atw.c revision 1.68
1/*	$NetBSD: atw.c,v 1.68 2004/07/23 06:57:50 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.68 2004/07/23 06:57:50 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_compat.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/rf3000reg.h>
82#include <dev/ic/si4136reg.h>
83#include <dev/ic/atwvar.h>
84#include <dev/ic/smc93cx6var.h>
85
86/* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94/* device attachment
95 *
96 *    print TOFS[012]
97 *
98 * device initialization
99 *
100 *    clear ATW_FRCTL_MAXPSP to disable max power saving
101 *    set ATW_TXBR_ALCUPDATE to enable ALC
102 *    set TOFS[012]? (hope not)
103 *    disable rx/tx
104 *    set ATW_PAR_SWR (software reset)
105 *    wait for ATW_PAR_SWR clear
106 *    disable interrupts
107 *    ack status register
108 *    enable interrupts
109 *
110 * rx/tx initialization
111 *
112 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *    allocate and init descriptor rings
114 *    write ATW_PAR_DSL (descriptor skip length)
115 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 *    write ATW_NAR_SQ for one/both transmit descriptor rings
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 *    stop DMA
123 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 *    flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 *    initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 *    set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
139
140#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144int atw_bbp_io_enable_delay = 20 * 1000;
145int atw_bbp_io_disable_delay = 2 * 1000;
146int atw_writewep_delay = 1000;
147int atw_beacon_len_adjust = 4;
148int atw_dwelltime = 200;
149int atw_xindiv2 = 0;
150
151#ifdef ATW_DEBUG
152int atw_debug = 0;
153
154#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
155#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
156#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
157#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
158#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160
161static void atw_print_regs(struct atw_softc *, const char *);
162static void atw_dump_pkt(struct ifnet *, struct mbuf *);
163
164/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165#	ifdef ATW_BBPDEBUG
166static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
167static void atw_rf3000_print(struct atw_softc *);
168#	endif /* ATW_BBPDEBUG */
169
170#	ifdef ATW_SYNDEBUG
171static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
172static void atw_si4126_print(struct atw_softc *);
173#	endif /* ATW_SYNDEBUG */
174
175#else
176#define ATW_DPRINTF(x)
177#define ATW_DPRINTF2(x)
178#define ATW_DPRINTF3(x)
179#define	DPRINTF(sc, x)	/* nothing */
180#define	DPRINTF2(sc, x)	/* nothing */
181#define	DPRINTF3(sc, x)	/* nothing */
182#endif
183
184/* ifnet methods */
185void	atw_start(struct ifnet *);
186void	atw_watchdog(struct ifnet *);
187int	atw_ioctl(struct ifnet *, u_long, caddr_t);
188int	atw_init(struct ifnet *);
189void	atw_stop(struct ifnet *, int);
190
191/* Device attachment */
192void	atw_attach(struct atw_softc *);
193int	atw_detach(struct atw_softc *);
194
195/* Rx/Tx process */
196void	atw_rxdrain(struct atw_softc *);
197void	atw_txdrain(struct atw_softc *);
198int	atw_add_rxbuf(struct atw_softc *, int);
199void	atw_idle(struct atw_softc *, u_int32_t);
200
201/* Device (de)activation and power state */
202int	atw_enable(struct atw_softc *);
203void	atw_disable(struct atw_softc *);
204void	atw_power(int, void *);
205void	atw_shutdown(void *);
206void	atw_reset(struct atw_softc *);
207
208/* Interrupt handlers */
209void	atw_rxintr(struct atw_softc *);
210void	atw_txintr(struct atw_softc *);
211void	atw_linkintr(struct atw_softc *, u_int32_t);
212
213/* 802.11 state machine */
214static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
215static int	atw_tune(struct atw_softc *);
216static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
217		              struct ieee80211_node *, int, int, u_int32_t);
218
219/* Device initialization */
220static void	atw_wcsr_init(struct atw_softc *);
221static void	atw_cmdr_init(struct atw_softc *);
222static void	atw_tofs2_init(struct atw_softc *);
223static void	atw_txlmt_init(struct atw_softc *);
224static void	atw_test1_init(struct atw_softc *);
225static void	atw_rf_reset(struct atw_softc *);
226static void	atw_cfp_init(struct atw_softc *);
227static void	atw_tofs0_init(struct atw_softc *);
228static void	atw_ifs_init(struct atw_softc *);
229static void	atw_response_times_init(struct atw_softc *);
230static void	atw_bbp_io_init(struct atw_softc *);
231
232/* RAM/ROM utilities */
233static void	atw_clear_sram(struct atw_softc *);
234static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
235static int	atw_read_srom(struct atw_softc *);
236
237/* BSS setup */
238static void	atw_tsf(struct atw_softc *);
239static void	atw_start_beacon(struct atw_softc *, int);
240static void	atw_write_bssid(struct atw_softc *);
241static void	atw_write_ssid(struct atw_softc *);
242static void	atw_write_sup_rates(struct atw_softc *);
243static void	atw_write_wep(struct atw_softc *);
244
245/* Media */
246static int	atw_media_change(struct ifnet *);
247static void	atw_media_status(struct ifnet *, struct ifmediareq *);
248
249static void	atw_filter_setup(struct atw_softc *);
250
251/* 802.11 utilities */
252static void	atw_frame_setdurs(struct atw_softc *,
253		                  struct atw_frame *, int, int);
254static struct ieee80211_node	*atw_node_alloc(struct ieee80211com *);
255static void	atw_node_free(struct ieee80211com *,
256		              struct ieee80211_node *);
257static void	atw_recv_beacon(struct ieee80211com *, struct mbuf *,
258		                struct ieee80211_node *, int, int,
259		                u_int32_t);
260static __inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
261				                   uint32_t);
262static __inline void		atw_tsft(struct atw_softc *, uint32_t *,
263				         uint32_t *);
264
265/*
266 * Tuner/transceiver/modem
267 */
268static void	atw_bbp_io_enable(struct atw_softc *, int);
269
270/* RFMD RF3000 Baseband Processor */
271static int atw_rf3000_init(struct atw_softc *);
272static int atw_rf3000_tune(struct atw_softc *, u_int);
273static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
274
275/* Silicon Laboratories Si4126 RF/IF Synthesizer */
276static void atw_si4126_tune(struct atw_softc *, u_int);
277static void atw_si4126_write(struct atw_softc *, u_int, u_int);
278
279const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
280const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
281
282const char *atw_tx_state[] = {
283	"STOPPED",
284	"RUNNING - read descriptor",
285	"RUNNING - transmitting",
286	"RUNNING - filling fifo",	/* XXX */
287	"SUSPENDED",
288	"RUNNING -- write descriptor",
289	"RUNNING -- write last descriptor",
290	"RUNNING - fifo full"
291};
292
293const char *atw_rx_state[] = {
294	"STOPPED",
295	"RUNNING - read descriptor",
296	"RUNNING - check this packet, pre-fetch next",
297	"RUNNING - wait for reception",
298	"SUSPENDED",
299	"RUNNING - write descriptor",
300	"RUNNING - flush fifo",
301	"RUNNING - fifo drain"
302};
303
304int
305atw_activate(struct device *self, enum devact act)
306{
307	struct atw_softc *sc = (struct atw_softc *)self;
308	int rv = 0, s;
309
310	s = splnet();
311	switch (act) {
312	case DVACT_ACTIVATE:
313		rv = EOPNOTSUPP;
314		break;
315
316	case DVACT_DEACTIVATE:
317		if_deactivate(&sc->sc_ic.ic_if);
318		break;
319	}
320	splx(s);
321	return rv;
322}
323
324/*
325 * atw_enable:
326 *
327 *	Enable the ADM8211 chip.
328 */
329int
330atw_enable(struct atw_softc *sc)
331{
332
333	if (ATW_IS_ENABLED(sc) == 0) {
334		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
335			printf("%s: device enable failed\n",
336			    sc->sc_dev.dv_xname);
337			return (EIO);
338		}
339		sc->sc_flags |= ATWF_ENABLED;
340	}
341	return (0);
342}
343
344/*
345 * atw_disable:
346 *
347 *	Disable the ADM8211 chip.
348 */
349void
350atw_disable(struct atw_softc *sc)
351{
352	if (!ATW_IS_ENABLED(sc))
353		return;
354	if (sc->sc_disable != NULL)
355		(*sc->sc_disable)(sc);
356	sc->sc_flags &= ~ATWF_ENABLED;
357}
358
359/* Returns -1 on failure. */
360static int
361atw_read_srom(struct atw_softc *sc)
362{
363	struct seeprom_descriptor sd;
364	u_int32_t reg;
365
366	(void)memset(&sd, 0, sizeof(sd));
367
368	reg = ATW_READ(sc, ATW_TEST0);
369
370	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
371		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
372		return -1;
373	}
374
375	switch (reg & ATW_TEST0_EPTYP_MASK) {
376	case ATW_TEST0_EPTYP_93c66:
377		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
378		sc->sc_sromsz = 512;
379		sd.sd_chip = C56_66;
380		break;
381	case ATW_TEST0_EPTYP_93c46:
382		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
383		sc->sc_sromsz = 128;
384		sd.sd_chip = C46;
385		break;
386	default:
387		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
388		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
389		return -1;
390	}
391
392	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
393
394	if (sc->sc_srom == NULL) {
395		printf("%s: unable to allocate SROM buffer\n",
396		    sc->sc_dev.dv_xname);
397		return -1;
398	}
399
400	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
401
402	/* ADM8211 has a single 32-bit register for controlling the
403	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
404	 * "ready" bit. The ADM8211 input/output sense is the reverse
405	 * of read_seeprom's.
406	 */
407	sd.sd_tag = sc->sc_st;
408	sd.sd_bsh = sc->sc_sh;
409	sd.sd_regsize = 4;
410	sd.sd_control_offset = ATW_SPR;
411	sd.sd_status_offset = ATW_SPR;
412	sd.sd_dataout_offset = ATW_SPR;
413	sd.sd_CK = ATW_SPR_SCLK;
414	sd.sd_CS = ATW_SPR_SCS;
415	sd.sd_DI = ATW_SPR_SDO;
416	sd.sd_DO = ATW_SPR_SDI;
417	sd.sd_MS = ATW_SPR_SRS;
418	sd.sd_RDY = 0;
419
420	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
421		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
422		free(sc->sc_srom, M_DEVBUF);
423		return -1;
424	}
425#ifdef ATW_DEBUG
426	{
427		int i;
428		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
429		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
430			if (((i % 8) == 0) && (i != 0)) {
431				ATW_DPRINTF(("\n\t"));
432			}
433			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
434		}
435		ATW_DPRINTF(("\n"));
436	}
437#endif /* ATW_DEBUG */
438	return 0;
439}
440
441#ifdef ATW_DEBUG
442static void
443atw_print_regs(struct atw_softc *sc, const char *where)
444{
445#define PRINTREG(sc, reg) \
446	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
447	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
448
449	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
450
451	PRINTREG(sc, ATW_PAR);
452	PRINTREG(sc, ATW_FRCTL);
453	PRINTREG(sc, ATW_TDR);
454	PRINTREG(sc, ATW_WTDP);
455	PRINTREG(sc, ATW_RDR);
456	PRINTREG(sc, ATW_WRDP);
457	PRINTREG(sc, ATW_RDB);
458	PRINTREG(sc, ATW_CSR3A);
459	PRINTREG(sc, ATW_TDBD);
460	PRINTREG(sc, ATW_TDBP);
461	PRINTREG(sc, ATW_STSR);
462	PRINTREG(sc, ATW_CSR5A);
463	PRINTREG(sc, ATW_NAR);
464	PRINTREG(sc, ATW_CSR6A);
465	PRINTREG(sc, ATW_IER);
466	PRINTREG(sc, ATW_CSR7A);
467	PRINTREG(sc, ATW_LPC);
468	PRINTREG(sc, ATW_TEST1);
469	PRINTREG(sc, ATW_SPR);
470	PRINTREG(sc, ATW_TEST0);
471	PRINTREG(sc, ATW_WCSR);
472	PRINTREG(sc, ATW_WPDR);
473	PRINTREG(sc, ATW_GPTMR);
474	PRINTREG(sc, ATW_GPIO);
475	PRINTREG(sc, ATW_BBPCTL);
476	PRINTREG(sc, ATW_SYNCTL);
477	PRINTREG(sc, ATW_PLCPHD);
478	PRINTREG(sc, ATW_MMIWADDR);
479	PRINTREG(sc, ATW_MMIRADDR1);
480	PRINTREG(sc, ATW_MMIRADDR2);
481	PRINTREG(sc, ATW_TXBR);
482	PRINTREG(sc, ATW_CSR15A);
483	PRINTREG(sc, ATW_ALCSTAT);
484	PRINTREG(sc, ATW_TOFS2);
485	PRINTREG(sc, ATW_CMDR);
486	PRINTREG(sc, ATW_PCIC);
487	PRINTREG(sc, ATW_PMCSR);
488	PRINTREG(sc, ATW_PAR0);
489	PRINTREG(sc, ATW_PAR1);
490	PRINTREG(sc, ATW_MAR0);
491	PRINTREG(sc, ATW_MAR1);
492	PRINTREG(sc, ATW_ATIMDA0);
493	PRINTREG(sc, ATW_ABDA1);
494	PRINTREG(sc, ATW_BSSID0);
495	PRINTREG(sc, ATW_TXLMT);
496	PRINTREG(sc, ATW_MIBCNT);
497	PRINTREG(sc, ATW_BCNT);
498	PRINTREG(sc, ATW_TSFTH);
499	PRINTREG(sc, ATW_TSC);
500	PRINTREG(sc, ATW_SYNRF);
501	PRINTREG(sc, ATW_BPLI);
502	PRINTREG(sc, ATW_CAP0);
503	PRINTREG(sc, ATW_CAP1);
504	PRINTREG(sc, ATW_RMD);
505	PRINTREG(sc, ATW_CFPP);
506	PRINTREG(sc, ATW_TOFS0);
507	PRINTREG(sc, ATW_TOFS1);
508	PRINTREG(sc, ATW_IFST);
509	PRINTREG(sc, ATW_RSPT);
510	PRINTREG(sc, ATW_TSFTL);
511	PRINTREG(sc, ATW_WEPCTL);
512	PRINTREG(sc, ATW_WESK);
513	PRINTREG(sc, ATW_WEPCNT);
514	PRINTREG(sc, ATW_MACTEST);
515	PRINTREG(sc, ATW_FER);
516	PRINTREG(sc, ATW_FEMR);
517	PRINTREG(sc, ATW_FPSR);
518	PRINTREG(sc, ATW_FFER);
519#undef PRINTREG
520}
521#endif /* ATW_DEBUG */
522
523/*
524 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
525 */
526void
527atw_attach(struct atw_softc *sc)
528{
529	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
530		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
531	};
532	struct ieee80211com *ic = &sc->sc_ic;
533	struct ifnet *ifp = &ic->ic_if;
534	int country_code, error, i, nrate;
535	u_int32_t reg;
536	static const char *type_strings[] = {"Intersil (not supported)",
537	    "RFMD", "Marvel (not supported)"};
538
539	sc->sc_txth = atw_txthresh_tab_lo;
540
541	SIMPLEQ_INIT(&sc->sc_txfreeq);
542	SIMPLEQ_INIT(&sc->sc_txdirtyq);
543
544#ifdef ATW_DEBUG
545	atw_print_regs(sc, "atw_attach");
546#endif /* ATW_DEBUG */
547
548	/*
549	 * Allocate the control data structures, and create and load the
550	 * DMA map for it.
551	 */
552	if ((error = bus_dmamem_alloc(sc->sc_dmat,
553	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
554	    1, &sc->sc_cdnseg, 0)) != 0) {
555		printf("%s: unable to allocate control data, error = %d\n",
556		    sc->sc_dev.dv_xname, error);
557		goto fail_0;
558	}
559
560	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
561	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
562	    BUS_DMA_COHERENT)) != 0) {
563		printf("%s: unable to map control data, error = %d\n",
564		    sc->sc_dev.dv_xname, error);
565		goto fail_1;
566	}
567
568	if ((error = bus_dmamap_create(sc->sc_dmat,
569	    sizeof(struct atw_control_data), 1,
570	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
571		printf("%s: unable to create control data DMA map, "
572		    "error = %d\n", sc->sc_dev.dv_xname, error);
573		goto fail_2;
574	}
575
576	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
577	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
578	    0)) != 0) {
579		printf("%s: unable to load control data DMA map, error = %d\n",
580		    sc->sc_dev.dv_xname, error);
581		goto fail_3;
582	}
583
584	/*
585	 * Create the transmit buffer DMA maps.
586	 */
587	sc->sc_ntxsegs = ATW_NTXSEGS;
588	for (i = 0; i < ATW_TXQUEUELEN; i++) {
589		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
590		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
591		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
592			printf("%s: unable to create tx DMA map %d, "
593			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
594			goto fail_4;
595		}
596	}
597
598	/*
599	 * Create the receive buffer DMA maps.
600	 */
601	for (i = 0; i < ATW_NRXDESC; i++) {
602		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
603		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
604			printf("%s: unable to create rx DMA map %d, "
605			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
606			goto fail_5;
607		}
608	}
609	for (i = 0; i < ATW_NRXDESC; i++) {
610		sc->sc_rxsoft[i].rxs_mbuf = NULL;
611	}
612
613	/* Reset the chip to a known state. */
614	atw_reset(sc);
615
616	if (atw_read_srom(sc) == -1)
617		return;
618
619	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
620	    ATW_SR_RFTYPE_MASK);
621
622	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
623	    ATW_SR_BBPTYPE_MASK);
624
625	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
626		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
627		return;
628	}
629	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
630		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
631		return;
632	}
633
634	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
635	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
636
637	/* XXX There exists a Linux driver which seems to use RFType = 0 for
638	 * MARVEL. My bug, or theirs?
639	 */
640
641	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
642
643	switch (sc->sc_rftype) {
644	case ATW_RFTYPE_INTERSIL:
645		reg |= ATW_SYNCTL_CS1;
646		break;
647	case ATW_RFTYPE_RFMD:
648		reg |= ATW_SYNCTL_CS0;
649		break;
650	case ATW_RFTYPE_MARVEL:
651		break;
652	}
653
654	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
655	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
656
657	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
658
659	switch (sc->sc_bbptype) {
660	case ATW_BBPTYPE_INTERSIL:
661		reg |= ATW_BBPCTL_TWI;
662		break;
663	case ATW_BBPTYPE_RFMD:
664		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
665		    ATW_BBPCTL_CCA_ACTLO;
666		break;
667	case ATW_BBPTYPE_MARVEL:
668		break;
669	case ATW_C_BBPTYPE_RFMD:
670		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
671		    sc->sc_dev.dv_xname);
672		break;
673	}
674
675	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
676	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
677
678	/*
679	 * From this point forward, the attachment cannot fail.  A failure
680	 * before this point releases all resources that may have been
681	 * allocated.
682	 */
683	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
684
685	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
686	    htole16(sc->sc_srom[ATW_SR_MAC00]),
687	    htole16(sc->sc_srom[ATW_SR_MAC01]),
688	    htole16(sc->sc_srom[ATW_SR_MAC10])));
689
690	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
691	    ATW_SR_CTRY_MASK);
692
693#define ADD_CHANNEL(_ic, _chan) do {					\
694	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
695	_ic->ic_channels[_chan].ic_freq =				\
696	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
697} while (0)
698
699	/* Find available channels */
700	switch (country_code) {
701	case COUNTRY_MMK2:	/* 1-14 */
702		ADD_CHANNEL(ic, 14);
703		/*FALLTHROUGH*/
704	case COUNTRY_ETSI:	/* 1-13 */
705		for (i = 1; i <= 13; i++)
706			ADD_CHANNEL(ic, i);
707		break;
708	case COUNTRY_FCC:	/* 1-11 */
709	case COUNTRY_IC:	/* 1-11 */
710		for (i = 1; i <= 11; i++)
711			ADD_CHANNEL(ic, i);
712		break;
713	case COUNTRY_MMK:	/* 14 */
714		ADD_CHANNEL(ic, 14);
715		break;
716	case COUNTRY_FRANCE:	/* 10-13 */
717		for (i = 10; i <= 13; i++)
718			ADD_CHANNEL(ic, i);
719		break;
720	default:	/* assume channels 10-11 */
721	case COUNTRY_SPAIN:	/* 10-11 */
722		for (i = 10; i <= 11; i++)
723			ADD_CHANNEL(ic, i);
724		break;
725	}
726
727	/* Read the MAC address. */
728	reg = ATW_READ(sc, ATW_PAR0);
729	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
730	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
731	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
732	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
733	reg = ATW_READ(sc, ATW_PAR1);
734	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
735	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
736
737	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
738		printf(" could not get mac address, attach failed\n");
739		return;
740	}
741
742	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
743
744	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
745	ifp->if_softc = sc;
746	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
747	    IFF_NOTRAILERS;
748	ifp->if_ioctl = atw_ioctl;
749	ifp->if_start = atw_start;
750	ifp->if_watchdog = atw_watchdog;
751	ifp->if_init = atw_init;
752	ifp->if_stop = atw_stop;
753	IFQ_SET_READY(&ifp->if_snd);
754
755	ic->ic_phytype = IEEE80211_T_DS;
756	ic->ic_opmode = IEEE80211_M_STA;
757	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
758	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
759
760	nrate = 0;
761	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
762	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
763	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
764	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
765	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
766
767	/*
768	 * Call MI attach routines.
769	 */
770
771	if_attach(ifp);
772	ieee80211_ifattach(ifp);
773
774	sc->sc_newstate = ic->ic_newstate;
775	ic->ic_newstate = atw_newstate;
776
777	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
778	ic->ic_recv_mgmt = atw_recv_mgmt;
779
780	sc->sc_node_free = ic->ic_node_free;
781	ic->ic_node_free = atw_node_free;
782
783	sc->sc_node_alloc = ic->ic_node_alloc;
784	ic->ic_node_alloc = atw_node_alloc;
785
786	/* possibly we should fill in our own sc_send_prresp, since
787	 * the ADM8211 is probably sending probe responses in ad hoc
788	 * mode.
789	 */
790
791	/* complete initialization */
792	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
793	callout_init(&sc->sc_scan_ch);
794
795#if NBPFILTER > 0
796	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
797	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
798#endif
799
800	/*
801	 * Make sure the interface is shutdown during reboot.
802	 */
803	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
804	if (sc->sc_sdhook == NULL)
805		printf("%s: WARNING: unable to establish shutdown hook\n",
806		    sc->sc_dev.dv_xname);
807
808	/*
809	 * Add a suspend hook to make sure we come back up after a
810	 * resume.
811	 */
812	sc->sc_powerhook = powerhook_establish(atw_power, sc);
813	if (sc->sc_powerhook == NULL)
814		printf("%s: WARNING: unable to establish power hook\n",
815		    sc->sc_dev.dv_xname);
816
817	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
818	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
819	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
820
821	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
822	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
823	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
824
825	return;
826
827	/*
828	 * Free any resources we've allocated during the failed attach
829	 * attempt.  Do this in reverse order and fall through.
830	 */
831 fail_5:
832	for (i = 0; i < ATW_NRXDESC; i++) {
833		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
834			continue;
835		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
836	}
837 fail_4:
838	for (i = 0; i < ATW_TXQUEUELEN; i++) {
839		if (sc->sc_txsoft[i].txs_dmamap == NULL)
840			continue;
841		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
842	}
843	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
844 fail_3:
845	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
846 fail_2:
847	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
848	    sizeof(struct atw_control_data));
849 fail_1:
850	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
851 fail_0:
852	return;
853}
854
855static struct ieee80211_node *
856atw_node_alloc(struct ieee80211com *ic)
857{
858	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
859	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
860
861	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
862	return ni;
863}
864
865static void
866atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
867{
868	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
869
870	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
871	    ether_sprintf(ni->ni_bssid)));
872	(*sc->sc_node_free)(ic, ni);
873}
874
875/*
876 * atw_reset:
877 *
878 *	Perform a soft reset on the ADM8211.
879 */
880void
881atw_reset(struct atw_softc *sc)
882{
883	int i;
884	uint32_t lpc;
885
886	ATW_WRITE(sc, ATW_NAR, 0x0);
887	DELAY(20 * 1000);
888
889	/* Reference driver has a cryptic remark indicating that this might
890	 * power-on the chip.  I know that it turns off power-saving....
891	 */
892	ATW_WRITE(sc, ATW_FRCTL, 0x0);
893
894	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
895
896	for (i = 0; i < 50; i++) {
897		if (ATW_READ(sc, ATW_PAR) == 0)
898			break;
899		DELAY(1000);
900	}
901
902	/* ... and then pause 100ms longer for good measure. */
903	DELAY(100 * 1000);
904
905	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
906
907	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
908		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
909
910	/*
911	 * Initialize the PCI Access Register.
912	 */
913	sc->sc_busmode = ATW_PAR_PBL_8DW;
914
915	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
916	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
917	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
918
919	/* Turn off maximum power saving, etc.
920	 *
921	 * XXX Following example of reference driver, should I set
922	 * an AID of 1?  It didn't seem to help....
923	 */
924	ATW_WRITE(sc, ATW_FRCTL, 0x0);
925
926	DELAY(100 * 1000);
927
928	/* Recall EEPROM. */
929	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
930
931	DELAY(10 * 1000);
932
933	lpc = ATW_READ(sc, ATW_LPC);
934
935	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
936
937	/* A reset seems to affect the SRAM contents, so put them into
938	 * a known state.
939	 */
940	atw_clear_sram(sc);
941
942	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
943}
944
945static void
946atw_clear_sram(struct atw_softc *sc)
947{
948	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
949	/* XXX not for revision 0x20. */
950	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
951}
952
953/* TBD atw_init
954 *
955 * set MAC based on ic->ic_bss->myaddr
956 * write WEP keys
957 * set TX rate
958 */
959
960/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
961 * without receiving a beacon with the preferred BSSID & SSID.
962 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
963 */
964static void
965atw_wcsr_init(struct atw_softc *sc)
966{
967	uint32_t wcsr;
968
969	wcsr = ATW_READ(sc, ATW_WCSR);
970	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
971	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
972	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
973
974	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
975	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
976}
977
978/* Turn off power management.  Set Rx store-and-forward mode. */
979static void
980atw_cmdr_init(struct atw_softc *sc)
981{
982	uint32_t cmdr;
983	cmdr = ATW_READ(sc, ATW_CMDR);
984	cmdr &= ~ATW_CMDR_APM;
985	cmdr |= ATW_CMDR_RTE;
986	cmdr &= ~ATW_CMDR_DRT_MASK;
987	cmdr |= ATW_CMDR_DRT_SF;
988
989	ATW_WRITE(sc, ATW_CMDR, cmdr);
990}
991
992static void
993atw_tofs2_init(struct atw_softc *sc)
994{
995	uint32_t tofs2;
996	/* XXX this magic can probably be figured out from the RFMD docs */
997#ifndef ATW_REFSLAVE
998	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
999	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1000	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1001	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1002	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1003	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1004	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1005	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1006#else
1007	/* XXX new magic from reference driver source */
1008	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1009	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1010	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1011	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1012	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1013	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1014	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1015	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1016#endif
1017	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1018}
1019
1020static void
1021atw_nar_init(struct atw_softc *sc)
1022{
1023	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1024}
1025
1026static void
1027atw_txlmt_init(struct atw_softc *sc)
1028{
1029	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1030	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1031}
1032
1033static void
1034atw_test1_init(struct atw_softc *sc)
1035{
1036	uint32_t test1;
1037
1038	test1 = ATW_READ(sc, ATW_TEST1);
1039	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1040	/* XXX magic 0x1 */
1041	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1042	ATW_WRITE(sc, ATW_TEST1, test1);
1043}
1044
1045static void
1046atw_rf_reset(struct atw_softc *sc)
1047{
1048	/* XXX this resets an Intersil RF front-end? */
1049	/* TBD condition on Intersil RFType? */
1050	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1051	DELAY(10 * 1000);
1052	ATW_WRITE(sc, ATW_SYNRF, 0);
1053	DELAY(5 * 1000);
1054}
1055
1056/* Set 16 TU max duration for the contention-free period (CFP). */
1057static void
1058atw_cfp_init(struct atw_softc *sc)
1059{
1060	uint32_t cfpp;
1061
1062	cfpp = ATW_READ(sc, ATW_CFPP);
1063	cfpp &= ~ATW_CFPP_CFPMD;
1064	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1065	ATW_WRITE(sc, ATW_CFPP, cfpp);
1066}
1067
1068static void
1069atw_tofs0_init(struct atw_softc *sc)
1070{
1071	/* XXX I guess that the Cardbus clock is 22MHz?
1072	 * I am assuming that the role of ATW_TOFS0_USCNT is
1073	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1074	 * very clear on this point. It says in the datasheet that it is
1075	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1076	 * and 33MHz; maybe this is the way? I see a binary-only driver write
1077	 * these values. These values are also the power-on default.
1078	 */
1079	ATW_WRITE(sc, ATW_TOFS0,
1080	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1081	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1082}
1083
1084/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1085static void
1086atw_ifs_init(struct atw_softc *sc)
1087{
1088	uint32_t ifst;
1089	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1090	 * Go figure.
1091	 */
1092	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1093	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1094	             ATW_IFST_SIFS_MASK) |
1095	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1096	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1097
1098	ATW_WRITE(sc, ATW_IFST, ifst);
1099}
1100
1101static void
1102atw_response_times_init(struct atw_softc *sc)
1103{
1104	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1105	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1106	 * to pass after it transmits a frame that requires a response;
1107	 * it waits at most SIFS + MART microseconds for the response.
1108	 * Surely this is not the ACK timeout?
1109	 */
1110	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1111	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1112}
1113
1114/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1115 * engines read and write baseband registers after Rx and before
1116 * Tx, respectively.
1117 */
1118static void
1119atw_bbp_io_init(struct atw_softc *sc)
1120{
1121	switch (sc->sc_bbptype) {
1122	case ATW_BBPTYPE_INTERSIL:
1123		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1124		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1125		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1126		break;
1127	case ATW_BBPTYPE_MARVEL:
1128		/* TBD find out the Marvel settings. */
1129		break;
1130	case ATW_BBPTYPE_RFMD:
1131	default:
1132		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1133		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1134		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1135		break;
1136	}
1137	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1138}
1139
1140/*
1141 * atw_init:		[ ifnet interface function ]
1142 *
1143 *	Initialize the interface.  Must be called at splnet().
1144 */
1145int
1146atw_init(struct ifnet *ifp)
1147{
1148	struct atw_softc *sc = ifp->if_softc;
1149	struct ieee80211com *ic = &sc->sc_ic;
1150	struct atw_txsoft *txs;
1151	struct atw_rxsoft *rxs;
1152	int i, error = 0;
1153
1154	if ((error = atw_enable(sc)) != 0)
1155		goto out;
1156
1157	/*
1158	 * Cancel any pending I/O. This also resets.
1159	 */
1160	atw_stop(ifp, 0);
1161
1162	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1163	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1164	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1165	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1166
1167	atw_wcsr_init(sc);
1168
1169	atw_cmdr_init(sc);
1170
1171	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1172	 *
1173	 * XXX Set transmit power for ATIM, RTS, Beacon.
1174	 */
1175	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1176	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1177
1178	atw_tofs2_init(sc);
1179
1180	atw_nar_init(sc);
1181
1182	atw_txlmt_init(sc);
1183
1184	atw_test1_init(sc);
1185
1186	atw_rf_reset(sc);
1187
1188	atw_cfp_init(sc);
1189
1190	atw_tofs0_init(sc);
1191
1192	atw_ifs_init(sc);
1193
1194	/* XXX Fall asleep after one second of inactivity.
1195	 * XXX A frame may only dribble in for 65536us.
1196	 */
1197	ATW_WRITE(sc, ATW_RMD,
1198	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1199
1200	atw_response_times_init(sc);
1201
1202	atw_bbp_io_init(sc);
1203
1204	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1205
1206	if ((error = atw_rf3000_init(sc)) != 0)
1207		goto out;
1208
1209	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1210	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1211	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1212
1213	/*
1214	 * Initialize the transmit descriptor ring.
1215	 */
1216	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1217	for (i = 0; i < ATW_NTXDESC; i++) {
1218		sc->sc_txdescs[i].at_ctl = 0;
1219		/* no transmit chaining */
1220		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1221		sc->sc_txdescs[i].at_buf2 =
1222		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1223	}
1224	/* use ring mode */
1225	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1226	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1227	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1228	sc->sc_txfree = ATW_NTXDESC;
1229	sc->sc_txnext = 0;
1230
1231	/*
1232	 * Initialize the transmit job descriptors.
1233	 */
1234	SIMPLEQ_INIT(&sc->sc_txfreeq);
1235	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1236	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1237		txs = &sc->sc_txsoft[i];
1238		txs->txs_mbuf = NULL;
1239		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1240	}
1241
1242	/*
1243	 * Initialize the receive descriptor and receive job
1244	 * descriptor rings.
1245	 */
1246	for (i = 0; i < ATW_NRXDESC; i++) {
1247		rxs = &sc->sc_rxsoft[i];
1248		if (rxs->rxs_mbuf == NULL) {
1249			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1250				printf("%s: unable to allocate or map rx "
1251				    "buffer %d, error = %d\n",
1252				    sc->sc_dev.dv_xname, i, error);
1253				/*
1254				 * XXX Should attempt to run with fewer receive
1255				 * XXX buffers instead of just failing.
1256				 */
1257				atw_rxdrain(sc);
1258				goto out;
1259			}
1260		} else
1261			ATW_INIT_RXDESC(sc, i);
1262	}
1263	sc->sc_rxptr = 0;
1264
1265	/*
1266	 * Initialize the interrupt mask and enable interrupts.
1267	 */
1268	/* normal interrupts */
1269	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1270	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1271
1272	/* abnormal interrupts */
1273	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1274	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1275	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1276
1277	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1278	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1279	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1280	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1281	    ATW_INTR_TRT;
1282
1283	sc->sc_linkint_mask &= sc->sc_inten;
1284	sc->sc_rxint_mask &= sc->sc_inten;
1285	sc->sc_txint_mask &= sc->sc_inten;
1286
1287	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1288	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1289
1290	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1291	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1292
1293	/*
1294	 * Give the transmit and receive rings to the ADM8211.
1295	 */
1296	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1297	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1298
1299	sc->sc_txthresh = 0;
1300	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1301	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1302
1303	/* common 802.11 configuration */
1304	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1305	switch (ic->ic_opmode) {
1306	case IEEE80211_M_STA:
1307		break;
1308	case IEEE80211_M_AHDEMO: /* XXX */
1309	case IEEE80211_M_IBSS:
1310		ic->ic_flags |= IEEE80211_F_IBSSON;
1311		/*FALLTHROUGH*/
1312	case IEEE80211_M_HOSTAP: /* XXX */
1313		break;
1314	case IEEE80211_M_MONITOR: /* XXX */
1315		break;
1316	}
1317
1318	switch (ic->ic_opmode) {
1319	case IEEE80211_M_AHDEMO:
1320	case IEEE80211_M_HOSTAP:
1321		ic->ic_bss->ni_intval = ic->ic_lintval;
1322		ic->ic_bss->ni_rssi = 0;
1323		ic->ic_bss->ni_rstamp = 0;
1324		break;
1325	default:					/* XXX */
1326		break;
1327	}
1328
1329	sc->sc_wepctl = 0;
1330
1331	atw_write_ssid(sc);
1332	atw_write_sup_rates(sc);
1333	if (ic->ic_caps & IEEE80211_C_WEP)
1334		atw_write_wep(sc);
1335
1336	ic->ic_state = IEEE80211_S_INIT;
1337
1338	/*
1339	 * Set the receive filter.  This will start the transmit and
1340	 * receive processes.
1341	 */
1342	atw_filter_setup(sc);
1343
1344	/*
1345	 * Start the receive process.
1346	 */
1347	ATW_WRITE(sc, ATW_RDR, 0x1);
1348
1349	/*
1350	 * Note that the interface is now running.
1351	 */
1352	ifp->if_flags |= IFF_RUNNING;
1353	ifp->if_flags &= ~IFF_OACTIVE;
1354
1355	/* send no beacons, yet. */
1356	atw_start_beacon(sc, 0);
1357
1358	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1359		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1360	else
1361		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1362 out:
1363	if (error) {
1364		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1365		ifp->if_timer = 0;
1366		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1367	}
1368#ifdef ATW_DEBUG
1369	atw_print_regs(sc, "end of init");
1370#endif /* ATW_DEBUG */
1371
1372	return (error);
1373}
1374
1375/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1376 *           0: MAC control of RF3000/Si4126.
1377 *
1378 * Applies power, or selects RF front-end? Sets reset condition.
1379 *
1380 * TBD support non-RFMD BBP, non-SiLabs synth.
1381 */
1382static void
1383atw_bbp_io_enable(struct atw_softc *sc, int enable)
1384{
1385	if (enable) {
1386		ATW_WRITE(sc, ATW_SYNRF,
1387		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1388		DELAY(atw_bbp_io_enable_delay);
1389	} else {
1390		ATW_WRITE(sc, ATW_SYNRF, 0);
1391		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1392	}
1393}
1394
1395static int
1396atw_tune(struct atw_softc *sc)
1397{
1398	int rc;
1399	u_int chan;
1400	struct ieee80211com *ic = &sc->sc_ic;
1401
1402	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1403	if (chan == IEEE80211_CHAN_ANY)
1404		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1405
1406	if (chan == sc->sc_cur_chan)
1407		return 0;
1408
1409	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1410	    sc->sc_cur_chan, chan));
1411
1412	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1413
1414	atw_si4126_tune(sc, chan);
1415	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1416		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1417		    chan);
1418
1419	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1420	DELAY(20 * 1000);
1421	ATW_WRITE(sc, ATW_RDR, 0x1);
1422
1423	if (rc == 0)
1424		sc->sc_cur_chan = chan;
1425
1426	return rc;
1427}
1428
1429#ifdef ATW_SYNDEBUG
1430static void
1431atw_si4126_print(struct atw_softc *sc)
1432{
1433	struct ifnet *ifp = &sc->sc_ic.ic_if;
1434	u_int addr, val;
1435
1436	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1437		return;
1438
1439	for (addr = 0; addr <= 8; addr++) {
1440		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1441		if (atw_si4126_read(sc, addr, &val) == 0) {
1442			printf("<unknown> (quitting print-out)\n");
1443			break;
1444		}
1445		printf("%05x\n", val);
1446	}
1447}
1448#endif /* ATW_SYNDEBUG */
1449
1450/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1451 *
1452 * The RF/IF synthesizer produces two reference frequencies for
1453 * the RF2948B transceiver.  The first frequency the RF2948B requires
1454 * is two times the so-called "intermediate frequency" (IF). Since
1455 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1456 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1457 * frequency required by the transceiver is the radio frequency
1458 * (RF). This is a superheterodyne transceiver; for f(chan) the
1459 * center frequency of the channel we are tuning, RF = f(chan) -
1460 * IF.
1461 *
1462 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1463 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1464 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1465 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1466 */
1467static void
1468atw_si4126_tune(struct atw_softc *sc, u_int chan)
1469{
1470	u_int mhz;
1471	u_int R;
1472	u_int32_t gpio;
1473	u_int16_t gain;
1474
1475#ifdef ATW_SYNDEBUG
1476	atw_si4126_print(sc);
1477#endif /* ATW_SYNDEBUG */
1478
1479	if (chan == 14)
1480		mhz = 2484;
1481	else
1482		mhz = 2412 + 5 * (chan - 1);
1483
1484	/* Tune IF to 748MHz to suit the IF LO input of the
1485	 * RF2494B, which is 2 x IF. No need to set an IF divider
1486         * because an IF in 526MHz - 952MHz is allowed.
1487	 *
1488	 * XIN is 44.000MHz, so divide it by two to get allowable
1489	 * range of 2-25MHz. SiLabs tells me that this is not
1490	 * strictly necessary.
1491	 */
1492
1493	if (atw_xindiv2)
1494		R = 44;
1495	else
1496		R = 88;
1497
1498	/* Power-up RF, IF synthesizers. */
1499	atw_si4126_write(sc, SI4126_POWER,
1500	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1501
1502	/* set LPWR, too? */
1503	atw_si4126_write(sc, SI4126_MAIN,
1504	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1505
1506	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1507	 * set KP2 to 1.
1508	 *
1509	 * REFDIF This is different from the reference driver, which
1510	 * always sets SI4126_GAIN to 0.
1511	 */
1512	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1513
1514	atw_si4126_write(sc, SI4126_GAIN, gain);
1515
1516	/* XIN = 44MHz.
1517	 *
1518	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1519	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1520	 *
1521	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1522	 * so that 1496/88 * 44MHz = 748MHz.
1523	 */
1524	atw_si4126_write(sc, SI4126_IFN, 1496);
1525
1526	atw_si4126_write(sc, SI4126_IFR, R);
1527
1528#ifndef ATW_REFSLAVE
1529	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1530	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1531	 * which has no RF1!
1532	 */
1533	atw_si4126_write(sc, SI4126_RF1R, R);
1534
1535	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1536#endif
1537
1538	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1539	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1540	 * Now let's multiply it to mhz. So mhz - IF = N.
1541	 */
1542	atw_si4126_write(sc, SI4126_RF2R, R);
1543
1544	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1545
1546	/* wait 100us from power-up for RF, IF to settle */
1547	DELAY(100);
1548
1549	gpio = ATW_READ(sc, ATW_GPIO);
1550	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1551	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1552
1553	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1554		/* Set a Prism RF front-end to a special mode for channel 14?
1555		 *
1556		 * Apparently the SMC2635W needs this, although I don't think
1557		 * it has a Prism RF.
1558		 */
1559		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1560	}
1561	ATW_WRITE(sc, ATW_GPIO, gpio);
1562
1563#ifdef ATW_SYNDEBUG
1564	atw_si4126_print(sc);
1565#endif /* ATW_SYNDEBUG */
1566}
1567
1568/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1569 * diversity.
1570 *
1571 * !!!
1572 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1573 * !!!
1574 */
1575static int
1576atw_rf3000_init(struct atw_softc *sc)
1577{
1578	int rc = 0;
1579
1580	atw_bbp_io_enable(sc, 1);
1581
1582	/* CCA is acquisition sensitive */
1583	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1584	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1585
1586	if (rc != 0)
1587		goto out;
1588
1589	/* enable diversity */
1590	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1591
1592	if (rc != 0)
1593		goto out;
1594
1595	/* sensible setting from a binary-only driver */
1596	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1597	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1598
1599	if (rc != 0)
1600		goto out;
1601
1602	/* magic from a binary-only driver */
1603	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1604	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1605
1606	if (rc != 0)
1607		goto out;
1608
1609	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1610
1611	if (rc != 0)
1612		goto out;
1613
1614	/* XXX Reference driver remarks that Abocom sets this to 50.
1615	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1616	 * in the "reserved" area of register RF3000_OPTIONS1.
1617	 *
1618	 * EEPROMs for the ADM8211B contain a setting for this register.
1619	 */
1620	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1621
1622	if (rc != 0)
1623		goto out;
1624
1625	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1626
1627	if (rc != 0)
1628		goto out;
1629
1630out:
1631	atw_bbp_io_enable(sc, 0);
1632	return rc;
1633}
1634
1635#ifdef ATW_BBPDEBUG
1636static void
1637atw_rf3000_print(struct atw_softc *sc)
1638{
1639	struct ifnet *ifp = &sc->sc_ic.ic_if;
1640	u_int addr, val;
1641
1642	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1643		return;
1644
1645	for (addr = 0x01; addr <= 0x15; addr++) {
1646		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1647		if (atw_rf3000_read(sc, addr, &val) != 0) {
1648			printf("<unknown> (quitting print-out)\n");
1649			break;
1650		}
1651		printf("%08x\n", val);
1652	}
1653}
1654#endif /* ATW_BBPDEBUG */
1655
1656/* Set the power settings on the BBP for channel `chan'. */
1657static int
1658atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1659{
1660	int rc = 0;
1661	u_int32_t reg;
1662	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1663
1664	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1665	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1666	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1667
1668	/* odd channels: LSB, even channels: MSB */
1669	if (chan % 2 == 1) {
1670		txpower &= 0xFF;
1671		lpf_cutoff &= 0xFF;
1672		lna_gs_thresh &= 0xFF;
1673	} else {
1674		txpower >>= 8;
1675		lpf_cutoff >>= 8;
1676		lna_gs_thresh >>= 8;
1677	}
1678
1679#ifdef ATW_BBPDEBUG
1680	atw_rf3000_print(sc);
1681#endif /* ATW_BBPDEBUG */
1682
1683	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1684	    "lna_gs_thresh %02x\n",
1685	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1686
1687	atw_bbp_io_enable(sc, 1);
1688
1689	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1690	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1691		goto out;
1692
1693	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1694		goto out;
1695
1696	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1697		goto out;
1698
1699	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1700
1701	if (rc != 0)
1702		goto out;
1703
1704	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1705
1706	if (rc != 0)
1707		goto out;
1708
1709#ifdef ATW_BBPDEBUG
1710	atw_rf3000_print(sc);
1711#endif /* ATW_BBPDEBUG */
1712
1713out:
1714	atw_bbp_io_enable(sc, 0);
1715
1716	/* set beacon, rts, atim transmit power */
1717	reg = ATW_READ(sc, ATW_PLCPHD);
1718	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1719	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1720	    ATW_PLCPHD_SERVICE_MASK);
1721	ATW_WRITE(sc, ATW_PLCPHD, reg);
1722	DELAY(2 * 1000);
1723
1724	return rc;
1725}
1726
1727/* Write a register on the RF3000 baseband processor using the
1728 * registers provided by the ADM8211 for this purpose.
1729 *
1730 * Return 0 on success.
1731 */
1732static int
1733atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1734{
1735	u_int32_t reg;
1736	int i;
1737
1738	reg = sc->sc_bbpctl_wr |
1739	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1740	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1741
1742	for (i = 10; --i >= 0; ) {
1743		ATW_WRITE(sc, ATW_BBPCTL, reg);
1744		DELAY(2000);
1745		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1746			break;
1747	}
1748
1749	if (i < 0) {
1750		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1751		return ETIMEDOUT;
1752	}
1753	return 0;
1754}
1755
1756/* Read a register on the RF3000 baseband processor using the registers
1757 * the ADM8211 provides for this purpose.
1758 *
1759 * The 7-bit register address is addr.  Record the 8-bit data in the register
1760 * in *val.
1761 *
1762 * Return 0 on success.
1763 *
1764 * XXX This does not seem to work. The ADM8211 must require more or
1765 * different magic to read the chip than to write it. Possibly some
1766 * of the magic I have derived from a binary-only driver concerns
1767 * the "chip address" (see the RF3000 manual).
1768 */
1769#ifdef ATW_BBPDEBUG
1770static int
1771atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1772{
1773	u_int32_t reg;
1774	int i;
1775
1776	for (i = 1000; --i >= 0; ) {
1777		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1778			break;
1779		DELAY(100);
1780	}
1781
1782	if (i < 0) {
1783		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1784		    sc->sc_dev.dv_xname);
1785		return ETIMEDOUT;
1786	}
1787
1788	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1789
1790	ATW_WRITE(sc, ATW_BBPCTL, reg);
1791
1792	for (i = 1000; --i >= 0; ) {
1793		DELAY(100);
1794		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1795			break;
1796	}
1797
1798	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1799
1800	if (i < 0) {
1801		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1802		    sc->sc_dev.dv_xname, reg);
1803		return ETIMEDOUT;
1804	}
1805	if (val != NULL)
1806		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1807	return 0;
1808}
1809#endif /* ATW_BBPDEBUG */
1810
1811/* Write a register on the Si4126 RF/IF synthesizer using the registers
1812 * provided by the ADM8211 for that purpose.
1813 *
1814 * val is 18 bits of data, and val is the 4-bit address of the register.
1815 *
1816 * Return 0 on success.
1817 */
1818static void
1819atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1820{
1821	uint32_t bits, mask, reg;
1822	const int nbits = 22;
1823
1824	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1825	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1826
1827	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1828	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1829
1830	reg = ATW_SYNRF_SELSYN;
1831	/* reference driver: reset Si4126 serial bus to initial
1832	 * conditions?
1833	 */
1834	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1835	ATW_WRITE(sc, ATW_SYNRF, reg);
1836
1837	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1838		if ((bits & mask) != 0)
1839			reg |= ATW_SYNRF_SYNDATA;
1840		else
1841			reg &= ~ATW_SYNRF_SYNDATA;
1842		ATW_WRITE(sc, ATW_SYNRF, reg);
1843		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1844		ATW_WRITE(sc, ATW_SYNRF, reg);
1845	}
1846	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1847	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1848}
1849
1850/* Read 18-bit data from the 4-bit address addr in Si4126
1851 * RF synthesizer and write the data to *val. Return 0 on success.
1852 *
1853 * XXX This does not seem to work. The ADM8211 must require more or
1854 * different magic to read the chip than to write it.
1855 */
1856#ifdef ATW_SYNDEBUG
1857static int
1858atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1859{
1860	u_int32_t reg;
1861	int i;
1862
1863	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1864
1865	for (i = 1000; --i >= 0; ) {
1866		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1867			break;
1868		DELAY(100);
1869	}
1870
1871	if (i < 0) {
1872		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1873		    sc->sc_dev.dv_xname);
1874		return ETIMEDOUT;
1875	}
1876
1877	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1878
1879	ATW_WRITE(sc, ATW_SYNCTL, reg);
1880
1881	for (i = 1000; --i >= 0; ) {
1882		DELAY(100);
1883		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1884			break;
1885	}
1886
1887	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1888
1889	if (i < 0) {
1890		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1891		    sc->sc_dev.dv_xname, reg);
1892		return ETIMEDOUT;
1893	}
1894	if (val != NULL)
1895		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1896		                       ATW_SYNCTL_DATA_MASK);
1897	return 0;
1898}
1899#endif /* ATW_SYNDEBUG */
1900
1901/* XXX is the endianness correct? test. */
1902#define	atw_calchash(addr) \
1903	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1904
1905/*
1906 * atw_filter_setup:
1907 *
1908 *	Set the ADM8211's receive filter.
1909 */
1910static void
1911atw_filter_setup(struct atw_softc *sc)
1912{
1913	struct ieee80211com *ic = &sc->sc_ic;
1914	struct ethercom *ec = &ic->ic_ec;
1915	struct ifnet *ifp = &sc->sc_ic.ic_if;
1916	int hash;
1917	u_int32_t hashes[2];
1918	struct ether_multi *enm;
1919	struct ether_multistep step;
1920
1921	/* According to comments in tlp_al981_filter_setup
1922	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1923	 * multicast filter to be set while it is running.  Hopefully
1924	 * the ADM8211 is not the same!
1925	 */
1926	if ((ifp->if_flags & IFF_RUNNING) != 0)
1927		atw_idle(sc, ATW_NAR_SR);
1928
1929	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1930
1931	/* XXX in scan mode, do not filter packets.  Maybe this is
1932	 * unnecessary.
1933	 */
1934	if (ic->ic_state == IEEE80211_S_SCAN ||
1935	    (ifp->if_flags & IFF_PROMISC) != 0) {
1936		sc->sc_opmode |= ATW_NAR_PR;
1937		goto allmulti;
1938	}
1939
1940	hashes[0] = hashes[1] = 0x0;
1941
1942	/*
1943	 * Program the 64-bit multicast hash filter.
1944	 */
1945	ETHER_FIRST_MULTI(step, ec, enm);
1946	while (enm != NULL) {
1947		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1948		    ETHER_ADDR_LEN) != 0)
1949			goto allmulti;
1950
1951		hash = atw_calchash(enm->enm_addrlo);
1952		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1953		ETHER_NEXT_MULTI(step, enm);
1954	}
1955	ifp->if_flags &= ~IFF_ALLMULTI;
1956	goto setit;
1957
1958allmulti:
1959	ifp->if_flags |= IFF_ALLMULTI;
1960	hashes[0] = hashes[1] = 0xffffffff;
1961
1962setit:
1963	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1964	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1965	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1966	DELAY(20 * 1000);
1967
1968	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1969	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1970}
1971
1972/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1973 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1974 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1975 * no beacon with the preferred BSSID and SSID in the number of
1976 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1977 */
1978static void
1979atw_write_bssid(struct atw_softc *sc)
1980{
1981	struct ieee80211com *ic = &sc->sc_ic;
1982	u_int8_t *bssid;
1983
1984	bssid = ic->ic_bss->ni_bssid;
1985
1986	ATW_WRITE(sc, ATW_BSSID0,
1987	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1988	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1989	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1990	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1991
1992	ATW_WRITE(sc, ATW_ABDA1,
1993	    (ATW_READ(sc, ATW_ABDA1) &
1994	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1995	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1996	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1997
1998	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1999	    ether_sprintf(sc->sc_bssid)));
2000	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2001
2002	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2003}
2004
2005/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2006 * 16-bit word.
2007 */
2008static void
2009atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2010{
2011	u_int i;
2012	u_int8_t *ptr;
2013
2014	memcpy(&sc->sc_sram[ofs], buf, buflen);
2015
2016	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2017
2018	KASSERT(buflen + ofs <= ATW_SRAM_A_SIZE);
2019
2020	ptr = &sc->sc_sram[ofs];
2021
2022	for (i = 0; i < buflen; i += 2) {
2023		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2024		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2025		DELAY(atw_writewep_delay);
2026
2027		ATW_WRITE(sc, ATW_WESK,
2028		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2029		DELAY(atw_writewep_delay);
2030	}
2031	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2032
2033	if (sc->sc_if.if_flags & IFF_DEBUG) {
2034		int n_octets = 0;
2035		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2036		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2037		for (i = 0; i < buflen; i++) {
2038			printf(" %02x", ptr[i]);
2039			if (++n_octets % 24 == 0)
2040				printf("\n");
2041		}
2042		if (n_octets % 24 != 0)
2043			printf("\n");
2044	}
2045}
2046
2047/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2048static void
2049atw_write_wep(struct atw_softc *sc)
2050{
2051	struct ieee80211com *ic = &sc->sc_ic;
2052	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2053	u_int8_t buf[IEEE80211_WEP_NKID]
2054	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2055	u_int32_t reg;
2056	int i;
2057
2058	sc->sc_wepctl = 0;
2059	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2060
2061	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2062		return;
2063
2064	memset(&buf[0][0], 0, sizeof(buf));
2065
2066	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2067		if (ic->ic_nw_keys[i].wk_len > 5) {
2068			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2069		} else if (ic->ic_nw_keys[i].wk_len != 0) {
2070			buf[i][1] = ATW_WEP_ENABLED;
2071		} else {
2072			buf[i][1] = 0;
2073			continue;
2074		}
2075		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2076		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2077		    ic->ic_nw_keys[i].wk_len - 1);
2078	}
2079
2080	reg = ATW_READ(sc, ATW_MACTEST);
2081	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2082	reg &= ~ATW_MACTEST_KEYID_MASK;
2083	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2084	ATW_WRITE(sc, ATW_MACTEST, reg);
2085
2086	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2087	 * throughout.)
2088	 */
2089	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2090	if (sc->sc_if.if_flags & IFF_LINK2)
2091		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2092
2093	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2094	    sizeof(buf));
2095}
2096
2097const struct timeval atw_beacon_mininterval = {.tv_sec = 1, .tv_usec = 0};
2098
2099static void
2100atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2101    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2102{
2103	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2104
2105	switch (subtype) {
2106	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2107		/* do nothing: hardware answers probe request */
2108		break;
2109	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2110	case IEEE80211_FC0_SUBTYPE_BEACON:
2111		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2112		break;
2113	default:
2114		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2115		break;
2116	}
2117	return;
2118}
2119
2120static int
2121do_slow_print(struct atw_softc *sc, int *did_print)
2122{
2123	if ((sc->sc_if.if_flags & IFF_LINK0) == 0)
2124		return 0;
2125	if (!*did_print && (sc->sc_if.if_flags & IFF_DEBUG) == 0 &&
2126	    !ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval))
2127		return 0;
2128
2129	*did_print = 1;
2130	return 1;
2131}
2132
2133/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2134 * of IBSSs with like SSID/channel but different BSSID. It joins the
2135 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2136 * convention. Possibly the ADMtek chip does this for us; I will have
2137 * to test to find out.
2138 *
2139 * XXX we should add the duration field of the received beacon to
2140 * the TSF time it contains before comparing it with the ADM8211's
2141 * TSF.
2142 */
2143static void
2144atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2145    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2146{
2147	struct atw_softc *sc;
2148	struct ieee80211_frame *wh;
2149	uint32_t tsftl, tsfth;
2150	uint32_t bcn_tsftl, bcn_tsfth;
2151	int did_print = 0, sign;
2152	union {
2153		uint32_t	words[2];
2154		uint8_t		tstamp[8];
2155	} u;
2156
2157	sc = (struct atw_softc*)ic->ic_if.if_softc;
2158
2159	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2160
2161	if (ic->ic_state != IEEE80211_S_RUN)
2162		return;
2163
2164	atw_tsft(sc, &tsfth, &tsftl);
2165
2166	(void)memcpy(&u, &ni->ni_tstamp[0], sizeof(u));
2167	bcn_tsftl = le32toh(u.words[0]);
2168	bcn_tsfth = le32toh(u.words[1]);
2169
2170	/* we are faster, let the other guy catch up */
2171	if (bcn_tsfth < tsfth)
2172		sign = -1;
2173	else if (bcn_tsfth == tsfth && bcn_tsftl < tsftl)
2174		sign = -1;
2175	else
2176		sign = 1;
2177
2178	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid,
2179	    IEEE80211_ADDR_LEN) == 0) {
2180		if (!do_slow_print(sc, &did_print))
2181			return;
2182		printf("%s: tsft offset %s%" PRIu64 "\n", sc->sc_dev.dv_xname,
2183		    (sign < 0) ? "-" : "",
2184		    (sign < 0)
2185			? ((((uint64_t)tsfth << 32) | tsftl) -
2186			   (((uint64_t)bcn_tsfth << 32) | bcn_tsftl))
2187			: ((((uint64_t)bcn_tsfth << 32) | bcn_tsftl) -
2188			   (((uint64_t)tsfth << 32) | tsftl)));
2189		return;
2190	}
2191
2192	if (sign < 0)
2193		return;
2194
2195	if (ieee80211_match_bss(ic, ni) != 0)
2196		return;
2197
2198	if (do_slow_print(sc, &did_print)) {
2199		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2200		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2201	}
2202
2203	if (ic->ic_opmode != IEEE80211_M_IBSS)
2204		return;
2205
2206	if (do_slow_print(sc, &did_print)) {
2207		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2208		    sc->sc_dev.dv_xname, ((uint64_t)tsfth << 32) | tsftl,
2209		    ((uint64_t)bcn_tsfth << 32) | bcn_tsftl);
2210	}
2211
2212	wh = mtod(m0, struct ieee80211_frame *);
2213
2214	if (do_slow_print(sc, &did_print)) {
2215		printf("%s: sync TSF with %s\n",
2216		    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2217	}
2218
2219	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2220
2221	(void)memcpy(&ic->ic_bss->ni_tstamp[0], &u, sizeof(u));
2222
2223	atw_tsf(sc);
2224
2225	/* negotiate rates with new IBSS */
2226	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2227	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2228	if (ni->ni_rates.rs_nrates == 0) {
2229		if (do_slow_print(sc, &did_print)) {
2230			printf("%s: rates mismatch, BSSID %s\n",
2231			    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2232		}
2233		return;
2234	}
2235
2236	if (do_slow_print(sc, &did_print)) {
2237		printf("%s: sync BSSID %s -> ",
2238		    sc->sc_dev.dv_xname, ether_sprintf(ic->ic_bss->ni_bssid));
2239		printf("%s ", ether_sprintf(ni->ni_bssid));
2240		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2241	}
2242
2243	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2244
2245	atw_write_bssid(sc);
2246	atw_start_beacon(sc, 1);
2247}
2248
2249/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2250 * In ad hoc mode, the SSID is written to the beacons sent by the
2251 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2252 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2253 * indications.
2254 */
2255static void
2256atw_write_ssid(struct atw_softc *sc)
2257{
2258	struct ieee80211com *ic = &sc->sc_ic;
2259	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2260	 * it only expects the element length, not its ID.
2261	 */
2262	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2263
2264	memset(buf, 0, sizeof(buf));
2265	buf[0] = ic->ic_bss->ni_esslen;
2266	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2267
2268	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2269	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2270}
2271
2272/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2273 * In ad hoc mode, the supported rates are written to beacons sent by the
2274 * ADM8211.
2275 */
2276static void
2277atw_write_sup_rates(struct atw_softc *sc)
2278{
2279	struct ieee80211com *ic = &sc->sc_ic;
2280	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2281	 * supported rates
2282	 */
2283	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2284
2285	memset(buf, 0, sizeof(buf));
2286
2287	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2288
2289	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2290	    ic->ic_bss->ni_rates.rs_nrates);
2291
2292	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2293}
2294
2295/* Start/stop sending beacons. */
2296void
2297atw_start_beacon(struct atw_softc *sc, int start)
2298{
2299	struct ieee80211com *ic = &sc->sc_ic;
2300	uint16_t chan;
2301	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2302	size_t len;
2303
2304	if (ATW_IS_ENABLED(sc) == 0)
2305		return;
2306
2307	/* start beacons */
2308	len = sizeof(struct ieee80211_frame) +
2309	    8 /* timestamp */ + 2 /* beacon interval */ +
2310	    2 /* capability info */ +
2311	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2312	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2313	    3 /* DS parameters */ +
2314	    IEEE80211_CRC_LEN;
2315
2316	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2317	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2318	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2319
2320	ATW_WRITE(sc, ATW_BCNT, bcnt);
2321	ATW_WRITE(sc, ATW_CAP1, cap1);
2322
2323	if (!start)
2324		return;
2325
2326	/* TBD use ni_capinfo */
2327
2328	capinfo = 0;
2329	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2330		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2331	if (ic->ic_flags & IEEE80211_F_WEPON)
2332		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2333
2334	switch (ic->ic_opmode) {
2335	case IEEE80211_M_IBSS:
2336		len += 4; /* IBSS parameters */
2337		capinfo |= IEEE80211_CAPINFO_IBSS;
2338		break;
2339	case IEEE80211_M_HOSTAP:
2340		/* XXX 6-byte minimum TIM */
2341		len += atw_beacon_len_adjust;
2342		capinfo |= IEEE80211_CAPINFO_ESS;
2343		break;
2344	default:
2345		return;
2346	}
2347
2348	/* set listen interval
2349	 * XXX do software units agree w/ hardware?
2350	 */
2351	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2352	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2353
2354	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2355
2356	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2357	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2358	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2359
2360	ATW_WRITE(sc, ATW_BCNT, bcnt);
2361	ATW_WRITE(sc, ATW_BPLI, bpli);
2362	ATW_WRITE(sc, ATW_CAP0, cap0);
2363	ATW_WRITE(sc, ATW_CAP1, cap1);
2364
2365	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2366	    sc->sc_dev.dv_xname, bcnt));
2367
2368	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2369	    sc->sc_dev.dv_xname, cap1));
2370}
2371
2372/* Return the 32 lsb of the last TSFT divisible by ival. */
2373static __inline uint32_t
2374atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2375{
2376	/* Following the reference driver's lead, I compute
2377	 *
2378	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2379	 *
2380	 * without using 64-bit arithmetic, using the following
2381	 * relationship:
2382	 *
2383	 *     (0x100000000 * H + L) % m
2384	 *   = ((0x100000000 % m) * H + L) % m
2385	 *   = (((0xffffffff + 1) % m) * H + L) % m
2386	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2387	 *   = ((0xffffffff % m + 1) * H + L) % m
2388	 */
2389	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2390}
2391
2392static __inline void
2393atw_tsft(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2394{
2395	int i;
2396	for (i = 0; i < 2; i++) {
2397		*tsfth = ATW_READ(sc, ATW_TSFTH);
2398		*tsftl = ATW_READ(sc, ATW_TSFTL);
2399		if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2400			break;
2401	}
2402}
2403
2404/* If we've created an IBSS, write the TSF time in the ADM8211 to
2405 * the ieee80211com.
2406 *
2407 * Predict the next target beacon transmission time (TBTT) and
2408 * write it to the ADM8211.
2409 */
2410static void
2411atw_tsf(struct atw_softc *sc)
2412{
2413#define TBTTOFS 20 /* TU */
2414
2415	struct ieee80211com *ic = &sc->sc_ic;
2416	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2417	union {
2418		uint32_t	words[2];
2419		uint8_t		tstamp[8];
2420	} u;
2421
2422	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2423	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2424	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2425		atw_tsft(sc, &tsfth, &tsftl);
2426		u.words[0] = htole32(tsftl);
2427		u.words[1] = htole32(tsfth);
2428		(void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2429		    sizeof(ic->ic_bss->ni_tstamp));
2430	} else {
2431		(void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2432		tsftl = le32toh(u.words[0]);
2433		tsfth = le32toh(u.words[1]);
2434	}
2435
2436	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2437
2438	/* We sent/received the last beacon `past' microseconds
2439	 * after the interval divided the TSF timer.
2440	 */
2441	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2442
2443	/* Skip ten beacons so that the TBTT cannot pass before
2444	 * we've programmed it.  Ten is an arbitrary number.
2445	 */
2446	tbtt = past_even + ival * 10;
2447
2448	ATW_WRITE(sc, ATW_TOFS1,
2449	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2450	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2451	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2452	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2453#undef TBTTOFS
2454}
2455
2456static void
2457atw_next_scan(void *arg)
2458{
2459	struct atw_softc *sc = arg;
2460	struct ieee80211com *ic = &sc->sc_ic;
2461	struct ifnet *ifp = &ic->ic_if;
2462	int s;
2463
2464	/* don't call atw_start w/o network interrupts blocked */
2465	s = splnet();
2466	if (ic->ic_state == IEEE80211_S_SCAN)
2467		ieee80211_next_scan(ifp);
2468	splx(s);
2469}
2470
2471/* Synchronize the hardware state with the software state. */
2472static int
2473atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2474{
2475	struct ifnet *ifp = &ic->ic_if;
2476	struct atw_softc *sc = ifp->if_softc;
2477	enum ieee80211_state ostate;
2478	int error;
2479
2480	ostate = ic->ic_state;
2481
2482	if (nstate == IEEE80211_S_INIT) {
2483		callout_stop(&sc->sc_scan_ch);
2484		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2485		atw_start_beacon(sc, 0);
2486		return (*sc->sc_newstate)(ic, nstate, arg);
2487	}
2488
2489	if ((error = atw_tune(sc)) != 0)
2490		return error;
2491
2492	switch (nstate) {
2493	case IEEE80211_S_ASSOC:
2494		break;
2495	case IEEE80211_S_INIT:
2496		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2497		break;
2498	case IEEE80211_S_SCAN:
2499		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2500		    atw_next_scan, sc);
2501
2502		break;
2503	case IEEE80211_S_RUN:
2504		if (ic->ic_opmode == IEEE80211_M_STA)
2505			break;
2506		/*FALLTHROUGH*/
2507	case IEEE80211_S_AUTH:
2508		atw_write_bssid(sc);
2509		atw_write_ssid(sc);
2510		atw_write_sup_rates(sc);
2511
2512		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2513		    ic->ic_opmode == IEEE80211_M_MONITOR)
2514			break;
2515
2516		/* set listen interval
2517		 * XXX do software units agree w/ hardware?
2518		 */
2519		ATW_WRITE(sc, ATW_BPLI,
2520		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2521		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2522			   ATW_BPLI_LI_MASK));
2523
2524		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2525		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2526
2527		atw_tsf(sc);
2528		break;
2529	}
2530
2531	if (nstate != IEEE80211_S_SCAN)
2532		callout_stop(&sc->sc_scan_ch);
2533
2534	if (nstate == IEEE80211_S_RUN &&
2535	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2536	     ic->ic_opmode == IEEE80211_M_IBSS))
2537		atw_start_beacon(sc, 1);
2538	else
2539		atw_start_beacon(sc, 0);
2540
2541	error = (*sc->sc_newstate)(ic, nstate, arg);
2542
2543	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2544		atw_write_bssid(sc);
2545
2546	return error;
2547}
2548
2549/*
2550 * atw_add_rxbuf:
2551 *
2552 *	Add a receive buffer to the indicated descriptor.
2553 */
2554int
2555atw_add_rxbuf(struct atw_softc *sc, int idx)
2556{
2557	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2558	struct mbuf *m;
2559	int error;
2560
2561	MGETHDR(m, M_DONTWAIT, MT_DATA);
2562	if (m == NULL)
2563		return (ENOBUFS);
2564
2565	MCLGET(m, M_DONTWAIT);
2566	if ((m->m_flags & M_EXT) == 0) {
2567		m_freem(m);
2568		return (ENOBUFS);
2569	}
2570
2571	if (rxs->rxs_mbuf != NULL)
2572		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2573
2574	rxs->rxs_mbuf = m;
2575
2576	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2577	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2578	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2579	if (error) {
2580		printf("%s: can't load rx DMA map %d, error = %d\n",
2581		    sc->sc_dev.dv_xname, idx, error);
2582		panic("atw_add_rxbuf");	/* XXX */
2583	}
2584
2585	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2586	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2587
2588	ATW_INIT_RXDESC(sc, idx);
2589
2590	return (0);
2591}
2592
2593/*
2594 * Release any queued transmit buffers.
2595 */
2596void
2597atw_txdrain(struct atw_softc *sc)
2598{
2599	struct atw_txsoft *txs;
2600
2601	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2602		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2603		if (txs->txs_mbuf != NULL) {
2604			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2605			m_freem(txs->txs_mbuf);
2606			txs->txs_mbuf = NULL;
2607		}
2608		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2609	}
2610	sc->sc_tx_timer = 0;
2611}
2612
2613/*
2614 * atw_stop:		[ ifnet interface function ]
2615 *
2616 *	Stop transmission on the interface.
2617 */
2618void
2619atw_stop(struct ifnet *ifp, int disable)
2620{
2621	struct atw_softc *sc = ifp->if_softc;
2622	struct ieee80211com *ic = &sc->sc_ic;
2623
2624	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2625
2626	/* Disable interrupts. */
2627	ATW_WRITE(sc, ATW_IER, 0);
2628
2629	/* Stop the transmit and receive processes. */
2630	sc->sc_opmode = 0;
2631	ATW_WRITE(sc, ATW_NAR, 0);
2632	DELAY(20 * 1000);
2633	ATW_WRITE(sc, ATW_TDBD, 0);
2634	ATW_WRITE(sc, ATW_TDBP, 0);
2635	ATW_WRITE(sc, ATW_RDB, 0);
2636
2637	atw_txdrain(sc);
2638
2639	if (disable) {
2640		atw_rxdrain(sc);
2641		atw_disable(sc);
2642	}
2643
2644	/*
2645	 * Mark the interface down and cancel the watchdog timer.
2646	 */
2647	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2648	ifp->if_timer = 0;
2649
2650	if (!disable)
2651		atw_reset(sc);
2652}
2653
2654/*
2655 * atw_rxdrain:
2656 *
2657 *	Drain the receive queue.
2658 */
2659void
2660atw_rxdrain(struct atw_softc *sc)
2661{
2662	struct atw_rxsoft *rxs;
2663	int i;
2664
2665	for (i = 0; i < ATW_NRXDESC; i++) {
2666		rxs = &sc->sc_rxsoft[i];
2667		if (rxs->rxs_mbuf == NULL)
2668			continue;
2669		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2670		m_freem(rxs->rxs_mbuf);
2671		rxs->rxs_mbuf = NULL;
2672	}
2673}
2674
2675/*
2676 * atw_detach:
2677 *
2678 *	Detach an ADM8211 interface.
2679 */
2680int
2681atw_detach(struct atw_softc *sc)
2682{
2683	struct ifnet *ifp = &sc->sc_ic.ic_if;
2684	struct atw_rxsoft *rxs;
2685	struct atw_txsoft *txs;
2686	int i;
2687
2688	/*
2689	 * Succeed now if there isn't any work to do.
2690	 */
2691	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2692		return (0);
2693
2694	ieee80211_ifdetach(ifp);
2695	if_detach(ifp);
2696
2697	for (i = 0; i < ATW_NRXDESC; i++) {
2698		rxs = &sc->sc_rxsoft[i];
2699		if (rxs->rxs_mbuf != NULL) {
2700			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2701			m_freem(rxs->rxs_mbuf);
2702			rxs->rxs_mbuf = NULL;
2703		}
2704		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2705	}
2706	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2707		txs = &sc->sc_txsoft[i];
2708		if (txs->txs_mbuf != NULL) {
2709			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2710			m_freem(txs->txs_mbuf);
2711			txs->txs_mbuf = NULL;
2712		}
2713		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2714	}
2715	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2716	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2717	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2718	    sizeof(struct atw_control_data));
2719	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2720
2721	shutdownhook_disestablish(sc->sc_sdhook);
2722	powerhook_disestablish(sc->sc_powerhook);
2723
2724	if (sc->sc_srom)
2725		free(sc->sc_srom, M_DEVBUF);
2726
2727	return (0);
2728}
2729
2730/* atw_shutdown: make sure the interface is stopped at reboot time. */
2731void
2732atw_shutdown(void *arg)
2733{
2734	struct atw_softc *sc = arg;
2735
2736	atw_stop(&sc->sc_ic.ic_if, 1);
2737}
2738
2739int
2740atw_intr(void *arg)
2741{
2742	struct atw_softc *sc = arg;
2743	struct ifnet *ifp = &sc->sc_ic.ic_if;
2744	u_int32_t status, rxstatus, txstatus, linkstatus;
2745	int handled = 0, txthresh;
2746
2747#ifdef DEBUG
2748	if (ATW_IS_ENABLED(sc) == 0)
2749		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2750#endif
2751
2752	/*
2753	 * If the interface isn't running, the interrupt couldn't
2754	 * possibly have come from us.
2755	 */
2756	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2757	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2758		return (0);
2759
2760	for (;;) {
2761		status = ATW_READ(sc, ATW_STSR);
2762
2763		if (status)
2764			ATW_WRITE(sc, ATW_STSR, status);
2765
2766#ifdef ATW_DEBUG
2767#define PRINTINTR(flag) do { \
2768	if ((status & flag) != 0) { \
2769		printf("%s" #flag, delim); \
2770		delim = ","; \
2771	} \
2772} while (0)
2773
2774		if (atw_debug > 1 && status) {
2775			const char *delim = "<";
2776
2777			printf("%s: reg[STSR] = %x",
2778			    sc->sc_dev.dv_xname, status);
2779
2780			PRINTINTR(ATW_INTR_FBE);
2781			PRINTINTR(ATW_INTR_LINKOFF);
2782			PRINTINTR(ATW_INTR_LINKON);
2783			PRINTINTR(ATW_INTR_RCI);
2784			PRINTINTR(ATW_INTR_RDU);
2785			PRINTINTR(ATW_INTR_REIS);
2786			PRINTINTR(ATW_INTR_RPS);
2787			PRINTINTR(ATW_INTR_TCI);
2788			PRINTINTR(ATW_INTR_TDU);
2789			PRINTINTR(ATW_INTR_TLT);
2790			PRINTINTR(ATW_INTR_TPS);
2791			PRINTINTR(ATW_INTR_TRT);
2792			PRINTINTR(ATW_INTR_TUF);
2793			PRINTINTR(ATW_INTR_BCNTC);
2794			PRINTINTR(ATW_INTR_ATIME);
2795			PRINTINTR(ATW_INTR_TBTT);
2796			PRINTINTR(ATW_INTR_TSCZ);
2797			PRINTINTR(ATW_INTR_TSFTF);
2798			printf(">\n");
2799		}
2800#undef PRINTINTR
2801#endif /* ATW_DEBUG */
2802
2803		if ((status & sc->sc_inten) == 0)
2804			break;
2805
2806		handled = 1;
2807
2808		rxstatus = status & sc->sc_rxint_mask;
2809		txstatus = status & sc->sc_txint_mask;
2810		linkstatus = status & sc->sc_linkint_mask;
2811
2812		if (linkstatus) {
2813			atw_linkintr(sc, linkstatus);
2814		}
2815
2816		if (rxstatus) {
2817			/* Grab any new packets. */
2818			atw_rxintr(sc);
2819
2820			if (rxstatus & ATW_INTR_RDU) {
2821				printf("%s: receive ring overrun\n",
2822				    sc->sc_dev.dv_xname);
2823				/* Get the receive process going again. */
2824				ATW_WRITE(sc, ATW_RDR, 0x1);
2825				break;
2826			}
2827		}
2828
2829		if (txstatus) {
2830			/* Sweep up transmit descriptors. */
2831			atw_txintr(sc);
2832
2833			if (txstatus & ATW_INTR_TLT)
2834				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2835				    sc->sc_dev.dv_xname));
2836
2837			if (txstatus & ATW_INTR_TRT)
2838				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2839				    sc->sc_dev.dv_xname));
2840
2841			/* If Tx under-run, increase our transmit threshold
2842			 * if another is available.
2843			 */
2844			txthresh = sc->sc_txthresh + 1;
2845			if ((txstatus & ATW_INTR_TUF) &&
2846			    sc->sc_txth[txthresh].txth_name != NULL) {
2847				/* Idle the transmit process. */
2848				atw_idle(sc, ATW_NAR_ST);
2849
2850				sc->sc_txthresh = txthresh;
2851				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2852				sc->sc_opmode |=
2853				    sc->sc_txth[txthresh].txth_opmode;
2854				printf("%s: transmit underrun; new "
2855				    "threshold: %s\n", sc->sc_dev.dv_xname,
2856				    sc->sc_txth[txthresh].txth_name);
2857
2858				/* Set the new threshold and restart
2859				 * the transmit process.
2860				 */
2861				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2862				DELAY(20 * 1000);
2863				ATW_WRITE(sc, ATW_RDR, 0x1);
2864				/* XXX Log every Nth underrun from
2865				 * XXX now on?
2866				 */
2867			}
2868		}
2869
2870		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2871			if (status & ATW_INTR_TPS)
2872				printf("%s: transmit process stopped\n",
2873				    sc->sc_dev.dv_xname);
2874			if (status & ATW_INTR_RPS)
2875				printf("%s: receive process stopped\n",
2876				    sc->sc_dev.dv_xname);
2877			(void)atw_init(ifp);
2878			break;
2879		}
2880
2881		if (status & ATW_INTR_FBE) {
2882			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2883			(void)atw_init(ifp);
2884			break;
2885		}
2886
2887		/*
2888		 * Not handled:
2889		 *
2890		 *	Transmit buffer unavailable -- normal
2891		 *	condition, nothing to do, really.
2892		 *
2893		 *	Early receive interrupt -- not available on
2894		 *	all chips, we just use RI.  We also only
2895		 *	use single-segment receive DMA, so this
2896		 *	is mostly useless.
2897		 *
2898		 *      TBD others
2899		 */
2900	}
2901
2902	/* Try to get more packets going. */
2903	atw_start(ifp);
2904
2905	return (handled);
2906}
2907
2908/*
2909 * atw_idle:
2910 *
2911 *	Cause the transmit and/or receive processes to go idle.
2912 *
2913 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2914 *	process in STSR if I clear SR or ST after the process has already
2915 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2916 *      do not seem to be too reliable. Perhaps I have the sense of the
2917 *	Rx bits switched with the Tx bits?
2918 */
2919void
2920atw_idle(struct atw_softc *sc, u_int32_t bits)
2921{
2922	u_int32_t ackmask = 0, opmode, stsr, test0;
2923	int i, s;
2924
2925	s = splnet();
2926
2927	opmode = sc->sc_opmode & ~bits;
2928
2929	if (bits & ATW_NAR_SR)
2930		ackmask |= ATW_INTR_RPS;
2931
2932	if (bits & ATW_NAR_ST) {
2933		ackmask |= ATW_INTR_TPS;
2934		/* set ATW_NAR_HF to flush TX FIFO. */
2935		opmode |= ATW_NAR_HF;
2936	}
2937
2938	ATW_WRITE(sc, ATW_NAR, opmode);
2939	DELAY(20 * 1000);
2940
2941	for (i = 0; i < 10; i++) {
2942		stsr = ATW_READ(sc, ATW_STSR);
2943		if ((stsr & ackmask) == ackmask)
2944			break;
2945		DELAY(1000);
2946	}
2947
2948	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2949
2950	if ((stsr & ackmask) == ackmask)
2951		goto out;
2952
2953	test0 = ATW_READ(sc, ATW_TEST0);
2954
2955	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2956	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2957		printf("%s: transmit process not idle [%s]\n",
2958		    sc->sc_dev.dv_xname,
2959		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2960		printf("%s: bits %08x test0 %08x stsr %08x\n",
2961		    sc->sc_dev.dv_xname, bits, test0, stsr);
2962	}
2963
2964	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2965	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2966		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2967		    sc->sc_dev.dv_xname,
2968		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2969		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2970		    sc->sc_dev.dv_xname, bits, test0, stsr));
2971	}
2972out:
2973	if ((bits & ATW_NAR_ST) != 0)
2974		atw_txdrain(sc);
2975	splx(s);
2976	return;
2977}
2978
2979/*
2980 * atw_linkintr:
2981 *
2982 *	Helper; handle link-status interrupts.
2983 */
2984void
2985atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2986{
2987	struct ieee80211com *ic = &sc->sc_ic;
2988
2989	if (ic->ic_state != IEEE80211_S_RUN)
2990		return;
2991
2992	if (linkstatus & ATW_INTR_LINKON) {
2993		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2994		sc->sc_rescan_timer = 0;
2995	} else if (linkstatus & ATW_INTR_LINKOFF) {
2996		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2997		if (ic->ic_opmode != IEEE80211_M_STA)
2998			return;
2999		sc->sc_rescan_timer = 3;
3000		ic->ic_if.if_timer = 1;
3001	}
3002}
3003
3004/*
3005 * atw_rxintr:
3006 *
3007 *	Helper; handle receive interrupts.
3008 */
3009void
3010atw_rxintr(struct atw_softc *sc)
3011{
3012	static int rate_tbl[] = {2, 4, 11, 22, 44};
3013	struct ieee80211com *ic = &sc->sc_ic;
3014	struct ieee80211_node *ni;
3015	struct ieee80211_frame *wh;
3016	struct ifnet *ifp = &ic->ic_if;
3017	struct atw_rxsoft *rxs;
3018	struct mbuf *m;
3019	u_int32_t rxstat;
3020	int i, len, rate, rate0;
3021	u_int32_t rssi, rssi0;
3022
3023	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3024		rxs = &sc->sc_rxsoft[i];
3025
3026		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3027
3028		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3029		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3030		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3031
3032		if (rxstat & ATW_RXSTAT_OWN)
3033			break; /* We have processed all receive buffers. */
3034
3035		DPRINTF3(sc,
3036		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3037		    sc->sc_dev.dv_xname,
3038		    rxstat, rssi0,
3039		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3040		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3041
3042		/*
3043		 * Make sure the packet fits in one buffer.  This should
3044		 * always be the case.
3045		 */
3046		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3047		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3048			printf("%s: incoming packet spilled, resetting\n",
3049			    sc->sc_dev.dv_xname);
3050			(void)atw_init(ifp);
3051			return;
3052		}
3053
3054		/*
3055		 * If an error occurred, update stats, clear the status
3056		 * word, and leave the packet buffer in place.  It will
3057		 * simply be reused the next time the ring comes around.
3058	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3059		 * error.
3060		 */
3061
3062		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3063		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3064		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3065		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3066				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3067				ATW_RXSTAT_ICVE)) != 0)) {
3068#define	PRINTERR(bit, str)						\
3069			if (rxstat & (bit))				\
3070				printf("%s: receive error: %s\n",	\
3071				    sc->sc_dev.dv_xname, str)
3072			ifp->if_ierrors++;
3073			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3074			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3075			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3076			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3077			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3078			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3079			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3080#undef PRINTERR
3081			ATW_INIT_RXDESC(sc, i);
3082			continue;
3083		}
3084
3085		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3086		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3087
3088		/*
3089		 * No errors; receive the packet.  Note the ADM8211
3090		 * includes the CRC in promiscuous mode.
3091		 */
3092		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3093
3094		/*
3095		 * Allocate a new mbuf cluster.  If that fails, we are
3096		 * out of memory, and must drop the packet and recycle
3097		 * the buffer that's already attached to this descriptor.
3098		 */
3099		m = rxs->rxs_mbuf;
3100		if (atw_add_rxbuf(sc, i) != 0) {
3101			ifp->if_ierrors++;
3102			ATW_INIT_RXDESC(sc, i);
3103			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3104			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3105			continue;
3106		}
3107
3108		ifp->if_ipackets++;
3109		if (sc->sc_opmode & ATW_NAR_PR)
3110			m->m_flags |= M_HASFCS;
3111		m->m_pkthdr.rcvif = ifp;
3112		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3113
3114		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3115			rate = 0;
3116		else
3117			rate = rate_tbl[rate0];
3118
3119		/* The RSSI comes straight from a register in the
3120		 * baseband processor.  I know that for the RF3000,
3121		 * the RSSI register also contains the antenna-selection
3122		 * bits.  Mask those off.
3123		 *
3124		 * TBD Treat other basebands.
3125		 */
3126		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3127			rssi = rssi0 & RF3000_RSSI_MASK;
3128		else
3129			rssi = rssi0;
3130
3131 #if NBPFILTER > 0
3132		/* Pass this up to any BPF listeners. */
3133		if (sc->sc_radiobpf != NULL) {
3134			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3135
3136			tap->ar_rate = rate;
3137			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3138			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3139
3140			/* TBD verify units are dB */
3141			tap->ar_antsignal = (int)rssi;
3142			/* TBD tap->ar_flags */
3143
3144			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3145			    tap->ar_ihdr.it_len, m);
3146 		}
3147 #endif /* NPBFILTER > 0 */
3148
3149		wh = mtod(m, struct ieee80211_frame *);
3150		ni = ieee80211_find_rxnode(ic, wh);
3151		ieee80211_input(ifp, m, ni, (int)rssi, 0);
3152		/*
3153		 * The frame may have caused the node to be marked for
3154		 * reclamation (e.g. in response to a DEAUTH message)
3155		 * so use free_node here instead of unref_node.
3156		 */
3157		if (ni == ic->ic_bss)
3158			ieee80211_unref_node(&ni);
3159		else
3160			ieee80211_free_node(ic, ni);
3161	}
3162
3163	/* Update the receive pointer. */
3164	sc->sc_rxptr = i;
3165}
3166
3167/*
3168 * atw_txintr:
3169 *
3170 *	Helper; handle transmit interrupts.
3171 */
3172void
3173atw_txintr(struct atw_softc *sc)
3174{
3175#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3176    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3177#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3178    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3179
3180	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3181	struct ifnet *ifp = &sc->sc_ic.ic_if;
3182	struct atw_txsoft *txs;
3183	u_int32_t txstat;
3184
3185	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3186	    sc->sc_dev.dv_xname, sc->sc_flags));
3187
3188	ifp->if_flags &= ~IFF_OACTIVE;
3189
3190	/*
3191	 * Go through our Tx list and free mbufs for those
3192	 * frames that have been transmitted.
3193	 */
3194	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3195		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3196		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3197
3198#ifdef ATW_DEBUG
3199		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3200			int i;
3201			printf("    txsoft %p transmit chain:\n", txs);
3202			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3203			    txs->txs_ndescs - 1,
3204			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3205			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3206				printf("     descriptor %d:\n", i);
3207				printf("       at_status:   0x%08x\n",
3208				    le32toh(sc->sc_txdescs[i].at_stat));
3209				printf("       at_flags:      0x%08x\n",
3210				    le32toh(sc->sc_txdescs[i].at_flags));
3211				printf("       at_buf1: 0x%08x\n",
3212				    le32toh(sc->sc_txdescs[i].at_buf1));
3213				printf("       at_buf2: 0x%08x\n",
3214				    le32toh(sc->sc_txdescs[i].at_buf2));
3215				if (i == txs->txs_lastdesc)
3216					break;
3217			}
3218		}
3219#endif
3220
3221		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3222		if (txstat & ATW_TXSTAT_OWN)
3223			break;
3224
3225		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3226
3227		sc->sc_txfree += txs->txs_ndescs;
3228
3229		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3230		    0, txs->txs_dmamap->dm_mapsize,
3231		    BUS_DMASYNC_POSTWRITE);
3232		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3233		m_freem(txs->txs_mbuf);
3234		txs->txs_mbuf = NULL;
3235
3236		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3237
3238		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3239		    (txstat & TXSTAT_ERRMASK) != 0) {
3240			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3241			    txstat_buf, sizeof(txstat_buf));
3242			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3243			    txstat_buf,
3244			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3245		}
3246
3247		/*
3248		 * Check for errors and collisions.
3249		 */
3250		if (txstat & ATW_TXSTAT_TUF)
3251			sc->sc_stats.ts_tx_tuf++;
3252		if (txstat & ATW_TXSTAT_TLT)
3253			sc->sc_stats.ts_tx_tlt++;
3254		if (txstat & ATW_TXSTAT_TRT)
3255			sc->sc_stats.ts_tx_trt++;
3256		if (txstat & ATW_TXSTAT_TRO)
3257			sc->sc_stats.ts_tx_tro++;
3258		if (txstat & ATW_TXSTAT_SOFBR) {
3259			sc->sc_stats.ts_tx_sofbr++;
3260		}
3261
3262		if ((txstat & ATW_TXSTAT_ES) == 0)
3263			ifp->if_collisions +=
3264			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3265		else
3266			ifp->if_oerrors++;
3267
3268		ifp->if_opackets++;
3269	}
3270
3271	/*
3272	 * If there are no more pending transmissions, cancel the watchdog
3273	 * timer.
3274	 */
3275	if (txs == NULL)
3276		sc->sc_tx_timer = 0;
3277#undef TXSTAT_ERRMASK
3278#undef TXSTAT_FMT
3279}
3280
3281/*
3282 * atw_watchdog:	[ifnet interface function]
3283 *
3284 *	Watchdog timer handler.
3285 */
3286void
3287atw_watchdog(struct ifnet *ifp)
3288{
3289	struct atw_softc *sc = ifp->if_softc;
3290	struct ieee80211com *ic = &sc->sc_ic;
3291
3292	ifp->if_timer = 0;
3293	if (ATW_IS_ENABLED(sc) == 0)
3294		return;
3295
3296	if (sc->sc_rescan_timer) {
3297		if (--sc->sc_rescan_timer == 0)
3298			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3299	}
3300	if (sc->sc_tx_timer) {
3301		if (--sc->sc_tx_timer == 0 &&
3302		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3303			printf("%s: transmit timeout\n", ifp->if_xname);
3304			ifp->if_oerrors++;
3305			(void)atw_init(ifp);
3306			atw_start(ifp);
3307		}
3308	}
3309	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3310		ifp->if_timer = 1;
3311	ieee80211_watchdog(ifp);
3312}
3313
3314/* Compute the 802.11 Duration field and the PLCP Length fields for
3315 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3316 * Write the fields to the ADM8211 Tx header, frm.
3317 *
3318 * TBD use the fragmentation threshold to find the right duration for
3319 * the first & last fragments.
3320 *
3321 * TBD make certain of the duration fields applied by the ADM8211 to each
3322 * fragment. I think that the ADM8211 knows how to subtract the CTS
3323 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3324 * I also think that the ADM8211 does *some* arithmetic for us, because
3325 * otherwise I think we would have to set a first duration for CTS/first
3326 * fragment, a second duration for fragments between the first and the
3327 * last, and a third duration for the last fragment.
3328 *
3329 * TBD make certain that duration fields reflect addition of FCS/WEP
3330 * and correct duration arithmetic as necessary.
3331 */
3332static void
3333atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3334    int len)
3335{
3336	int remainder;
3337
3338	/* deal also with encrypted fragments */
3339	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3340		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3341		    sc->sc_dev.dv_xname));
3342		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3343		       IEEE80211_WEP_CRCLEN;
3344	}
3345
3346	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3347	 * duration (XXX added by MAC?).
3348	 */
3349	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3350	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3351
3352	if (rate <= 4)
3353		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3354		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3355		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3356		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3357		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3358	else
3359		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3360		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3361		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3362		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3363		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3364
3365	/* lengthen duration if long preamble */
3366	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3367		frm->atw_head_dur +=
3368		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3369		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3370		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3371		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3372
3373	if (remainder != 0)
3374		frm->atw_head_dur++;
3375
3376	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3377	    (rate == 2 || rate == 4)) {
3378		/* derived from Linux: how could this be right? */
3379		frm->atw_head_plcplen = frm->atw_head_dur;
3380	} else {
3381		frm->atw_head_plcplen = (16 * len) / rate;
3382		remainder = (80 * len) % (rate * 5);
3383
3384		if (remainder != 0) {
3385			frm->atw_head_plcplen++;
3386
3387			/* XXX magic */
3388			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3389			    rate == 22 && remainder <= 30)
3390				frm->atw_head_plcplen |= 0x8000;
3391		}
3392	}
3393	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3394	    htole16(frm->atw_head_plcplen);
3395	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3396}
3397
3398#ifdef ATW_DEBUG
3399static void
3400atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3401{
3402	struct atw_softc *sc = ifp->if_softc;
3403	struct mbuf *m;
3404	int i, noctets = 0;
3405
3406	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3407	    m0->m_pkthdr.len);
3408
3409	for (m = m0; m; m = m->m_next) {
3410		if (m->m_len == 0)
3411			continue;
3412		for (i = 0; i < m->m_len; i++) {
3413			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3414			if (++noctets % 24 == 0)
3415				printf("\n");
3416		}
3417	}
3418	printf("%s%s: %d bytes emitted\n",
3419	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3420}
3421#endif /* ATW_DEBUG */
3422
3423/*
3424 * atw_start:		[ifnet interface function]
3425 *
3426 *	Start packet transmission on the interface.
3427 */
3428void
3429atw_start(struct ifnet *ifp)
3430{
3431	struct atw_softc *sc = ifp->if_softc;
3432	struct ieee80211com *ic = &sc->sc_ic;
3433	struct ieee80211_node *ni;
3434	struct ieee80211_frame *wh;
3435	struct atw_frame *hh;
3436	struct mbuf *m0, *m;
3437	struct atw_txsoft *txs, *last_txs;
3438	struct atw_txdesc *txd;
3439	int do_encrypt, rate;
3440	bus_dmamap_t dmamap;
3441	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3442
3443	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3444	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3445
3446	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3447		return;
3448
3449	/*
3450	 * Remember the previous number of free descriptors and
3451	 * the first descriptor we'll use.
3452	 */
3453	ofree = sc->sc_txfree;
3454	firsttx = sc->sc_txnext;
3455
3456	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3457	    sc->sc_dev.dv_xname, ofree, firsttx));
3458
3459	/*
3460	 * Loop through the send queue, setting up transmit descriptors
3461	 * until we drain the queue, or use up all available transmit
3462	 * descriptors.
3463	 */
3464	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3465	       sc->sc_txfree != 0) {
3466
3467		/*
3468		 * Grab a packet off the management queue, if it
3469		 * is not empty. Otherwise, from the data queue.
3470		 */
3471		IF_DEQUEUE(&ic->ic_mgtq, m0);
3472		if (m0 != NULL) {
3473			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3474			m0->m_pkthdr.rcvif = NULL;
3475		} else {
3476			/* send no data packets until we are associated */
3477			if (ic->ic_state != IEEE80211_S_RUN)
3478				break;
3479			IFQ_DEQUEUE(&ifp->if_snd, m0);
3480			if (m0 == NULL)
3481				break;
3482#if NBPFILTER > 0
3483			if (ifp->if_bpf != NULL)
3484				bpf_mtap(ifp->if_bpf, m0);
3485#endif /* NBPFILTER > 0 */
3486			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3487				ifp->if_oerrors++;
3488				break;
3489			}
3490		}
3491
3492		rate = MAX(ieee80211_get_rate(ic), 2);
3493
3494#if NBPFILTER > 0
3495		/*
3496		 * Pass the packet to any BPF listeners.
3497		 */
3498		if (ic->ic_rawbpf != NULL)
3499			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3500
3501		if (sc->sc_radiobpf != NULL) {
3502			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3503
3504			tap->at_rate = rate;
3505			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3506			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3507
3508			/* TBD tap->at_flags */
3509
3510			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3511			    tap->at_ihdr.it_len, m0);
3512		}
3513#endif /* NBPFILTER > 0 */
3514
3515		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3516
3517		if (ni != NULL && ni != ic->ic_bss)
3518			ieee80211_free_node(ic, ni);
3519
3520		if (m0 == NULL) {
3521			ifp->if_oerrors++;
3522			break;
3523		}
3524
3525		/* just to make sure. */
3526		m0 = m_pullup(m0, sizeof(struct atw_frame));
3527
3528		if (m0 == NULL) {
3529			ifp->if_oerrors++;
3530			break;
3531		}
3532
3533		hh = mtod(m0, struct atw_frame *);
3534		wh = &hh->atw_ihdr;
3535
3536		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3537
3538		/* Copy everything we need from the 802.11 header:
3539		 * Frame Control; address 1, address 3, or addresses
3540		 * 3 and 4. NIC fills in BSSID, SA.
3541		 */
3542		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3543			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3544				panic("%s: illegal WDS frame",
3545				    sc->sc_dev.dv_xname);
3546			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3547		} else
3548			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3549
3550		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3551
3552		/* initialize remaining Tx parameters */
3553		memset(&hh->u, 0, sizeof(hh->u));
3554
3555		hh->atw_rate = rate * 5;
3556		/* XXX this could be incorrect if M_FCS. _encap should
3557		 * probably strip FCS just in case it sticks around in
3558		 * bridged packets.
3559		 */
3560		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3561		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3562		    sizeof(struct atw_frame));
3563
3564		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3565		hh->atw_rtylmt = 3;
3566		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3567		if (do_encrypt) {
3568			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3569			hh->atw_keyid = ic->ic_wep_txkey;
3570		}
3571
3572		/* TBD 4-addr frames */
3573		atw_frame_setdurs(sc, hh, rate,
3574		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3575		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3576
3577		/* never fragment multicast frames */
3578		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3579			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3580		} else if (sc->sc_flags & ATWF_RTSCTS) {
3581			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3582		}
3583
3584#ifdef ATW_DEBUG
3585		hh->atw_fragnum = 0;
3586
3587		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3588			printf("%s: dst = %s, rate = 0x%02x, "
3589			    "service = 0x%02x, paylen = 0x%04x\n",
3590			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3591			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3592
3593			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3594			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3595			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3596			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3597			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3598			    hh->atw_tail_dur, hh->atw_head_dur);
3599
3600			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3601			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3602			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3603			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3604
3605			printf("%s: keyid = %d\n",
3606			    sc->sc_dev.dv_xname, hh->atw_keyid);
3607
3608			atw_dump_pkt(ifp, m0);
3609		}
3610#endif /* ATW_DEBUG */
3611
3612		dmamap = txs->txs_dmamap;
3613
3614		/*
3615		 * Load the DMA map.  Copy and try (once) again if the packet
3616		 * didn't fit in the alloted number of segments.
3617		 */
3618		for (first = 1;
3619		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3620		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3621		     first = 0) {
3622			MGETHDR(m, M_DONTWAIT, MT_DATA);
3623			if (m == NULL) {
3624				printf("%s: unable to allocate Tx mbuf\n",
3625				    sc->sc_dev.dv_xname);
3626				break;
3627			}
3628			if (m0->m_pkthdr.len > MHLEN) {
3629				MCLGET(m, M_DONTWAIT);
3630				if ((m->m_flags & M_EXT) == 0) {
3631					printf("%s: unable to allocate Tx "
3632					    "cluster\n", sc->sc_dev.dv_xname);
3633					m_freem(m);
3634					break;
3635				}
3636			}
3637			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3638			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3639			m_freem(m0);
3640			m0 = m;
3641			m = NULL;
3642		}
3643		if (error != 0) {
3644			printf("%s: unable to load Tx buffer, "
3645			    "error = %d\n", sc->sc_dev.dv_xname, error);
3646			m_freem(m0);
3647			break;
3648		}
3649
3650		/*
3651		 * Ensure we have enough descriptors free to describe
3652		 * the packet.
3653		 */
3654		if (dmamap->dm_nsegs > sc->sc_txfree) {
3655			/*
3656			 * Not enough free descriptors to transmit
3657			 * this packet.  Unload the DMA map and
3658			 * drop the packet.  Notify the upper layer
3659			 * that there are no more slots left.
3660			 *
3661			 * XXX We could allocate an mbuf and copy, but
3662			 * XXX it is worth it?
3663			 */
3664			ifp->if_flags |= IFF_OACTIVE;
3665			bus_dmamap_unload(sc->sc_dmat, dmamap);
3666			m_freem(m0);
3667			break;
3668		}
3669
3670		/*
3671		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3672		 */
3673
3674		/* Sync the DMA map. */
3675		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3676		    BUS_DMASYNC_PREWRITE);
3677
3678		/* XXX arbitrary retry limit; 8 because I have seen it in
3679		 * use already and maybe 0 means "no tries" !
3680		 */
3681		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3682
3683		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3684		    sc->sc_dev.dv_xname, rate * 5));
3685		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3686
3687		/*
3688		 * Initialize the transmit descriptors.
3689		 */
3690		for (nexttx = sc->sc_txnext, seg = 0;
3691		     seg < dmamap->dm_nsegs;
3692		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3693			/*
3694			 * If this is the first descriptor we're
3695			 * enqueueing, don't set the OWN bit just
3696			 * yet.  That could cause a race condition.
3697			 * We'll do it below.
3698			 */
3699			txd = &sc->sc_txdescs[nexttx];
3700			txd->at_ctl = ctl |
3701			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3702
3703			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3704			txd->at_flags =
3705			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3706			                   ATW_TXFLAG_TBS1_MASK)) |
3707			    ((nexttx == (ATW_NTXDESC - 1))
3708			        ? htole32(ATW_TXFLAG_TER) : 0);
3709			lasttx = nexttx;
3710		}
3711
3712		IASSERT(lasttx != -1, ("bad lastx"));
3713		/* Set `first segment' and `last segment' appropriately. */
3714		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3715		    htole32(ATW_TXFLAG_FS);
3716		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3717
3718#ifdef ATW_DEBUG
3719		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3720			printf("     txsoft %p transmit chain:\n", txs);
3721			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3722				printf("     descriptor %d:\n", seg);
3723				printf("       at_ctl:   0x%08x\n",
3724				    le32toh(sc->sc_txdescs[seg].at_ctl));
3725				printf("       at_flags:      0x%08x\n",
3726				    le32toh(sc->sc_txdescs[seg].at_flags));
3727				printf("       at_buf1: 0x%08x\n",
3728				    le32toh(sc->sc_txdescs[seg].at_buf1));
3729				printf("       at_buf2: 0x%08x\n",
3730				    le32toh(sc->sc_txdescs[seg].at_buf2));
3731				if (seg == lasttx)
3732					break;
3733			}
3734		}
3735#endif
3736
3737		/* Sync the descriptors we're using. */
3738		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3739		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3740
3741		/*
3742		 * Store a pointer to the packet so we can free it later,
3743		 * and remember what txdirty will be once the packet is
3744		 * done.
3745		 */
3746		txs->txs_mbuf = m0;
3747		txs->txs_firstdesc = sc->sc_txnext;
3748		txs->txs_lastdesc = lasttx;
3749		txs->txs_ndescs = dmamap->dm_nsegs;
3750
3751		/* Advance the tx pointer. */
3752		sc->sc_txfree -= dmamap->dm_nsegs;
3753		sc->sc_txnext = nexttx;
3754
3755		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3756		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3757
3758		last_txs = txs;
3759	}
3760
3761	if (txs == NULL || sc->sc_txfree == 0) {
3762		/* No more slots left; notify upper layer. */
3763		ifp->if_flags |= IFF_OACTIVE;
3764	}
3765
3766	if (sc->sc_txfree != ofree) {
3767		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3768		    sc->sc_dev.dv_xname, lasttx, firsttx));
3769		/*
3770		 * Cause a transmit interrupt to happen on the
3771		 * last packet we enqueued.
3772		 */
3773		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3774		ATW_CDTXSYNC(sc, lasttx, 1,
3775		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3776
3777		/*
3778		 * The entire packet chain is set up.  Give the
3779		 * first descriptor to the chip now.
3780		 */
3781		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3782		ATW_CDTXSYNC(sc, firsttx, 1,
3783		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3784
3785		/* Wake up the transmitter. */
3786		ATW_WRITE(sc, ATW_TDR, 0x1);
3787
3788		/* Set a watchdog timer in case the chip flakes out. */
3789		sc->sc_tx_timer = 5;
3790		ifp->if_timer = 1;
3791	}
3792}
3793
3794/*
3795 * atw_power:
3796 *
3797 *	Power management (suspend/resume) hook.
3798 */
3799void
3800atw_power(int why, void *arg)
3801{
3802	struct atw_softc *sc = arg;
3803	struct ifnet *ifp = &sc->sc_ic.ic_if;
3804	int s;
3805
3806	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3807
3808	s = splnet();
3809	switch (why) {
3810	case PWR_STANDBY:
3811		/* XXX do nothing. */
3812		break;
3813	case PWR_SUSPEND:
3814		atw_stop(ifp, 0);
3815		if (sc->sc_power != NULL)
3816			(*sc->sc_power)(sc, why);
3817		break;
3818	case PWR_RESUME:
3819		if (ifp->if_flags & IFF_UP) {
3820			if (sc->sc_power != NULL)
3821				(*sc->sc_power)(sc, why);
3822			atw_init(ifp);
3823		}
3824		break;
3825	case PWR_SOFTSUSPEND:
3826	case PWR_SOFTSTANDBY:
3827	case PWR_SOFTRESUME:
3828		break;
3829	}
3830	splx(s);
3831}
3832
3833/*
3834 * atw_ioctl:		[ifnet interface function]
3835 *
3836 *	Handle control requests from the operator.
3837 */
3838int
3839atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3840{
3841	struct atw_softc *sc = ifp->if_softc;
3842	struct ifreq *ifr = (struct ifreq *)data;
3843	int s, error = 0;
3844
3845	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3846	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3847		return ENXIO;
3848
3849	s = splnet();
3850
3851	switch (cmd) {
3852	case SIOCSIFFLAGS:
3853		if (ifp->if_flags & IFF_UP) {
3854			if (ATW_IS_ENABLED(sc)) {
3855				/*
3856				 * To avoid rescanning another access point,
3857				 * do not call atw_init() here.  Instead,
3858				 * only reflect media settings.
3859				 */
3860				atw_filter_setup(sc);
3861			} else
3862				error = atw_init(ifp);
3863		} else if (ATW_IS_ENABLED(sc))
3864			atw_stop(ifp, 1);
3865		break;
3866	case SIOCADDMULTI:
3867	case SIOCDELMULTI:
3868		error = (cmd == SIOCADDMULTI) ?
3869		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3870		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3871		if (error == ENETRESET) {
3872			if (ATW_IS_ENABLED(sc))
3873				atw_filter_setup(sc); /* do not rescan */
3874			error = 0;
3875		}
3876		break;
3877	default:
3878		error = ieee80211_ioctl(ifp, cmd, data);
3879		if (error == ENETRESET) {
3880			if (ATW_IS_ENABLED(sc))
3881				error = atw_init(ifp);
3882			else
3883				error = 0;
3884		}
3885		break;
3886	}
3887
3888	/* Try to get more packets going. */
3889	if (ATW_IS_ENABLED(sc))
3890		atw_start(ifp);
3891
3892	splx(s);
3893	return (error);
3894}
3895
3896static int
3897atw_media_change(struct ifnet *ifp)
3898{
3899	int error;
3900
3901	error = ieee80211_media_change(ifp);
3902	if (error == ENETRESET) {
3903		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3904		    (IFF_RUNNING|IFF_UP))
3905			atw_init(ifp);		/* XXX lose error */
3906		error = 0;
3907	}
3908	return error;
3909}
3910
3911static void
3912atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3913{
3914	struct atw_softc *sc = ifp->if_softc;
3915
3916	if (ATW_IS_ENABLED(sc) == 0) {
3917		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3918		imr->ifm_status = 0;
3919		return;
3920	}
3921	ieee80211_media_status(ifp, imr);
3922}
3923