		panic("Something is rotten");
994	}
995	RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
996		rx_status, frame_length));
997
998	m = dme_alloc_receive_buffer(ifp, frame_length);
999	if (m == NULL) {
1000		/*
1001		 * didn't get a receive buffer, so we read the rest of the
1002		 * frame, throw it away and return an error
1003		 */
1004		for (i = 0; i < frame_length; i += 2) {
1005			data = bus_space_read_2(sc->sc_iot,
1006					sc->sc_ioh, sc->dme_data);
1007		}
1008		*outBuf = NULL;
1009		return 0;
1010	}
1011
1012	buf = mtod(m, uint16_t*);
1013
1014	RX_DPRINTF(("dme_receive: "));
1015
1016	for (i = 0; i < frame_length; i += 2) {
1017		data = bus_space_read_2(sc->sc_iot,
1018					sc->sc_ioh, sc->dme_data);
1019		if ( (frame_length % 2 != 0) &&
1020		     (i == frame_length - 1) ) {
1021			data = data & 0xff;
1022			RX_DPRINTF((" L "));
1023		}
1024		*buf = data;
1025		buf++;
1026		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1027				 (data >> 8) & 0xff));
1028	}
1029
1030	RX_DATA_DPRINTF(("\n"));
1031	RX_DPRINTF(("Read %d bytes\n", i));
1032
1033	*outBuf = m;
1034	return rx_status;
1035}
1036
1037static int
1038pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1039{
1040	int length = 0, i;
1041	struct mbuf *buf;
1042	uint8_t *write_ptr;
1043
1044	/*
1045	 * We expect that the DM9000 has been setup to accept writes before
1046	 * this function is called.
1047	 */
1048
1049	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1050		int to_write = buf->m_len;
1051
1052		length += to_write;
1053
1054		write_ptr = buf->m_data;
1055		for (i = 0; i < to_write; i++) {
1056			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1057			    sc->dme_data, *write_ptr);
1058			write_ptr++;
1059		}
1060	} /* for (...) */
1061
1062	return length;
1063}
1064
1065static int
1066pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
1067{
1068	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1069	uint8_t rx_status;
1070	struct mbuf *m;
1071	uint8_t *buf;
1072	uint16_t frame_length;
1073	uint16_t i, reg;
1074	uint8_t data;
1075
1076	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1077	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1078	rx_status = reg & 0xFF;
1079
1080	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1081	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1082	frame_length = reg;
1083
1084	if (frame_length > ETHER_MAX_LEN) {
1085		printf("Got frame of length: %d\n", frame_length);
1086		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1087		panic("Something is rotten");
1088	}
1089	RX_DPRINTF(("dme_receive: "
1090		    "rx_statux: 0x%x, frame_length: %d\n",
1091		    rx_status, frame_length));
1092
1093	m = dme_alloc_receive_buffer(ifp, frame_length);
1094	if (m == NULL) {
1095		/*
1096		 * didn't get a receive buffer, so we read the rest of the
1097		 * frame, throw it away and return an error
1098		 */
1099		for (i = 0; i < frame_length; i++ ) {
1100			data = bus_space_read_2(sc->sc_iot,
1101					sc->sc_ioh, sc->dme_data);
1102		}
1103		*outBuf = NULL;
1104		return 0;
1105	}
1106
1107	buf = mtod(m, uint8_t *);
1108
1109	RX_DPRINTF(("dme_receive: "));
1110	for (i = 0; i< frame_length; i += 1) {
1111		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1112		*buf = data;
1113		buf++;
1114		RX_DATA_DPRINTF(("%02X ", data));
1115	}
1116
1117	RX_DATA_DPRINTF(("\n"));
1118	RX_DPRINTF(("Read %d bytes\n", i));
1119
1120	*outBuf = m;
1121	return rx_status;
1122}
1123