atw.c revision 1.64
1/*	$NetBSD: atw.c,v 1.64 2004/07/15 07:26:17 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.64 2004/07/15 07:26:17 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_compat.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/rf3000reg.h>
82#include <dev/ic/si4136reg.h>
83#include <dev/ic/atwvar.h>
84#include <dev/ic/smc93cx6var.h>
85
86/* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94/* device attachment
95 *
96 *    print TOFS[012]
97 *
98 * device initialization
99 *
100 *    clear ATW_FRCTL_MAXPSP to disable max power saving
101 *    set ATW_TXBR_ALCUPDATE to enable ALC
102 *    set TOFS[012]? (hope not)
103 *    disable rx/tx
104 *    set ATW_PAR_SWR (software reset)
105 *    wait for ATW_PAR_SWR clear
106 *    disable interrupts
107 *    ack status register
108 *    enable interrupts
109 *
110 * rx/tx initialization
111 *
112 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *    allocate and init descriptor rings
114 *    write ATW_PAR_DSL (descriptor skip length)
115 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 *    write ATW_NAR_SQ for one/both transmit descriptor rings
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 *    stop DMA
123 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 *    flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 *    initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 *    set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
139
140#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144int atw_bbp_io_enable_delay = 20 * 1000;
145int atw_bbp_io_disable_delay = 2 * 1000;
146int atw_writewep_delay = 1000;
147int atw_beacon_len_adjust = 4;
148int atw_dwelltime = 200;
149int atw_xindiv2 = 0;
150
151#ifdef ATW_DEBUG
152int atw_debug = 0;
153
154#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
155#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
156#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
157#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
158#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160
161static void atw_print_regs(struct atw_softc *, const char *);
162static void atw_dump_pkt(struct ifnet *, struct mbuf *);
163
164/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165#	ifdef ATW_BBPDEBUG
166static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
167static void atw_rf3000_print(struct atw_softc *);
168#	endif /* ATW_BBPDEBUG */
169
170#	ifdef ATW_SYNDEBUG
171static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
172static void atw_si4126_print(struct atw_softc *);
173#	endif /* ATW_SYNDEBUG */
174
175#else
176#define ATW_DPRINTF(x)
177#define ATW_DPRINTF2(x)
178#define ATW_DPRINTF3(x)
179#define	DPRINTF(sc, x)	/* nothing */
180#define	DPRINTF2(sc, x)	/* nothing */
181#define	DPRINTF3(sc, x)	/* nothing */
182#endif
183
184/* ifnet methods */
185void	atw_start(struct ifnet *);
186void	atw_watchdog(struct ifnet *);
187int	atw_ioctl(struct ifnet *, u_long, caddr_t);
188int	atw_init(struct ifnet *);
189void	atw_stop(struct ifnet *, int);
190
191/* Device attachment */
192void	atw_attach(struct atw_softc *);
193int	atw_detach(struct atw_softc *);
194
195/* Rx/Tx process */
196void	atw_rxdrain(struct atw_softc *);
197void	atw_txdrain(struct atw_softc *);
198int	atw_add_rxbuf(struct atw_softc *, int);
199void	atw_idle(struct atw_softc *, u_int32_t);
200
201/* Device (de)activation and power state */
202int	atw_enable(struct atw_softc *);
203void	atw_disable(struct atw_softc *);
204void	atw_power(int, void *);
205void	atw_shutdown(void *);
206void	atw_reset(struct atw_softc *);
207
208/* Interrupt handlers */
209void	atw_rxintr(struct atw_softc *);
210void	atw_txintr(struct atw_softc *);
211void	atw_linkintr(struct atw_softc *, u_int32_t);
212
213/* 802.11 state machine */
214static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
215static int	atw_tune(struct atw_softc *);
216static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
217		              struct ieee80211_node *, int, int, u_int32_t);
218
219/* Device initialization */
220static void	atw_wcsr_init(struct atw_softc *);
221static void	atw_cmdr_init(struct atw_softc *);
222static void	atw_tofs2_init(struct atw_softc *);
223static void	atw_txlmt_init(struct atw_softc *);
224static void	atw_test1_init(struct atw_softc *);
225static void	atw_rf_reset(struct atw_softc *);
226static void	atw_cfp_init(struct atw_softc *);
227static void	atw_tofs0_init(struct atw_softc *);
228static void	atw_ifs_init(struct atw_softc *);
229static void	atw_response_times_init(struct atw_softc *);
230static void	atw_bbp_io_init(struct atw_softc *);
231
232/* RAM/ROM utilities */
233static void	atw_clear_sram(struct atw_softc *);
234static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
235static int	atw_read_srom(struct atw_softc *);
236
237/* BSS setup */
238static void	atw_tsf(struct atw_softc *);
239static void	atw_start_beacon(struct atw_softc *, int);
240static void	atw_write_bssid(struct atw_softc *);
241static void	atw_write_ssid(struct atw_softc *);
242static void	atw_write_sup_rates(struct atw_softc *);
243static void	atw_write_wep(struct atw_softc *);
244
245/* Media */
246static int	atw_media_change(struct ifnet *);
247static void	atw_media_status(struct ifnet *, struct ifmediareq *);
248
249static void	atw_filter_setup(struct atw_softc *);
250
251/* 802.11 utilities */
252static void	atw_frame_setdurs(struct atw_softc *,
253		                  struct atw_frame *, int, int);
254static struct ieee80211_node	*atw_node_alloc(struct ieee80211com *);
255static void	atw_node_free(struct ieee80211com *,
256		              struct ieee80211_node *);
257static void	atw_recv_beacon(struct ieee80211com *, struct mbuf *,
258		                struct ieee80211_node *, int, int,
259		                u_int32_t);
260static __inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
261				                   uint32_t);
262static __inline void		atw_tsft(struct atw_softc *, uint32_t *,
263				         uint32_t *);
264
265/*
266 * Tuner/transceiver/modem
267 */
268static void	atw_bbp_io_enable(struct atw_softc *, int);
269
270/* RFMD RF3000 Baseband Processor */
271static int atw_rf3000_init(struct atw_softc *);
272static int atw_rf3000_tune(struct atw_softc *, u_int);
273static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
274
275/* Silicon Laboratories Si4126 RF/IF Synthesizer */
276static void atw_si4126_tune(struct atw_softc *, u_int);
277static void atw_si4126_write(struct atw_softc *, u_int, u_int);
278
279const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
280const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
281
282const char *atw_tx_state[] = {
283	"STOPPED",
284	"RUNNING - read descriptor",
285	"RUNNING - transmitting",
286	"RUNNING - filling fifo",	/* XXX */
287	"SUSPENDED",
288	"RUNNING -- write descriptor",
289	"RUNNING -- write last descriptor",
290	"RUNNING - fifo full"
291};
292
293const char *atw_rx_state[] = {
294	"STOPPED",
295	"RUNNING - read descriptor",
296	"RUNNING - check this packet, pre-fetch next",
297	"RUNNING - wait for reception",
298	"SUSPENDED",
299	"RUNNING - write descriptor",
300	"RUNNING - flush fifo",
301	"RUNNING - fifo drain"
302};
303
304int
305atw_activate(struct device *self, enum devact act)
306{
307	struct atw_softc *sc = (struct atw_softc *)self;
308	int rv = 0, s;
309
310	s = splnet();
311	switch (act) {
312	case DVACT_ACTIVATE:
313		rv = EOPNOTSUPP;
314		break;
315
316	case DVACT_DEACTIVATE:
317		if_deactivate(&sc->sc_ic.ic_if);
318		break;
319	}
320	splx(s);
321	return rv;
322}
323
324/*
325 * atw_enable:
326 *
327 *	Enable the ADM8211 chip.
328 */
329int
330atw_enable(struct atw_softc *sc)
331{
332
333	if (ATW_IS_ENABLED(sc) == 0) {
334		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
335			printf("%s: device enable failed\n",
336			    sc->sc_dev.dv_xname);
337			return (EIO);
338		}
339		sc->sc_flags |= ATWF_ENABLED;
340	}
341	return (0);
342}
343
344/*
345 * atw_disable:
346 *
347 *	Disable the ADM8211 chip.
348 */
349void
350atw_disable(struct atw_softc *sc)
351{
352	if (!ATW_IS_ENABLED(sc))
353		return;
354	if (sc->sc_disable != NULL)
355		(*sc->sc_disable)(sc);
356	sc->sc_flags &= ~ATWF_ENABLED;
357}
358
359/* Returns -1 on failure. */
360static int
361atw_read_srom(struct atw_softc *sc)
362{
363	struct seeprom_descriptor sd;
364	u_int32_t reg;
365
366	(void)memset(&sd, 0, sizeof(sd));
367
368	reg = ATW_READ(sc, ATW_TEST0);
369
370	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
371		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
372		return -1;
373	}
374
375	switch (reg & ATW_TEST0_EPTYP_MASK) {
376	case ATW_TEST0_EPTYP_93c66:
377		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
378		sc->sc_sromsz = 512;
379		sd.sd_chip = C56_66;
380		break;
381	case ATW_TEST0_EPTYP_93c46:
382		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
383		sc->sc_sromsz = 128;
384		sd.sd_chip = C46;
385		break;
386	default:
387		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
388		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
389		return -1;
390	}
391
392	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
393
394	if (sc->sc_srom == NULL) {
395		printf("%s: unable to allocate SROM buffer\n",
396		    sc->sc_dev.dv_xname);
397		return -1;
398	}
399
400	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
401
402	/* ADM8211 has a single 32-bit register for controlling the
403	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
404	 * "ready" bit. The ADM8211 input/output sense is the reverse
405	 * of read_seeprom's.
406	 */
407	sd.sd_tag = sc->sc_st;
408	sd.sd_bsh = sc->sc_sh;
409	sd.sd_regsize = 4;
410	sd.sd_control_offset = ATW_SPR;
411	sd.sd_status_offset = ATW_SPR;
412	sd.sd_dataout_offset = ATW_SPR;
413	sd.sd_CK = ATW_SPR_SCLK;
414	sd.sd_CS = ATW_SPR_SCS;
415	sd.sd_DI = ATW_SPR_SDO;
416	sd.sd_DO = ATW_SPR_SDI;
417	sd.sd_MS = ATW_SPR_SRS;
418	sd.sd_RDY = 0;
419
420	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
421		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
422		free(sc->sc_srom, M_DEVBUF);
423		return -1;
424	}
425#ifdef ATW_DEBUG
426	{
427		int i;
428		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
429		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
430			if (((i % 8) == 0) && (i != 0)) {
431				ATW_DPRINTF(("\n\t"));
432			}
433			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
434		}
435		ATW_DPRINTF(("\n"));
436	}
437#endif /* ATW_DEBUG */
438	return 0;
439}
440
441#ifdef ATW_DEBUG
442static void
443atw_print_regs(struct atw_softc *sc, const char *where)
444{
445#define PRINTREG(sc, reg) \
446	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
447	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
448
449	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
450
451	PRINTREG(sc, ATW_PAR);
452	PRINTREG(sc, ATW_FRCTL);
453	PRINTREG(sc, ATW_TDR);
454	PRINTREG(sc, ATW_WTDP);
455	PRINTREG(sc, ATW_RDR);
456	PRINTREG(sc, ATW_WRDP);
457	PRINTREG(sc, ATW_RDB);
458	PRINTREG(sc, ATW_CSR3A);
459	PRINTREG(sc, ATW_TDBD);
460	PRINTREG(sc, ATW_TDBP);
461	PRINTREG(sc, ATW_STSR);
462	PRINTREG(sc, ATW_CSR5A);
463	PRINTREG(sc, ATW_NAR);
464	PRINTREG(sc, ATW_CSR6A);
465	PRINTREG(sc, ATW_IER);
466	PRINTREG(sc, ATW_CSR7A);
467	PRINTREG(sc, ATW_LPC);
468	PRINTREG(sc, ATW_TEST1);
469	PRINTREG(sc, ATW_SPR);
470	PRINTREG(sc, ATW_TEST0);
471	PRINTREG(sc, ATW_WCSR);
472	PRINTREG(sc, ATW_WPDR);
473	PRINTREG(sc, ATW_GPTMR);
474	PRINTREG(sc, ATW_GPIO);
475	PRINTREG(sc, ATW_BBPCTL);
476	PRINTREG(sc, ATW_SYNCTL);
477	PRINTREG(sc, ATW_PLCPHD);
478	PRINTREG(sc, ATW_MMIWADDR);
479	PRINTREG(sc, ATW_MMIRADDR1);
480	PRINTREG(sc, ATW_MMIRADDR2);
481	PRINTREG(sc, ATW_TXBR);
482	PRINTREG(sc, ATW_CSR15A);
483	PRINTREG(sc, ATW_ALCSTAT);
484	PRINTREG(sc, ATW_TOFS2);
485	PRINTREG(sc, ATW_CMDR);
486	PRINTREG(sc, ATW_PCIC);
487	PRINTREG(sc, ATW_PMCSR);
488	PRINTREG(sc, ATW_PAR0);
489	PRINTREG(sc, ATW_PAR1);
490	PRINTREG(sc, ATW_MAR0);
491	PRINTREG(sc, ATW_MAR1);
492	PRINTREG(sc, ATW_ATIMDA0);
493	PRINTREG(sc, ATW_ABDA1);
494	PRINTREG(sc, ATW_BSSID0);
495	PRINTREG(sc, ATW_TXLMT);
496	PRINTREG(sc, ATW_MIBCNT);
497	PRINTREG(sc, ATW_BCNT);
498	PRINTREG(sc, ATW_TSFTH);
499	PRINTREG(sc, ATW_TSC);
500	PRINTREG(sc, ATW_SYNRF);
501	PRINTREG(sc, ATW_BPLI);
502	PRINTREG(sc, ATW_CAP0);
503	PRINTREG(sc, ATW_CAP1);
504	PRINTREG(sc, ATW_RMD);
505	PRINTREG(sc, ATW_CFPP);
506	PRINTREG(sc, ATW_TOFS0);
507	PRINTREG(sc, ATW_TOFS1);
508	PRINTREG(sc, ATW_IFST);
509	PRINTREG(sc, ATW_RSPT);
510	PRINTREG(sc, ATW_TSFTL);
511	PRINTREG(sc, ATW_WEPCTL);
512	PRINTREG(sc, ATW_WESK);
513	PRINTREG(sc, ATW_WEPCNT);
514	PRINTREG(sc, ATW_MACTEST);
515	PRINTREG(sc, ATW_FER);
516	PRINTREG(sc, ATW_FEMR);
517	PRINTREG(sc, ATW_FPSR);
518	PRINTREG(sc, ATW_FFER);
519#undef PRINTREG
520}
521#endif /* ATW_DEBUG */
522
523/*
524 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
525 */
526void
527atw_attach(struct atw_softc *sc)
528{
529	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
530		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
531	};
532	struct ieee80211com *ic = &sc->sc_ic;
533	struct ifnet *ifp = &ic->ic_if;
534	int country_code, error, i, nrate;
535	u_int32_t reg;
536	static const char *type_strings[] = {"Intersil (not supported)",
537	    "RFMD", "Marvel (not supported)"};
538
539	sc->sc_txth = atw_txthresh_tab_lo;
540
541	SIMPLEQ_INIT(&sc->sc_txfreeq);
542	SIMPLEQ_INIT(&sc->sc_txdirtyq);
543
544#ifdef ATW_DEBUG
545	atw_print_regs(sc, "atw_attach");
546#endif /* ATW_DEBUG */
547
548	/*
549	 * Allocate the control data structures, and create and load the
550	 * DMA map for it.
551	 */
552	if ((error = bus_dmamem_alloc(sc->sc_dmat,
553	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
554	    1, &sc->sc_cdnseg, 0)) != 0) {
555		printf("%s: unable to allocate control data, error = %d\n",
556		    sc->sc_dev.dv_xname, error);
557		goto fail_0;
558	}
559
560	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
561	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
562	    BUS_DMA_COHERENT)) != 0) {
563		printf("%s: unable to map control data, error = %d\n",
564		    sc->sc_dev.dv_xname, error);
565		goto fail_1;
566	}
567
568	if ((error = bus_dmamap_create(sc->sc_dmat,
569	    sizeof(struct atw_control_data), 1,
570	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
571		printf("%s: unable to create control data DMA map, "
572		    "error = %d\n", sc->sc_dev.dv_xname, error);
573		goto fail_2;
574	}
575
576	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
577	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
578	    0)) != 0) {
579		printf("%s: unable to load control data DMA map, error = %d\n",
580		    sc->sc_dev.dv_xname, error);
581		goto fail_3;
582	}
583
584	/*
585	 * Create the transmit buffer DMA maps.
586	 */
587	sc->sc_ntxsegs = ATW_NTXSEGS;
588	for (i = 0; i < ATW_TXQUEUELEN; i++) {
589		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
590		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
591		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
592			printf("%s: unable to create tx DMA map %d, "
593			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
594			goto fail_4;
595		}
596	}
597
598	/*
599	 * Create the receive buffer DMA maps.
600	 */
601	for (i = 0; i < ATW_NRXDESC; i++) {
602		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
603		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
604			printf("%s: unable to create rx DMA map %d, "
605			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
606			goto fail_5;
607		}
608	}
609	for (i = 0; i < ATW_NRXDESC; i++) {
610		sc->sc_rxsoft[i].rxs_mbuf = NULL;
611	}
612
613	/* Reset the chip to a known state. */
614	atw_reset(sc);
615
616	if (atw_read_srom(sc) == -1)
617		return;
618
619	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
620	    ATW_SR_RFTYPE_MASK);
621
622	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
623	    ATW_SR_BBPTYPE_MASK);
624
625	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
626		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
627		return;
628	}
629	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
630		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
631		return;
632	}
633
634	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
635	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
636
637	/* XXX There exists a Linux driver which seems to use RFType = 0 for
638	 * MARVEL. My bug, or theirs?
639	 */
640
641	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
642
643	switch (sc->sc_rftype) {
644	case ATW_RFTYPE_INTERSIL:
645		reg |= ATW_SYNCTL_CS1;
646		break;
647	case ATW_RFTYPE_RFMD:
648		reg |= ATW_SYNCTL_CS0;
649		break;
650	case ATW_RFTYPE_MARVEL:
651		break;
652	}
653
654	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
655	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
656
657	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
658
659	switch (sc->sc_bbptype) {
660	case ATW_BBPTYPE_INTERSIL:
661		reg |= ATW_BBPCTL_TWI;
662		break;
663	case ATW_BBPTYPE_RFMD:
664		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
665		    ATW_BBPCTL_CCA_ACTLO;
666		break;
667	case ATW_BBPTYPE_MARVEL:
668		break;
669	case ATW_C_BBPTYPE_RFMD:
670		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
671		    sc->sc_dev.dv_xname);
672		break;
673	}
674
675	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
676	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
677
678	/*
679	 * From this point forward, the attachment cannot fail.  A failure
680	 * before this point releases all resources that may have been
681	 * allocated.
682	 */
683	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
684
685	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
686	    htole16(sc->sc_srom[ATW_SR_MAC00]),
687	    htole16(sc->sc_srom[ATW_SR_MAC01]),
688	    htole16(sc->sc_srom[ATW_SR_MAC10])));
689
690	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
691	    ATW_SR_CTRY_MASK);
692
693#define ADD_CHANNEL(_ic, _chan) do {					\
694	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
695	_ic->ic_channels[_chan].ic_freq =				\
696	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
697} while (0)
698
699	/* Find available channels */
700	switch (country_code) {
701	case COUNTRY_MMK2:	/* 1-14 */
702		ADD_CHANNEL(ic, 14);
703		/*FALLTHROUGH*/
704	case COUNTRY_ETSI:	/* 1-13 */
705		for (i = 1; i <= 13; i++)
706			ADD_CHANNEL(ic, i);
707		break;
708	case COUNTRY_FCC:	/* 1-11 */
709	case COUNTRY_IC:	/* 1-11 */
710		for (i = 1; i <= 11; i++)
711			ADD_CHANNEL(ic, i);
712		break;
713	case COUNTRY_MMK:	/* 14 */
714		ADD_CHANNEL(ic, 14);
715		break;
716	case COUNTRY_FRANCE:	/* 10-13 */
717		for (i = 10; i <= 13; i++)
718			ADD_CHANNEL(ic, i);
719		break;
720	default:	/* assume channels 10-11 */
721	case COUNTRY_SPAIN:	/* 10-11 */
722		for (i = 10; i <= 11; i++)
723			ADD_CHANNEL(ic, i);
724		break;
725	}
726
727	/* Read the MAC address. */
728	reg = ATW_READ(sc, ATW_PAR0);
729	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
730	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
731	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
732	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
733	reg = ATW_READ(sc, ATW_PAR1);
734	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
735	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
736
737	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
738		printf(" could not get mac address, attach failed\n");
739		return;
740	}
741
742	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
743
744	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
745	ifp->if_softc = sc;
746	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
747	    IFF_NOTRAILERS;
748	ifp->if_ioctl = atw_ioctl;
749	ifp->if_start = atw_start;
750	ifp->if_watchdog = atw_watchdog;
751	ifp->if_init = atw_init;
752	ifp->if_stop = atw_stop;
753	IFQ_SET_READY(&ifp->if_snd);
754
755	ic->ic_phytype = IEEE80211_T_DS;
756	ic->ic_opmode = IEEE80211_M_STA;
757	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
758	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
759
760	nrate = 0;
761	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
762	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
763	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
764	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
765	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
766
767	/*
768	 * Call MI attach routines.
769	 */
770
771	if_attach(ifp);
772	ieee80211_ifattach(ifp);
773
774	sc->sc_newstate = ic->ic_newstate;
775	ic->ic_newstate = atw_newstate;
776
777	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
778	ic->ic_recv_mgmt = atw_recv_mgmt;
779
780	sc->sc_node_free = ic->ic_node_free;
781	ic->ic_node_free = atw_node_free;
782
783	sc->sc_node_alloc = ic->ic_node_alloc;
784	ic->ic_node_alloc = atw_node_alloc;
785
786	/* possibly we should fill in our own sc_send_prresp, since
787	 * the ADM8211 is probably sending probe responses in ad hoc
788	 * mode.
789	 */
790
791	/* complete initialization */
792	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
793	callout_init(&sc->sc_scan_ch);
794
795#if NBPFILTER > 0
796	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
797	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
798#endif
799
800	/*
801	 * Make sure the interface is shutdown during reboot.
802	 */
803	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
804	if (sc->sc_sdhook == NULL)
805		printf("%s: WARNING: unable to establish shutdown hook\n",
806		    sc->sc_dev.dv_xname);
807
808	/*
809	 * Add a suspend hook to make sure we come back up after a
810	 * resume.
811	 */
812	sc->sc_powerhook = powerhook_establish(atw_power, sc);
813	if (sc->sc_powerhook == NULL)
814		printf("%s: WARNING: unable to establish power hook\n",
815		    sc->sc_dev.dv_xname);
816
817	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
818	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
819	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
820
821	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
822	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
823	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
824
825	return;
826
827	/*
828	 * Free any resources we've allocated during the failed attach
829	 * attempt.  Do this in reverse order and fall through.
830	 */
831 fail_5:
832	for (i = 0; i < ATW_NRXDESC; i++) {
833		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
834			continue;
835		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
836	}
837 fail_4:
838	for (i = 0; i < ATW_TXQUEUELEN; i++) {
839		if (sc->sc_txsoft[i].txs_dmamap == NULL)
840			continue;
841		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
842	}
843	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
844 fail_3:
845	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
846 fail_2:
847	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
848	    sizeof(struct atw_control_data));
849 fail_1:
850	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
851 fail_0:
852	return;
853}
854
855static struct ieee80211_node *
856atw_node_alloc(struct ieee80211com *ic)
857{
858	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
859	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
860
861	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
862	return ni;
863}
864
865static void
866atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
867{
868	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
869
870	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
871	    ether_sprintf(ni->ni_bssid)));
872	(*sc->sc_node_free)(ic, ni);
873}
874
875/*
876 * atw_reset:
877 *
878 *	Perform a soft reset on the ADM8211.
879 */
880void
881atw_reset(struct atw_softc *sc)
882{
883	int i;
884	uint32_t lpc;
885
886	ATW_WRITE(sc, ATW_NAR, 0x0);
887	DELAY(20 * 1000);
888
889	/* Reference driver has a cryptic remark indicating that this might
890	 * power-on the chip.  I know that it turns off power-saving....
891	 */
892	ATW_WRITE(sc, ATW_FRCTL, 0x0);
893
894	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
895
896	for (i = 0; i < 50; i++) {
897		if (ATW_READ(sc, ATW_PAR) == 0)
898			break;
899		DELAY(1000);
900	}
901
902	/* ... and then pause 100ms longer for good measure. */
903	DELAY(100 * 1000);
904
905	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
906
907	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
908		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
909
910	/*
911	 * Initialize the PCI Access Register.
912	 */
913	sc->sc_busmode = ATW_PAR_PBL_8DW;
914
915	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
916	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
917	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
918
919	/* Turn off maximum power saving, etc.
920	 *
921	 * XXX Following example of reference driver, should I set
922	 * an AID of 1?  It didn't seem to help....
923	 */
924	ATW_WRITE(sc, ATW_FRCTL, 0x0);
925
926	DELAY(100 * 1000);
927
928	/* Recall EEPROM. */
929	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
930
931	DELAY(10 * 1000);
932
933	lpc = ATW_READ(sc, ATW_LPC);
934
935	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
936
937	/* A reset seems to affect the SRAM contents, so put them into
938	 * a known state.
939	 */
940	atw_clear_sram(sc);
941
942	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
943}
944
945static void
946atw_clear_sram(struct atw_softc *sc)
947{
948	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
949	/* XXX not for revision 0x20. */
950	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
951}
952
953/* TBD atw_init
954 *
955 * set MAC based on ic->ic_bss->myaddr
956 * write WEP keys
957 * set TX rate
958 */
959
960/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
961 * without receiving a beacon with the preferred BSSID & SSID.
962 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
963 */
964static void
965atw_wcsr_init(struct atw_softc *sc)
966{
967	uint32_t wcsr;
968
969	wcsr = ATW_READ(sc, ATW_WCSR);
970	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
971	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
972	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
973
974	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
975	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
976}
977
978/* Turn off power management.  Set Rx store-and-forward mode. */
979static void
980atw_cmdr_init(struct atw_softc *sc)
981{
982	uint32_t cmdr;
983	cmdr = ATW_READ(sc, ATW_CMDR);
984	cmdr &= ~ATW_CMDR_APM;
985	cmdr |= ATW_CMDR_RTE;
986	cmdr &= ~ATW_CMDR_DRT_MASK;
987	cmdr |= ATW_CMDR_DRT_SF;
988
989	ATW_WRITE(sc, ATW_CMDR, cmdr);
990}
991
992static void
993atw_tofs2_init(struct atw_softc *sc)
994{
995	uint32_t tofs2;
996	/* XXX this magic can probably be figured out from the RFMD docs */
997#ifndef ATW_REFSLAVE
998	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
999	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1000	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1001	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1002	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1003	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1004	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1005	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1006#else
1007	/* XXX new magic from reference driver source */
1008	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1009	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1010	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1011	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1012	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1013	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1014	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1015	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1016#endif
1017	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1018}
1019
1020static void
1021atw_nar_init(struct atw_softc *sc)
1022{
1023	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1024}
1025
1026static void
1027atw_txlmt_init(struct atw_softc *sc)
1028{
1029	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1030	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1031}
1032
1033static void
1034atw_test1_init(struct atw_softc *sc)
1035{
1036	uint32_t test1;
1037
1038	test1 = ATW_READ(sc, ATW_TEST1);
1039	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1040	/* XXX magic 0x1 */
1041	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1042	ATW_WRITE(sc, ATW_TEST1, test1);
1043}
1044
1045static void
1046atw_rf_reset(struct atw_softc *sc)
1047{
1048	/* XXX this resets an Intersil RF front-end? */
1049	/* TBD condition on Intersil RFType? */
1050	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1051	DELAY(10 * 1000);
1052	ATW_WRITE(sc, ATW_SYNRF, 0);
1053	DELAY(5 * 1000);
1054}
1055
1056/* Set 16 TU max duration for the contention-free period (CFP). */
1057static void
1058atw_cfp_init(struct atw_softc *sc)
1059{
1060	uint32_t cfpp;
1061
1062	cfpp = ATW_READ(sc, ATW_CFPP);
1063	cfpp &= ~ATW_CFPP_CFPMD;
1064	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1065	ATW_WRITE(sc, ATW_CFPP, cfpp);
1066}
1067
1068static void
1069atw_tofs0_init(struct atw_softc *sc)
1070{
1071	/* XXX I guess that the Cardbus clock is 22MHz?
1072	 * I am assuming that the role of ATW_TOFS0_USCNT is
1073	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1074	 * very clear on this point. It says in the datasheet that it is
1075	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1076	 * and 33MHz; maybe this is the way? I see a binary-only driver write
1077	 * these values. These values are also the power-on default.
1078	 */
1079	ATW_WRITE(sc, ATW_TOFS0,
1080	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1081	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1082}
1083
1084/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1085static void
1086atw_ifs_init(struct atw_softc *sc)
1087{
1088	uint32_t ifst;
1089	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1090	 * Go figure.
1091	 */
1092	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1093	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1094	             ATW_IFST_SIFS_MASK) |
1095	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1096	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1097
1098	ATW_WRITE(sc, ATW_IFST, ifst);
1099}
1100
1101static void
1102atw_response_times_init(struct atw_softc *sc)
1103{
1104	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1105	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1106	 * to pass after it transmits a frame that requires a response;
1107	 * it waits at most SIFS + MART microseconds for the response.
1108	 * Surely this is not the ACK timeout?
1109	 */
1110	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1111	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1112}
1113
1114/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1115 * engines read and write baseband registers after Rx and before
1116 * Tx, respectively.
1117 */
1118static void
1119atw_bbp_io_init(struct atw_softc *sc)
1120{
1121	switch (sc->sc_bbptype) {
1122	case ATW_BBPTYPE_INTERSIL:
1123		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1124		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1125		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1126		break;
1127	case ATW_BBPTYPE_MARVEL:
1128		/* TBD find out the Marvel settings. */
1129		break;
1130	case ATW_BBPTYPE_RFMD:
1131	default:
1132		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1133		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1134		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1135		break;
1136	}
1137	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1138}
1139
1140/*
1141 * atw_init:		[ ifnet interface function ]
1142 *
1143 *	Initialize the interface.  Must be called at splnet().
1144 */
1145int
1146atw_init(struct ifnet *ifp)
1147{
1148	struct atw_softc *sc = ifp->if_softc;
1149	struct ieee80211com *ic = &sc->sc_ic;
1150	struct atw_txsoft *txs;
1151	struct atw_rxsoft *rxs;
1152	int i, error = 0;
1153
1154	if ((error = atw_enable(sc)) != 0)
1155		goto out;
1156
1157	/*
1158	 * Cancel any pending I/O. This also resets.
1159	 */
1160	atw_stop(ifp, 0);
1161
1162	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1163	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1164	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1165	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1166
1167	atw_wcsr_init(sc);
1168
1169	atw_cmdr_init(sc);
1170
1171	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1172	 *
1173	 * XXX Set transmit power for ATIM, RTS, Beacon.
1174	 */
1175	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1176	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1177
1178	atw_tofs2_init(sc);
1179
1180	atw_nar_init(sc);
1181
1182	atw_txlmt_init(sc);
1183
1184	atw_test1_init(sc);
1185
1186	atw_rf_reset(sc);
1187
1188	atw_cfp_init(sc);
1189
1190	atw_tofs0_init(sc);
1191
1192	atw_ifs_init(sc);
1193
1194	/* XXX Fall asleep after one second of inactivity.
1195	 * XXX A frame may only dribble in for 65536us.
1196	 */
1197	ATW_WRITE(sc, ATW_RMD,
1198	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1199
1200	atw_response_times_init(sc);
1201
1202	atw_bbp_io_init(sc);
1203
1204	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1205
1206	if ((error = atw_rf3000_init(sc)) != 0)
1207		goto out;
1208
1209	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1210	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1211	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1212
1213	/*
1214	 * Initialize the transmit descriptor ring.
1215	 */
1216	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1217	for (i = 0; i < ATW_NTXDESC; i++) {
1218		sc->sc_txdescs[i].at_ctl = 0;
1219		/* no transmit chaining */
1220		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1221		sc->sc_txdescs[i].at_buf2 =
1222		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1223	}
1224	/* use ring mode */
1225	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1226	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1227	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1228	sc->sc_txfree = ATW_NTXDESC;
1229	sc->sc_txnext = 0;
1230
1231	/*
1232	 * Initialize the transmit job descriptors.
1233	 */
1234	SIMPLEQ_INIT(&sc->sc_txfreeq);
1235	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1236	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1237		txs = &sc->sc_txsoft[i];
1238		txs->txs_mbuf = NULL;
1239		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1240	}
1241
1242	/*
1243	 * Initialize the receive descriptor and receive job
1244	 * descriptor rings.
1245	 */
1246	for (i = 0; i < ATW_NRXDESC; i++) {
1247		rxs = &sc->sc_rxsoft[i];
1248		if (rxs->rxs_mbuf == NULL) {
1249			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1250				printf("%s: unable to allocate or map rx "
1251				    "buffer %d, error = %d\n",
1252				    sc->sc_dev.dv_xname, i, error);
1253				/*
1254				 * XXX Should attempt to run with fewer receive
1255				 * XXX buffers instead of just failing.
1256				 */
1257				atw_rxdrain(sc);
1258				goto out;
1259			}
1260		} else
1261			ATW_INIT_RXDESC(sc, i);
1262	}
1263	sc->sc_rxptr = 0;
1264
1265	/*
1266	 * Initialize the interrupt mask and enable interrupts.
1267	 */
1268	/* normal interrupts */
1269	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1270	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1271
1272	/* abnormal interrupts */
1273	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1274	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1275	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1276
1277	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1278	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1279	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1280	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1281	    ATW_INTR_TRT;
1282
1283	sc->sc_linkint_mask &= sc->sc_inten;
1284	sc->sc_rxint_mask &= sc->sc_inten;
1285	sc->sc_txint_mask &= sc->sc_inten;
1286
1287	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1288	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1289
1290	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1291	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1292
1293	/*
1294	 * Give the transmit and receive rings to the ADM8211.
1295	 */
1296	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1297	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1298
1299	sc->sc_txthresh = 0;
1300	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1301	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1302
1303	/* common 802.11 configuration */
1304	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1305	switch (ic->ic_opmode) {
1306	case IEEE80211_M_STA:
1307		break;
1308	case IEEE80211_M_AHDEMO: /* XXX */
1309	case IEEE80211_M_IBSS:
1310		ic->ic_flags |= IEEE80211_F_IBSSON;
1311		/*FALLTHROUGH*/
1312	case IEEE80211_M_HOSTAP: /* XXX */
1313		break;
1314	case IEEE80211_M_MONITOR: /* XXX */
1315		break;
1316	}
1317
1318	switch (ic->ic_opmode) {
1319	case IEEE80211_M_AHDEMO:
1320	case IEEE80211_M_HOSTAP:
1321		ic->ic_bss->ni_intval = ic->ic_lintval;
1322		ic->ic_bss->ni_rssi = 0;
1323		ic->ic_bss->ni_rstamp = 0;
1324		break;
1325	default:					/* XXX */
1326		break;
1327	}
1328
1329	sc->sc_wepctl = 0;
1330
1331	atw_write_ssid(sc);
1332	atw_write_sup_rates(sc);
1333	if (ic->ic_caps & IEEE80211_C_WEP)
1334		atw_write_wep(sc);
1335
1336	ic->ic_state = IEEE80211_S_INIT;
1337
1338	/*
1339	 * Set the receive filter.  This will start the transmit and
1340	 * receive processes.
1341	 */
1342	atw_filter_setup(sc);
1343
1344	/*
1345	 * Start the receive process.
1346	 */
1347	ATW_WRITE(sc, ATW_RDR, 0x1);
1348
1349	/*
1350	 * Note that the interface is now running.
1351	 */
1352	ifp->if_flags |= IFF_RUNNING;
1353	ifp->if_flags &= ~IFF_OACTIVE;
1354
1355	/* send no beacons, yet. */
1356	atw_start_beacon(sc, 0);
1357
1358	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1359		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1360	else
1361		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1362 out:
1363	if (error) {
1364		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1365		ifp->if_timer = 0;
1366		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1367	}
1368#ifdef ATW_DEBUG
1369	atw_print_regs(sc, "end of init");
1370#endif /* ATW_DEBUG */
1371
1372	return (error);
1373}
1374
1375/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1376 *           0: MAC control of RF3000/Si4126.
1377 *
1378 * Applies power, or selects RF front-end? Sets reset condition.
1379 *
1380 * TBD support non-RFMD BBP, non-SiLabs synth.
1381 */
1382static void
1383atw_bbp_io_enable(struct atw_softc *sc, int enable)
1384{
1385	if (enable) {
1386		ATW_WRITE(sc, ATW_SYNRF,
1387		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1388		DELAY(atw_bbp_io_enable_delay);
1389	} else {
1390		ATW_WRITE(sc, ATW_SYNRF, 0);
1391		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1392	}
1393}
1394
1395static int
1396atw_tune(struct atw_softc *sc)
1397{
1398	int rc;
1399	u_int chan;
1400	struct ieee80211com *ic = &sc->sc_ic;
1401
1402	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1403	if (chan == IEEE80211_CHAN_ANY)
1404		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1405
1406	if (chan == sc->sc_cur_chan)
1407		return 0;
1408
1409	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1410	    sc->sc_cur_chan, chan));
1411
1412	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1413
1414	atw_si4126_tune(sc, chan);
1415	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1416		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1417		    chan);
1418
1419	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1420	DELAY(20 * 1000);
1421	ATW_WRITE(sc, ATW_RDR, 0x1);
1422
1423	if (rc == 0)
1424		sc->sc_cur_chan = chan;
1425
1426	return rc;
1427}
1428
1429#ifdef ATW_SYNDEBUG
1430static void
1431atw_si4126_print(struct atw_softc *sc)
1432{
1433	struct ifnet *ifp = &sc->sc_ic.ic_if;
1434	u_int addr, val;
1435
1436	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1437		return;
1438
1439	for (addr = 0; addr <= 8; addr++) {
1440		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1441		if (atw_si4126_read(sc, addr, &val) == 0) {
1442			printf("<unknown> (quitting print-out)\n");
1443			break;
1444		}
1445		printf("%05x\n", val);
1446	}
1447}
1448#endif /* ATW_SYNDEBUG */
1449
1450/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1451 *
1452 * The RF/IF synthesizer produces two reference frequencies for
1453 * the RF2948B transceiver.  The first frequency the RF2948B requires
1454 * is two times the so-called "intermediate frequency" (IF). Since
1455 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1456 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1457 * frequency required by the transceiver is the radio frequency
1458 * (RF). This is a superheterodyne transceiver; for f(chan) the
1459 * center frequency of the channel we are tuning, RF = f(chan) -
1460 * IF.
1461 *
1462 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1463 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1464 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1465 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1466 */
1467static void
1468atw_si4126_tune(struct atw_softc *sc, u_int chan)
1469{
1470	u_int mhz;
1471	u_int R;
1472	u_int32_t gpio;
1473	u_int16_t gain;
1474
1475#ifdef ATW_SYNDEBUG
1476	atw_si4126_print(sc);
1477#endif /* ATW_SYNDEBUG */
1478
1479	if (chan == 14)
1480		mhz = 2484;
1481	else
1482		mhz = 2412 + 5 * (chan - 1);
1483
1484	/* Tune IF to 748MHz to suit the IF LO input of the
1485	 * RF2494B, which is 2 x IF. No need to set an IF divider
1486         * because an IF in 526MHz - 952MHz is allowed.
1487	 *
1488	 * XIN is 44.000MHz, so divide it by two to get allowable
1489	 * range of 2-25MHz. SiLabs tells me that this is not
1490	 * strictly necessary.
1491	 */
1492
1493	if (atw_xindiv2)
1494		R = 44;
1495	else
1496		R = 88;
1497
1498	/* Power-up RF, IF synthesizers. */
1499	atw_si4126_write(sc, SI4126_POWER,
1500	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1501
1502	/* set LPWR, too? */
1503	atw_si4126_write(sc, SI4126_MAIN,
1504	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1505
1506	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1507	 * set KP2 to 1.
1508	 *
1509	 * REFDIF This is different from the reference driver, which
1510	 * always sets SI4126_GAIN to 0.
1511	 */
1512	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1513
1514	atw_si4126_write(sc, SI4126_GAIN, gain);
1515
1516	/* XIN = 44MHz.
1517	 *
1518	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1519	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1520	 *
1521	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1522	 * so that 1496/88 * 44MHz = 748MHz.
1523	 */
1524	atw_si4126_write(sc, SI4126_IFN, 1496);
1525
1526	atw_si4126_write(sc, SI4126_IFR, R);
1527
1528#ifndef ATW_REFSLAVE
1529	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1530	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1531	 * which has no RF1!
1532	 */
1533	atw_si4126_write(sc, SI4126_RF1R, R);
1534
1535	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1536#endif
1537
1538	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1539	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1540	 * Now let's multiply it to mhz. So mhz - IF = N.
1541	 */
1542	atw_si4126_write(sc, SI4126_RF2R, R);
1543
1544	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1545
1546	/* wait 100us from power-up for RF, IF to settle */
1547	DELAY(100);
1548
1549	gpio = ATW_READ(sc, ATW_GPIO);
1550	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1551	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1552
1553	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1554		/* Set a Prism RF front-end to a special mode for channel 14?
1555		 *
1556		 * Apparently the SMC2635W needs this, although I don't think
1557		 * it has a Prism RF.
1558		 */
1559		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1560	}
1561	ATW_WRITE(sc, ATW_GPIO, gpio);
1562
1563#ifdef ATW_SYNDEBUG
1564	atw_si4126_print(sc);
1565#endif /* ATW_SYNDEBUG */
1566}
1567
1568/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1569 * diversity.
1570 *
1571 * !!!
1572 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1573 * !!!
1574 */
1575static int
1576atw_rf3000_init(struct atw_softc *sc)
1577{
1578	int rc = 0;
1579
1580	atw_bbp_io_enable(sc, 1);
1581
1582	/* CCA is acquisition sensitive */
1583	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1584	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1585
1586	if (rc != 0)
1587		goto out;
1588
1589	/* enable diversity */
1590	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1591
1592	if (rc != 0)
1593		goto out;
1594
1595	/* sensible setting from a binary-only driver */
1596	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1597	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1598
1599	if (rc != 0)
1600		goto out;
1601
1602	/* magic from a binary-only driver */
1603	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1604	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1605
1606	if (rc != 0)
1607		goto out;
1608
1609	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1610
1611	if (rc != 0)
1612		goto out;
1613
1614	/* XXX Reference driver remarks that Abocom sets this to 50.
1615	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1616	 * in the "reserved" area of register RF3000_OPTIONS1.
1617	 *
1618	 * EEPROMs for the ADM8211B contain a setting for this register.
1619	 */
1620	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1621
1622	if (rc != 0)
1623		goto out;
1624
1625	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1626
1627	if (rc != 0)
1628		goto out;
1629
1630out:
1631	atw_bbp_io_enable(sc, 0);
1632	return rc;
1633}
1634
1635#ifdef ATW_BBPDEBUG
1636static void
1637atw_rf3000_print(struct atw_softc *sc)
1638{
1639	struct ifnet *ifp = &sc->sc_ic.ic_if;
1640	u_int addr, val;
1641
1642	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1643		return;
1644
1645	for (addr = 0x01; addr <= 0x15; addr++) {
1646		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1647		if (atw_rf3000_read(sc, addr, &val) != 0) {
1648			printf("<unknown> (quitting print-out)\n");
1649			break;
1650		}
1651		printf("%08x\n", val);
1652	}
1653}
1654#endif /* ATW_BBPDEBUG */
1655
1656/* Set the power settings on the BBP for channel `chan'. */
1657static int
1658atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1659{
1660	int rc = 0;
1661	u_int32_t reg;
1662	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1663
1664	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1665	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1666	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1667
1668	/* odd channels: LSB, even channels: MSB */
1669	if (chan % 2 == 1) {
1670		txpower &= 0xFF;
1671		lpf_cutoff &= 0xFF;
1672		lna_gs_thresh &= 0xFF;
1673	} else {
1674		txpower >>= 8;
1675		lpf_cutoff >>= 8;
1676		lna_gs_thresh >>= 8;
1677	}
1678
1679#ifdef ATW_BBPDEBUG
1680	atw_rf3000_print(sc);
1681#endif /* ATW_BBPDEBUG */
1682
1683	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1684	    "lna_gs_thresh %02x\n",
1685	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1686
1687	atw_bbp_io_enable(sc, 1);
1688
1689	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1690	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1691		goto out;
1692
1693	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1694		goto out;
1695
1696	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1697		goto out;
1698
1699	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1700
1701	if (rc != 0)
1702		goto out;
1703
1704	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1705
1706	if (rc != 0)
1707		goto out;
1708
1709#ifdef ATW_BBPDEBUG
1710	atw_rf3000_print(sc);
1711#endif /* ATW_BBPDEBUG */
1712
1713out:
1714	atw_bbp_io_enable(sc, 0);
1715
1716	/* set beacon, rts, atim transmit power */
1717	reg = ATW_READ(sc, ATW_PLCPHD);
1718	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1719	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1720	    ATW_PLCPHD_SERVICE_MASK);
1721	ATW_WRITE(sc, ATW_PLCPHD, reg);
1722	DELAY(2 * 1000);
1723
1724	return rc;
1725}
1726
1727/* Write a register on the RF3000 baseband processor using the
1728 * registers provided by the ADM8211 for this purpose.
1729 *
1730 * Return 0 on success.
1731 */
1732static int
1733atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1734{
1735	u_int32_t reg;
1736	int i;
1737
1738	reg = sc->sc_bbpctl_wr |
1739	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1740	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1741
1742	for (i = 10; --i >= 0; ) {
1743		ATW_WRITE(sc, ATW_BBPCTL, reg);
1744		DELAY(2000);
1745		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1746			break;
1747	}
1748
1749	if (i < 0) {
1750		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1751		return ETIMEDOUT;
1752	}
1753	return 0;
1754}
1755
1756/* Read a register on the RF3000 baseband processor using the registers
1757 * the ADM8211 provides for this purpose.
1758 *
1759 * The 7-bit register address is addr.  Record the 8-bit data in the register
1760 * in *val.
1761 *
1762 * Return 0 on success.
1763 *
1764 * XXX This does not seem to work. The ADM8211 must require more or
1765 * different magic to read the chip than to write it. Possibly some
1766 * of the magic I have derived from a binary-only driver concerns
1767 * the "chip address" (see the RF3000 manual).
1768 */
1769#ifdef ATW_BBPDEBUG
1770static int
1771atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1772{
1773	u_int32_t reg;
1774	int i;
1775
1776	for (i = 1000; --i >= 0; ) {
1777		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1778			break;
1779		DELAY(100);
1780	}
1781
1782	if (i < 0) {
1783		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1784		    sc->sc_dev.dv_xname);
1785		return ETIMEDOUT;
1786	}
1787
1788	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1789
1790	ATW_WRITE(sc, ATW_BBPCTL, reg);
1791
1792	for (i = 1000; --i >= 0; ) {
1793		DELAY(100);
1794		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1795			break;
1796	}
1797
1798	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1799
1800	if (i < 0) {
1801		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1802		    sc->sc_dev.dv_xname, reg);
1803		return ETIMEDOUT;
1804	}
1805	if (val != NULL)
1806		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1807	return 0;
1808}
1809#endif /* ATW_BBPDEBUG */
1810
1811/* Write a register on the Si4126 RF/IF synthesizer using the registers
1812 * provided by the ADM8211 for that purpose.
1813 *
1814 * val is 18 bits of data, and val is the 4-bit address of the register.
1815 *
1816 * Return 0 on success.
1817 */
1818static void
1819atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1820{
1821	uint32_t bits, mask, reg;
1822	const int nbits = 22;
1823
1824	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1825	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1826
1827	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1828	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1829
1830	reg = ATW_SYNRF_SELSYN;
1831	/* reference driver: reset Si4126 serial bus to initial
1832	 * conditions?
1833	 */
1834	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1835	ATW_WRITE(sc, ATW_SYNRF, reg);
1836
1837	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1838		if ((bits & mask) != 0)
1839			reg |= ATW_SYNRF_SYNDATA;
1840		else
1841			reg &= ~ATW_SYNRF_SYNDATA;
1842		ATW_WRITE(sc, ATW_SYNRF, reg);
1843		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1844		ATW_WRITE(sc, ATW_SYNRF, reg);
1845	}
1846	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1847	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1848}
1849
1850/* Read 18-bit data from the 4-bit address addr in Si4126
1851 * RF synthesizer and write the data to *val. Return 0 on success.
1852 *
1853 * XXX This does not seem to work. The ADM8211 must require more or
1854 * different magic to read the chip than to write it.
1855 */
1856#ifdef ATW_SYNDEBUG
1857static int
1858atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1859{
1860	u_int32_t reg;
1861	int i;
1862
1863	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1864
1865	for (i = 1000; --i >= 0; ) {
1866		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1867			break;
1868		DELAY(100);
1869	}
1870
1871	if (i < 0) {
1872		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1873		    sc->sc_dev.dv_xname);
1874		return ETIMEDOUT;
1875	}
1876
1877	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1878
1879	ATW_WRITE(sc, ATW_SYNCTL, reg);
1880
1881	for (i = 1000; --i >= 0; ) {
1882		DELAY(100);
1883		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1884			break;
1885	}
1886
1887	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1888
1889	if (i < 0) {
1890		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1891		    sc->sc_dev.dv_xname, reg);
1892		return ETIMEDOUT;
1893	}
1894	if (val != NULL)
1895		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1896		                       ATW_SYNCTL_DATA_MASK);
1897	return 0;
1898}
1899#endif /* ATW_SYNDEBUG */
1900
1901/* XXX is the endianness correct? test. */
1902#define	atw_calchash(addr) \
1903	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1904
1905/*
1906 * atw_filter_setup:
1907 *
1908 *	Set the ADM8211's receive filter.
1909 */
1910static void
1911atw_filter_setup(struct atw_softc *sc)
1912{
1913	struct ieee80211com *ic = &sc->sc_ic;
1914	struct ethercom *ec = &ic->ic_ec;
1915	struct ifnet *ifp = &sc->sc_ic.ic_if;
1916	int hash;
1917	u_int32_t hashes[2];
1918	struct ether_multi *enm;
1919	struct ether_multistep step;
1920
1921	/* According to comments in tlp_al981_filter_setup
1922	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1923	 * multicast filter to be set while it is running.  Hopefully
1924	 * the ADM8211 is not the same!
1925	 */
1926	if ((ifp->if_flags & IFF_RUNNING) != 0)
1927		atw_idle(sc, ATW_NAR_SR);
1928
1929	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1930
1931	/* XXX in scan mode, do not filter packets.  Maybe this is
1932	 * unnecessary.
1933	 */
1934	if (ic->ic_state == IEEE80211_S_SCAN ||
1935	    (ifp->if_flags & IFF_PROMISC) != 0) {
1936		sc->sc_opmode |= ATW_NAR_PR;
1937		goto allmulti;
1938	}
1939
1940	hashes[0] = hashes[1] = 0x0;
1941
1942	/*
1943	 * Program the 64-bit multicast hash filter.
1944	 */
1945	ETHER_FIRST_MULTI(step, ec, enm);
1946	while (enm != NULL) {
1947		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1948		    ETHER_ADDR_LEN) != 0)
1949			goto allmulti;
1950
1951		hash = atw_calchash(enm->enm_addrlo);
1952		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1953		ETHER_NEXT_MULTI(step, enm);
1954	}
1955	ifp->if_flags &= ~IFF_ALLMULTI;
1956	goto setit;
1957
1958allmulti:
1959	ifp->if_flags |= IFF_ALLMULTI;
1960	hashes[0] = hashes[1] = 0xffffffff;
1961
1962setit:
1963	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1964	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1965	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1966	DELAY(20 * 1000);
1967
1968	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1969	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1970}
1971
1972/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1973 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1974 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1975 * no beacon with the preferred BSSID and SSID in the number of
1976 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1977 */
1978static void
1979atw_write_bssid(struct atw_softc *sc)
1980{
1981	struct ieee80211com *ic = &sc->sc_ic;
1982	u_int8_t *bssid;
1983
1984	bssid = ic->ic_bss->ni_bssid;
1985
1986	ATW_WRITE(sc, ATW_BSSID0,
1987	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1988	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1989	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1990	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1991
1992	ATW_WRITE(sc, ATW_ABDA1,
1993	    (ATW_READ(sc, ATW_ABDA1) &
1994	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1995	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1996	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1997
1998	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1999	    ether_sprintf(sc->sc_bssid)));
2000	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2001
2002	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2003}
2004
2005/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2006 * 16-bit word.
2007 */
2008static void
2009atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2010{
2011	u_int i;
2012	u_int8_t *ptr;
2013
2014	memcpy(&sc->sc_sram[ofs], buf, buflen);
2015
2016	if (ofs % 2 != 0) {
2017		ofs--;
2018		buflen++;
2019	}
2020
2021	if (buflen % 2 != 0)
2022		buflen++;
2023
2024	assert(buflen + ofs <= ATW_SRAM_SIZE);
2025
2026	ptr = &sc->sc_sram[ofs];
2027
2028	for (i = 0; i < buflen; i += 2) {
2029		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2030		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2031		DELAY(atw_writewep_delay);
2032
2033		ATW_WRITE(sc, ATW_WESK,
2034		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2035		DELAY(atw_writewep_delay);
2036	}
2037	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2038
2039	if (sc->sc_if.if_flags & IFF_DEBUG) {
2040		int n_octets = 0;
2041		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2042		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2043		for (i = 0; i < buflen; i++) {
2044			printf(" %02x", ptr[i]);
2045			if (++n_octets % 24 == 0)
2046				printf("\n");
2047		}
2048		if (n_octets % 24 != 0)
2049			printf("\n");
2050	}
2051}
2052
2053/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2054static void
2055atw_write_wep(struct atw_softc *sc)
2056{
2057	struct ieee80211com *ic = &sc->sc_ic;
2058	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2059	u_int8_t buf[IEEE80211_WEP_NKID]
2060	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2061	u_int32_t reg;
2062	int i;
2063
2064	sc->sc_wepctl = 0;
2065	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2066
2067	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2068		return;
2069
2070	memset(&buf[0][0], 0, sizeof(buf));
2071
2072	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2073		if (ic->ic_nw_keys[i].wk_len > 5) {
2074			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2075		} else if (ic->ic_nw_keys[i].wk_len != 0) {
2076			buf[i][1] = ATW_WEP_ENABLED;
2077		} else {
2078			buf[i][1] = 0;
2079			continue;
2080		}
2081		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2082		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2083		    ic->ic_nw_keys[i].wk_len - 1);
2084	}
2085
2086	reg = ATW_READ(sc, ATW_MACTEST);
2087	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2088	reg &= ~ATW_MACTEST_KEYID_MASK;
2089	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2090	ATW_WRITE(sc, ATW_MACTEST, reg);
2091
2092	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2093	 * throughout.)
2094	 */
2095	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2096	if (sc->sc_if.if_flags & IFF_LINK2)
2097		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2098
2099	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2100	    sizeof(buf));
2101}
2102
2103const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2104
2105static void
2106atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2107    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2108{
2109	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2110
2111	switch (subtype) {
2112	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2113		/* do nothing: hardware answers probe request */
2114		break;
2115	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2116	case IEEE80211_FC0_SUBTYPE_BEACON:
2117		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2118		break;
2119	default:
2120		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2121		break;
2122	}
2123	return;
2124}
2125
2126/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2127 * of IBSSs with like SSID/channel but different BSSID. It joins the
2128 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2129 * convention. Possibly the ADMtek chip does this for us; I will have
2130 * to test to find out.
2131 *
2132 * XXX we should add the duration field of the received beacon to
2133 * the TSF time it contains before comparing it with the ADM8211's
2134 * TSF.
2135 */
2136static void
2137atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2138    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2139{
2140	struct atw_softc *sc;
2141	struct ieee80211_frame *wh;
2142	uint32_t tsftl, tsfth;
2143	uint32_t bcn_tsftl, bcn_tsfth;
2144	int do_print = 0;
2145	union {
2146		uint32_t	words[2];
2147		uint8_t		tstamp[8];
2148	} u;
2149
2150	sc = (struct atw_softc*)ic->ic_if.if_softc;
2151
2152	if (ic->ic_if.if_flags & IFF_LINK0) {
2153		do_print = (ic->ic_if.if_flags & IFF_DEBUG)
2154		    ? 1 : ratecheck(&sc->sc_last_beacon,
2155		    &atw_beacon_mininterval);
2156	}
2157
2158	wh = mtod(m0, struct ieee80211_frame *);
2159
2160	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2161
2162	if (ic->ic_state != IEEE80211_S_RUN)
2163		return;
2164
2165	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2166	    ic->ic_bss->ni_chan)) == NULL) {
2167		if (do_print)
2168			printf("%s: atw_recv_beacon: no node %s\n",
2169			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2170		return;
2171	}
2172
2173	if (ieee80211_match_bss(ic, ni) != 0)
2174		return;
2175
2176	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2177		return;
2178
2179	if (do_print)
2180		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2181		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2182
2183	if (ic->ic_opmode != IEEE80211_M_IBSS)
2184		return;
2185
2186	atw_tsft(sc, &tsfth, &tsftl);
2187
2188	(void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2189	bcn_tsftl = le32toh(u.words[0]);
2190	bcn_tsfth = le32toh(u.words[1]);
2191
2192	if (do_print)
2193		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2194		    sc->sc_dev.dv_xname, ((uint64_t)tsfth << 32) | tsftl,
2195		    ((uint64_t)bcn_tsfth << 32) | bcn_tsftl);
2196
2197	/* we are faster, let the other guy catch up */
2198	if (bcn_tsfth < tsfth)
2199		return;
2200	else if (bcn_tsfth == tsfth && bcn_tsftl < tsftl)
2201		return;
2202
2203	if (do_print)
2204		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2205		    ether_sprintf(wh->i_addr2));
2206
2207	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2208
2209	atw_tsf(sc);
2210
2211	/* negotiate rates with new IBSS */
2212	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2213	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2214	if (ni->ni_rates.rs_nrates == 0) {
2215		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2216			ether_sprintf(ni->ni_bssid));
2217		return;
2218	}
2219
2220	if (do_print) {
2221		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2222		    ether_sprintf(ic->ic_bss->ni_bssid));
2223		printf("%s ", ether_sprintf(ni->ni_bssid));
2224		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2225	}
2226
2227	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2228
2229	atw_write_bssid(sc);
2230	atw_start_beacon(sc, 1);
2231}
2232
2233/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2234 * In ad hoc mode, the SSID is written to the beacons sent by the
2235 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2236 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2237 * indications.
2238 */
2239static void
2240atw_write_ssid(struct atw_softc *sc)
2241{
2242	struct ieee80211com *ic = &sc->sc_ic;
2243	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2244	 * it only expects the element length, not its ID.
2245	 */
2246	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2247
2248	memset(buf, 0, sizeof(buf));
2249	buf[0] = ic->ic_bss->ni_esslen;
2250	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2251
2252	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2253	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2254}
2255
2256/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2257 * In ad hoc mode, the supported rates are written to beacons sent by the
2258 * ADM8211.
2259 */
2260static void
2261atw_write_sup_rates(struct atw_softc *sc)
2262{
2263	struct ieee80211com *ic = &sc->sc_ic;
2264	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2265	 * supported rates
2266	 */
2267	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2268
2269	memset(buf, 0, sizeof(buf));
2270
2271	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2272
2273	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2274	    ic->ic_bss->ni_rates.rs_nrates);
2275
2276	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2277}
2278
2279/* Start/stop sending beacons. */
2280void
2281atw_start_beacon(struct atw_softc *sc, int start)
2282{
2283	struct ieee80211com *ic = &sc->sc_ic;
2284	uint16_t chan;
2285	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2286	size_t len;
2287
2288	if (ATW_IS_ENABLED(sc) == 0)
2289		return;
2290
2291	/* start beacons */
2292	len = sizeof(struct ieee80211_frame) +
2293	    8 /* timestamp */ + 2 /* beacon interval */ +
2294	    2 /* capability info */ +
2295	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2296	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2297	    3 /* DS parameters */ +
2298	    IEEE80211_CRC_LEN;
2299
2300	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2301	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2302	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2303
2304	ATW_WRITE(sc, ATW_BCNT, bcnt);
2305	ATW_WRITE(sc, ATW_CAP1, cap1);
2306
2307	if (!start)
2308		return;
2309
2310	/* TBD use ni_capinfo */
2311
2312	capinfo = 0;
2313	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2314		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2315	if (ic->ic_flags & IEEE80211_F_WEPON)
2316		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2317
2318	switch (ic->ic_opmode) {
2319	case IEEE80211_M_IBSS:
2320		len += 4; /* IBSS parameters */
2321		capinfo |= IEEE80211_CAPINFO_IBSS;
2322		break;
2323	case IEEE80211_M_HOSTAP:
2324		/* XXX 6-byte minimum TIM */
2325		len += atw_beacon_len_adjust;
2326		capinfo |= IEEE80211_CAPINFO_ESS;
2327		break;
2328	default:
2329		return;
2330	}
2331
2332	/* set listen interval
2333	 * XXX do software units agree w/ hardware?
2334	 */
2335	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2336	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2337
2338	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2339
2340	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2341	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2342	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2343
2344	ATW_WRITE(sc, ATW_BCNT, bcnt);
2345	ATW_WRITE(sc, ATW_BPLI, bpli);
2346	ATW_WRITE(sc, ATW_CAP0, cap0);
2347	ATW_WRITE(sc, ATW_CAP1, cap1);
2348
2349	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2350	    sc->sc_dev.dv_xname, bcnt));
2351
2352	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2353	    sc->sc_dev.dv_xname, cap1));
2354}
2355
2356/* Return the 32 lsb of the last TSFT divisible by ival. */
2357static __inline uint32_t
2358atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2359{
2360	/* Following the reference driver's lead, I compute
2361	 *
2362	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2363	 *
2364	 * without using 64-bit arithmetic, using the following
2365	 * relationship:
2366	 *
2367	 *     (0x100000000 * H + L) % m
2368	 *   = ((0x100000000 % m) * H + L) % m
2369	 *   = (((0xffffffff + 1) % m) * H + L) % m
2370	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2371	 *   = ((0xffffffff % m + 1) * H + L) % m
2372	 */
2373	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2374}
2375
2376static __inline void
2377atw_tsft(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2378{
2379	int i;
2380	for (i = 0; i < 2; i++) {
2381		*tsfth = ATW_READ(sc, ATW_TSFTH);
2382		*tsftl = ATW_READ(sc, ATW_TSFTL);
2383		if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2384			break;
2385	}
2386}
2387
2388/* If we've created an IBSS, write the TSF time in the ADM8211 to
2389 * the ieee80211com.
2390 *
2391 * Predict the next target beacon transmission time (TBTT) and
2392 * write it to the ADM8211.
2393 */
2394static void
2395atw_tsf(struct atw_softc *sc)
2396{
2397#define TBTTOFS 20 /* TU */
2398
2399	struct ieee80211com *ic = &sc->sc_ic;
2400	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2401	union {
2402		uint32_t	words[2];
2403		uint8_t		tstamp[8];
2404	} u;
2405
2406	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2407	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2408	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2409		atw_tsft(sc, &tsfth, &tsftl);
2410		u.words[0] = htole32(tsftl);
2411		u.words[1] = htole32(tsfth);
2412		(void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2413		    sizeof(ic->ic_bss->ni_tstamp));
2414	} else {
2415		(void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2416		tsftl = le32toh(u.words[0]);
2417		tsfth = le32toh(u.words[1]);
2418	}
2419
2420	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2421
2422	/* We sent/received the last beacon `past' microseconds
2423	 * after the interval divided the TSF timer.
2424	 */
2425	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2426
2427	/* Skip ten beacons so that the TBTT cannot pass before
2428	 * we've programmed it.  Ten is an arbitrary number.
2429	 */
2430	tbtt = past_even + ival * 10;
2431
2432	ATW_WRITE(sc, ATW_TOFS1,
2433	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2434	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2435	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2436	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2437#undef TBTTOFS
2438}
2439
2440static void
2441atw_next_scan(void *arg)
2442{
2443	struct atw_softc *sc = arg;
2444	struct ieee80211com *ic = &sc->sc_ic;
2445	struct ifnet *ifp = &ic->ic_if;
2446	int s;
2447
2448	/* don't call atw_start w/o network interrupts blocked */
2449	s = splnet();
2450	if (ic->ic_state == IEEE80211_S_SCAN)
2451		ieee80211_next_scan(ifp);
2452	splx(s);
2453}
2454
2455/* Synchronize the hardware state with the software state. */
2456static int
2457atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2458{
2459	struct ifnet *ifp = &ic->ic_if;
2460	struct atw_softc *sc = ifp->if_softc;
2461	enum ieee80211_state ostate;
2462	int error;
2463
2464	ostate = ic->ic_state;
2465
2466	if (nstate == IEEE80211_S_INIT) {
2467		callout_stop(&sc->sc_scan_ch);
2468		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2469		atw_start_beacon(sc, 0);
2470		return (*sc->sc_newstate)(ic, nstate, arg);
2471	}
2472
2473	if ((error = atw_tune(sc)) != 0)
2474		return error;
2475
2476	switch (nstate) {
2477	case IEEE80211_S_ASSOC:
2478		break;
2479	case IEEE80211_S_INIT:
2480		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2481		break;
2482	case IEEE80211_S_SCAN:
2483		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2484		    atw_next_scan, sc);
2485
2486		break;
2487	case IEEE80211_S_RUN:
2488		if (ic->ic_opmode == IEEE80211_M_STA)
2489			break;
2490		/*FALLTHROUGH*/
2491	case IEEE80211_S_AUTH:
2492		atw_write_bssid(sc);
2493		atw_write_ssid(sc);
2494		atw_write_sup_rates(sc);
2495
2496		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2497		    ic->ic_opmode == IEEE80211_M_MONITOR)
2498			break;
2499
2500		/* set listen interval
2501		 * XXX do software units agree w/ hardware?
2502		 */
2503		ATW_WRITE(sc, ATW_BPLI,
2504		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2505		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2506			   ATW_BPLI_LI_MASK));
2507
2508		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2509		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2510
2511		atw_tsf(sc);
2512		break;
2513	}
2514
2515	if (nstate != IEEE80211_S_SCAN)
2516		callout_stop(&sc->sc_scan_ch);
2517
2518	if (nstate == IEEE80211_S_RUN &&
2519	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2520	     ic->ic_opmode == IEEE80211_M_IBSS))
2521		atw_start_beacon(sc, 1);
2522	else
2523		atw_start_beacon(sc, 0);
2524
2525	error = (*sc->sc_newstate)(ic, nstate, arg);
2526
2527	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2528		atw_write_bssid(sc);
2529
2530	return error;
2531}
2532
2533/*
2534 * atw_add_rxbuf:
2535 *
2536 *	Add a receive buffer to the indicated descriptor.
2537 */
2538int
2539atw_add_rxbuf(struct atw_softc *sc, int idx)
2540{
2541	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2542	struct mbuf *m;
2543	int error;
2544
2545	MGETHDR(m, M_DONTWAIT, MT_DATA);
2546	if (m == NULL)
2547		return (ENOBUFS);
2548
2549	MCLGET(m, M_DONTWAIT);
2550	if ((m->m_flags & M_EXT) == 0) {
2551		m_freem(m);
2552		return (ENOBUFS);
2553	}
2554
2555	if (rxs->rxs_mbuf != NULL)
2556		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2557
2558	rxs->rxs_mbuf = m;
2559
2560	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2561	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2562	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2563	if (error) {
2564		printf("%s: can't load rx DMA map %d, error = %d\n",
2565		    sc->sc_dev.dv_xname, idx, error);
2566		panic("atw_add_rxbuf");	/* XXX */
2567	}
2568
2569	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2570	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2571
2572	ATW_INIT_RXDESC(sc, idx);
2573
2574	return (0);
2575}
2576
2577/*
2578 * Release any queued transmit buffers.
2579 */
2580void
2581atw_txdrain(struct atw_softc *sc)
2582{
2583	struct atw_txsoft *txs;
2584
2585	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2586		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2587		if (txs->txs_mbuf != NULL) {
2588			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2589			m_freem(txs->txs_mbuf);
2590			txs->txs_mbuf = NULL;
2591		}
2592		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2593	}
2594	sc->sc_tx_timer = 0;
2595}
2596
2597/*
2598 * atw_stop:		[ ifnet interface function ]
2599 *
2600 *	Stop transmission on the interface.
2601 */
2602void
2603atw_stop(struct ifnet *ifp, int disable)
2604{
2605	struct atw_softc *sc = ifp->if_softc;
2606	struct ieee80211com *ic = &sc->sc_ic;
2607
2608	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2609
2610	/* Disable interrupts. */
2611	ATW_WRITE(sc, ATW_IER, 0);
2612
2613	/* Stop the transmit and receive processes. */
2614	sc->sc_opmode = 0;
2615	ATW_WRITE(sc, ATW_NAR, 0);
2616	DELAY(20 * 1000);
2617	ATW_WRITE(sc, ATW_TDBD, 0);
2618	ATW_WRITE(sc, ATW_TDBP, 0);
2619	ATW_WRITE(sc, ATW_RDB, 0);
2620
2621	atw_txdrain(sc);
2622
2623	if (disable) {
2624		atw_rxdrain(sc);
2625		atw_disable(sc);
2626	}
2627
2628	/*
2629	 * Mark the interface down and cancel the watchdog timer.
2630	 */
2631	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2632	ifp->if_timer = 0;
2633
2634	if (!disable)
2635		atw_reset(sc);
2636}
2637
2638/*
2639 * atw_rxdrain:
2640 *
2641 *	Drain the receive queue.
2642 */
2643void
2644atw_rxdrain(struct atw_softc *sc)
2645{
2646	struct atw_rxsoft *rxs;
2647	int i;
2648
2649	for (i = 0; i < ATW_NRXDESC; i++) {
2650		rxs = &sc->sc_rxsoft[i];
2651		if (rxs->rxs_mbuf == NULL)
2652			continue;
2653		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2654		m_freem(rxs->rxs_mbuf);
2655		rxs->rxs_mbuf = NULL;
2656	}
2657}
2658
2659/*
2660 * atw_detach:
2661 *
2662 *	Detach an ADM8211 interface.
2663 */
2664int
2665atw_detach(struct atw_softc *sc)
2666{
2667	struct ifnet *ifp = &sc->sc_ic.ic_if;
2668	struct atw_rxsoft *rxs;
2669	struct atw_txsoft *txs;
2670	int i;
2671
2672	/*
2673	 * Succeed now if there isn't any work to do.
2674	 */
2675	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2676		return (0);
2677
2678	ieee80211_ifdetach(ifp);
2679	if_detach(ifp);
2680
2681	for (i = 0; i < ATW_NRXDESC; i++) {
2682		rxs = &sc->sc_rxsoft[i];
2683		if (rxs->rxs_mbuf != NULL) {
2684			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2685			m_freem(rxs->rxs_mbuf);
2686			rxs->rxs_mbuf = NULL;
2687		}
2688		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2689	}
2690	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2691		txs = &sc->sc_txsoft[i];
2692		if (txs->txs_mbuf != NULL) {
2693			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2694			m_freem(txs->txs_mbuf);
2695			txs->txs_mbuf = NULL;
2696		}
2697		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2698	}
2699	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2700	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2701	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2702	    sizeof(struct atw_control_data));
2703	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2704
2705	shutdownhook_disestablish(sc->sc_sdhook);
2706	powerhook_disestablish(sc->sc_powerhook);
2707
2708	if (sc->sc_srom)
2709		free(sc->sc_srom, M_DEVBUF);
2710
2711	return (0);
2712}
2713
2714/* atw_shutdown: make sure the interface is stopped at reboot time. */
2715void
2716atw_shutdown(void *arg)
2717{
2718	struct atw_softc *sc = arg;
2719
2720	atw_stop(&sc->sc_ic.ic_if, 1);
2721}
2722
2723int
2724atw_intr(void *arg)
2725{
2726	struct atw_softc *sc = arg;
2727	struct ifnet *ifp = &sc->sc_ic.ic_if;
2728	u_int32_t status, rxstatus, txstatus, linkstatus;
2729	int handled = 0, txthresh;
2730
2731#ifdef DEBUG
2732	if (ATW_IS_ENABLED(sc) == 0)
2733		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2734#endif
2735
2736	/*
2737	 * If the interface isn't running, the interrupt couldn't
2738	 * possibly have come from us.
2739	 */
2740	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2741	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2742		return (0);
2743
2744	for (;;) {
2745		status = ATW_READ(sc, ATW_STSR);
2746
2747		if (status)
2748			ATW_WRITE(sc, ATW_STSR, status);
2749
2750#ifdef ATW_DEBUG
2751#define PRINTINTR(flag) do { \
2752	if ((status & flag) != 0) { \
2753		printf("%s" #flag, delim); \
2754		delim = ","; \
2755	} \
2756} while (0)
2757
2758		if (atw_debug > 1 && status) {
2759			const char *delim = "<";
2760
2761			printf("%s: reg[STSR] = %x",
2762			    sc->sc_dev.dv_xname, status);
2763
2764			PRINTINTR(ATW_INTR_FBE);
2765			PRINTINTR(ATW_INTR_LINKOFF);
2766			PRINTINTR(ATW_INTR_LINKON);
2767			PRINTINTR(ATW_INTR_RCI);
2768			PRINTINTR(ATW_INTR_RDU);
2769			PRINTINTR(ATW_INTR_REIS);
2770			PRINTINTR(ATW_INTR_RPS);
2771			PRINTINTR(ATW_INTR_TCI);
2772			PRINTINTR(ATW_INTR_TDU);
2773			PRINTINTR(ATW_INTR_TLT);
2774			PRINTINTR(ATW_INTR_TPS);
2775			PRINTINTR(ATW_INTR_TRT);
2776			PRINTINTR(ATW_INTR_TUF);
2777			PRINTINTR(ATW_INTR_BCNTC);
2778			PRINTINTR(ATW_INTR_ATIME);
2779			PRINTINTR(ATW_INTR_TBTT);
2780			PRINTINTR(ATW_INTR_TSCZ);
2781			PRINTINTR(ATW_INTR_TSFTF);
2782			printf(">\n");
2783		}
2784#undef PRINTINTR
2785#endif /* ATW_DEBUG */
2786
2787		if ((status & sc->sc_inten) == 0)
2788			break;
2789
2790		handled = 1;
2791
2792		rxstatus = status & sc->sc_rxint_mask;
2793		txstatus = status & sc->sc_txint_mask;
2794		linkstatus = status & sc->sc_linkint_mask;
2795
2796		if (linkstatus) {
2797			atw_linkintr(sc, linkstatus);
2798		}
2799
2800		if (rxstatus) {
2801			/* Grab any new packets. */
2802			atw_rxintr(sc);
2803
2804			if (rxstatus & ATW_INTR_RDU) {
2805				printf("%s: receive ring overrun\n",
2806				    sc->sc_dev.dv_xname);
2807				/* Get the receive process going again. */
2808				ATW_WRITE(sc, ATW_RDR, 0x1);
2809				break;
2810			}
2811		}
2812
2813		if (txstatus) {
2814			/* Sweep up transmit descriptors. */
2815			atw_txintr(sc);
2816
2817			if (txstatus & ATW_INTR_TLT)
2818				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2819				    sc->sc_dev.dv_xname));
2820
2821			if (txstatus & ATW_INTR_TRT)
2822				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2823				    sc->sc_dev.dv_xname));
2824
2825			/* If Tx under-run, increase our transmit threshold
2826			 * if another is available.
2827			 */
2828			txthresh = sc->sc_txthresh + 1;
2829			if ((txstatus & ATW_INTR_TUF) &&
2830			    sc->sc_txth[txthresh].txth_name != NULL) {
2831				/* Idle the transmit process. */
2832				atw_idle(sc, ATW_NAR_ST);
2833
2834				sc->sc_txthresh = txthresh;
2835				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2836				sc->sc_opmode |=
2837				    sc->sc_txth[txthresh].txth_opmode;
2838				printf("%s: transmit underrun; new "
2839				    "threshold: %s\n", sc->sc_dev.dv_xname,
2840				    sc->sc_txth[txthresh].txth_name);
2841
2842				/* Set the new threshold and restart
2843				 * the transmit process.
2844				 */
2845				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2846				DELAY(20 * 1000);
2847				ATW_WRITE(sc, ATW_RDR, 0x1);
2848				/* XXX Log every Nth underrun from
2849				 * XXX now on?
2850				 */
2851			}
2852		}
2853
2854		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2855			if (status & ATW_INTR_TPS)
2856				printf("%s: transmit process stopped\n",
2857				    sc->sc_dev.dv_xname);
2858			if (status & ATW_INTR_RPS)
2859				printf("%s: receive process stopped\n",
2860				    sc->sc_dev.dv_xname);
2861			(void)atw_init(ifp);
2862			break;
2863		}
2864
2865		if (status & ATW_INTR_FBE) {
2866			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2867			(void)atw_init(ifp);
2868			break;
2869		}
2870
2871		/*
2872		 * Not handled:
2873		 *
2874		 *	Transmit buffer unavailable -- normal
2875		 *	condition, nothing to do, really.
2876		 *
2877		 *	Early receive interrupt -- not available on
2878		 *	all chips, we just use RI.  We also only
2879		 *	use single-segment receive DMA, so this
2880		 *	is mostly useless.
2881		 *
2882		 *      TBD others
2883		 */
2884	}
2885
2886	/* Try to get more packets going. */
2887	atw_start(ifp);
2888
2889	return (handled);
2890}
2891
2892/*
2893 * atw_idle:
2894 *
2895 *	Cause the transmit and/or receive processes to go idle.
2896 *
2897 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2898 *	process in STSR if I clear SR or ST after the process has already
2899 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2900 *      do not seem to be too reliable. Perhaps I have the sense of the
2901 *	Rx bits switched with the Tx bits?
2902 */
2903void
2904atw_idle(struct atw_softc *sc, u_int32_t bits)
2905{
2906	u_int32_t ackmask = 0, opmode, stsr, test0;
2907	int i, s;
2908
2909	s = splnet();
2910
2911	opmode = sc->sc_opmode & ~bits;
2912
2913	if (bits & ATW_NAR_SR)
2914		ackmask |= ATW_INTR_RPS;
2915
2916	if (bits & ATW_NAR_ST) {
2917		ackmask |= ATW_INTR_TPS;
2918		/* set ATW_NAR_HF to flush TX FIFO. */
2919		opmode |= ATW_NAR_HF;
2920	}
2921
2922	ATW_WRITE(sc, ATW_NAR, opmode);
2923	DELAY(20 * 1000);
2924
2925	for (i = 0; i < 10; i++) {
2926		stsr = ATW_READ(sc, ATW_STSR);
2927		if ((stsr & ackmask) == ackmask)
2928			break;
2929		DELAY(1000);
2930	}
2931
2932	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2933
2934	if ((stsr & ackmask) == ackmask)
2935		goto out;
2936
2937	test0 = ATW_READ(sc, ATW_TEST0);
2938
2939	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2940	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2941		printf("%s: transmit process not idle [%s]\n",
2942		    sc->sc_dev.dv_xname,
2943		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2944		printf("%s: bits %08x test0 %08x stsr %08x\n",
2945		    sc->sc_dev.dv_xname, bits, test0, stsr);
2946	}
2947
2948	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2949	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2950		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2951		    sc->sc_dev.dv_xname,
2952		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2953		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2954		    sc->sc_dev.dv_xname, bits, test0, stsr));
2955	}
2956out:
2957	if ((bits & ATW_NAR_ST) != 0)
2958		atw_txdrain(sc);
2959	splx(s);
2960	return;
2961}
2962
2963/*
2964 * atw_linkintr:
2965 *
2966 *	Helper; handle link-status interrupts.
2967 */
2968void
2969atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2970{
2971	struct ieee80211com *ic = &sc->sc_ic;
2972
2973	if (ic->ic_state != IEEE80211_S_RUN)
2974		return;
2975
2976	if (linkstatus & ATW_INTR_LINKON) {
2977		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2978		sc->sc_rescan_timer = 0;
2979	} else if (linkstatus & ATW_INTR_LINKOFF) {
2980		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2981		if (ic->ic_opmode != IEEE80211_M_STA)
2982			return;
2983		sc->sc_rescan_timer = 3;
2984		ic->ic_if.if_timer = 1;
2985	}
2986}
2987
2988/*
2989 * atw_rxintr:
2990 *
2991 *	Helper; handle receive interrupts.
2992 */
2993void
2994atw_rxintr(struct atw_softc *sc)
2995{
2996	static int rate_tbl[] = {2, 4, 11, 22, 44};
2997	struct ieee80211com *ic = &sc->sc_ic;
2998	struct ieee80211_node *ni;
2999	struct ieee80211_frame *wh;
3000	struct ifnet *ifp = &ic->ic_if;
3001	struct atw_rxsoft *rxs;
3002	struct mbuf *m;
3003	u_int32_t rxstat;
3004	int i, len, rate, rate0;
3005	u_int32_t rssi;
3006
3007	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3008		rxs = &sc->sc_rxsoft[i];
3009
3010		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3011
3012		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3013		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
3014		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3015
3016		if (rxstat & ATW_RXSTAT_OWN)
3017			break; /* We have processed all receive buffers. */
3018
3019		DPRINTF3(sc,
3020		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
3021		    sc->sc_dev.dv_xname,
3022		    le32toh(sc->sc_rxdescs[i].ar_stat),
3023		    le32toh(sc->sc_rxdescs[i].ar_rssi),
3024		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3025		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3026
3027		/*
3028		 * Make sure the packet fits in one buffer.  This should
3029		 * always be the case.
3030		 */
3031		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3032		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3033			printf("%s: incoming packet spilled, resetting\n",
3034			    sc->sc_dev.dv_xname);
3035			(void)atw_init(ifp);
3036			return;
3037		}
3038
3039		/*
3040		 * If an error occurred, update stats, clear the status
3041		 * word, and leave the packet buffer in place.  It will
3042		 * simply be reused the next time the ring comes around.
3043	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3044		 * error.
3045		 */
3046
3047		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3048		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3049		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3050		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3051				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3052				ATW_RXSTAT_ICVE)) != 0)) {
3053#define	PRINTERR(bit, str)						\
3054			if (rxstat & (bit))				\
3055				printf("%s: receive error: %s\n",	\
3056				    sc->sc_dev.dv_xname, str)
3057			ifp->if_ierrors++;
3058			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3059			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3060			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3061			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3062			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3063			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3064			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3065#undef PRINTERR
3066			ATW_INIT_RXDESC(sc, i);
3067			continue;
3068		}
3069
3070		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3071		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3072
3073		/*
3074		 * No errors; receive the packet.  Note the ADM8211
3075		 * includes the CRC in promiscuous mode.
3076		 */
3077		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3078
3079		/*
3080		 * Allocate a new mbuf cluster.  If that fails, we are
3081		 * out of memory, and must drop the packet and recycle
3082		 * the buffer that's already attached to this descriptor.
3083		 */
3084		m = rxs->rxs_mbuf;
3085		if (atw_add_rxbuf(sc, i) != 0) {
3086			ifp->if_ierrors++;
3087			ATW_INIT_RXDESC(sc, i);
3088			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3089			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3090			continue;
3091		}
3092
3093		ifp->if_ipackets++;
3094		if (sc->sc_opmode & ATW_NAR_PR)
3095			m->m_flags |= M_HASFCS;
3096		m->m_pkthdr.rcvif = ifp;
3097		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3098
3099		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3100			rate = 0;
3101		else
3102			rate = rate_tbl[rate0];
3103
3104 #if NBPFILTER > 0
3105		/* Pass this up to any BPF listeners. */
3106		if (sc->sc_radiobpf != NULL) {
3107			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3108
3109			tap->ar_rate = rate;
3110			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3111			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3112
3113			/* TBD verify units are dB */
3114			tap->ar_antsignal = (int)rssi;
3115			/* TBD tap->ar_flags */
3116
3117			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3118			    tap->ar_ihdr.it_len, m);
3119 		}
3120 #endif /* NPBFILTER > 0 */
3121
3122		wh = mtod(m, struct ieee80211_frame *);
3123		ni = ieee80211_find_rxnode(ic, wh);
3124		ieee80211_input(ifp, m, ni, (int)rssi, 0);
3125		/*
3126		 * The frame may have caused the node to be marked for
3127		 * reclamation (e.g. in response to a DEAUTH message)
3128		 * so use free_node here instead of unref_node.
3129		 */
3130		if (ni == ic->ic_bss)
3131			ieee80211_unref_node(&ni);
3132		else
3133			ieee80211_free_node(ic, ni);
3134	}
3135
3136	/* Update the receive pointer. */
3137	sc->sc_rxptr = i;
3138}
3139
3140/*
3141 * atw_txintr:
3142 *
3143 *	Helper; handle transmit interrupts.
3144 */
3145void
3146atw_txintr(struct atw_softc *sc)
3147{
3148#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3149    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3150#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3151    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3152
3153	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3154	struct ifnet *ifp = &sc->sc_ic.ic_if;
3155	struct atw_txsoft *txs;
3156	u_int32_t txstat;
3157
3158	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3159	    sc->sc_dev.dv_xname, sc->sc_flags));
3160
3161	ifp->if_flags &= ~IFF_OACTIVE;
3162
3163	/*
3164	 * Go through our Tx list and free mbufs for those
3165	 * frames that have been transmitted.
3166	 */
3167	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3168		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3169		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3170
3171#ifdef ATW_DEBUG
3172		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3173			int i;
3174			printf("    txsoft %p transmit chain:\n", txs);
3175			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3176			    txs->txs_ndescs - 1,
3177			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3178			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3179				printf("     descriptor %d:\n", i);
3180				printf("       at_status:   0x%08x\n",
3181				    le32toh(sc->sc_txdescs[i].at_stat));
3182				printf("       at_flags:      0x%08x\n",
3183				    le32toh(sc->sc_txdescs[i].at_flags));
3184				printf("       at_buf1: 0x%08x\n",
3185				    le32toh(sc->sc_txdescs[i].at_buf1));
3186				printf("       at_buf2: 0x%08x\n",
3187				    le32toh(sc->sc_txdescs[i].at_buf2));
3188				if (i == txs->txs_lastdesc)
3189					break;
3190			}
3191		}
3192#endif
3193
3194		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3195		if (txstat & ATW_TXSTAT_OWN)
3196			break;
3197
3198		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3199
3200		sc->sc_txfree += txs->txs_ndescs;
3201
3202		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3203		    0, txs->txs_dmamap->dm_mapsize,
3204		    BUS_DMASYNC_POSTWRITE);
3205		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3206		m_freem(txs->txs_mbuf);
3207		txs->txs_mbuf = NULL;
3208
3209		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3210
3211		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3212		    (txstat & TXSTAT_ERRMASK) != 0) {
3213			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3214			    txstat_buf, sizeof(txstat_buf));
3215			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3216			    txstat_buf,
3217			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3218		}
3219
3220		/*
3221		 * Check for errors and collisions.
3222		 */
3223		if (txstat & ATW_TXSTAT_TUF)
3224			sc->sc_stats.ts_tx_tuf++;
3225		if (txstat & ATW_TXSTAT_TLT)
3226			sc->sc_stats.ts_tx_tlt++;
3227		if (txstat & ATW_TXSTAT_TRT)
3228			sc->sc_stats.ts_tx_trt++;
3229		if (txstat & ATW_TXSTAT_TRO)
3230			sc->sc_stats.ts_tx_tro++;
3231		if (txstat & ATW_TXSTAT_SOFBR) {
3232			sc->sc_stats.ts_tx_sofbr++;
3233		}
3234
3235		if ((txstat & ATW_TXSTAT_ES) == 0)
3236			ifp->if_collisions +=
3237			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3238		else
3239			ifp->if_oerrors++;
3240
3241		ifp->if_opackets++;
3242	}
3243
3244	/*
3245	 * If there are no more pending transmissions, cancel the watchdog
3246	 * timer.
3247	 */
3248	if (txs == NULL)
3249		sc->sc_tx_timer = 0;
3250#undef TXSTAT_ERRMASK
3251#undef TXSTAT_FMT
3252}
3253
3254/*
3255 * atw_watchdog:	[ifnet interface function]
3256 *
3257 *	Watchdog timer handler.
3258 */
3259void
3260atw_watchdog(struct ifnet *ifp)
3261{
3262	struct atw_softc *sc = ifp->if_softc;
3263	struct ieee80211com *ic = &sc->sc_ic;
3264
3265	ifp->if_timer = 0;
3266	if (ATW_IS_ENABLED(sc) == 0)
3267		return;
3268
3269	if (sc->sc_rescan_timer) {
3270		if (--sc->sc_rescan_timer == 0)
3271			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3272	}
3273	if (sc->sc_tx_timer) {
3274		if (--sc->sc_tx_timer == 0 &&
3275		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3276			printf("%s: transmit timeout\n", ifp->if_xname);
3277			ifp->if_oerrors++;
3278			(void)atw_init(ifp);
3279			atw_start(ifp);
3280		}
3281	}
3282	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3283		ifp->if_timer = 1;
3284	ieee80211_watchdog(ifp);
3285}
3286
3287/* Compute the 802.11 Duration field and the PLCP Length fields for
3288 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3289 * Write the fields to the ADM8211 Tx header, frm.
3290 *
3291 * TBD use the fragmentation threshold to find the right duration for
3292 * the first & last fragments.
3293 *
3294 * TBD make certain of the duration fields applied by the ADM8211 to each
3295 * fragment. I think that the ADM8211 knows how to subtract the CTS
3296 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3297 * I also think that the ADM8211 does *some* arithmetic for us, because
3298 * otherwise I think we would have to set a first duration for CTS/first
3299 * fragment, a second duration for fragments between the first and the
3300 * last, and a third duration for the last fragment.
3301 *
3302 * TBD make certain that duration fields reflect addition of FCS/WEP
3303 * and correct duration arithmetic as necessary.
3304 */
3305static void
3306atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3307    int len)
3308{
3309	int remainder;
3310
3311	/* deal also with encrypted fragments */
3312	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3313		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3314		    sc->sc_dev.dv_xname));
3315		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3316		       IEEE80211_WEP_CRCLEN;
3317	}
3318
3319	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3320	 * duration (XXX added by MAC?).
3321	 */
3322	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3323	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3324
3325	if (rate <= 4)
3326		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3327		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3328		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3329		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3330		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3331	else
3332		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3333		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3334		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3335		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3336		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3337
3338	/* lengthen duration if long preamble */
3339	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3340		frm->atw_head_dur +=
3341		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3342		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3343		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3344		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3345
3346	if (remainder != 0)
3347		frm->atw_head_dur++;
3348
3349	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3350	    (rate == 2 || rate == 4)) {
3351		/* derived from Linux: how could this be right? */
3352		frm->atw_head_plcplen = frm->atw_head_dur;
3353	} else {
3354		frm->atw_head_plcplen = (16 * len) / rate;
3355		remainder = (80 * len) % (rate * 5);
3356
3357		if (remainder != 0) {
3358			frm->atw_head_plcplen++;
3359
3360			/* XXX magic */
3361			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3362			    rate == 22 && remainder <= 30)
3363				frm->atw_head_plcplen |= 0x8000;
3364		}
3365	}
3366	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3367	    htole16(frm->atw_head_plcplen);
3368	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3369}
3370
3371#ifdef ATW_DEBUG
3372static void
3373atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3374{
3375	struct atw_softc *sc = ifp->if_softc;
3376	struct mbuf *m;
3377	int i, noctets = 0;
3378
3379	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3380	    m0->m_pkthdr.len);
3381
3382	for (m = m0; m; m = m->m_next) {
3383		if (m->m_len == 0)
3384			continue;
3385		for (i = 0; i < m->m_len; i++) {
3386			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3387			if (++noctets % 24 == 0)
3388				printf("\n");
3389		}
3390	}
3391	printf("%s%s: %d bytes emitted\n",
3392	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3393}
3394#endif /* ATW_DEBUG */
3395
3396/*
3397 * atw_start:		[ifnet interface function]
3398 *
3399 *	Start packet transmission on the interface.
3400 */
3401void
3402atw_start(struct ifnet *ifp)
3403{
3404	struct atw_softc *sc = ifp->if_softc;
3405	struct ieee80211com *ic = &sc->sc_ic;
3406	struct ieee80211_node *ni;
3407	struct ieee80211_frame *wh;
3408	struct atw_frame *hh;
3409	struct mbuf *m0, *m;
3410	struct atw_txsoft *txs, *last_txs;
3411	struct atw_txdesc *txd;
3412	int do_encrypt, rate;
3413	bus_dmamap_t dmamap;
3414	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3415
3416	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3417	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3418
3419	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3420		return;
3421
3422	/*
3423	 * Remember the previous number of free descriptors and
3424	 * the first descriptor we'll use.
3425	 */
3426	ofree = sc->sc_txfree;
3427	firsttx = sc->sc_txnext;
3428
3429	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3430	    sc->sc_dev.dv_xname, ofree, firsttx));
3431
3432	/*
3433	 * Loop through the send queue, setting up transmit descriptors
3434	 * until we drain the queue, or use up all available transmit
3435	 * descriptors.
3436	 */
3437	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3438	       sc->sc_txfree != 0) {
3439
3440		/*
3441		 * Grab a packet off the management queue, if it
3442		 * is not empty. Otherwise, from the data queue.
3443		 */
3444		IF_DEQUEUE(&ic->ic_mgtq, m0);
3445		if (m0 != NULL) {
3446			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3447			m0->m_pkthdr.rcvif = NULL;
3448		} else {
3449			/* send no data packets until we are associated */
3450			if (ic->ic_state != IEEE80211_S_RUN)
3451				break;
3452			IFQ_DEQUEUE(&ifp->if_snd, m0);
3453			if (m0 == NULL)
3454				break;
3455#if NBPFILTER > 0
3456			if (ifp->if_bpf != NULL)
3457				bpf_mtap(ifp->if_bpf, m0);
3458#endif /* NBPFILTER > 0 */
3459			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3460				ifp->if_oerrors++;
3461				break;
3462			}
3463		}
3464
3465		rate = MAX(ieee80211_get_rate(ic), 2);
3466
3467#if NBPFILTER > 0
3468		/*
3469		 * Pass the packet to any BPF listeners.
3470		 */
3471		if (ic->ic_rawbpf != NULL)
3472			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3473
3474		if (sc->sc_radiobpf != NULL) {
3475			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3476
3477			tap->at_rate = rate;
3478			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3479			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3480
3481			/* TBD tap->at_flags */
3482
3483			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3484			    tap->at_ihdr.it_len, m0);
3485		}
3486#endif /* NBPFILTER > 0 */
3487
3488		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3489
3490		if (ni != NULL && ni != ic->ic_bss)
3491			ieee80211_free_node(ic, ni);
3492
3493		if (m0 == NULL) {
3494			ifp->if_oerrors++;
3495			break;
3496		}
3497
3498		/* just to make sure. */
3499		m0 = m_pullup(m0, sizeof(struct atw_frame));
3500
3501		if (m0 == NULL) {
3502			ifp->if_oerrors++;
3503			break;
3504		}
3505
3506		hh = mtod(m0, struct atw_frame *);
3507		wh = &hh->atw_ihdr;
3508
3509		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3510
3511		/* Copy everything we need from the 802.11 header:
3512		 * Frame Control; address 1, address 3, or addresses
3513		 * 3 and 4. NIC fills in BSSID, SA.
3514		 */
3515		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3516			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3517				panic("%s: illegal WDS frame",
3518				    sc->sc_dev.dv_xname);
3519			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3520		} else
3521			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3522
3523		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3524
3525		/* initialize remaining Tx parameters */
3526		memset(&hh->u, 0, sizeof(hh->u));
3527
3528		hh->atw_rate = rate * 5;
3529		/* XXX this could be incorrect if M_FCS. _encap should
3530		 * probably strip FCS just in case it sticks around in
3531		 * bridged packets.
3532		 */
3533		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3534		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3535		    sizeof(struct atw_frame));
3536
3537		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3538		hh->atw_rtylmt = 3;
3539		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3540		if (do_encrypt) {
3541			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3542			hh->atw_keyid = ic->ic_wep_txkey;
3543		}
3544
3545		/* TBD 4-addr frames */
3546		atw_frame_setdurs(sc, hh, rate,
3547		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3548		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3549
3550		/* never fragment multicast frames */
3551		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3552			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3553		} else if (sc->sc_flags & ATWF_RTSCTS) {
3554			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3555		}
3556
3557#ifdef ATW_DEBUG
3558		hh->atw_fragnum = 0;
3559
3560		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3561			printf("%s: dst = %s, rate = 0x%02x, "
3562			    "service = 0x%02x, paylen = 0x%04x\n",
3563			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3564			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3565
3566			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3567			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3568			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3569			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3570			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3571			    hh->atw_tail_dur, hh->atw_head_dur);
3572
3573			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3574			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3575			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3576			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3577
3578			printf("%s: keyid = %d\n",
3579			    sc->sc_dev.dv_xname, hh->atw_keyid);
3580
3581			atw_dump_pkt(ifp, m0);
3582		}
3583#endif /* ATW_DEBUG */
3584
3585		dmamap = txs->txs_dmamap;
3586
3587		/*
3588		 * Load the DMA map.  Copy and try (once) again if the packet
3589		 * didn't fit in the alloted number of segments.
3590		 */
3591		for (first = 1;
3592		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3593		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3594		     first = 0) {
3595			MGETHDR(m, M_DONTWAIT, MT_DATA);
3596			if (m == NULL) {
3597				printf("%s: unable to allocate Tx mbuf\n",
3598				    sc->sc_dev.dv_xname);
3599				break;
3600			}
3601			if (m0->m_pkthdr.len > MHLEN) {
3602				MCLGET(m, M_DONTWAIT);
3603				if ((m->m_flags & M_EXT) == 0) {
3604					printf("%s: unable to allocate Tx "
3605					    "cluster\n", sc->sc_dev.dv_xname);
3606					m_freem(m);
3607					break;
3608				}
3609			}
3610			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3611			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3612			m_freem(m0);
3613			m0 = m;
3614			m = NULL;
3615		}
3616		if (error != 0) {
3617			printf("%s: unable to load Tx buffer, "
3618			    "error = %d\n", sc->sc_dev.dv_xname, error);
3619			m_freem(m0);
3620			break;
3621		}
3622
3623		/*
3624		 * Ensure we have enough descriptors free to describe
3625		 * the packet.
3626		 */
3627		if (dmamap->dm_nsegs > sc->sc_txfree) {
3628			/*
3629			 * Not enough free descriptors to transmit
3630			 * this packet.  Unload the DMA map and
3631			 * drop the packet.  Notify the upper layer
3632			 * that there are no more slots left.
3633			 *
3634			 * XXX We could allocate an mbuf and copy, but
3635			 * XXX it is worth it?
3636			 */
3637			ifp->if_flags |= IFF_OACTIVE;
3638			bus_dmamap_unload(sc->sc_dmat, dmamap);
3639			m_freem(m0);
3640			break;
3641		}
3642
3643		/*
3644		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3645		 */
3646
3647		/* Sync the DMA map. */
3648		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3649		    BUS_DMASYNC_PREWRITE);
3650
3651		/* XXX arbitrary retry limit; 8 because I have seen it in
3652		 * use already and maybe 0 means "no tries" !
3653		 */
3654		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3655
3656		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3657		    sc->sc_dev.dv_xname, rate * 5));
3658		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3659
3660		/*
3661		 * Initialize the transmit descriptors.
3662		 */
3663		for (nexttx = sc->sc_txnext, seg = 0;
3664		     seg < dmamap->dm_nsegs;
3665		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3666			/*
3667			 * If this is the first descriptor we're
3668			 * enqueueing, don't set the OWN bit just
3669			 * yet.  That could cause a race condition.
3670			 * We'll do it below.
3671			 */
3672			txd = &sc->sc_txdescs[nexttx];
3673			txd->at_ctl = ctl |
3674			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3675
3676			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3677			txd->at_flags =
3678			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3679			                   ATW_TXFLAG_TBS1_MASK)) |
3680			    ((nexttx == (ATW_NTXDESC - 1))
3681			        ? htole32(ATW_TXFLAG_TER) : 0);
3682			lasttx = nexttx;
3683		}
3684
3685		IASSERT(lasttx != -1, ("bad lastx"));
3686		/* Set `first segment' and `last segment' appropriately. */
3687		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3688		    htole32(ATW_TXFLAG_FS);
3689		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3690
3691#ifdef ATW_DEBUG
3692		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3693			printf("     txsoft %p transmit chain:\n", txs);
3694			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3695				printf("     descriptor %d:\n", seg);
3696				printf("       at_ctl:   0x%08x\n",
3697				    le32toh(sc->sc_txdescs[seg].at_ctl));
3698				printf("       at_flags:      0x%08x\n",
3699				    le32toh(sc->sc_txdescs[seg].at_flags));
3700				printf("       at_buf1: 0x%08x\n",
3701				    le32toh(sc->sc_txdescs[seg].at_buf1));
3702				printf("       at_buf2: 0x%08x\n",
3703				    le32toh(sc->sc_txdescs[seg].at_buf2));
3704				if (seg == lasttx)
3705					break;
3706			}
3707		}
3708#endif
3709
3710		/* Sync the descriptors we're using. */
3711		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3712		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3713
3714		/*
3715		 * Store a pointer to the packet so we can free it later,
3716		 * and remember what txdirty will be once the packet is
3717		 * done.
3718		 */
3719		txs->txs_mbuf = m0;
3720		txs->txs_firstdesc = sc->sc_txnext;
3721		txs->txs_lastdesc = lasttx;
3722		txs->txs_ndescs = dmamap->dm_nsegs;
3723
3724		/* Advance the tx pointer. */
3725		sc->sc_txfree -= dmamap->dm_nsegs;
3726		sc->sc_txnext = nexttx;
3727
3728		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3729		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3730
3731		last_txs = txs;
3732	}
3733
3734	if (txs == NULL || sc->sc_txfree == 0) {
3735		/* No more slots left; notify upper layer. */
3736		ifp->if_flags |= IFF_OACTIVE;
3737	}
3738
3739	if (sc->sc_txfree != ofree) {
3740		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3741		    sc->sc_dev.dv_xname, lasttx, firsttx));
3742		/*
3743		 * Cause a transmit interrupt to happen on the
3744		 * last packet we enqueued.
3745		 */
3746		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3747		ATW_CDTXSYNC(sc, lasttx, 1,
3748		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3749
3750		/*
3751		 * The entire packet chain is set up.  Give the
3752		 * first descriptor to the chip now.
3753		 */
3754		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3755		ATW_CDTXSYNC(sc, firsttx, 1,
3756		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3757
3758		/* Wake up the transmitter. */
3759		ATW_WRITE(sc, ATW_TDR, 0x1);
3760
3761		/* Set a watchdog timer in case the chip flakes out. */
3762		sc->sc_tx_timer = 5;
3763		ifp->if_timer = 1;
3764	}
3765}
3766
3767/*
3768 * atw_power:
3769 *
3770 *	Power management (suspend/resume) hook.
3771 */
3772void
3773atw_power(int why, void *arg)
3774{
3775	struct atw_softc *sc = arg;
3776	struct ifnet *ifp = &sc->sc_ic.ic_if;
3777	int s;
3778
3779	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3780
3781	s = splnet();
3782	switch (why) {
3783	case PWR_STANDBY:
3784		/* XXX do nothing. */
3785		break;
3786	case PWR_SUSPEND:
3787		atw_stop(ifp, 0);
3788		if (sc->sc_power != NULL)
3789			(*sc->sc_power)(sc, why);
3790		break;
3791	case PWR_RESUME:
3792		if (ifp->if_flags & IFF_UP) {
3793			if (sc->sc_power != NULL)
3794				(*sc->sc_power)(sc, why);
3795			atw_init(ifp);
3796		}
3797		break;
3798	case PWR_SOFTSUSPEND:
3799	case PWR_SOFTSTANDBY:
3800	case PWR_SOFTRESUME:
3801		break;
3802	}
3803	splx(s);
3804}
3805
3806/*
3807 * atw_ioctl:		[ifnet interface function]
3808 *
3809 *	Handle control requests from the operator.
3810 */
3811int
3812atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3813{
3814	struct atw_softc *sc = ifp->if_softc;
3815	struct ifreq *ifr = (struct ifreq *)data;
3816	int s, error = 0;
3817
3818	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3819	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3820		return ENXIO;
3821
3822	s = splnet();
3823
3824	switch (cmd) {
3825	case SIOCSIFFLAGS:
3826		if (ifp->if_flags & IFF_UP) {
3827			if (ATW_IS_ENABLED(sc)) {
3828				/*
3829				 * To avoid rescanning another access point,
3830				 * do not call atw_init() here.  Instead,
3831				 * only reflect media settings.
3832				 */
3833				atw_filter_setup(sc);
3834			} else
3835				error = atw_init(ifp);
3836		} else if (ATW_IS_ENABLED(sc))
3837			atw_stop(ifp, 1);
3838		break;
3839	case SIOCADDMULTI:
3840	case SIOCDELMULTI:
3841		error = (cmd == SIOCADDMULTI) ?
3842		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3843		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3844		if (error == ENETRESET) {
3845			if (ATW_IS_ENABLED(sc))
3846				atw_filter_setup(sc); /* do not rescan */
3847			error = 0;
3848		}
3849		break;
3850	default:
3851		error = ieee80211_ioctl(ifp, cmd, data);
3852		if (error == ENETRESET) {
3853			if (ATW_IS_ENABLED(sc))
3854				error = atw_init(ifp);
3855			else
3856				error = 0;
3857		}
3858		break;
3859	}
3860
3861	/* Try to get more packets going. */
3862	if (ATW_IS_ENABLED(sc))
3863		atw_start(ifp);
3864
3865	splx(s);
3866	return (error);
3867}
3868
3869static int
3870atw_media_change(struct ifnet *ifp)
3871{
3872	int error;
3873
3874	error = ieee80211_media_change(ifp);
3875	if (error == ENETRESET) {
3876		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3877		    (IFF_RUNNING|IFF_UP))
3878			atw_init(ifp);		/* XXX lose error */
3879		error = 0;
3880	}
3881	return error;
3882}
3883
3884static void
3885atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3886{
3887	struct atw_softc *sc = ifp->if_softc;
3888
3889	if (ATW_IS_ENABLED(sc) == 0) {
3890		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3891		imr->ifm_status = 0;
3892		return;
3893	}
3894	ieee80211_media_status(ifp, imr);
3895}
3896