atw.c revision 1.87
1/*	$NetBSD: atw.c,v 1.87 2005/06/26 04:37:25 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.87 2005/06/26 04:37:25 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_netbsd.h>
70#include <net80211/ieee80211_var.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/rf3000reg.h>
82#include <dev/ic/si4136reg.h>
83#include <dev/ic/atwvar.h>
84#include <dev/ic/smc93cx6var.h>
85
86/* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94/* device attachment
95 *
96 *    print TOFS[012]
97 *
98 * device initialization
99 *
100 *    clear ATW_FRCTL_MAXPSP to disable max power saving
101 *    set ATW_TXBR_ALCUPDATE to enable ALC
102 *    set TOFS[012]? (hope not)
103 *    disable rx/tx
104 *    set ATW_PAR_SWR (software reset)
105 *    wait for ATW_PAR_SWR clear
106 *    disable interrupts
107 *    ack status register
108 *    enable interrupts
109 *
110 * rx/tx initialization
111 *
112 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *    allocate and init descriptor rings
114 *    write ATW_PAR_DSL (descriptor skip length)
115 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 *    write ATW_NAR_SQ for one/both transmit descriptor rings
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 *    stop DMA
123 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 *    flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 *    initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 *    set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
139
140#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144int atw_pseudo_milli = 1;
145int atw_magic_delay1 = 100 * 1000;
146int atw_magic_delay2 = 100 * 1000;
147/* more magic multi-millisecond delays (units: microseconds) */
148int atw_nar_delay = 20 * 1000;
149int atw_magic_delay4 = 10 * 1000;
150int atw_rf_delay1 = 10 * 1000;
151int atw_rf_delay2 = 5 * 1000;
152int atw_plcphd_delay = 2 * 1000;
153int atw_bbp_io_enable_delay = 20 * 1000;
154int atw_bbp_io_disable_delay = 2 * 1000;
155int atw_writewep_delay = 1000;
156int atw_beacon_len_adjust = 4;
157int atw_dwelltime = 200;
158int atw_xindiv2 = 0;
159
160#ifdef ATW_DEBUG
161int atw_debug = 0;
162
163#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
164#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
165#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
166#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
171static void	atw_print_regs(struct atw_softc *, const char *);
172
173/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174#	ifdef ATW_BBPDEBUG
175static void	atw_rf3000_print(struct atw_softc *);
176static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177#	endif /* ATW_BBPDEBUG */
178
179#	ifdef ATW_SYNDEBUG
180static void	atw_si4126_print(struct atw_softc *);
181static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
182#	endif /* ATW_SYNDEBUG */
183
184#else
185#define ATW_DPRINTF(x)
186#define ATW_DPRINTF2(x)
187#define ATW_DPRINTF3(x)
188#define	DPRINTF(sc, x)	/* nothing */
189#define	DPRINTF2(sc, x)	/* nothing */
190#define	DPRINTF3(sc, x)	/* nothing */
191#endif
192
193/* ifnet methods */
194int	atw_init(struct ifnet *);
195int	atw_ioctl(struct ifnet *, u_long, caddr_t);
196void	atw_start(struct ifnet *);
197void	atw_stop(struct ifnet *, int);
198void	atw_watchdog(struct ifnet *);
199
200/* Device attachment */
201void	atw_attach(struct atw_softc *);
202int	atw_detach(struct atw_softc *);
203
204/* Rx/Tx process */
205int	atw_add_rxbuf(struct atw_softc *, int);
206void	atw_idle(struct atw_softc *, u_int32_t);
207void	atw_rxdrain(struct atw_softc *);
208void	atw_txdrain(struct atw_softc *);
209
210/* Device (de)activation and power state */
211void	atw_disable(struct atw_softc *);
212int	atw_enable(struct atw_softc *);
213void	atw_power(int, void *);
214void	atw_reset(struct atw_softc *);
215void	atw_shutdown(void *);
216
217/* Interrupt handlers */
218void	atw_linkintr(struct atw_softc *, u_int32_t);
219void	atw_rxintr(struct atw_softc *);
220void	atw_txintr(struct atw_softc *);
221
222/* 802.11 state machine */
223static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224static void	atw_next_scan(void *);
225static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226		              struct ieee80211_node *, int, int, u_int32_t);
227static int	atw_tune(struct atw_softc *);
228
229/* Device initialization */
230static void	atw_bbp_io_init(struct atw_softc *);
231static void	atw_cfp_init(struct atw_softc *);
232static void	atw_cmdr_init(struct atw_softc *);
233static void	atw_ifs_init(struct atw_softc *);
234static void	atw_nar_init(struct atw_softc *);
235static void	atw_response_times_init(struct atw_softc *);
236static void	atw_rf_reset(struct atw_softc *);
237static void	atw_test1_init(struct atw_softc *);
238static void	atw_tofs0_init(struct atw_softc *);
239static void	atw_tofs2_init(struct atw_softc *);
240static void	atw_txlmt_init(struct atw_softc *);
241static void	atw_wcsr_init(struct atw_softc *);
242
243/* Key management */
244static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
245static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247	const u_int8_t[IEEE80211_ADDR_LEN]);
248static void atw_key_update_begin(struct ieee80211com *);
249static void atw_key_update_end(struct ieee80211com *);
250
251/* RAM/ROM utilities */
252static void	atw_clear_sram(struct atw_softc *);
253static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254static int	atw_read_srom(struct atw_softc *);
255
256/* BSS setup */
257static void	atw_predict_beacon(struct atw_softc *);
258static void	atw_start_beacon(struct atw_softc *, int);
259static void	atw_write_bssid(struct atw_softc *);
260static void	atw_write_ssid(struct atw_softc *);
261static void	atw_write_sup_rates(struct atw_softc *);
262static void	atw_write_wep(struct atw_softc *);
263
264/* Media */
265static int	atw_media_change(struct ifnet *);
266static void	atw_media_status(struct ifnet *, struct ifmediareq *);
267
268static void	atw_filter_setup(struct atw_softc *);
269
270/* 802.11 utilities */
271static void			atw_frame_setdurs(struct atw_softc *,
272				                  struct atw_frame *, int, int);
273static uint64_t			atw_get_tsft(struct atw_softc *);
274static __inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
275				                   uint32_t);
276static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
277static void			atw_node_free(struct ieee80211_node *);
278static void			atw_change_ibss(struct atw_softc *);
279
280/*
281 * Tuner/transceiver/modem
282 */
283static void	atw_bbp_io_enable(struct atw_softc *, int);
284
285/* RFMD RF3000 Baseband Processor */
286static int	atw_rf3000_init(struct atw_softc *);
287static int	atw_rf3000_tune(struct atw_softc *, u_int);
288static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
289
290/* Silicon Laboratories Si4126 RF/IF Synthesizer */
291static void	atw_si4126_tune(struct atw_softc *, u_int);
292static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
293
294const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
295const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
296
297const char *atw_tx_state[] = {
298	"STOPPED",
299	"RUNNING - read descriptor",
300	"RUNNING - transmitting",
301	"RUNNING - filling fifo",	/* XXX */
302	"SUSPENDED",
303	"RUNNING -- write descriptor",
304	"RUNNING -- write last descriptor",
305	"RUNNING - fifo full"
306};
307
308const char *atw_rx_state[] = {
309	"STOPPED",
310	"RUNNING - read descriptor",
311	"RUNNING - check this packet, pre-fetch next",
312	"RUNNING - wait for reception",
313	"SUSPENDED",
314	"RUNNING - write descriptor",
315	"RUNNING - flush fifo",
316	"RUNNING - fifo drain"
317};
318
319int
320atw_activate(struct device *self, enum devact act)
321{
322	struct atw_softc *sc = (struct atw_softc *)self;
323	int rv = 0, s;
324
325	s = splnet();
326	switch (act) {
327	case DVACT_ACTIVATE:
328		rv = EOPNOTSUPP;
329		break;
330
331	case DVACT_DEACTIVATE:
332		if_deactivate(&sc->sc_if);
333		break;
334	}
335	splx(s);
336	return rv;
337}
338
339/*
340 * atw_enable:
341 *
342 *	Enable the ADM8211 chip.
343 */
344int
345atw_enable(struct atw_softc *sc)
346{
347
348	if (ATW_IS_ENABLED(sc) == 0) {
349		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
350			printf("%s: device enable failed\n",
351			    sc->sc_dev.dv_xname);
352			return (EIO);
353		}
354		sc->sc_flags |= ATWF_ENABLED;
355	}
356	return (0);
357}
358
359/*
360 * atw_disable:
361 *
362 *	Disable the ADM8211 chip.
363 */
364void
365atw_disable(struct atw_softc *sc)
366{
367	if (!ATW_IS_ENABLED(sc))
368		return;
369	if (sc->sc_disable != NULL)
370		(*sc->sc_disable)(sc);
371	sc->sc_flags &= ~ATWF_ENABLED;
372}
373
374/* Returns -1 on failure. */
375static int
376atw_read_srom(struct atw_softc *sc)
377{
378	struct seeprom_descriptor sd;
379	uint32_t test0, fail_bits;
380
381	(void)memset(&sd, 0, sizeof(sd));
382
383	test0 = ATW_READ(sc, ATW_TEST0);
384
385	switch (sc->sc_rev) {
386	case ATW_REVISION_BA:
387	case ATW_REVISION_CA:
388		fail_bits = ATW_TEST0_EPNE;
389		break;
390	default:
391		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
392		break;
393	}
394	if ((test0 & fail_bits) != 0) {
395		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
396		return -1;
397	}
398
399	switch (test0 & ATW_TEST0_EPTYP_MASK) {
400	case ATW_TEST0_EPTYP_93c66:
401		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
402		sc->sc_sromsz = 512;
403		sd.sd_chip = C56_66;
404		break;
405	case ATW_TEST0_EPTYP_93c46:
406		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
407		sc->sc_sromsz = 128;
408		sd.sd_chip = C46;
409		break;
410	default:
411		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
412		    MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
413		return -1;
414	}
415
416	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
417
418	if (sc->sc_srom == NULL) {
419		printf("%s: unable to allocate SROM buffer\n",
420		    sc->sc_dev.dv_xname);
421		return -1;
422	}
423
424	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
425
426	/* ADM8211 has a single 32-bit register for controlling the
427	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
428	 * "ready" bit. The ADM8211 input/output sense is the reverse
429	 * of read_seeprom's.
430	 */
431	sd.sd_tag = sc->sc_st;
432	sd.sd_bsh = sc->sc_sh;
433	sd.sd_regsize = 4;
434	sd.sd_control_offset = ATW_SPR;
435	sd.sd_status_offset = ATW_SPR;
436	sd.sd_dataout_offset = ATW_SPR;
437	sd.sd_CK = ATW_SPR_SCLK;
438	sd.sd_CS = ATW_SPR_SCS;
439	sd.sd_DI = ATW_SPR_SDO;
440	sd.sd_DO = ATW_SPR_SDI;
441	sd.sd_MS = ATW_SPR_SRS;
442	sd.sd_RDY = 0;
443
444	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
445		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
446		free(sc->sc_srom, M_DEVBUF);
447		return -1;
448	}
449#ifdef ATW_DEBUG
450	{
451		int i;
452		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
453		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
454			if (((i % 8) == 0) && (i != 0)) {
455				ATW_DPRINTF(("\n\t"));
456			}
457			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
458		}
459		ATW_DPRINTF(("\n"));
460	}
461#endif /* ATW_DEBUG */
462	return 0;
463}
464
465#ifdef ATW_DEBUG
466static void
467atw_print_regs(struct atw_softc *sc, const char *where)
468{
469#define PRINTREG(sc, reg) \
470	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
471	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
472
473	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
474
475	PRINTREG(sc, ATW_PAR);
476	PRINTREG(sc, ATW_FRCTL);
477	PRINTREG(sc, ATW_TDR);
478	PRINTREG(sc, ATW_WTDP);
479	PRINTREG(sc, ATW_RDR);
480	PRINTREG(sc, ATW_WRDP);
481	PRINTREG(sc, ATW_RDB);
482	PRINTREG(sc, ATW_CSR3A);
483	PRINTREG(sc, ATW_TDBD);
484	PRINTREG(sc, ATW_TDBP);
485	PRINTREG(sc, ATW_STSR);
486	PRINTREG(sc, ATW_CSR5A);
487	PRINTREG(sc, ATW_NAR);
488	PRINTREG(sc, ATW_CSR6A);
489	PRINTREG(sc, ATW_IER);
490	PRINTREG(sc, ATW_CSR7A);
491	PRINTREG(sc, ATW_LPC);
492	PRINTREG(sc, ATW_TEST1);
493	PRINTREG(sc, ATW_SPR);
494	PRINTREG(sc, ATW_TEST0);
495	PRINTREG(sc, ATW_WCSR);
496	PRINTREG(sc, ATW_WPDR);
497	PRINTREG(sc, ATW_GPTMR);
498	PRINTREG(sc, ATW_GPIO);
499	PRINTREG(sc, ATW_BBPCTL);
500	PRINTREG(sc, ATW_SYNCTL);
501	PRINTREG(sc, ATW_PLCPHD);
502	PRINTREG(sc, ATW_MMIWADDR);
503	PRINTREG(sc, ATW_MMIRADDR1);
504	PRINTREG(sc, ATW_MMIRADDR2);
505	PRINTREG(sc, ATW_TXBR);
506	PRINTREG(sc, ATW_CSR15A);
507	PRINTREG(sc, ATW_ALCSTAT);
508	PRINTREG(sc, ATW_TOFS2);
509	PRINTREG(sc, ATW_CMDR);
510	PRINTREG(sc, ATW_PCIC);
511	PRINTREG(sc, ATW_PMCSR);
512	PRINTREG(sc, ATW_PAR0);
513	PRINTREG(sc, ATW_PAR1);
514	PRINTREG(sc, ATW_MAR0);
515	PRINTREG(sc, ATW_MAR1);
516	PRINTREG(sc, ATW_ATIMDA0);
517	PRINTREG(sc, ATW_ABDA1);
518	PRINTREG(sc, ATW_BSSID0);
519	PRINTREG(sc, ATW_TXLMT);
520	PRINTREG(sc, ATW_MIBCNT);
521	PRINTREG(sc, ATW_BCNT);
522	PRINTREG(sc, ATW_TSFTH);
523	PRINTREG(sc, ATW_TSC);
524	PRINTREG(sc, ATW_SYNRF);
525	PRINTREG(sc, ATW_BPLI);
526	PRINTREG(sc, ATW_CAP0);
527	PRINTREG(sc, ATW_CAP1);
528	PRINTREG(sc, ATW_RMD);
529	PRINTREG(sc, ATW_CFPP);
530	PRINTREG(sc, ATW_TOFS0);
531	PRINTREG(sc, ATW_TOFS1);
532	PRINTREG(sc, ATW_IFST);
533	PRINTREG(sc, ATW_RSPT);
534	PRINTREG(sc, ATW_TSFTL);
535	PRINTREG(sc, ATW_WEPCTL);
536	PRINTREG(sc, ATW_WESK);
537	PRINTREG(sc, ATW_WEPCNT);
538	PRINTREG(sc, ATW_MACTEST);
539	PRINTREG(sc, ATW_FER);
540	PRINTREG(sc, ATW_FEMR);
541	PRINTREG(sc, ATW_FPSR);
542	PRINTREG(sc, ATW_FFER);
543#undef PRINTREG
544}
545#endif /* ATW_DEBUG */
546
547/*
548 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
549 */
550void
551atw_attach(struct atw_softc *sc)
552{
553	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
554		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
555	};
556	struct ieee80211com *ic = &sc->sc_ic;
557	struct ifnet *ifp = &sc->sc_if;
558	int country_code, error, i, nrate, srom_major;
559	u_int32_t reg;
560	static const char *type_strings[] = {"Intersil (not supported)",
561	    "RFMD", "Marvel (not supported)"};
562
563	sc->sc_txth = atw_txthresh_tab_lo;
564
565	SIMPLEQ_INIT(&sc->sc_txfreeq);
566	SIMPLEQ_INIT(&sc->sc_txdirtyq);
567
568#ifdef ATW_DEBUG
569	atw_print_regs(sc, "atw_attach");
570#endif /* ATW_DEBUG */
571
572	/*
573	 * Allocate the control data structures, and create and load the
574	 * DMA map for it.
575	 */
576	if ((error = bus_dmamem_alloc(sc->sc_dmat,
577	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
578	    1, &sc->sc_cdnseg, 0)) != 0) {
579		printf("%s: unable to allocate control data, error = %d\n",
580		    sc->sc_dev.dv_xname, error);
581		goto fail_0;
582	}
583
584	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
585	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
586	    BUS_DMA_COHERENT)) != 0) {
587		printf("%s: unable to map control data, error = %d\n",
588		    sc->sc_dev.dv_xname, error);
589		goto fail_1;
590	}
591
592	if ((error = bus_dmamap_create(sc->sc_dmat,
593	    sizeof(struct atw_control_data), 1,
594	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595		printf("%s: unable to create control data DMA map, "
596		    "error = %d\n", sc->sc_dev.dv_xname, error);
597		goto fail_2;
598	}
599
600	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
601	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
602	    0)) != 0) {
603		printf("%s: unable to load control data DMA map, error = %d\n",
604		    sc->sc_dev.dv_xname, error);
605		goto fail_3;
606	}
607
608	/*
609	 * Create the transmit buffer DMA maps.
610	 */
611	sc->sc_ntxsegs = ATW_NTXSEGS;
612	for (i = 0; i < ATW_TXQUEUELEN; i++) {
613		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
614		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
615		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
616			printf("%s: unable to create tx DMA map %d, "
617			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
618			goto fail_4;
619		}
620	}
621
622	/*
623	 * Create the receive buffer DMA maps.
624	 */
625	for (i = 0; i < ATW_NRXDESC; i++) {
626		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
627		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
628			printf("%s: unable to create rx DMA map %d, "
629			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
630			goto fail_5;
631		}
632	}
633	for (i = 0; i < ATW_NRXDESC; i++) {
634		sc->sc_rxsoft[i].rxs_mbuf = NULL;
635	}
636
637	switch (sc->sc_rev) {
638	case ATW_REVISION_AB:
639	case ATW_REVISION_AF:
640		sc->sc_sramlen = ATW_SRAM_A_SIZE;
641		break;
642	case ATW_REVISION_BA:
643	case ATW_REVISION_CA:
644		sc->sc_sramlen = ATW_SRAM_B_SIZE;
645		break;
646	}
647
648	/* Reset the chip to a known state. */
649	atw_reset(sc);
650
651	if (atw_read_srom(sc) == -1)
652		return;
653
654	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655	    ATW_SR_RFTYPE_MASK);
656
657	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
658	    ATW_SR_BBPTYPE_MASK);
659
660	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
661		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
662		return;
663	}
664	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
665		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
666		return;
667	}
668
669	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
670	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671
672	/* XXX There exists a Linux driver which seems to use RFType = 0 for
673	 * MARVEL. My bug, or theirs?
674	 */
675
676	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677
678	switch (sc->sc_rftype) {
679	case ATW_RFTYPE_INTERSIL:
680		reg |= ATW_SYNCTL_CS1;
681		break;
682	case ATW_RFTYPE_RFMD:
683		reg |= ATW_SYNCTL_CS0;
684		break;
685	case ATW_RFTYPE_MARVEL:
686		break;
687	}
688
689	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691
692	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693
694	switch (sc->sc_bbptype) {
695	case ATW_BBPTYPE_INTERSIL:
696		reg |= ATW_BBPCTL_TWI;
697		break;
698	case ATW_BBPTYPE_RFMD:
699		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700		    ATW_BBPCTL_CCA_ACTLO;
701		break;
702	case ATW_BBPTYPE_MARVEL:
703		break;
704	case ATW_C_BBPTYPE_RFMD:
705		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706		    sc->sc_dev.dv_xname);
707		break;
708	}
709
710	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712
713	/*
714	 * From this point forward, the attachment cannot fail.  A failure
715	 * before this point releases all resources that may have been
716	 * allocated.
717	 */
718	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
719
720	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721	    htole16(sc->sc_srom[ATW_SR_MAC00]),
722	    htole16(sc->sc_srom[ATW_SR_MAC01]),
723	    htole16(sc->sc_srom[ATW_SR_MAC10])));
724
725	srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726	    ATW_SR_MAJOR_MASK);
727
728	if (srom_major < 2)
729		sc->sc_rf3000_options1 = 0;
730	else if (sc->sc_rev == ATW_REVISION_BA) {
731		sc->sc_rf3000_options1 =
732		    MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
733		    ATW_SR_CR28_MASK);
734	} else
735		sc->sc_rf3000_options1 = 0;
736
737	sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738	    ATW_SR_CR29_MASK);
739
740	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
741	    ATW_SR_CTRY_MASK);
742
743#define ADD_CHANNEL(_ic, _chan) do {					\
744	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
745	_ic->ic_channels[_chan].ic_freq =				\
746	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747} while (0)
748
749	/* Find available channels */
750	switch (country_code) {
751	case COUNTRY_MMK2:	/* 1-14 */
752		ADD_CHANNEL(ic, 14);
753		/*FALLTHROUGH*/
754	case COUNTRY_ETSI:	/* 1-13 */
755		for (i = 1; i <= 13; i++)
756			ADD_CHANNEL(ic, i);
757		break;
758	case COUNTRY_FCC:	/* 1-11 */
759	case COUNTRY_IC:	/* 1-11 */
760		for (i = 1; i <= 11; i++)
761			ADD_CHANNEL(ic, i);
762		break;
763	case COUNTRY_MMK:	/* 14 */
764		ADD_CHANNEL(ic, 14);
765		break;
766	case COUNTRY_FRANCE:	/* 10-13 */
767		for (i = 10; i <= 13; i++)
768			ADD_CHANNEL(ic, i);
769		break;
770	default:	/* assume channels 10-11 */
771	case COUNTRY_SPAIN:	/* 10-11 */
772		for (i = 10; i <= 11; i++)
773			ADD_CHANNEL(ic, i);
774		break;
775	}
776
777	/* Read the MAC address. */
778	reg = ATW_READ(sc, ATW_PAR0);
779	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
780	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
781	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
782	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
783	reg = ATW_READ(sc, ATW_PAR1);
784	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
785	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
786
787	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788		printf(" could not get mac address, attach failed\n");
789		return;
790	}
791
792	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793
794	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
795	ifp->if_softc = sc;
796	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797	    IFF_NOTRAILERS;
798	ifp->if_ioctl = atw_ioctl;
799	ifp->if_start = atw_start;
800	ifp->if_watchdog = atw_watchdog;
801	ifp->if_init = atw_init;
802	ifp->if_stop = atw_stop;
803	IFQ_SET_READY(&ifp->if_snd);
804
805	ic->ic_ifp = ifp;
806	ic->ic_phytype = IEEE80211_T_DS;
807	ic->ic_opmode = IEEE80211_M_STA;
808	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810
811	nrate = 0;
812	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817
818	/*
819	 * Call MI attach routines.
820	 */
821
822	if_attach(ifp);
823	ieee80211_ifattach(ic);
824
825	sc->sc_newstate = ic->ic_newstate;
826	ic->ic_newstate = atw_newstate;
827
828	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829	ic->ic_recv_mgmt = atw_recv_mgmt;
830
831	sc->sc_node_free = ic->ic_node_free;
832	ic->ic_node_free = atw_node_free;
833
834	sc->sc_node_alloc = ic->ic_node_alloc;
835	ic->ic_node_alloc = atw_node_alloc;
836
837	ic->ic_crypto.cs_key_alloc = atw_key_alloc;
838	ic->ic_crypto.cs_key_delete = atw_key_delete;
839	ic->ic_crypto.cs_key_set = atw_key_set;
840	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842
843	/* possibly we should fill in our own sc_send_prresp, since
844	 * the ADM8211 is probably sending probe responses in ad hoc
845	 * mode.
846	 */
847
848	/* complete initialization */
849	ieee80211_media_init(ic, atw_media_change, atw_media_status);
850	callout_init(&sc->sc_scan_ch);
851
852#if NBPFILTER > 0
853	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855#endif
856
857	/*
858	 * Make sure the interface is shutdown during reboot.
859	 */
860	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861	if (sc->sc_sdhook == NULL)
862		printf("%s: WARNING: unable to establish shutdown hook\n",
863		    sc->sc_dev.dv_xname);
864
865	/*
866	 * Add a suspend hook to make sure we come back up after a
867	 * resume.
868	 */
869	sc->sc_powerhook = powerhook_establish(atw_power, sc);
870	if (sc->sc_powerhook == NULL)
871		printf("%s: WARNING: unable to establish power hook\n",
872		    sc->sc_dev.dv_xname);
873
874	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877
878	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881
882	return;
883
884	/*
885	 * Free any resources we've allocated during the failed attach
886	 * attempt.  Do this in reverse order and fall through.
887	 */
888 fail_5:
889	for (i = 0; i < ATW_NRXDESC; i++) {
890		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
891			continue;
892		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
893	}
894 fail_4:
895	for (i = 0; i < ATW_TXQUEUELEN; i++) {
896		if (sc->sc_txsoft[i].txs_dmamap == NULL)
897			continue;
898		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
899	}
900	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
901 fail_3:
902	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
903 fail_2:
904	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
905	    sizeof(struct atw_control_data));
906 fail_1:
907	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
908 fail_0:
909	return;
910}
911
912static struct ieee80211_node *
913atw_node_alloc(struct ieee80211_node_table *nt)
914{
915	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
916	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
917
918	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
919	return ni;
920}
921
922static void
923atw_node_free(struct ieee80211_node *ni)
924{
925	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
926
927	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
928	    ether_sprintf(ni->ni_bssid)));
929	(*sc->sc_node_free)(ni);
930}
931
932
933static void
934atw_test1_reset(struct atw_softc *sc)
935{
936	switch (sc->sc_rev) {
937	case ATW_REVISION_BA:
938		if (1 /* XXX condition on transceiver type */) {
939			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
940		}
941		break;
942	case ATW_REVISION_CA:
943		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
944		break;
945	default:
946		break;
947	}
948}
949
950/*
951 * atw_reset:
952 *
953 *	Perform a soft reset on the ADM8211.
954 */
955void
956atw_reset(struct atw_softc *sc)
957{
958	int i;
959	uint32_t lpc;
960
961	ATW_WRITE(sc, ATW_NAR, 0x0);
962	DELAY(atw_nar_delay);
963
964	/* Reference driver has a cryptic remark indicating that this might
965	 * power-on the chip.  I know that it turns off power-saving....
966	 */
967	ATW_WRITE(sc, ATW_FRCTL, 0x0);
968
969	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
970
971	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
972		if (ATW_READ(sc, ATW_PAR) == 0)
973			break;
974		DELAY(atw_pseudo_milli);
975	}
976
977	/* ... and then pause 100ms longer for good measure. */
978	DELAY(atw_magic_delay1);
979
980	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
981
982	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
983		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
984
985	atw_test1_reset(sc);
986	/*
987	 * Initialize the PCI Access Register.
988	 */
989	sc->sc_busmode = ATW_PAR_PBL_8DW;
990
991	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
992	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
993	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
994
995	/* Turn off maximum power saving, etc.
996	 *
997	 * XXX Following example of reference driver, should I set
998	 * an AID of 1?  It didn't seem to help....
999	 */
1000	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1001
1002	DELAY(atw_magic_delay2);
1003
1004	/* Recall EEPROM. */
1005	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1006
1007	DELAY(atw_magic_delay4);
1008
1009	lpc = ATW_READ(sc, ATW_LPC);
1010
1011	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1012
1013	/* A reset seems to affect the SRAM contents, so put them into
1014	 * a known state.
1015	 */
1016	atw_clear_sram(sc);
1017
1018	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1019}
1020
1021static void
1022atw_clear_sram(struct atw_softc *sc)
1023{
1024	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1025	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1026	/* XXX not for revision 0x20. */
1027	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1028}
1029
1030/* TBD atw_init
1031 *
1032 * set MAC based on ic->ic_bss->myaddr
1033 * write WEP keys
1034 * set TX rate
1035 */
1036
1037/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1038 * without receiving a beacon with the preferred BSSID & SSID.
1039 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1040 */
1041static void
1042atw_wcsr_init(struct atw_softc *sc)
1043{
1044	uint32_t wcsr;
1045
1046	wcsr = ATW_READ(sc, ATW_WCSR);
1047	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1048	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1049	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1050
1051	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1052	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1053}
1054
1055/* Turn off power management.  Set Rx store-and-forward mode. */
1056static void
1057atw_cmdr_init(struct atw_softc *sc)
1058{
1059	uint32_t cmdr;
1060	cmdr = ATW_READ(sc, ATW_CMDR);
1061	cmdr &= ~ATW_CMDR_APM;
1062	cmdr |= ATW_CMDR_RTE;
1063	cmdr &= ~ATW_CMDR_DRT_MASK;
1064	cmdr |= ATW_CMDR_DRT_SF;
1065
1066	ATW_WRITE(sc, ATW_CMDR, cmdr);
1067}
1068
1069static void
1070atw_tofs2_init(struct atw_softc *sc)
1071{
1072	uint32_t tofs2;
1073	/* XXX this magic can probably be figured out from the RFMD docs */
1074#ifndef ATW_REFSLAVE
1075	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1076	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1077	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1078	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1079	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1080	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1081	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1082	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1083#else
1084	/* XXX new magic from reference driver source */
1085	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1086	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1087	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1088	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1089	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1090	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1091	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1092	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1093#endif
1094	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1095}
1096
1097static void
1098atw_nar_init(struct atw_softc *sc)
1099{
1100	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1101}
1102
1103static void
1104atw_txlmt_init(struct atw_softc *sc)
1105{
1106	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1107	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1108}
1109
1110static void
1111atw_test1_init(struct atw_softc *sc)
1112{
1113	uint32_t test1;
1114
1115	test1 = ATW_READ(sc, ATW_TEST1);
1116	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1117	/* XXX magic 0x1 */
1118	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1119	ATW_WRITE(sc, ATW_TEST1, test1);
1120}
1121
1122static void
1123atw_rf_reset(struct atw_softc *sc)
1124{
1125	/* XXX this resets an Intersil RF front-end? */
1126	/* TBD condition on Intersil RFType? */
1127	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1128	DELAY(atw_rf_delay1);
1129	ATW_WRITE(sc, ATW_SYNRF, 0);
1130	DELAY(atw_rf_delay2);
1131}
1132
1133/* Set 16 TU max duration for the contention-free period (CFP). */
1134static void
1135atw_cfp_init(struct atw_softc *sc)
1136{
1137	uint32_t cfpp;
1138
1139	cfpp = ATW_READ(sc, ATW_CFPP);
1140	cfpp &= ~ATW_CFPP_CFPMD;
1141	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1142	ATW_WRITE(sc, ATW_CFPP, cfpp);
1143}
1144
1145static void
1146atw_tofs0_init(struct atw_softc *sc)
1147{
1148	/* XXX I guess that the Cardbus clock is 22MHz?
1149	 * I am assuming that the role of ATW_TOFS0_USCNT is
1150	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1151	 * very clear on this point. It says in the datasheet that it is
1152	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1153	 * and 33MHz; maybe this is the way? I see a binary-only driver write
1154	 * these values. These values are also the power-on default.
1155	 */
1156	ATW_WRITE(sc, ATW_TOFS0,
1157	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1158	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1159}
1160
1161/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1162static void
1163atw_ifs_init(struct atw_softc *sc)
1164{
1165	uint32_t ifst;
1166	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1167	 * Go figure.
1168	 */
1169	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1170	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1171	             ATW_IFST_SIFS_MASK) |
1172	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1173	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1174
1175	ATW_WRITE(sc, ATW_IFST, ifst);
1176}
1177
1178static void
1179atw_response_times_init(struct atw_softc *sc)
1180{
1181	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1182	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1183	 * to pass after it transmits a frame that requires a response;
1184	 * it waits at most SIFS + MART microseconds for the response.
1185	 * Surely this is not the ACK timeout?
1186	 */
1187	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1188	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1189}
1190
1191/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1192 * engines read and write baseband registers after Rx and before
1193 * Tx, respectively.
1194 */
1195static void
1196atw_bbp_io_init(struct atw_softc *sc)
1197{
1198	uint32_t mmiraddr2;
1199
1200	/* XXX The reference driver does this, but is it *really*
1201	 * necessary?
1202	 */
1203	switch (sc->sc_rev) {
1204	case ATW_REVISION_AB:
1205	case ATW_REVISION_AF:
1206		mmiraddr2 = 0x0;
1207		break;
1208	default:
1209		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1210		mmiraddr2 &=
1211		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1212		break;
1213	}
1214
1215	switch (sc->sc_bbptype) {
1216	case ATW_BBPTYPE_INTERSIL:
1217		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1218		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1219		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1220		break;
1221	case ATW_BBPTYPE_MARVEL:
1222		/* TBD find out the Marvel settings. */
1223		break;
1224	case ATW_BBPTYPE_RFMD:
1225	default:
1226		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1227		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1228		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1229		break;
1230	}
1231	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1232	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1233}
1234
1235/*
1236 * atw_init:		[ ifnet interface function ]
1237 *
1238 *	Initialize the interface.  Must be called at splnet().
1239 */
1240int
1241atw_init(struct ifnet *ifp)
1242{
1243	struct atw_softc *sc = ifp->if_softc;
1244	struct ieee80211com *ic = &sc->sc_ic;
1245	struct atw_txsoft *txs;
1246	struct atw_rxsoft *rxs;
1247	int i, error = 0;
1248
1249	if ((error = atw_enable(sc)) != 0)
1250		goto out;
1251
1252	/*
1253	 * Cancel any pending I/O. This also resets.
1254	 */
1255	atw_stop(ifp, 0);
1256
1257	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1258	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1259	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1260	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1261
1262	atw_wcsr_init(sc);
1263
1264	atw_cmdr_init(sc);
1265
1266	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1267	 *
1268	 * XXX Set transmit power for ATIM, RTS, Beacon.
1269	 */
1270	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1271	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1272
1273	atw_tofs2_init(sc);
1274
1275	atw_nar_init(sc);
1276
1277	atw_txlmt_init(sc);
1278
1279	atw_test1_init(sc);
1280
1281	atw_rf_reset(sc);
1282
1283	atw_cfp_init(sc);
1284
1285	atw_tofs0_init(sc);
1286
1287	atw_ifs_init(sc);
1288
1289	/* XXX Fall asleep after one second of inactivity.
1290	 * XXX A frame may only dribble in for 65536us.
1291	 */
1292	ATW_WRITE(sc, ATW_RMD,
1293	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1294
1295	atw_response_times_init(sc);
1296
1297	atw_bbp_io_init(sc);
1298
1299	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1300
1301	if ((error = atw_rf3000_init(sc)) != 0)
1302		goto out;
1303
1304	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1305	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1306	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1307
1308	/*
1309	 * Initialize the transmit descriptor ring.
1310	 */
1311	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1312	for (i = 0; i < ATW_NTXDESC; i++) {
1313		sc->sc_txdescs[i].at_ctl = 0;
1314		/* no transmit chaining */
1315		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1316		sc->sc_txdescs[i].at_buf2 =
1317		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1318	}
1319	/* use ring mode */
1320	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1321	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1322	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1323	sc->sc_txfree = ATW_NTXDESC;
1324	sc->sc_txnext = 0;
1325
1326	/*
1327	 * Initialize the transmit job descriptors.
1328	 */
1329	SIMPLEQ_INIT(&sc->sc_txfreeq);
1330	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1331	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1332		txs = &sc->sc_txsoft[i];
1333		txs->txs_mbuf = NULL;
1334		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1335	}
1336
1337	/*
1338	 * Initialize the receive descriptor and receive job
1339	 * descriptor rings.
1340	 */
1341	for (i = 0; i < ATW_NRXDESC; i++) {
1342		rxs = &sc->sc_rxsoft[i];
1343		if (rxs->rxs_mbuf == NULL) {
1344			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1345				printf("%s: unable to allocate or map rx "
1346				    "buffer %d, error = %d\n",
1347				    sc->sc_dev.dv_xname, i, error);
1348				/*
1349				 * XXX Should attempt to run with fewer receive
1350				 * XXX buffers instead of just failing.
1351				 */
1352				atw_rxdrain(sc);
1353				goto out;
1354			}
1355		} else
1356			ATW_INIT_RXDESC(sc, i);
1357	}
1358	sc->sc_rxptr = 0;
1359
1360	/*
1361	 * Initialize the interrupt mask and enable interrupts.
1362	 */
1363	/* normal interrupts */
1364	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1365	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1366
1367	/* abnormal interrupts */
1368	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1369	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1370	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1371
1372	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1373	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1374	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1375	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1376	    ATW_INTR_TRT;
1377
1378	sc->sc_linkint_mask &= sc->sc_inten;
1379	sc->sc_rxint_mask &= sc->sc_inten;
1380	sc->sc_txint_mask &= sc->sc_inten;
1381
1382	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1383	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1384
1385	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1386	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1387
1388	/*
1389	 * Give the transmit and receive rings to the ADM8211.
1390	 */
1391	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1392	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1393
1394	sc->sc_txthresh = 0;
1395	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1396	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1397
1398	/* common 802.11 configuration */
1399	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1400	switch (ic->ic_opmode) {
1401	case IEEE80211_M_STA:
1402		break;
1403	case IEEE80211_M_AHDEMO: /* XXX */
1404	case IEEE80211_M_IBSS:
1405		ic->ic_flags |= IEEE80211_F_IBSSON;
1406		/*FALLTHROUGH*/
1407	case IEEE80211_M_HOSTAP: /* XXX */
1408		break;
1409	case IEEE80211_M_MONITOR: /* XXX */
1410		break;
1411	}
1412
1413	switch (ic->ic_opmode) {
1414	case IEEE80211_M_AHDEMO:
1415	case IEEE80211_M_HOSTAP:
1416#ifndef IEEE80211_NO_HOSTAP
1417		ic->ic_bss->ni_intval = ic->ic_lintval;
1418		ic->ic_bss->ni_rssi = 0;
1419		ic->ic_bss->ni_rstamp = 0;
1420#endif /* !IEEE80211_NO_HOSTAP */
1421		break;
1422	default:					/* XXX */
1423		break;
1424	}
1425
1426	sc->sc_wepctl = 0;
1427
1428	atw_write_ssid(sc);
1429	atw_write_sup_rates(sc);
1430	if (ic->ic_caps & IEEE80211_C_WEP)
1431		atw_write_wep(sc);
1432
1433	ic->ic_state = IEEE80211_S_INIT;
1434
1435	/*
1436	 * Set the receive filter.  This will start the transmit and
1437	 * receive processes.
1438	 */
1439	atw_filter_setup(sc);
1440
1441	/*
1442	 * Start the receive process.
1443	 */
1444	ATW_WRITE(sc, ATW_RDR, 0x1);
1445
1446	/*
1447	 * Note that the interface is now running.
1448	 */
1449	ifp->if_flags |= IFF_RUNNING;
1450	ifp->if_flags &= ~IFF_OACTIVE;
1451
1452	/* send no beacons, yet. */
1453	atw_start_beacon(sc, 0);
1454
1455	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1456		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1457	else
1458		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1459 out:
1460	if (error) {
1461		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462		ifp->if_timer = 0;
1463		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1464	}
1465#ifdef ATW_DEBUG
1466	atw_print_regs(sc, "end of init");
1467#endif /* ATW_DEBUG */
1468
1469	return (error);
1470}
1471
1472/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1473 *           0: MAC control of RF3000/Si4126.
1474 *
1475 * Applies power, or selects RF front-end? Sets reset condition.
1476 *
1477 * TBD support non-RFMD BBP, non-SiLabs synth.
1478 */
1479static void
1480atw_bbp_io_enable(struct atw_softc *sc, int enable)
1481{
1482	if (enable) {
1483		ATW_WRITE(sc, ATW_SYNRF,
1484		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1485		DELAY(atw_bbp_io_enable_delay);
1486	} else {
1487		ATW_WRITE(sc, ATW_SYNRF, 0);
1488		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1489	}
1490}
1491
1492static int
1493atw_tune(struct atw_softc *sc)
1494{
1495	int rc;
1496	u_int chan;
1497	struct ieee80211com *ic = &sc->sc_ic;
1498
1499	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1500	if (chan == IEEE80211_CHAN_ANY)
1501		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1502
1503	if (chan == sc->sc_cur_chan)
1504		return 0;
1505
1506	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1507	    sc->sc_cur_chan, chan));
1508
1509	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1510
1511	atw_si4126_tune(sc, chan);
1512	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1513		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1514		    chan);
1515
1516	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1517	DELAY(atw_nar_delay);
1518	ATW_WRITE(sc, ATW_RDR, 0x1);
1519
1520	if (rc == 0)
1521		sc->sc_cur_chan = chan;
1522
1523	return rc;
1524}
1525
1526#ifdef ATW_SYNDEBUG
1527static void
1528atw_si4126_print(struct atw_softc *sc)
1529{
1530	struct ifnet *ifp = &sc->sc_if;
1531	u_int addr, val;
1532
1533	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1534		return;
1535
1536	for (addr = 0; addr <= 8; addr++) {
1537		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1538		if (atw_si4126_read(sc, addr, &val) == 0) {
1539			printf("<unknown> (quitting print-out)\n");
1540			break;
1541		}
1542		printf("%05x\n", val);
1543	}
1544}
1545#endif /* ATW_SYNDEBUG */
1546
1547/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1548 *
1549 * The RF/IF synthesizer produces two reference frequencies for
1550 * the RF2948B transceiver.  The first frequency the RF2948B requires
1551 * is two times the so-called "intermediate frequency" (IF). Since
1552 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1553 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1554 * frequency required by the transceiver is the radio frequency
1555 * (RF). This is a superheterodyne transceiver; for f(chan) the
1556 * center frequency of the channel we are tuning, RF = f(chan) -
1557 * IF.
1558 *
1559 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1560 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1561 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1562 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1563 */
1564static void
1565atw_si4126_tune(struct atw_softc *sc, u_int chan)
1566{
1567	u_int mhz;
1568	u_int R;
1569	u_int32_t gpio;
1570	u_int16_t gain;
1571
1572#ifdef ATW_SYNDEBUG
1573	atw_si4126_print(sc);
1574#endif /* ATW_SYNDEBUG */
1575
1576	if (chan == 14)
1577		mhz = 2484;
1578	else
1579		mhz = 2412 + 5 * (chan - 1);
1580
1581	/* Tune IF to 748MHz to suit the IF LO input of the
1582	 * RF2494B, which is 2 x IF. No need to set an IF divider
1583         * because an IF in 526MHz - 952MHz is allowed.
1584	 *
1585	 * XIN is 44.000MHz, so divide it by two to get allowable
1586	 * range of 2-25MHz. SiLabs tells me that this is not
1587	 * strictly necessary.
1588	 */
1589
1590	if (atw_xindiv2)
1591		R = 44;
1592	else
1593		R = 88;
1594
1595	/* Power-up RF, IF synthesizers. */
1596	atw_si4126_write(sc, SI4126_POWER,
1597	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1598
1599	/* set LPWR, too? */
1600	atw_si4126_write(sc, SI4126_MAIN,
1601	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1602
1603	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1604	 * set KP2 to 1.
1605	 *
1606	 * REFDIF This is different from the reference driver, which
1607	 * always sets SI4126_GAIN to 0.
1608	 */
1609	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1610
1611	atw_si4126_write(sc, SI4126_GAIN, gain);
1612
1613	/* XIN = 44MHz.
1614	 *
1615	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1616	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1617	 *
1618	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1619	 * so that 1496/88 * 44MHz = 748MHz.
1620	 */
1621	atw_si4126_write(sc, SI4126_IFN, 1496);
1622
1623	atw_si4126_write(sc, SI4126_IFR, R);
1624
1625#ifndef ATW_REFSLAVE
1626	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1627	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1628	 * which has no RF1!
1629	 */
1630	atw_si4126_write(sc, SI4126_RF1R, R);
1631
1632	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1633#endif
1634
1635	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1636	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1637	 * Now let's multiply it to mhz. So mhz - IF = N.
1638	 */
1639	atw_si4126_write(sc, SI4126_RF2R, R);
1640
1641	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1642
1643	/* wait 100us from power-up for RF, IF to settle */
1644	DELAY(100);
1645
1646	gpio = ATW_READ(sc, ATW_GPIO);
1647	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1648	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1649
1650	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1651		/* Set a Prism RF front-end to a special mode for channel 14?
1652		 *
1653		 * Apparently the SMC2635W needs this, although I don't think
1654		 * it has a Prism RF.
1655		 */
1656		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1657	}
1658	ATW_WRITE(sc, ATW_GPIO, gpio);
1659
1660#ifdef ATW_SYNDEBUG
1661	atw_si4126_print(sc);
1662#endif /* ATW_SYNDEBUG */
1663}
1664
1665/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1666 * diversity.
1667 *
1668 * !!!
1669 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1670 * !!!
1671 */
1672static int
1673atw_rf3000_init(struct atw_softc *sc)
1674{
1675	int rc = 0;
1676
1677	atw_bbp_io_enable(sc, 1);
1678
1679	/* CCA is acquisition sensitive */
1680	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1681	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1682
1683	if (rc != 0)
1684		goto out;
1685
1686	/* enable diversity */
1687	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1688
1689	if (rc != 0)
1690		goto out;
1691
1692	/* sensible setting from a binary-only driver */
1693	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1694	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1695
1696	if (rc != 0)
1697		goto out;
1698
1699	/* magic from a binary-only driver */
1700	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1701	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1702
1703	if (rc != 0)
1704		goto out;
1705
1706	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1707
1708	if (rc != 0)
1709		goto out;
1710
1711	/* XXX Reference driver remarks that Abocom sets this to 50.
1712	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1713	 * in the "reserved" area of register RF3000_OPTIONS1.
1714	 */
1715	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1716
1717	if (rc != 0)
1718		goto out;
1719
1720	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1721
1722	if (rc != 0)
1723		goto out;
1724
1725out:
1726	atw_bbp_io_enable(sc, 0);
1727	return rc;
1728}
1729
1730#ifdef ATW_BBPDEBUG
1731static void
1732atw_rf3000_print(struct atw_softc *sc)
1733{
1734	struct ifnet *ifp = &sc->sc_if;
1735	u_int addr, val;
1736
1737	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1738		return;
1739
1740	for (addr = 0x01; addr <= 0x15; addr++) {
1741		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1742		if (atw_rf3000_read(sc, addr, &val) != 0) {
1743			printf("<unknown> (quitting print-out)\n");
1744			break;
1745		}
1746		printf("%08x\n", val);
1747	}
1748}
1749#endif /* ATW_BBPDEBUG */
1750
1751/* Set the power settings on the BBP for channel `chan'. */
1752static int
1753atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1754{
1755	int rc = 0;
1756	u_int32_t reg;
1757	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1758
1759	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1760	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1761	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1762
1763	/* odd channels: LSB, even channels: MSB */
1764	if (chan % 2 == 1) {
1765		txpower &= 0xFF;
1766		lpf_cutoff &= 0xFF;
1767		lna_gs_thresh &= 0xFF;
1768	} else {
1769		txpower >>= 8;
1770		lpf_cutoff >>= 8;
1771		lna_gs_thresh >>= 8;
1772	}
1773
1774#ifdef ATW_BBPDEBUG
1775	atw_rf3000_print(sc);
1776#endif /* ATW_BBPDEBUG */
1777
1778	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1779	    "lna_gs_thresh %02x\n",
1780	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1781
1782	atw_bbp_io_enable(sc, 1);
1783
1784	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1785	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1786		goto out;
1787
1788	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1789		goto out;
1790
1791	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1792		goto out;
1793
1794	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1795
1796	if (rc != 0)
1797		goto out;
1798
1799	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1800
1801	if (rc != 0)
1802		goto out;
1803
1804#ifdef ATW_BBPDEBUG
1805	atw_rf3000_print(sc);
1806#endif /* ATW_BBPDEBUG */
1807
1808out:
1809	atw_bbp_io_enable(sc, 0);
1810
1811	/* set beacon, rts, atim transmit power */
1812	reg = ATW_READ(sc, ATW_PLCPHD);
1813	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1814	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1815	    ATW_PLCPHD_SERVICE_MASK);
1816	ATW_WRITE(sc, ATW_PLCPHD, reg);
1817	DELAY(atw_plcphd_delay);
1818
1819	return rc;
1820}
1821
1822/* Write a register on the RF3000 baseband processor using the
1823 * registers provided by the ADM8211 for this purpose.
1824 *
1825 * Return 0 on success.
1826 */
1827static int
1828atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1829{
1830	u_int32_t reg;
1831	int i;
1832
1833	reg = sc->sc_bbpctl_wr |
1834	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1835	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1836
1837	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1838		ATW_WRITE(sc, ATW_BBPCTL, reg);
1839		DELAY(2 * atw_pseudo_milli);
1840		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1841			break;
1842	}
1843
1844	if (i < 0) {
1845		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1846		return ETIMEDOUT;
1847	}
1848	return 0;
1849}
1850
1851/* Read a register on the RF3000 baseband processor using the registers
1852 * the ADM8211 provides for this purpose.
1853 *
1854 * The 7-bit register address is addr.  Record the 8-bit data in the register
1855 * in *val.
1856 *
1857 * Return 0 on success.
1858 *
1859 * XXX This does not seem to work. The ADM8211 must require more or
1860 * different magic to read the chip than to write it. Possibly some
1861 * of the magic I have derived from a binary-only driver concerns
1862 * the "chip address" (see the RF3000 manual).
1863 */
1864#ifdef ATW_BBPDEBUG
1865static int
1866atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1867{
1868	u_int32_t reg;
1869	int i;
1870
1871	for (i = 1000; --i >= 0; ) {
1872		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1873			break;
1874		DELAY(100);
1875	}
1876
1877	if (i < 0) {
1878		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1879		    sc->sc_dev.dv_xname);
1880		return ETIMEDOUT;
1881	}
1882
1883	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1884
1885	ATW_WRITE(sc, ATW_BBPCTL, reg);
1886
1887	for (i = 1000; --i >= 0; ) {
1888		DELAY(100);
1889		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1890			break;
1891	}
1892
1893	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1894
1895	if (i < 0) {
1896		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1897		    sc->sc_dev.dv_xname, reg);
1898		return ETIMEDOUT;
1899	}
1900	if (val != NULL)
1901		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1902	return 0;
1903}
1904#endif /* ATW_BBPDEBUG */
1905
1906/* Write a register on the Si4126 RF/IF synthesizer using the registers
1907 * provided by the ADM8211 for that purpose.
1908 *
1909 * val is 18 bits of data, and val is the 4-bit address of the register.
1910 *
1911 * Return 0 on success.
1912 */
1913static void
1914atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1915{
1916	uint32_t bits, mask, reg;
1917	const int nbits = 22;
1918
1919	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1920	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1921
1922	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1923	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1924
1925	reg = ATW_SYNRF_SELSYN;
1926	/* reference driver: reset Si4126 serial bus to initial
1927	 * conditions?
1928	 */
1929	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1930	ATW_WRITE(sc, ATW_SYNRF, reg);
1931
1932	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1933		if ((bits & mask) != 0)
1934			reg |= ATW_SYNRF_SYNDATA;
1935		else
1936			reg &= ~ATW_SYNRF_SYNDATA;
1937		ATW_WRITE(sc, ATW_SYNRF, reg);
1938		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1939		ATW_WRITE(sc, ATW_SYNRF, reg);
1940	}
1941	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1942	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1943}
1944
1945/* Read 18-bit data from the 4-bit address addr in Si4126
1946 * RF synthesizer and write the data to *val. Return 0 on success.
1947 *
1948 * XXX This does not seem to work. The ADM8211 must require more or
1949 * different magic to read the chip than to write it.
1950 */
1951#ifdef ATW_SYNDEBUG
1952static int
1953atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1954{
1955	u_int32_t reg;
1956	int i;
1957
1958	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1959
1960	for (i = 1000; --i >= 0; ) {
1961		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1962			break;
1963		DELAY(100);
1964	}
1965
1966	if (i < 0) {
1967		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1968		    sc->sc_dev.dv_xname);
1969		return ETIMEDOUT;
1970	}
1971
1972	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1973
1974	ATW_WRITE(sc, ATW_SYNCTL, reg);
1975
1976	for (i = 1000; --i >= 0; ) {
1977		DELAY(100);
1978		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1979			break;
1980	}
1981
1982	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1983
1984	if (i < 0) {
1985		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1986		    sc->sc_dev.dv_xname, reg);
1987		return ETIMEDOUT;
1988	}
1989	if (val != NULL)
1990		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1991		                       ATW_SYNCTL_DATA_MASK);
1992	return 0;
1993}
1994#endif /* ATW_SYNDEBUG */
1995
1996/* XXX is the endianness correct? test. */
1997#define	atw_calchash(addr) \
1998	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1999
2000/*
2001 * atw_filter_setup:
2002 *
2003 *	Set the ADM8211's receive filter.
2004 */
2005static void
2006atw_filter_setup(struct atw_softc *sc)
2007{
2008	struct ieee80211com *ic = &sc->sc_ic;
2009	struct ethercom *ec = &sc->sc_ec;
2010	struct ifnet *ifp = &sc->sc_if;
2011	int hash;
2012	u_int32_t hashes[2];
2013	struct ether_multi *enm;
2014	struct ether_multistep step;
2015
2016	/* According to comments in tlp_al981_filter_setup
2017	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2018	 * multicast filter to be set while it is running.  Hopefully
2019	 * the ADM8211 is not the same!
2020	 */
2021	if ((ifp->if_flags & IFF_RUNNING) != 0)
2022		atw_idle(sc, ATW_NAR_SR);
2023
2024	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2025
2026	/* XXX in scan mode, do not filter packets.  Maybe this is
2027	 * unnecessary.
2028	 */
2029	if (ic->ic_state == IEEE80211_S_SCAN ||
2030	    (ifp->if_flags & IFF_PROMISC) != 0) {
2031		sc->sc_opmode |= ATW_NAR_PR;
2032		goto allmulti;
2033	}
2034
2035	hashes[0] = hashes[1] = 0x0;
2036
2037	/*
2038	 * Program the 64-bit multicast hash filter.
2039	 */
2040	ETHER_FIRST_MULTI(step, ec, enm);
2041	while (enm != NULL) {
2042		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043		    ETHER_ADDR_LEN) != 0)
2044			goto allmulti;
2045
2046		hash = atw_calchash(enm->enm_addrlo);
2047		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048		ETHER_NEXT_MULTI(step, enm);
2049		sc->sc_opmode |= ATW_NAR_MM;
2050	}
2051	ifp->if_flags &= ~IFF_ALLMULTI;
2052	goto setit;
2053
2054allmulti:
2055	sc->sc_opmode |= ATW_NAR_MM;
2056	ifp->if_flags |= IFF_ALLMULTI;
2057	hashes[0] = hashes[1] = 0xffffffff;
2058
2059setit:
2060	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063	DELAY(atw_nar_delay);
2064
2065	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2066	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2067}
2068
2069/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2070 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2071 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2072 * no beacon with the preferred BSSID and SSID in the number of
2073 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2074 */
2075static void
2076atw_write_bssid(struct atw_softc *sc)
2077{
2078	struct ieee80211com *ic = &sc->sc_ic;
2079	u_int8_t *bssid;
2080
2081	bssid = ic->ic_bss->ni_bssid;
2082
2083	ATW_WRITE(sc, ATW_BSSID0,
2084	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2085	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2086	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2087	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2088
2089	ATW_WRITE(sc, ATW_ABDA1,
2090	    (ATW_READ(sc, ATW_ABDA1) &
2091	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2092	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2093	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2094
2095	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2096	    ether_sprintf(sc->sc_bssid)));
2097	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2098
2099	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2100}
2101
2102/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2103 * 16-bit word.
2104 */
2105static void
2106atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2107{
2108	u_int i;
2109	u_int8_t *ptr;
2110
2111	memcpy(&sc->sc_sram[ofs], buf, buflen);
2112
2113	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2114
2115	KASSERT(buflen + ofs <= sc->sc_sramlen);
2116
2117	ptr = &sc->sc_sram[ofs];
2118
2119	for (i = 0; i < buflen; i += 2) {
2120		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2121		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2122		DELAY(atw_writewep_delay);
2123
2124		ATW_WRITE(sc, ATW_WESK,
2125		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2126		DELAY(atw_writewep_delay);
2127	}
2128	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2129
2130	if (sc->sc_if.if_flags & IFF_DEBUG) {
2131		int n_octets = 0;
2132		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2133		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2134		for (i = 0; i < buflen; i++) {
2135			printf(" %02x", ptr[i]);
2136			if (++n_octets % 24 == 0)
2137				printf("\n");
2138		}
2139		if (n_octets % 24 != 0)
2140			printf("\n");
2141	}
2142}
2143
2144static int
2145atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2146{
2147	int keyix;
2148#ifdef ATW_DEBUG
2149	struct atw_softc *sc = ic->ic_ifp->if_softc;
2150#endif
2151
2152	if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2153		keyix = k - ic->ic_nw_keys;
2154	else
2155		keyix = IEEE80211_KEYIX_NONE;
2156
2157	DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
2158
2159	return keyix;
2160}
2161
2162static int
2163atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2164{
2165	struct atw_softc *sc = ic->ic_ifp->if_softc;
2166	u_int keyix = k->wk_keyix;
2167
2168	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2169
2170	if (keyix >= IEEE80211_WEP_NKID)
2171		return 0;
2172	if (k->wk_keylen != 0)
2173		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2174
2175	return 1;
2176}
2177
2178static int
2179atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2180	const u_int8_t mac[IEEE80211_ADDR_LEN])
2181{
2182	struct atw_softc *sc = ic->ic_ifp->if_softc;
2183
2184	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2185
2186	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2187		return 0;
2188
2189	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2190
2191	return 1;
2192}
2193
2194static void
2195atw_key_update_begin(struct ieee80211com *ic)
2196{
2197#ifdef ATW_DEBUG
2198	struct ifnet *ifp = ic->ic_ifp;
2199	struct atw_softc *sc = ifp->if_softc;
2200#endif
2201
2202	DPRINTF(sc, ("%s:\n", __func__));
2203}
2204
2205static void
2206atw_key_update_end(struct ieee80211com *ic)
2207{
2208	struct ifnet *ifp = ic->ic_ifp;
2209	struct atw_softc *sc = ifp->if_softc;
2210
2211	DPRINTF(sc, ("%s:\n", __func__));
2212
2213	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2214		return;
2215	atw_write_wep(sc);
2216}
2217
2218/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2219static void
2220atw_write_wep(struct atw_softc *sc)
2221{
2222	struct ieee80211com *ic = &sc->sc_ic;
2223	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2224	u_int8_t buf[IEEE80211_WEP_NKID]
2225	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2226	u_int32_t reg;
2227	int i;
2228
2229	sc->sc_wepctl = 0;
2230	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2231
2232	memset(&buf[0][0], 0, sizeof(buf));
2233
2234	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2235		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2236			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2237		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2238			buf[i][1] = ATW_WEP_ENABLED;
2239		} else {
2240			buf[i][1] = 0;
2241			continue;
2242		}
2243		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2244		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2245		    ic->ic_nw_keys[i].wk_keylen - 1);
2246	}
2247
2248	reg = ATW_READ(sc, ATW_MACTEST);
2249	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2250	reg &= ~ATW_MACTEST_KEYID_MASK;
2251	reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2252	ATW_WRITE(sc, ATW_MACTEST, reg);
2253
2254	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2255		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2256
2257	switch (sc->sc_rev) {
2258	case ATW_REVISION_AB:
2259	case ATW_REVISION_AF:
2260		/* Bypass WEP on Rx. */
2261		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2262		break;
2263	default:
2264		break;
2265	}
2266
2267	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2268	    sizeof(buf));
2269
2270	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2271}
2272
2273static void
2274atw_change_ibss(struct atw_softc *sc)
2275{
2276	atw_predict_beacon(sc);
2277	atw_write_bssid(sc);
2278	atw_start_beacon(sc, 1);
2279}
2280
2281static void
2282atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2283    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2284{
2285	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2286
2287	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2288	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2289		return;
2290
2291	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2292
2293	switch (subtype) {
2294	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2295	case IEEE80211_FC0_SUBTYPE_BEACON:
2296		if (ic->ic_opmode != IEEE80211_M_IBSS ||
2297		    ic->ic_state != IEEE80211_S_RUN)
2298			break;
2299		if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2300		    ieee80211_ibss_merge(ic, ni) == ENETRESET)
2301			atw_change_ibss(sc);
2302		break;
2303	default:
2304		break;
2305	}
2306	return;
2307}
2308
2309/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2310 * In ad hoc mode, the SSID is written to the beacons sent by the
2311 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2312 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2313 * indications.
2314 */
2315static void
2316atw_write_ssid(struct atw_softc *sc)
2317{
2318	struct ieee80211com *ic = &sc->sc_ic;
2319	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2320	 * it only expects the element length, not its ID.
2321	 */
2322	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2323
2324	memset(buf, 0, sizeof(buf));
2325	buf[0] = ic->ic_bss->ni_esslen;
2326	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2327
2328	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2329	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2330}
2331
2332/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2333 * In ad hoc mode, the supported rates are written to beacons sent by the
2334 * ADM8211.
2335 */
2336static void
2337atw_write_sup_rates(struct atw_softc *sc)
2338{
2339	struct ieee80211com *ic = &sc->sc_ic;
2340	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2341	 * supported rates
2342	 */
2343	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2344
2345	memset(buf, 0, sizeof(buf));
2346
2347	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2348
2349	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2350	    ic->ic_bss->ni_rates.rs_nrates);
2351
2352	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2353}
2354
2355/* Start/stop sending beacons. */
2356void
2357atw_start_beacon(struct atw_softc *sc, int start)
2358{
2359	struct ieee80211com *ic = &sc->sc_ic;
2360	uint16_t chan;
2361	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2362	size_t len;
2363
2364	if (ATW_IS_ENABLED(sc) == 0)
2365		return;
2366
2367	/* start beacons */
2368	len = sizeof(struct ieee80211_frame) +
2369	    8 /* timestamp */ + 2 /* beacon interval */ +
2370	    2 /* capability info */ +
2371	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2372	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2373	    3 /* DS parameters */ +
2374	    IEEE80211_CRC_LEN;
2375
2376	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2377	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2378	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2379
2380	ATW_WRITE(sc, ATW_BCNT, bcnt);
2381	ATW_WRITE(sc, ATW_CAP1, cap1);
2382
2383	if (!start)
2384		return;
2385
2386	/* TBD use ni_capinfo */
2387
2388	capinfo = 0;
2389	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2390		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2391	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2392		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2393
2394	switch (ic->ic_opmode) {
2395	case IEEE80211_M_IBSS:
2396		len += 4; /* IBSS parameters */
2397		capinfo |= IEEE80211_CAPINFO_IBSS;
2398		break;
2399	case IEEE80211_M_HOSTAP:
2400		/* XXX 6-byte minimum TIM */
2401		len += atw_beacon_len_adjust;
2402		capinfo |= IEEE80211_CAPINFO_ESS;
2403		break;
2404	default:
2405		return;
2406	}
2407
2408	/* set listen interval
2409	 * XXX do software units agree w/ hardware?
2410	 */
2411	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2412	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2413
2414	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2415
2416	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2417	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2418	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2419
2420	ATW_WRITE(sc, ATW_BCNT, bcnt);
2421	ATW_WRITE(sc, ATW_BPLI, bpli);
2422	ATW_WRITE(sc, ATW_CAP0, cap0);
2423	ATW_WRITE(sc, ATW_CAP1, cap1);
2424
2425	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2426	    sc->sc_dev.dv_xname, bcnt));
2427
2428	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2429	    sc->sc_dev.dv_xname, cap1));
2430}
2431
2432/* Return the 32 lsb of the last TSFT divisible by ival. */
2433static __inline uint32_t
2434atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2435{
2436	/* Following the reference driver's lead, I compute
2437	 *
2438	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2439	 *
2440	 * without using 64-bit arithmetic, using the following
2441	 * relationship:
2442	 *
2443	 *     (0x100000000 * H + L) % m
2444	 *   = ((0x100000000 % m) * H + L) % m
2445	 *   = (((0xffffffff + 1) % m) * H + L) % m
2446	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2447	 *   = ((0xffffffff % m + 1) * H + L) % m
2448	 */
2449	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2450}
2451
2452static uint64_t
2453atw_get_tsft(struct atw_softc *sc)
2454{
2455	int i;
2456	uint32_t tsfth, tsftl;
2457	for (i = 0; i < 2; i++) {
2458		tsfth = ATW_READ(sc, ATW_TSFTH);
2459		tsftl = ATW_READ(sc, ATW_TSFTL);
2460		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2461			break;
2462	}
2463	return ((uint64_t)tsfth << 32) | tsftl;
2464}
2465
2466/* If we've created an IBSS, write the TSF time in the ADM8211 to
2467 * the ieee80211com.
2468 *
2469 * Predict the next target beacon transmission time (TBTT) and
2470 * write it to the ADM8211.
2471 */
2472static void
2473atw_predict_beacon(struct atw_softc *sc)
2474{
2475#define TBTTOFS 20 /* TU */
2476
2477	struct ieee80211com *ic = &sc->sc_ic;
2478	uint64_t tsft;
2479	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2480	union {
2481		uint64_t	word;
2482		uint8_t		tstamp[8];
2483	} u;
2484
2485	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2486	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2487	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2488		tsft = atw_get_tsft(sc);
2489		u.word = htole64(tsft);
2490		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2491		    sizeof(ic->ic_bss->ni_tstamp));
2492	} else
2493		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2494
2495	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2496
2497	tsftl = tsft & 0xFFFFFFFF;
2498	tsfth = tsft >> 32;
2499
2500	/* We sent/received the last beacon `past' microseconds
2501	 * after the interval divided the TSF timer.
2502	 */
2503	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2504
2505	/* Skip ten beacons so that the TBTT cannot pass before
2506	 * we've programmed it.  Ten is an arbitrary number.
2507	 */
2508	tbtt = past_even + ival * 10;
2509
2510	ATW_WRITE(sc, ATW_TOFS1,
2511	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2512	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2513	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2514	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2515#undef TBTTOFS
2516}
2517
2518static void
2519atw_next_scan(void *arg)
2520{
2521	struct atw_softc *sc = arg;
2522	struct ieee80211com *ic = &sc->sc_ic;
2523	int s;
2524
2525	/* don't call atw_start w/o network interrupts blocked */
2526	s = splnet();
2527	if (ic->ic_state == IEEE80211_S_SCAN)
2528		ieee80211_next_scan(ic);
2529	splx(s);
2530}
2531
2532/* Synchronize the hardware state with the software state. */
2533static int
2534atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2535{
2536	struct ifnet *ifp = ic->ic_ifp;
2537	struct atw_softc *sc = ifp->if_softc;
2538	enum ieee80211_state ostate;
2539	int error;
2540
2541	ostate = ic->ic_state;
2542
2543	if (nstate == IEEE80211_S_INIT) {
2544		callout_stop(&sc->sc_scan_ch);
2545		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2546		atw_start_beacon(sc, 0);
2547		return (*sc->sc_newstate)(ic, nstate, arg);
2548	}
2549
2550	if ((error = atw_tune(sc)) != 0)
2551		return error;
2552
2553	switch (nstate) {
2554	case IEEE80211_S_ASSOC:
2555		break;
2556	case IEEE80211_S_INIT:
2557		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2558		break;
2559	case IEEE80211_S_SCAN:
2560		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2561		    atw_next_scan, sc);
2562
2563		break;
2564	case IEEE80211_S_RUN:
2565		if (ic->ic_opmode == IEEE80211_M_STA)
2566			break;
2567		/*FALLTHROUGH*/
2568	case IEEE80211_S_AUTH:
2569		atw_write_bssid(sc);
2570		atw_write_ssid(sc);
2571		atw_write_sup_rates(sc);
2572
2573		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2574		    ic->ic_opmode == IEEE80211_M_MONITOR)
2575			break;
2576
2577		/* set listen interval
2578		 * XXX do software units agree w/ hardware?
2579		 */
2580		ATW_WRITE(sc, ATW_BPLI,
2581		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2582		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2583			   ATW_BPLI_LI_MASK));
2584
2585		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2586		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2587
2588		atw_predict_beacon(sc);
2589		break;
2590	}
2591
2592	if (nstate != IEEE80211_S_SCAN)
2593		callout_stop(&sc->sc_scan_ch);
2594
2595	if (nstate == IEEE80211_S_RUN &&
2596	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2597	     ic->ic_opmode == IEEE80211_M_IBSS))
2598		atw_start_beacon(sc, 1);
2599	else
2600		atw_start_beacon(sc, 0);
2601
2602	error = (*sc->sc_newstate)(ic, nstate, arg);
2603
2604	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2605		atw_write_bssid(sc);
2606
2607	return error;
2608}
2609
2610/*
2611 * atw_add_rxbuf:
2612 *
2613 *	Add a receive buffer to the indicated descriptor.
2614 */
2615int
2616atw_add_rxbuf(struct atw_softc *sc, int idx)
2617{
2618	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2619	struct mbuf *m;
2620	int error;
2621
2622	MGETHDR(m, M_DONTWAIT, MT_DATA);
2623	if (m == NULL)
2624		return (ENOBUFS);
2625
2626	MCLGET(m, M_DONTWAIT);
2627	if ((m->m_flags & M_EXT) == 0) {
2628		m_freem(m);
2629		return (ENOBUFS);
2630	}
2631
2632	if (rxs->rxs_mbuf != NULL)
2633		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2634
2635	rxs->rxs_mbuf = m;
2636
2637	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2638	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2639	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2640	if (error) {
2641		printf("%s: can't load rx DMA map %d, error = %d\n",
2642		    sc->sc_dev.dv_xname, idx, error);
2643		panic("atw_add_rxbuf");	/* XXX */
2644	}
2645
2646	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2647	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2648
2649	ATW_INIT_RXDESC(sc, idx);
2650
2651	return (0);
2652}
2653
2654/*
2655 * Release any queued transmit buffers.
2656 */
2657void
2658atw_txdrain(struct atw_softc *sc)
2659{
2660	struct atw_txsoft *txs;
2661
2662	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2663		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2664		if (txs->txs_mbuf != NULL) {
2665			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2666			m_freem(txs->txs_mbuf);
2667			txs->txs_mbuf = NULL;
2668		}
2669		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2670	}
2671	sc->sc_tx_timer = 0;
2672}
2673
2674/*
2675 * atw_stop:		[ ifnet interface function ]
2676 *
2677 *	Stop transmission on the interface.
2678 */
2679void
2680atw_stop(struct ifnet *ifp, int disable)
2681{
2682	struct atw_softc *sc = ifp->if_softc;
2683	struct ieee80211com *ic = &sc->sc_ic;
2684
2685	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2686
2687	/* Disable interrupts. */
2688	ATW_WRITE(sc, ATW_IER, 0);
2689
2690	/* Stop the transmit and receive processes. */
2691	sc->sc_opmode = 0;
2692	ATW_WRITE(sc, ATW_NAR, 0);
2693	DELAY(atw_nar_delay);
2694	ATW_WRITE(sc, ATW_TDBD, 0);
2695	ATW_WRITE(sc, ATW_TDBP, 0);
2696	ATW_WRITE(sc, ATW_RDB, 0);
2697
2698	atw_txdrain(sc);
2699
2700	if (disable) {
2701		atw_rxdrain(sc);
2702		atw_disable(sc);
2703	}
2704
2705	/*
2706	 * Mark the interface down and cancel the watchdog timer.
2707	 */
2708	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2709	ifp->if_timer = 0;
2710
2711	if (!disable)
2712		atw_reset(sc);
2713}
2714
2715/*
2716 * atw_rxdrain:
2717 *
2718 *	Drain the receive queue.
2719 */
2720void
2721atw_rxdrain(struct atw_softc *sc)
2722{
2723	struct atw_rxsoft *rxs;
2724	int i;
2725
2726	for (i = 0; i < ATW_NRXDESC; i++) {
2727		rxs = &sc->sc_rxsoft[i];
2728		if (rxs->rxs_mbuf == NULL)
2729			continue;
2730		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2731		m_freem(rxs->rxs_mbuf);
2732		rxs->rxs_mbuf = NULL;
2733	}
2734}
2735
2736/*
2737 * atw_detach:
2738 *
2739 *	Detach an ADM8211 interface.
2740 */
2741int
2742atw_detach(struct atw_softc *sc)
2743{
2744	struct ifnet *ifp = &sc->sc_if;
2745	struct atw_rxsoft *rxs;
2746	struct atw_txsoft *txs;
2747	int i;
2748
2749	/*
2750	 * Succeed now if there isn't any work to do.
2751	 */
2752	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2753		return (0);
2754
2755	callout_stop(&sc->sc_scan_ch);
2756
2757	ieee80211_ifdetach(&sc->sc_ic);
2758	if_detach(ifp);
2759
2760	for (i = 0; i < ATW_NRXDESC; i++) {
2761		rxs = &sc->sc_rxsoft[i];
2762		if (rxs->rxs_mbuf != NULL) {
2763			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2764			m_freem(rxs->rxs_mbuf);
2765			rxs->rxs_mbuf = NULL;
2766		}
2767		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2768	}
2769	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2770		txs = &sc->sc_txsoft[i];
2771		if (txs->txs_mbuf != NULL) {
2772			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2773			m_freem(txs->txs_mbuf);
2774			txs->txs_mbuf = NULL;
2775		}
2776		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2777	}
2778	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2779	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2780	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2781	    sizeof(struct atw_control_data));
2782	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2783
2784	shutdownhook_disestablish(sc->sc_sdhook);
2785	powerhook_disestablish(sc->sc_powerhook);
2786
2787	if (sc->sc_srom)
2788		free(sc->sc_srom, M_DEVBUF);
2789
2790	return (0);
2791}
2792
2793/* atw_shutdown: make sure the interface is stopped at reboot time. */
2794void
2795atw_shutdown(void *arg)
2796{
2797	struct atw_softc *sc = arg;
2798
2799	atw_stop(&sc->sc_if, 1);
2800}
2801
2802int
2803atw_intr(void *arg)
2804{
2805	struct atw_softc *sc = arg;
2806	struct ifnet *ifp = &sc->sc_if;
2807	u_int32_t status, rxstatus, txstatus, linkstatus;
2808	int handled = 0, txthresh;
2809
2810#ifdef DEBUG
2811	if (ATW_IS_ENABLED(sc) == 0)
2812		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2813#endif
2814
2815	/*
2816	 * If the interface isn't running, the interrupt couldn't
2817	 * possibly have come from us.
2818	 */
2819	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2820	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2821		return (0);
2822
2823	for (;;) {
2824		status = ATW_READ(sc, ATW_STSR);
2825
2826		if (status)
2827			ATW_WRITE(sc, ATW_STSR, status);
2828
2829#ifdef ATW_DEBUG
2830#define PRINTINTR(flag) do { \
2831	if ((status & flag) != 0) { \
2832		printf("%s" #flag, delim); \
2833		delim = ","; \
2834	} \
2835} while (0)
2836
2837		if (atw_debug > 1 && status) {
2838			const char *delim = "<";
2839
2840			printf("%s: reg[STSR] = %x",
2841			    sc->sc_dev.dv_xname, status);
2842
2843			PRINTINTR(ATW_INTR_FBE);
2844			PRINTINTR(ATW_INTR_LINKOFF);
2845			PRINTINTR(ATW_INTR_LINKON);
2846			PRINTINTR(ATW_INTR_RCI);
2847			PRINTINTR(ATW_INTR_RDU);
2848			PRINTINTR(ATW_INTR_REIS);
2849			PRINTINTR(ATW_INTR_RPS);
2850			PRINTINTR(ATW_INTR_TCI);
2851			PRINTINTR(ATW_INTR_TDU);
2852			PRINTINTR(ATW_INTR_TLT);
2853			PRINTINTR(ATW_INTR_TPS);
2854			PRINTINTR(ATW_INTR_TRT);
2855			PRINTINTR(ATW_INTR_TUF);
2856			PRINTINTR(ATW_INTR_BCNTC);
2857			PRINTINTR(ATW_INTR_ATIME);
2858			PRINTINTR(ATW_INTR_TBTT);
2859			PRINTINTR(ATW_INTR_TSCZ);
2860			PRINTINTR(ATW_INTR_TSFTF);
2861			printf(">\n");
2862		}
2863#undef PRINTINTR
2864#endif /* ATW_DEBUG */
2865
2866		if ((status & sc->sc_inten) == 0)
2867			break;
2868
2869		handled = 1;
2870
2871		rxstatus = status & sc->sc_rxint_mask;
2872		txstatus = status & sc->sc_txint_mask;
2873		linkstatus = status & sc->sc_linkint_mask;
2874
2875		if (linkstatus) {
2876			atw_linkintr(sc, linkstatus);
2877		}
2878
2879		if (rxstatus) {
2880			/* Grab any new packets. */
2881			atw_rxintr(sc);
2882
2883			if (rxstatus & ATW_INTR_RDU) {
2884				printf("%s: receive ring overrun\n",
2885				    sc->sc_dev.dv_xname);
2886				/* Get the receive process going again. */
2887				ATW_WRITE(sc, ATW_RDR, 0x1);
2888				break;
2889			}
2890		}
2891
2892		if (txstatus) {
2893			/* Sweep up transmit descriptors. */
2894			atw_txintr(sc);
2895
2896			if (txstatus & ATW_INTR_TLT)
2897				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2898				    sc->sc_dev.dv_xname));
2899
2900			if (txstatus & ATW_INTR_TRT)
2901				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2902				    sc->sc_dev.dv_xname));
2903
2904			/* If Tx under-run, increase our transmit threshold
2905			 * if another is available.
2906			 */
2907			txthresh = sc->sc_txthresh + 1;
2908			if ((txstatus & ATW_INTR_TUF) &&
2909			    sc->sc_txth[txthresh].txth_name != NULL) {
2910				/* Idle the transmit process. */
2911				atw_idle(sc, ATW_NAR_ST);
2912
2913				sc->sc_txthresh = txthresh;
2914				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915				sc->sc_opmode |=
2916				    sc->sc_txth[txthresh].txth_opmode;
2917				printf("%s: transmit underrun; new "
2918				    "threshold: %s\n", sc->sc_dev.dv_xname,
2919				    sc->sc_txth[txthresh].txth_name);
2920
2921				/* Set the new threshold and restart
2922				 * the transmit process.
2923				 */
2924				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925				DELAY(atw_nar_delay);
2926				ATW_WRITE(sc, ATW_RDR, 0x1);
2927				/* XXX Log every Nth underrun from
2928				 * XXX now on?
2929				 */
2930			}
2931		}
2932
2933		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2934			if (status & ATW_INTR_TPS)
2935				printf("%s: transmit process stopped\n",
2936				    sc->sc_dev.dv_xname);
2937			if (status & ATW_INTR_RPS)
2938				printf("%s: receive process stopped\n",
2939				    sc->sc_dev.dv_xname);
2940			(void)atw_init(ifp);
2941			break;
2942		}
2943
2944		if (status & ATW_INTR_FBE) {
2945			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2946			(void)atw_init(ifp);
2947			break;
2948		}
2949
2950		/*
2951		 * Not handled:
2952		 *
2953		 *	Transmit buffer unavailable -- normal
2954		 *	condition, nothing to do, really.
2955		 *
2956		 *	Early receive interrupt -- not available on
2957		 *	all chips, we just use RI.  We also only
2958		 *	use single-segment receive DMA, so this
2959		 *	is mostly useless.
2960		 *
2961		 *      TBD others
2962		 */
2963	}
2964
2965	/* Try to get more packets going. */
2966	atw_start(ifp);
2967
2968	return (handled);
2969}
2970
2971/*
2972 * atw_idle:
2973 *
2974 *	Cause the transmit and/or receive processes to go idle.
2975 *
2976 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2977 *	process in STSR if I clear SR or ST after the process has already
2978 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2979 *      do not seem to be too reliable. Perhaps I have the sense of the
2980 *	Rx bits switched with the Tx bits?
2981 */
2982void
2983atw_idle(struct atw_softc *sc, u_int32_t bits)
2984{
2985	u_int32_t ackmask = 0, opmode, stsr, test0;
2986	int i, s;
2987
2988	s = splnet();
2989
2990	opmode = sc->sc_opmode & ~bits;
2991
2992	if (bits & ATW_NAR_SR)
2993		ackmask |= ATW_INTR_RPS;
2994
2995	if (bits & ATW_NAR_ST) {
2996		ackmask |= ATW_INTR_TPS;
2997		/* set ATW_NAR_HF to flush TX FIFO. */
2998		opmode |= ATW_NAR_HF;
2999	}
3000
3001	ATW_WRITE(sc, ATW_NAR, opmode);
3002	DELAY(atw_nar_delay);
3003
3004	for (i = 0; i < 1000; i++) {
3005		stsr = ATW_READ(sc, ATW_STSR);
3006		if ((stsr & ackmask) == ackmask)
3007			break;
3008		DELAY(10);
3009	}
3010
3011	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3012
3013	if ((stsr & ackmask) == ackmask)
3014		goto out;
3015
3016	test0 = ATW_READ(sc, ATW_TEST0);
3017
3018	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3019	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3020		printf("%s: transmit process not idle [%s]\n",
3021		    sc->sc_dev.dv_xname,
3022		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3023		printf("%s: bits %08x test0 %08x stsr %08x\n",
3024		    sc->sc_dev.dv_xname, bits, test0, stsr);
3025	}
3026
3027	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3028	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3029		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3030		    sc->sc_dev.dv_xname,
3031		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3032		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3033		    sc->sc_dev.dv_xname, bits, test0, stsr));
3034	}
3035out:
3036	if ((bits & ATW_NAR_ST) != 0)
3037		atw_txdrain(sc);
3038	splx(s);
3039	return;
3040}
3041
3042/*
3043 * atw_linkintr:
3044 *
3045 *	Helper; handle link-status interrupts.
3046 */
3047void
3048atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3049{
3050	struct ieee80211com *ic = &sc->sc_ic;
3051
3052	if (ic->ic_state != IEEE80211_S_RUN)
3053		return;
3054
3055	if (linkstatus & ATW_INTR_LINKON) {
3056		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3057		sc->sc_rescan_timer = 0;
3058	} else if (linkstatus & ATW_INTR_LINKOFF) {
3059		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3060		if (ic->ic_opmode != IEEE80211_M_STA)
3061			return;
3062		sc->sc_rescan_timer = 3;
3063		sc->sc_if.if_timer = 1;
3064	}
3065}
3066
3067static __inline int
3068atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3069{
3070	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3071		return 0;
3072	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3073		return 0;
3074	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3075}
3076
3077/*
3078 * atw_rxintr:
3079 *
3080 *	Helper; handle receive interrupts.
3081 */
3082void
3083atw_rxintr(struct atw_softc *sc)
3084{
3085	static int rate_tbl[] = {2, 4, 11, 22, 44};
3086	struct ieee80211com *ic = &sc->sc_ic;
3087	struct ieee80211_node *ni;
3088	struct ieee80211_frame_min *wh;
3089	struct ifnet *ifp = &sc->sc_if;
3090	struct atw_rxsoft *rxs;
3091	struct mbuf *m;
3092	u_int32_t rxstat;
3093	int i, len, rate, rate0;
3094	u_int32_t rssi, rssi0;
3095
3096	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3097		rxs = &sc->sc_rxsoft[i];
3098
3099		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3100
3101		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3102		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3103		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3104
3105		if (rxstat & ATW_RXSTAT_OWN)
3106			break; /* We have processed all receive buffers. */
3107
3108		DPRINTF3(sc,
3109		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3110		    sc->sc_dev.dv_xname,
3111		    rxstat, rssi0,
3112		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3113		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3114
3115		/*
3116		 * Make sure the packet fits in one buffer.  This should
3117		 * always be the case.
3118		 */
3119		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3120		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3121			printf("%s: incoming packet spilled, resetting\n",
3122			    sc->sc_dev.dv_xname);
3123			(void)atw_init(ifp);
3124			return;
3125		}
3126
3127		/*
3128		 * If an error occurred, update stats, clear the status
3129		 * word, and leave the packet buffer in place.  It will
3130		 * simply be reused the next time the ring comes around.
3131	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3132		 * error.
3133		 */
3134
3135		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3136		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3137		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3138		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3139				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3140				ATW_RXSTAT_ICVE)) != 0)) {
3141#define	PRINTERR(bit, str)						\
3142			if (rxstat & (bit))				\
3143				printf("%s: receive error: %s\n",	\
3144				    sc->sc_dev.dv_xname, str)
3145			ifp->if_ierrors++;
3146			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3147			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3148			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3149			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3150			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3151			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3152			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3153#undef PRINTERR
3154			ATW_INIT_RXDESC(sc, i);
3155			continue;
3156		}
3157
3158		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3159		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3160
3161		/*
3162		 * No errors; receive the packet.  Note the ADM8211
3163		 * includes the CRC in promiscuous mode.
3164		 */
3165		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3166
3167		/*
3168		 * Allocate a new mbuf cluster.  If that fails, we are
3169		 * out of memory, and must drop the packet and recycle
3170		 * the buffer that's already attached to this descriptor.
3171		 */
3172		m = rxs->rxs_mbuf;
3173		if (atw_add_rxbuf(sc, i) != 0) {
3174			ifp->if_ierrors++;
3175			ATW_INIT_RXDESC(sc, i);
3176			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3177			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3178			continue;
3179		}
3180
3181		ifp->if_ipackets++;
3182		if (sc->sc_opmode & ATW_NAR_PR)
3183			len -= IEEE80211_CRC_LEN;
3184		m->m_pkthdr.rcvif = ifp;
3185		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3186
3187		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3188			rate = 0;
3189		else
3190			rate = rate_tbl[rate0];
3191
3192		/* The RSSI comes straight from a register in the
3193		 * baseband processor.  I know that for the RF3000,
3194		 * the RSSI register also contains the antenna-selection
3195		 * bits.  Mask those off.
3196		 *
3197		 * TBD Treat other basebands.
3198		 */
3199		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3200			rssi = rssi0 & RF3000_RSSI_MASK;
3201		else
3202			rssi = rssi0;
3203
3204 #if NBPFILTER > 0
3205		/* Pass this up to any BPF listeners. */
3206		if (sc->sc_radiobpf != NULL) {
3207			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3208
3209			tap->ar_rate = rate;
3210			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3211			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3212
3213			/* TBD verify units are dB */
3214			tap->ar_antsignal = (int)rssi;
3215			/* TBD tap->ar_flags */
3216
3217			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3218			    tap->ar_ihdr.it_len, m);
3219 		}
3220 #endif /* NPBFILTER > 0 */
3221
3222		wh = mtod(m, struct ieee80211_frame_min *);
3223		ni = ieee80211_find_rxnode(ic, wh);
3224		if (atw_hw_decrypted(sc, wh)) {
3225			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3226			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3227		}
3228		ieee80211_input(ic, m, ni, (int)rssi, 0);
3229		ieee80211_free_node(ni);
3230	}
3231
3232	/* Update the receive pointer. */
3233	sc->sc_rxptr = i;
3234}
3235
3236/*
3237 * atw_txintr:
3238 *
3239 *	Helper; handle transmit interrupts.
3240 */
3241void
3242atw_txintr(struct atw_softc *sc)
3243{
3244#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3245    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3246#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3247    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3248
3249	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3250	struct ifnet *ifp = &sc->sc_if;
3251	struct atw_txsoft *txs;
3252	u_int32_t txstat;
3253
3254	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3255	    sc->sc_dev.dv_xname, sc->sc_flags));
3256
3257	ifp->if_flags &= ~IFF_OACTIVE;
3258
3259	/*
3260	 * Go through our Tx list and free mbufs for those
3261	 * frames that have been transmitted.
3262	 */
3263	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3264		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3265		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3266
3267#ifdef ATW_DEBUG
3268		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3269			int i;
3270			printf("    txsoft %p transmit chain:\n", txs);
3271			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3272			    txs->txs_ndescs - 1,
3273			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3274			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3275				printf("     descriptor %d:\n", i);
3276				printf("       at_status:   0x%08x\n",
3277				    le32toh(sc->sc_txdescs[i].at_stat));
3278				printf("       at_flags:      0x%08x\n",
3279				    le32toh(sc->sc_txdescs[i].at_flags));
3280				printf("       at_buf1: 0x%08x\n",
3281				    le32toh(sc->sc_txdescs[i].at_buf1));
3282				printf("       at_buf2: 0x%08x\n",
3283				    le32toh(sc->sc_txdescs[i].at_buf2));
3284				if (i == txs->txs_lastdesc)
3285					break;
3286			}
3287		}
3288#endif
3289
3290		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3291		if (txstat & ATW_TXSTAT_OWN)
3292			break;
3293
3294		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3295
3296		sc->sc_txfree += txs->txs_ndescs;
3297
3298		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3299		    0, txs->txs_dmamap->dm_mapsize,
3300		    BUS_DMASYNC_POSTWRITE);
3301		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3302		m_freem(txs->txs_mbuf);
3303		txs->txs_mbuf = NULL;
3304
3305		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3306
3307		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3308		    (txstat & TXSTAT_ERRMASK) != 0) {
3309			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3310			    txstat_buf, sizeof(txstat_buf));
3311			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3312			    txstat_buf,
3313			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3314		}
3315
3316		/*
3317		 * Check for errors and collisions.
3318		 */
3319		if (txstat & ATW_TXSTAT_TUF)
3320			sc->sc_stats.ts_tx_tuf++;
3321		if (txstat & ATW_TXSTAT_TLT)
3322			sc->sc_stats.ts_tx_tlt++;
3323		if (txstat & ATW_TXSTAT_TRT)
3324			sc->sc_stats.ts_tx_trt++;
3325		if (txstat & ATW_TXSTAT_TRO)
3326			sc->sc_stats.ts_tx_tro++;
3327		if (txstat & ATW_TXSTAT_SOFBR) {
3328			sc->sc_stats.ts_tx_sofbr++;
3329		}
3330
3331		if ((txstat & ATW_TXSTAT_ES) == 0)
3332			ifp->if_collisions +=
3333			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3334		else
3335			ifp->if_oerrors++;
3336
3337		ifp->if_opackets++;
3338	}
3339
3340	/*
3341	 * If there are no more pending transmissions, cancel the watchdog
3342	 * timer.
3343	 */
3344	if (txs == NULL)
3345		sc->sc_tx_timer = 0;
3346#undef TXSTAT_ERRMASK
3347#undef TXSTAT_FMT
3348}
3349
3350/*
3351 * atw_watchdog:	[ifnet interface function]
3352 *
3353 *	Watchdog timer handler.
3354 */
3355void
3356atw_watchdog(struct ifnet *ifp)
3357{
3358	struct atw_softc *sc = ifp->if_softc;
3359	struct ieee80211com *ic = &sc->sc_ic;
3360
3361	ifp->if_timer = 0;
3362	if (ATW_IS_ENABLED(sc) == 0)
3363		return;
3364
3365	if (sc->sc_rescan_timer) {
3366		if (--sc->sc_rescan_timer == 0)
3367			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3368	}
3369	if (sc->sc_tx_timer) {
3370		if (--sc->sc_tx_timer == 0 &&
3371		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3372			printf("%s: transmit timeout\n", ifp->if_xname);
3373			ifp->if_oerrors++;
3374			(void)atw_init(ifp);
3375			atw_start(ifp);
3376		}
3377	}
3378	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3379		ifp->if_timer = 1;
3380	ieee80211_watchdog(ic);
3381}
3382
3383/* Compute the 802.11 Duration field and the PLCP Length fields for
3384 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3385 * Write the fields to the ADM8211 Tx header, frm.
3386 *
3387 * TBD use the fragmentation threshold to find the right duration for
3388 * the first & last fragments.
3389 *
3390 * TBD make certain of the duration fields applied by the ADM8211 to each
3391 * fragment. I think that the ADM8211 knows how to subtract the CTS
3392 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3393 * I also think that the ADM8211 does *some* arithmetic for us, because
3394 * otherwise I think we would have to set a first duration for CTS/first
3395 * fragment, a second duration for fragments between the first and the
3396 * last, and a third duration for the last fragment.
3397 *
3398 * TBD make certain that duration fields reflect addition of FCS/WEP
3399 * and correct duration arithmetic as necessary.
3400 */
3401static void
3402atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3403    int len)
3404{
3405	int remainder;
3406
3407	/* deal also with encrypted fragments */
3408	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3409		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3410		    sc->sc_dev.dv_xname));
3411		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3412		       IEEE80211_WEP_CRCLEN;
3413	}
3414
3415	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3416	 * duration (XXX added by MAC?).
3417	 */
3418	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3419	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3420
3421	if (rate <= 4)
3422		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3423		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3424		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3425		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3426		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3427	else
3428		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3429		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3430		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3431		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3432		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3433
3434	/* lengthen duration if long preamble */
3435	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3436		frm->atw_head_dur +=
3437		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3438		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3439		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3440		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3441
3442	if (remainder != 0)
3443		frm->atw_head_dur++;
3444
3445	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3446	    (rate == 2 || rate == 4)) {
3447		/* derived from Linux: how could this be right? */
3448		frm->atw_head_plcplen = frm->atw_head_dur;
3449	} else {
3450		frm->atw_head_plcplen = (16 * len) / rate;
3451		remainder = (80 * len) % (rate * 5);
3452
3453		if (remainder != 0) {
3454			frm->atw_head_plcplen++;
3455
3456			/* XXX magic */
3457			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3458			    rate == 22 && remainder <= 30)
3459				frm->atw_head_plcplen |= 0x8000;
3460		}
3461	}
3462	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3463	    htole16(frm->atw_head_plcplen);
3464	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3465}
3466
3467#ifdef ATW_DEBUG
3468static void
3469atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3470{
3471	struct atw_softc *sc = ifp->if_softc;
3472	struct mbuf *m;
3473	int i, noctets = 0;
3474
3475	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3476	    m0->m_pkthdr.len);
3477
3478	for (m = m0; m; m = m->m_next) {
3479		if (m->m_len == 0)
3480			continue;
3481		for (i = 0; i < m->m_len; i++) {
3482			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3483			if (++noctets % 24 == 0)
3484				printf("\n");
3485		}
3486	}
3487	printf("%s%s: %d bytes emitted\n",
3488	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3489}
3490#endif /* ATW_DEBUG */
3491
3492/*
3493 * atw_start:		[ifnet interface function]
3494 *
3495 *	Start packet transmission on the interface.
3496 */
3497void
3498atw_start(struct ifnet *ifp)
3499{
3500	struct atw_softc *sc = ifp->if_softc;
3501	struct ieee80211com *ic = &sc->sc_ic;
3502	struct ieee80211_node *ni;
3503	struct ieee80211_frame *wh;
3504	struct atw_frame *hh;
3505	struct mbuf *m0, *m;
3506	struct atw_txsoft *txs, *last_txs;
3507	struct atw_txdesc *txd;
3508	int do_encrypt, rate;
3509	bus_dmamap_t dmamap;
3510	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3511
3512	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3513	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3514
3515	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3516		return;
3517
3518	/*
3519	 * Remember the previous number of free descriptors and
3520	 * the first descriptor we'll use.
3521	 */
3522	ofree = sc->sc_txfree;
3523	firsttx = sc->sc_txnext;
3524
3525	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3526	    sc->sc_dev.dv_xname, ofree, firsttx));
3527
3528	/*
3529	 * Loop through the send queue, setting up transmit descriptors
3530	 * until we drain the queue, or use up all available transmit
3531	 * descriptors.
3532	 */
3533	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3534	       sc->sc_txfree != 0) {
3535
3536		/*
3537		 * Grab a packet off the management queue, if it
3538		 * is not empty. Otherwise, from the data queue.
3539		 */
3540		IF_DEQUEUE(&ic->ic_mgtq, m0);
3541		if (m0 != NULL) {
3542			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3543			m0->m_pkthdr.rcvif = NULL;
3544		} else {
3545			/* send no data packets until we are associated */
3546			if (ic->ic_state != IEEE80211_S_RUN)
3547				break;
3548			IFQ_DEQUEUE(&ifp->if_snd, m0);
3549			if (m0 == NULL)
3550				break;
3551#if NBPFILTER > 0
3552			if (ifp->if_bpf != NULL)
3553				bpf_mtap(ifp->if_bpf, m0);
3554#endif /* NBPFILTER > 0 */
3555			ni = ieee80211_find_txnode(ic,
3556			    mtod(m0, struct ether_header *)->ether_dhost);
3557			if (ni == NULL) {
3558				ifp->if_oerrors++;
3559				break;
3560			}
3561			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3562				ieee80211_free_node(ni);
3563				ifp->if_oerrors++;
3564				break;
3565			}
3566		}
3567
3568		rate = MAX(ieee80211_get_rate(ic), 2);
3569
3570#if NBPFILTER > 0
3571		/*
3572		 * Pass the packet to any BPF listeners.
3573		 */
3574		if (ic->ic_rawbpf != NULL)
3575			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3576
3577		if (sc->sc_radiobpf != NULL) {
3578			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3579
3580			tap->at_rate = rate;
3581			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3582			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3583
3584			/* TBD tap->at_flags */
3585
3586			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3587			    tap->at_ihdr.it_len, m0);
3588		}
3589#endif /* NBPFILTER > 0 */
3590
3591		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3592
3593		if (ni != NULL)
3594			ieee80211_free_node(ni);
3595
3596		if (m0 == NULL) {
3597			ifp->if_oerrors++;
3598			break;
3599		}
3600
3601		/* just to make sure. */
3602		m0 = m_pullup(m0, sizeof(struct atw_frame));
3603
3604		if (m0 == NULL) {
3605			ifp->if_oerrors++;
3606			break;
3607		}
3608
3609		hh = mtod(m0, struct atw_frame *);
3610		wh = &hh->atw_ihdr;
3611
3612		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3613
3614		/* Copy everything we need from the 802.11 header:
3615		 * Frame Control; address 1, address 3, or addresses
3616		 * 3 and 4. NIC fills in BSSID, SA.
3617		 */
3618		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3619			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3620				panic("%s: illegal WDS frame",
3621				    sc->sc_dev.dv_xname);
3622			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3623		} else
3624			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3625
3626		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3627
3628		/* initialize remaining Tx parameters */
3629		memset(&hh->u, 0, sizeof(hh->u));
3630
3631		hh->atw_rate = rate * 5;
3632		/* XXX this could be incorrect if M_FCS. _encap should
3633		 * probably strip FCS just in case it sticks around in
3634		 * bridged packets.
3635		 */
3636		hh->atw_service = 0x00; /* XXX guess */
3637		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3638		    sizeof(struct atw_frame));
3639
3640		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3641		hh->atw_rtylmt = 3;
3642		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3643		if (do_encrypt) {
3644			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3645			hh->atw_keyid = ic->ic_def_txkey;
3646		}
3647
3648		/* TBD 4-addr frames */
3649		atw_frame_setdurs(sc, hh, rate,
3650		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3651		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3652
3653		/* never fragment multicast frames */
3654		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3655			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3656		} else if (sc->sc_flags & ATWF_RTSCTS) {
3657			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3658		}
3659
3660#ifdef ATW_DEBUG
3661		hh->atw_fragnum = 0;
3662
3663		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3664			printf("%s: dst = %s, rate = 0x%02x, "
3665			    "service = 0x%02x, paylen = 0x%04x\n",
3666			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3667			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3668
3669			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3670			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3671			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3672			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3673			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3674			    hh->atw_tail_dur, hh->atw_head_dur);
3675
3676			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3677			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3678			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3679			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3680
3681			printf("%s: keyid = %d\n",
3682			    sc->sc_dev.dv_xname, hh->atw_keyid);
3683
3684			atw_dump_pkt(ifp, m0);
3685		}
3686#endif /* ATW_DEBUG */
3687
3688		dmamap = txs->txs_dmamap;
3689
3690		/*
3691		 * Load the DMA map.  Copy and try (once) again if the packet
3692		 * didn't fit in the alloted number of segments.
3693		 */
3694		for (first = 1;
3695		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3696		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3697		     first = 0) {
3698			MGETHDR(m, M_DONTWAIT, MT_DATA);
3699			if (m == NULL) {
3700				printf("%s: unable to allocate Tx mbuf\n",
3701				    sc->sc_dev.dv_xname);
3702				break;
3703			}
3704			if (m0->m_pkthdr.len > MHLEN) {
3705				MCLGET(m, M_DONTWAIT);
3706				if ((m->m_flags & M_EXT) == 0) {
3707					printf("%s: unable to allocate Tx "
3708					    "cluster\n", sc->sc_dev.dv_xname);
3709					m_freem(m);
3710					break;
3711				}
3712			}
3713			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3714			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3715			m_freem(m0);
3716			m0 = m;
3717			m = NULL;
3718		}
3719		if (error != 0) {
3720			printf("%s: unable to load Tx buffer, "
3721			    "error = %d\n", sc->sc_dev.dv_xname, error);
3722			m_freem(m0);
3723			break;
3724		}
3725
3726		/*
3727		 * Ensure we have enough descriptors free to describe
3728		 * the packet.
3729		 */
3730		if (dmamap->dm_nsegs > sc->sc_txfree) {
3731			/*
3732			 * Not enough free descriptors to transmit
3733			 * this packet.  Unload the DMA map and
3734			 * drop the packet.  Notify the upper layer
3735			 * that there are no more slots left.
3736			 *
3737			 * XXX We could allocate an mbuf and copy, but
3738			 * XXX it is worth it?
3739			 */
3740			ifp->if_flags |= IFF_OACTIVE;
3741			bus_dmamap_unload(sc->sc_dmat, dmamap);
3742			m_freem(m0);
3743			break;
3744		}
3745
3746		/*
3747		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3748		 */
3749
3750		/* Sync the DMA map. */
3751		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3752		    BUS_DMASYNC_PREWRITE);
3753
3754		/* XXX arbitrary retry limit; 8 because I have seen it in
3755		 * use already and maybe 0 means "no tries" !
3756		 */
3757		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3758
3759		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3760		    sc->sc_dev.dv_xname, rate * 5));
3761		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3762
3763		/*
3764		 * Initialize the transmit descriptors.
3765		 */
3766		for (nexttx = sc->sc_txnext, seg = 0;
3767		     seg < dmamap->dm_nsegs;
3768		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3769			/*
3770			 * If this is the first descriptor we're
3771			 * enqueueing, don't set the OWN bit just
3772			 * yet.  That could cause a race condition.
3773			 * We'll do it below.
3774			 */
3775			txd = &sc->sc_txdescs[nexttx];
3776			txd->at_ctl = ctl |
3777			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3778
3779			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3780			txd->at_flags =
3781			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3782			                   ATW_TXFLAG_TBS1_MASK)) |
3783			    ((nexttx == (ATW_NTXDESC - 1))
3784			        ? htole32(ATW_TXFLAG_TER) : 0);
3785			lasttx = nexttx;
3786		}
3787
3788		IASSERT(lasttx != -1, ("bad lastx"));
3789		/* Set `first segment' and `last segment' appropriately. */
3790		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3791		    htole32(ATW_TXFLAG_FS);
3792		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3793
3794#ifdef ATW_DEBUG
3795		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3796			printf("     txsoft %p transmit chain:\n", txs);
3797			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3798				printf("     descriptor %d:\n", seg);
3799				printf("       at_ctl:   0x%08x\n",
3800				    le32toh(sc->sc_txdescs[seg].at_ctl));
3801				printf("       at_flags:      0x%08x\n",
3802				    le32toh(sc->sc_txdescs[seg].at_flags));
3803				printf("       at_buf1: 0x%08x\n",
3804				    le32toh(sc->sc_txdescs[seg].at_buf1));
3805				printf("       at_buf2: 0x%08x\n",
3806				    le32toh(sc->sc_txdescs[seg].at_buf2));
3807				if (seg == lasttx)
3808					break;
3809			}
3810		}
3811#endif
3812
3813		/* Sync the descriptors we're using. */
3814		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3815		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3816
3817		/*
3818		 * Store a pointer to the packet so we can free it later,
3819		 * and remember what txdirty will be once the packet is
3820		 * done.
3821		 */
3822		txs->txs_mbuf = m0;
3823		txs->txs_firstdesc = sc->sc_txnext;
3824		txs->txs_lastdesc = lasttx;
3825		txs->txs_ndescs = dmamap->dm_nsegs;
3826
3827		/* Advance the tx pointer. */
3828		sc->sc_txfree -= dmamap->dm_nsegs;
3829		sc->sc_txnext = nexttx;
3830
3831		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3832		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3833
3834		last_txs = txs;
3835	}
3836
3837	if (txs == NULL || sc->sc_txfree == 0) {
3838		/* No more slots left; notify upper layer. */
3839		ifp->if_flags |= IFF_OACTIVE;
3840	}
3841
3842	if (sc->sc_txfree != ofree) {
3843		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3844		    sc->sc_dev.dv_xname, lasttx, firsttx));
3845		/*
3846		 * Cause a transmit interrupt to happen on the
3847		 * last packet we enqueued.
3848		 */
3849		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3850		ATW_CDTXSYNC(sc, lasttx, 1,
3851		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3852
3853		/*
3854		 * The entire packet chain is set up.  Give the
3855		 * first descriptor to the chip now.
3856		 */
3857		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3858		ATW_CDTXSYNC(sc, firsttx, 1,
3859		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3860
3861		/* Wake up the transmitter. */
3862		ATW_WRITE(sc, ATW_TDR, 0x1);
3863
3864		/* Set a watchdog timer in case the chip flakes out. */
3865		sc->sc_tx_timer = 5;
3866		ifp->if_timer = 1;
3867	}
3868}
3869
3870/*
3871 * atw_power:
3872 *
3873 *	Power management (suspend/resume) hook.
3874 */
3875void
3876atw_power(int why, void *arg)
3877{
3878	struct atw_softc *sc = arg;
3879	struct ifnet *ifp = &sc->sc_if;
3880	int s;
3881
3882	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3883
3884	s = splnet();
3885	switch (why) {
3886	case PWR_STANDBY:
3887		/* XXX do nothing. */
3888		break;
3889	case PWR_SUSPEND:
3890		atw_stop(ifp, 0);
3891		if (sc->sc_power != NULL)
3892			(*sc->sc_power)(sc, why);
3893		break;
3894	case PWR_RESUME:
3895		if (ifp->if_flags & IFF_UP) {
3896			if (sc->sc_power != NULL)
3897				(*sc->sc_power)(sc, why);
3898			atw_init(ifp);
3899		}
3900		break;
3901	case PWR_SOFTSUSPEND:
3902	case PWR_SOFTSTANDBY:
3903	case PWR_SOFTRESUME:
3904		break;
3905	}
3906	splx(s);
3907}
3908
3909/*
3910 * atw_ioctl:		[ifnet interface function]
3911 *
3912 *	Handle control requests from the operator.
3913 */
3914int
3915atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3916{
3917	struct atw_softc *sc = ifp->if_softc;
3918	struct ifreq *ifr = (struct ifreq *)data;
3919	int s, error = 0;
3920
3921	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3922	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3923		return ENXIO;
3924
3925	s = splnet();
3926
3927	switch (cmd) {
3928	case SIOCSIFFLAGS:
3929		if (ifp->if_flags & IFF_UP) {
3930			if (ATW_IS_ENABLED(sc)) {
3931				/*
3932				 * To avoid rescanning another access point,
3933				 * do not call atw_init() here.  Instead,
3934				 * only reflect media settings.
3935				 */
3936				atw_filter_setup(sc);
3937			} else
3938				error = atw_init(ifp);
3939		} else if (ATW_IS_ENABLED(sc))
3940			atw_stop(ifp, 1);
3941		break;
3942	case SIOCADDMULTI:
3943	case SIOCDELMULTI:
3944		error = (cmd == SIOCADDMULTI) ?
3945		    ether_addmulti(ifr, &sc->sc_ec) :
3946		    ether_delmulti(ifr, &sc->sc_ec);
3947		if (error == ENETRESET) {
3948			if (ifp->if_flags & IFF_RUNNING)
3949				atw_filter_setup(sc); /* do not rescan */
3950			error = 0;
3951		}
3952		break;
3953	default:
3954		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3955		if (error == ENETRESET) {
3956			if (ATW_IS_ENABLED(sc))
3957				error = atw_init(ifp);
3958			else
3959				error = 0;
3960		}
3961		break;
3962	}
3963
3964	/* Try to get more packets going. */
3965	if (ATW_IS_ENABLED(sc))
3966		atw_start(ifp);
3967
3968	splx(s);
3969	return (error);
3970}
3971
3972static int
3973atw_media_change(struct ifnet *ifp)
3974{
3975	int error;
3976
3977	error = ieee80211_media_change(ifp);
3978	if (error == ENETRESET) {
3979		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3980		    (IFF_RUNNING|IFF_UP))
3981			atw_init(ifp);		/* XXX lose error */
3982		error = 0;
3983	}
3984	return error;
3985}
3986
3987static void
3988atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3989{
3990	struct atw_softc *sc = ifp->if_softc;
3991
3992	if (ATW_IS_ENABLED(sc) == 0) {
3993		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3994		imr->ifm_status = 0;
3995		return;
3996	}
3997	ieee80211_media_status(ifp, imr);
3998}
3999