atw.c revision 1.56
1/*	$NetBSD: atw.c,v 1.56 2004/07/15 07:10:25 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.56 2004/07/15 07:10:25 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_compat.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/rf3000reg.h>
82#include <dev/ic/si4136reg.h>
83#include <dev/ic/atwvar.h>
84#include <dev/ic/smc93cx6var.h>
85
86/* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94/* device attachment
95 *
96 *    print TOFS[012]
97 *
98 * device initialization
99 *
100 *    clear ATW_FRCTL_MAXPSP to disable max power saving
101 *    set ATW_TXBR_ALCUPDATE to enable ALC
102 *    set TOFS[012]? (hope not)
103 *    disable rx/tx
104 *    set ATW_PAR_SWR (software reset)
105 *    wait for ATW_PAR_SWR clear
106 *    disable interrupts
107 *    ack status register
108 *    enable interrupts
109 *
110 * rx/tx initialization
111 *
112 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *    allocate and init descriptor rings
114 *    write ATW_PAR_DSL (descriptor skip length)
115 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 *    write ATW_NAR_SQ for one/both transmit descriptor rings
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 *    stop DMA
123 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 *    flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 *    initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 *    set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
139#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
140int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142int atw_rfio_enable_delay = 20 * 1000;
143int atw_rfio_disable_delay = 2 * 1000;
144int atw_writewep_delay = 5;
145int atw_beacon_len_adjust = 4;
146int atw_dwelltime = 200;
147
148#ifdef ATW_DEBUG
149int atw_debug = 0;
150
151#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
155#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158static void atw_print_regs(struct atw_softc *, const char *);
159static void atw_dump_pkt(struct ifnet *, struct mbuf *);
160
161/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162#	ifdef ATW_BBPDEBUG
163static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164static void atw_rf3000_print(struct atw_softc *);
165#	endif /* ATW_BBPDEBUG */
166
167#	ifdef ATW_SYNDEBUG
168static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169static void atw_si4126_print(struct atw_softc *);
170#	endif /* ATW_SYNDEBUG */
171
172#else
173#define ATW_DPRINTF(x)
174#define ATW_DPRINTF2(x)
175#define ATW_DPRINTF3(x)
176#define	DPRINTF(sc, x)	/* nothing */
177#define	DPRINTF2(sc, x)	/* nothing */
178#define	DPRINTF3(sc, x)	/* nothing */
179#endif
180
181#ifdef ATW_STATS
182void	atw_print_stats(struct atw_softc *);
183#endif
184
185void	atw_start(struct ifnet *);
186void	atw_watchdog(struct ifnet *);
187int	atw_ioctl(struct ifnet *, u_long, caddr_t);
188int	atw_init(struct ifnet *);
189void	atw_txdrain(struct atw_softc *);
190void	atw_stop(struct ifnet *, int);
191
192void	atw_reset(struct atw_softc *);
193int	atw_read_srom(struct atw_softc *);
194
195void	atw_shutdown(void *);
196
197void	atw_rxdrain(struct atw_softc *);
198int	atw_add_rxbuf(struct atw_softc *, int);
199void	atw_idle(struct atw_softc *, u_int32_t);
200
201int	atw_enable(struct atw_softc *);
202void	atw_disable(struct atw_softc *);
203void	atw_power(int, void *);
204
205void	atw_rxintr(struct atw_softc *);
206void	atw_txintr(struct atw_softc *);
207void	atw_linkintr(struct atw_softc *, u_int32_t);
208
209static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210static void atw_tsf(struct atw_softc *);
211static void atw_start_beacon(struct atw_softc *, int);
212static void atw_write_wep(struct atw_softc *);
213static void atw_write_bssid(struct atw_softc *);
214static void atw_write_ssid(struct atw_softc *);
215static void atw_write_sup_rates(struct atw_softc *);
216static void atw_clear_sram(struct atw_softc *);
217static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
218static int atw_media_change(struct ifnet *);
219static void atw_media_status(struct ifnet *, struct ifmediareq *);
220static void atw_filter_setup(struct atw_softc *);
221static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
222static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
223static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
224    struct ieee80211_node *, int, int, u_int32_t);
225static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226    struct ieee80211_node *, int, int, u_int32_t);
227static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
228static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
229
230static int atw_tune(struct atw_softc *);
231
232static void atw_rfio_enable(struct atw_softc *, int);
233
234/* RFMD RF3000 Baseband Processor */
235static int atw_rf3000_init(struct atw_softc *);
236static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
237static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
238#ifdef ATW_DEBUG
239static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
240#endif /* ATW_DEBUG */
241
242/* Silicon Laboratories Si4126 RF/IF Synthesizer */
243static int atw_si4126_tune(struct atw_softc *, u_int8_t);
244static int atw_si4126_write(struct atw_softc *, u_int, u_int);
245#ifdef ATW_DEBUG
246static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
247#endif /* ATW_DEBUG */
248
249const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
250const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
251
252const char *atw_tx_state[] = {
253	"STOPPED",
254	"RUNNING - read descriptor",
255	"RUNNING - transmitting",
256	"RUNNING - filling fifo",	/* XXX */
257	"SUSPENDED",
258	"RUNNING -- write descriptor",
259	"RUNNING -- write last descriptor",
260	"RUNNING - fifo full"
261};
262
263const char *atw_rx_state[] = {
264	"STOPPED",
265	"RUNNING - read descriptor",
266	"RUNNING - check this packet, pre-fetch next",
267	"RUNNING - wait for reception",
268	"SUSPENDED",
269	"RUNNING - write descriptor",
270	"RUNNING - flush fifo",
271	"RUNNING - fifo drain"
272};
273
274int
275atw_activate(struct device *self, enum devact act)
276{
277	struct atw_softc *sc = (struct atw_softc *)self;
278	int rv = 0, s;
279
280	s = splnet();
281	switch (act) {
282	case DVACT_ACTIVATE:
283		rv = EOPNOTSUPP;
284		break;
285
286	case DVACT_DEACTIVATE:
287		if_deactivate(&sc->sc_ic.ic_if);
288		break;
289	}
290	splx(s);
291	return rv;
292}
293
294/*
295 * atw_enable:
296 *
297 *	Enable the ADM8211 chip.
298 */
299int
300atw_enable(struct atw_softc *sc)
301{
302
303	if (ATW_IS_ENABLED(sc) == 0) {
304		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
305			printf("%s: device enable failed\n",
306			    sc->sc_dev.dv_xname);
307			return (EIO);
308		}
309		sc->sc_flags |= ATWF_ENABLED;
310	}
311	return (0);
312}
313
314/*
315 * atw_disable:
316 *
317 *	Disable the ADM8211 chip.
318 */
319void
320atw_disable(struct atw_softc *sc)
321{
322	if (!ATW_IS_ENABLED(sc))
323		return;
324	if (sc->sc_disable != NULL)
325		(*sc->sc_disable)(sc);
326	sc->sc_flags &= ~ATWF_ENABLED;
327}
328
329/* Returns -1 on failure. */
330int
331atw_read_srom(struct atw_softc *sc)
332{
333	struct seeprom_descriptor sd;
334	u_int32_t reg;
335
336	(void)memset(&sd, 0, sizeof(sd));
337
338	reg = ATW_READ(sc, ATW_TEST0);
339
340	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
341		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
342		return -1;
343	}
344
345	switch (reg & ATW_TEST0_EPTYP_MASK) {
346	case ATW_TEST0_EPTYP_93c66:
347		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
348		sc->sc_sromsz = 512;
349		sd.sd_chip = C56_66;
350		break;
351	case ATW_TEST0_EPTYP_93c46:
352		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
353		sc->sc_sromsz = 128;
354		sd.sd_chip = C46;
355		break;
356	default:
357		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
358		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
359		return -1;
360	}
361
362	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
363
364	if (sc->sc_srom == NULL) {
365		printf("%s: unable to allocate SROM buffer\n",
366		    sc->sc_dev.dv_xname);
367		return -1;
368	}
369
370	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
371
372	/* ADM8211 has a single 32-bit register for controlling the
373	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
374	 * "ready" bit. The ADM8211 input/output sense is the reverse
375	 * of read_seeprom's.
376	 */
377	sd.sd_tag = sc->sc_st;
378	sd.sd_bsh = sc->sc_sh;
379	sd.sd_regsize = 4;
380	sd.sd_control_offset = ATW_SPR;
381	sd.sd_status_offset = ATW_SPR;
382	sd.sd_dataout_offset = ATW_SPR;
383	sd.sd_CK = ATW_SPR_SCLK;
384	sd.sd_CS = ATW_SPR_SCS;
385	sd.sd_DI = ATW_SPR_SDO;
386	sd.sd_DO = ATW_SPR_SDI;
387	sd.sd_MS = ATW_SPR_SRS;
388	sd.sd_RDY = 0;
389
390	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
391		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
392		free(sc->sc_srom, M_DEVBUF);
393		return -1;
394	}
395#ifdef ATW_DEBUG
396	{
397		int i;
398		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
399		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
400			if (((i % 8) == 0) && (i != 0)) {
401				ATW_DPRINTF(("\n\t"));
402			}
403			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
404		}
405		ATW_DPRINTF(("\n"));
406	}
407#endif /* ATW_DEBUG */
408	return 0;
409}
410
411#ifdef ATW_DEBUG
412static void
413atw_print_regs(struct atw_softc *sc, const char *where)
414{
415#define PRINTREG(sc, reg) \
416	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
417	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
418
419	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
420
421	PRINTREG(sc, ATW_PAR);
422	PRINTREG(sc, ATW_FRCTL);
423	PRINTREG(sc, ATW_TDR);
424	PRINTREG(sc, ATW_WTDP);
425	PRINTREG(sc, ATW_RDR);
426	PRINTREG(sc, ATW_WRDP);
427	PRINTREG(sc, ATW_RDB);
428	PRINTREG(sc, ATW_CSR3A);
429	PRINTREG(sc, ATW_TDBD);
430	PRINTREG(sc, ATW_TDBP);
431	PRINTREG(sc, ATW_STSR);
432	PRINTREG(sc, ATW_CSR5A);
433	PRINTREG(sc, ATW_NAR);
434	PRINTREG(sc, ATW_CSR6A);
435	PRINTREG(sc, ATW_IER);
436	PRINTREG(sc, ATW_CSR7A);
437	PRINTREG(sc, ATW_LPC);
438	PRINTREG(sc, ATW_TEST1);
439	PRINTREG(sc, ATW_SPR);
440	PRINTREG(sc, ATW_TEST0);
441	PRINTREG(sc, ATW_WCSR);
442	PRINTREG(sc, ATW_WPDR);
443	PRINTREG(sc, ATW_GPTMR);
444	PRINTREG(sc, ATW_GPIO);
445	PRINTREG(sc, ATW_BBPCTL);
446	PRINTREG(sc, ATW_SYNCTL);
447	PRINTREG(sc, ATW_PLCPHD);
448	PRINTREG(sc, ATW_MMIWADDR);
449	PRINTREG(sc, ATW_MMIRADDR1);
450	PRINTREG(sc, ATW_MMIRADDR2);
451	PRINTREG(sc, ATW_TXBR);
452	PRINTREG(sc, ATW_CSR15A);
453	PRINTREG(sc, ATW_ALCSTAT);
454	PRINTREG(sc, ATW_TOFS2);
455	PRINTREG(sc, ATW_CMDR);
456	PRINTREG(sc, ATW_PCIC);
457	PRINTREG(sc, ATW_PMCSR);
458	PRINTREG(sc, ATW_PAR0);
459	PRINTREG(sc, ATW_PAR1);
460	PRINTREG(sc, ATW_MAR0);
461	PRINTREG(sc, ATW_MAR1);
462	PRINTREG(sc, ATW_ATIMDA0);
463	PRINTREG(sc, ATW_ABDA1);
464	PRINTREG(sc, ATW_BSSID0);
465	PRINTREG(sc, ATW_TXLMT);
466	PRINTREG(sc, ATW_MIBCNT);
467	PRINTREG(sc, ATW_BCNT);
468	PRINTREG(sc, ATW_TSFTH);
469	PRINTREG(sc, ATW_TSC);
470	PRINTREG(sc, ATW_SYNRF);
471	PRINTREG(sc, ATW_BPLI);
472	PRINTREG(sc, ATW_CAP0);
473	PRINTREG(sc, ATW_CAP1);
474	PRINTREG(sc, ATW_RMD);
475	PRINTREG(sc, ATW_CFPP);
476	PRINTREG(sc, ATW_TOFS0);
477	PRINTREG(sc, ATW_TOFS1);
478	PRINTREG(sc, ATW_IFST);
479	PRINTREG(sc, ATW_RSPT);
480	PRINTREG(sc, ATW_TSFTL);
481	PRINTREG(sc, ATW_WEPCTL);
482	PRINTREG(sc, ATW_WESK);
483	PRINTREG(sc, ATW_WEPCNT);
484	PRINTREG(sc, ATW_MACTEST);
485	PRINTREG(sc, ATW_FER);
486	PRINTREG(sc, ATW_FEMR);
487	PRINTREG(sc, ATW_FPSR);
488	PRINTREG(sc, ATW_FFER);
489#undef PRINTREG
490}
491#endif /* ATW_DEBUG */
492
493/*
494 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
495 */
496void
497atw_attach(struct atw_softc *sc)
498{
499	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
500		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
501	};
502	struct ieee80211com *ic = &sc->sc_ic;
503	struct ifnet *ifp = &ic->ic_if;
504	int country_code, error, i, nrate;
505	u_int32_t reg;
506	static const char *type_strings[] = {"Intersil (not supported)",
507	    "RFMD", "Marvel (not supported)"};
508
509	sc->sc_txth = atw_txthresh_tab_lo;
510
511	SIMPLEQ_INIT(&sc->sc_txfreeq);
512	SIMPLEQ_INIT(&sc->sc_txdirtyq);
513
514#ifdef ATW_DEBUG
515	atw_print_regs(sc, "atw_attach");
516#endif /* ATW_DEBUG */
517
518	/*
519	 * Allocate the control data structures, and create and load the
520	 * DMA map for it.
521	 */
522	if ((error = bus_dmamem_alloc(sc->sc_dmat,
523	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
524	    1, &sc->sc_cdnseg, 0)) != 0) {
525		printf("%s: unable to allocate control data, error = %d\n",
526		    sc->sc_dev.dv_xname, error);
527		goto fail_0;
528	}
529
530	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
531	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
532	    BUS_DMA_COHERENT)) != 0) {
533		printf("%s: unable to map control data, error = %d\n",
534		    sc->sc_dev.dv_xname, error);
535		goto fail_1;
536	}
537
538	if ((error = bus_dmamap_create(sc->sc_dmat,
539	    sizeof(struct atw_control_data), 1,
540	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
541		printf("%s: unable to create control data DMA map, "
542		    "error = %d\n", sc->sc_dev.dv_xname, error);
543		goto fail_2;
544	}
545
546	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
547	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
548	    0)) != 0) {
549		printf("%s: unable to load control data DMA map, error = %d\n",
550		    sc->sc_dev.dv_xname, error);
551		goto fail_3;
552	}
553
554	/*
555	 * Create the transmit buffer DMA maps.
556	 */
557	sc->sc_ntxsegs = ATW_NTXSEGS;
558	for (i = 0; i < ATW_TXQUEUELEN; i++) {
559		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
560		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
561		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
562			printf("%s: unable to create tx DMA map %d, "
563			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
564			goto fail_4;
565		}
566	}
567
568	/*
569	 * Create the receive buffer DMA maps.
570	 */
571	for (i = 0; i < ATW_NRXDESC; i++) {
572		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
573		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
574			printf("%s: unable to create rx DMA map %d, "
575			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
576			goto fail_5;
577		}
578	}
579	for (i = 0; i < ATW_NRXDESC; i++) {
580		sc->sc_rxsoft[i].rxs_mbuf = NULL;
581	}
582
583	/* Reset the chip to a known state. */
584	atw_reset(sc);
585
586	if (atw_read_srom(sc) == -1)
587		return;
588
589	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
590	    ATW_SR_RFTYPE_MASK);
591
592	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
593	    ATW_SR_BBPTYPE_MASK);
594
595	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
596		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
597		return;
598	}
599	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
600		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
601		return;
602	}
603
604	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
605	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
606
607	/* XXX There exists a Linux driver which seems to use RFType = 0 for
608	 * MARVEL. My bug, or theirs?
609	 */
610
611	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
612
613	switch (sc->sc_rftype) {
614	case ATW_RFTYPE_INTERSIL:
615		reg |= ATW_SYNCTL_CS1;
616		break;
617	case ATW_RFTYPE_RFMD:
618		reg |= ATW_SYNCTL_CS0;
619		break;
620	case ATW_RFTYPE_MARVEL:
621		break;
622	}
623
624	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
625	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
626
627	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
628
629	switch (sc->sc_bbptype) {
630	case ATW_BBPTYPE_INTERSIL:
631		reg |= ATW_BBPCTL_TWI;
632		break;
633	case ATW_BBPTYPE_RFMD:
634		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
635		    ATW_BBPCTL_CCA_ACTLO;
636		break;
637	case ATW_BBPTYPE_MARVEL:
638		break;
639	case ATW_C_BBPTYPE_RFMD:
640		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
641		    sc->sc_dev.dv_xname);
642		break;
643	}
644
645	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
646	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
647
648	/*
649	 * From this point forward, the attachment cannot fail.  A failure
650	 * before this point releases all resources that may have been
651	 * allocated.
652	 */
653	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
654
655	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
656	    htole16(sc->sc_srom[ATW_SR_MAC00]),
657	    htole16(sc->sc_srom[ATW_SR_MAC01]),
658	    htole16(sc->sc_srom[ATW_SR_MAC10])));
659
660	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
661	    ATW_SR_CTRY_MASK);
662
663#define ADD_CHANNEL(_ic, _chan) do {					\
664	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
665	_ic->ic_channels[_chan].ic_freq =				\
666	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
667} while (0)
668
669	/* Find available channels */
670	switch (country_code) {
671	case COUNTRY_MMK2:	/* 1-14 */
672		ADD_CHANNEL(ic, 14);
673		/*FALLTHROUGH*/
674	case COUNTRY_ETSI:	/* 1-13 */
675		for (i = 1; i <= 13; i++)
676			ADD_CHANNEL(ic, i);
677		break;
678	case COUNTRY_FCC:	/* 1-11 */
679	case COUNTRY_IC:	/* 1-11 */
680		for (i = 1; i <= 11; i++)
681			ADD_CHANNEL(ic, i);
682		break;
683	case COUNTRY_MMK:	/* 14 */
684		ADD_CHANNEL(ic, 14);
685		break;
686	case COUNTRY_FRANCE:	/* 10-13 */
687		for (i = 10; i <= 13; i++)
688			ADD_CHANNEL(ic, i);
689		break;
690	default:	/* assume channels 10-11 */
691	case COUNTRY_SPAIN:	/* 10-11 */
692		for (i = 10; i <= 11; i++)
693			ADD_CHANNEL(ic, i);
694		break;
695	}
696
697	/* Read the MAC address. */
698	reg = ATW_READ(sc, ATW_PAR0);
699	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
700	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
701	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
702	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
703	reg = ATW_READ(sc, ATW_PAR1);
704	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
705	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
706
707	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
708		printf(" could not get mac address, attach failed\n");
709		return;
710	}
711
712	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
713
714	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
715	ifp->if_softc = sc;
716	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
717	    IFF_NOTRAILERS;
718	ifp->if_ioctl = atw_ioctl;
719	ifp->if_start = atw_start;
720	ifp->if_watchdog = atw_watchdog;
721	ifp->if_init = atw_init;
722	ifp->if_stop = atw_stop;
723	IFQ_SET_READY(&ifp->if_snd);
724
725	ic->ic_phytype = IEEE80211_T_DS;
726	ic->ic_opmode = IEEE80211_M_STA;
727	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
728	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
729
730	nrate = 0;
731	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
732	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
733	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
734	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
735	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
736
737	/*
738	 * Call MI attach routines.
739	 */
740
741	if_attach(ifp);
742	ieee80211_ifattach(ifp);
743
744	sc->sc_newstate = ic->ic_newstate;
745	ic->ic_newstate = atw_newstate;
746
747	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
748	ic->ic_recv_mgmt = atw_recv_mgmt;
749
750	sc->sc_node_free = ic->ic_node_free;
751	ic->ic_node_free = atw_node_free;
752
753	sc->sc_node_alloc = ic->ic_node_alloc;
754	ic->ic_node_alloc = atw_node_alloc;
755
756	/* possibly we should fill in our own sc_send_prresp, since
757	 * the ADM8211 is probably sending probe responses in ad hoc
758	 * mode.
759	 */
760
761	/* complete initialization */
762	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
763	callout_init(&sc->sc_scan_ch);
764
765#if NBPFILTER > 0
766	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
767	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
768#endif
769
770	/*
771	 * Make sure the interface is shutdown during reboot.
772	 */
773	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
774	if (sc->sc_sdhook == NULL)
775		printf("%s: WARNING: unable to establish shutdown hook\n",
776		    sc->sc_dev.dv_xname);
777
778	/*
779	 * Add a suspend hook to make sure we come back up after a
780	 * resume.
781	 */
782	sc->sc_powerhook = powerhook_establish(atw_power, sc);
783	if (sc->sc_powerhook == NULL)
784		printf("%s: WARNING: unable to establish power hook\n",
785		    sc->sc_dev.dv_xname);
786
787	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
788	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
789	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
790
791	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
792	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
793	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
794
795	return;
796
797	/*
798	 * Free any resources we've allocated during the failed attach
799	 * attempt.  Do this in reverse order and fall through.
800	 */
801 fail_5:
802	for (i = 0; i < ATW_NRXDESC; i++) {
803		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
804			continue;
805		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
806	}
807 fail_4:
808	for (i = 0; i < ATW_TXQUEUELEN; i++) {
809		if (sc->sc_txsoft[i].txs_dmamap == NULL)
810			continue;
811		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
812	}
813	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
814 fail_3:
815	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
816 fail_2:
817	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
818	    sizeof(struct atw_control_data));
819 fail_1:
820	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
821 fail_0:
822	return;
823}
824
825static struct ieee80211_node *
826atw_node_alloc(struct ieee80211com *ic)
827{
828	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
829	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
830
831	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
832	return ni;
833}
834
835static void
836atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
837{
838	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
839
840	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
841	    ether_sprintf(ni->ni_bssid)));
842	(*sc->sc_node_free)(ic, ni);
843}
844
845/*
846 * atw_reset:
847 *
848 *	Perform a soft reset on the ADM8211.
849 */
850void
851atw_reset(struct atw_softc *sc)
852{
853	int i;
854
855	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
856
857	for (i = 0; i < 10000; i++) {
858		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
859			break;
860		DELAY(1);
861	}
862
863	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
864
865	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
866		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
867
868	/* Turn off maximum power saving. */
869	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
870
871	/* Recall EEPROM. */
872	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
873
874	DELAY(10 * 1000);
875
876	/* A reset seems to affect the SRAM contents, so put them into
877	 * a known state.
878	 */
879	atw_clear_sram(sc);
880
881	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
882}
883
884static void
885atw_clear_sram(struct atw_softc *sc)
886{
887	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
888	/* XXX not for revision 0x20. */
889	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
890}
891
892/* TBD atw_init
893 *
894 * set MAC based on ic->ic_bss->myaddr
895 * write WEP keys
896 * set TX rate
897 */
898
899/*
900 * atw_init:		[ ifnet interface function ]
901 *
902 *	Initialize the interface.  Must be called at splnet().
903 */
904int
905atw_init(struct ifnet *ifp)
906{
907	struct atw_softc *sc = ifp->if_softc;
908	struct ieee80211com *ic = &sc->sc_ic;
909	struct atw_txsoft *txs;
910	struct atw_rxsoft *rxs;
911	u_int32_t reg;
912	int i, error = 0;
913
914	if ((error = atw_enable(sc)) != 0)
915		goto out;
916
917	/*
918	 * Cancel any pending I/O. This also resets.
919	 */
920	atw_stop(ifp, 0);
921
922	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
923	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
924	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
925	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
926
927	/* Turn off APM??? (A binary-only driver does this.)
928	 *
929	 * Set Rx store-and-forward mode.
930	 */
931	reg = ATW_READ(sc, ATW_CMDR);
932	reg &= ~ATW_CMDR_APM;
933	reg &= ~ATW_CMDR_DRT_MASK;
934	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
935
936	ATW_WRITE(sc, ATW_CMDR, reg);
937
938	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
939	 *
940	 * XXX a binary-only driver sets a different service field than
941	 * 0. why?
942	 */
943	reg = ATW_READ(sc, ATW_PLCPHD);
944	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
945	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
946	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
947	ATW_WRITE(sc, ATW_PLCPHD, reg);
948
949	/* XXX this magic can probably be figured out from the RFMD docs */
950	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
951	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
952	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
953	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
954	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
955	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
956	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
957	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
958	ATW_WRITE(sc, ATW_TOFS2, reg);
959
960	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
961	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
962
963	/* XXX this resets an Intersil RF front-end? */
964	/* TBD condition on Intersil RFType? */
965	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
966	DELAY(10 * 1000);
967	ATW_WRITE(sc, ATW_SYNRF, 0);
968	DELAY(5 * 1000);
969
970	/* 16 TU max duration for contention-free period */
971	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
972	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
973
974	/* XXX I guess that the Cardbus clock is 22MHz?
975	 * I am assuming that the role of ATW_TOFS0_USCNT is
976	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
977	 * very clear on this point. It says in the datasheet that it is
978	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
979	 * and 33MHz; maybe this is the way? I see a binary-only driver write
980	 * these values. These values are also the power-on default.
981	 */
982	ATW_WRITE(sc, ATW_TOFS0,
983	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
984	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
985
986	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
987	 * driver. Go figure.
988	 */
989	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
990	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
991	             ATW_IFST_SIFS_MASK) |
992	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
993	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
994
995	ATW_WRITE(sc, ATW_IFST, reg);
996
997	/* XXX More magic. Might relate to ACK timing. */
998	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
999	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1000
1001	/* Set up the MMI read/write addresses for the BBP.
1002	 *
1003	 * TBD find out the Marvel settings.
1004	 */
1005	switch (sc->sc_bbptype) {
1006	case ATW_BBPTYPE_INTERSIL:
1007		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1008		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1009		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1010		break;
1011	case ATW_BBPTYPE_MARVEL:
1012		break;
1013	case ATW_BBPTYPE_RFMD:
1014		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1015		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1016		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1017	default:
1018		break;
1019	}
1020
1021	sc->sc_wepctl = 0;
1022	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1023
1024	if ((error = atw_rf3000_init(sc)) != 0)
1025		goto out;
1026
1027	/*
1028	 * Initialize the PCI Access Register.
1029	 */
1030	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
1031
1032	/*
1033	 * If we're allowed to do so, use Memory Read Line
1034	 * and Memory Read Multiple.
1035	 *
1036	 * XXX Should we use Memory Write and Invalidate?
1037	 */
1038	if (sc->sc_flags & ATWF_MRL)
1039		sc->sc_busmode |= ATW_PAR_MRLE;
1040	if (sc->sc_flags & ATWF_MRM)
1041		sc->sc_busmode |= ATW_PAR_MRME;
1042	if (sc->sc_flags & ATWF_MWI)
1043		sc->sc_busmode |= ATW_PAR_MWIE;
1044	if (sc->sc_maxburst == 0)
1045		sc->sc_maxburst = 8;	/* ADM8211 default */
1046
1047	switch (sc->sc_cacheline) {
1048	default:
1049		/* Use burst length. */
1050		break;
1051	case 8:
1052		sc->sc_busmode |= ATW_PAR_CAL_8DW;
1053		break;
1054	case 16:
1055		sc->sc_busmode |= ATW_PAR_CAL_16DW;
1056		break;
1057	case 32:
1058		sc->sc_busmode |= ATW_PAR_CAL_32DW;
1059		break;
1060	}
1061	switch (sc->sc_maxburst) {
1062	case 1:
1063		sc->sc_busmode |= ATW_PAR_PBL_1DW;
1064		break;
1065	case 2:
1066		sc->sc_busmode |= ATW_PAR_PBL_2DW;
1067		break;
1068	case 4:
1069		sc->sc_busmode |= ATW_PAR_PBL_4DW;
1070		break;
1071	case 8:
1072		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1073		break;
1074	case 16:
1075		sc->sc_busmode |= ATW_PAR_PBL_16DW;
1076		break;
1077	case 32:
1078		sc->sc_busmode |= ATW_PAR_PBL_32DW;
1079		break;
1080	default:
1081		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082		break;
1083	}
1084
1085	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1086	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1087	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1088
1089	/*
1090	 * Initialize the OPMODE register.  We don't write it until
1091	 * we're ready to begin the transmit and receive processes.
1092	 */
1093	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1094	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1095
1096	/*
1097	 * Initialize the transmit descriptor ring.
1098	 */
1099	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1100	for (i = 0; i < ATW_NTXDESC; i++) {
1101		sc->sc_txdescs[i].at_ctl = 0;
1102		/* no transmit chaining */
1103		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1104		sc->sc_txdescs[i].at_buf2 =
1105		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1106	}
1107	/* use ring mode */
1108	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1109	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1110	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1111	sc->sc_txfree = ATW_NTXDESC;
1112	sc->sc_txnext = 0;
1113
1114	/*
1115	 * Initialize the transmit job descriptors.
1116	 */
1117	SIMPLEQ_INIT(&sc->sc_txfreeq);
1118	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1120		txs = &sc->sc_txsoft[i];
1121		txs->txs_mbuf = NULL;
1122		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1123	}
1124
1125	/*
1126	 * Initialize the receive descriptor and receive job
1127	 * descriptor rings.
1128	 */
1129	for (i = 0; i < ATW_NRXDESC; i++) {
1130		rxs = &sc->sc_rxsoft[i];
1131		if (rxs->rxs_mbuf == NULL) {
1132			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1133				printf("%s: unable to allocate or map rx "
1134				    "buffer %d, error = %d\n",
1135				    sc->sc_dev.dv_xname, i, error);
1136				/*
1137				 * XXX Should attempt to run with fewer receive
1138				 * XXX buffers instead of just failing.
1139				 */
1140				atw_rxdrain(sc);
1141				goto out;
1142			}
1143		} else
1144			ATW_INIT_RXDESC(sc, i);
1145	}
1146	sc->sc_rxptr = 0;
1147
1148	/* disable all wake-up events */
1149	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1150	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1151			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1152			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1153
1154	/* ack all wake-up events */
1155	ATW_SET(sc, ATW_WCSR, 0);
1156
1157	/*
1158	 * Initialize the interrupt mask and enable interrupts.
1159	 */
1160	/* normal interrupts */
1161	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1162	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1163
1164	/* abnormal interrupts */
1165	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1166	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1167	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1168
1169	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1170	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1171	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1172	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1173	    ATW_INTR_TRT;
1174
1175	sc->sc_linkint_mask &= sc->sc_inten;
1176	sc->sc_rxint_mask &= sc->sc_inten;
1177	sc->sc_txint_mask &= sc->sc_inten;
1178
1179	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1180	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1181	if (sc->sc_intr_ack != NULL)
1182		(*sc->sc_intr_ack)(sc);
1183
1184	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1185	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1186
1187	/*
1188	 * Give the transmit and receive rings to the ADM8211.
1189	 */
1190	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1191	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1192
1193	/* common 802.11 configuration */
1194	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1195	switch (ic->ic_opmode) {
1196	case IEEE80211_M_STA:
1197		break;
1198	case IEEE80211_M_AHDEMO: /* XXX */
1199	case IEEE80211_M_IBSS:
1200		ic->ic_flags |= IEEE80211_F_IBSSON;
1201		/*FALLTHROUGH*/
1202	case IEEE80211_M_HOSTAP: /* XXX */
1203		break;
1204	case IEEE80211_M_MONITOR: /* XXX */
1205		break;
1206	}
1207
1208	atw_start_beacon(sc, 0);
1209
1210	switch (ic->ic_opmode) {
1211	case IEEE80211_M_AHDEMO:
1212	case IEEE80211_M_HOSTAP:
1213		ic->ic_bss->ni_intval = ic->ic_lintval;
1214		ic->ic_bss->ni_rssi = 0;
1215		ic->ic_bss->ni_rstamp = 0;
1216		break;
1217	default:					/* XXX */
1218		break;
1219	}
1220
1221	atw_write_ssid(sc);
1222	atw_write_sup_rates(sc);
1223	if (ic->ic_caps & IEEE80211_C_WEP)
1224		atw_write_wep(sc);
1225
1226	/*
1227	 * Set the receive filter.  This will start the transmit and
1228	 * receive processes.
1229	 */
1230	atw_filter_setup(sc);
1231
1232	/*
1233	 * Start the receive process.
1234	 */
1235	ATW_WRITE(sc, ATW_RDR, 0x1);
1236
1237	/*
1238	 * Note that the interface is now running.
1239	 */
1240	ifp->if_flags |= IFF_RUNNING;
1241	ifp->if_flags &= ~IFF_OACTIVE;
1242	ic->ic_state = IEEE80211_S_INIT;
1243
1244	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1245		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1246	else
1247		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1248 out:
1249	if (error) {
1250		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1251		ifp->if_timer = 0;
1252		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1253	}
1254#ifdef ATW_DEBUG
1255	atw_print_regs(sc, "end of init");
1256#endif /* ATW_DEBUG */
1257
1258	return (error);
1259}
1260
1261/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1262 *           0: MAC control of RF3000/Si4126.
1263 *
1264 * Applies power, or selects RF front-end? Sets reset condition.
1265 *
1266 * TBD support non-RFMD BBP, non-SiLabs synth.
1267 */
1268static void
1269atw_rfio_enable(struct atw_softc *sc, int enable)
1270{
1271	if (enable) {
1272		ATW_WRITE(sc, ATW_SYNRF,
1273		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1274		DELAY(atw_rfio_enable_delay);
1275	} else {
1276		ATW_WRITE(sc, ATW_SYNRF, 0);
1277		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1278	}
1279}
1280
1281static int
1282atw_tune(struct atw_softc *sc)
1283{
1284	int rc;
1285	u_int32_t reg;
1286	int chan;
1287	struct ieee80211com *ic = &sc->sc_ic;
1288
1289	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1290	if (chan == IEEE80211_CHAN_ANY)
1291		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1292
1293	if (chan == sc->sc_cur_chan)
1294		return 0;
1295
1296	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1297	    sc->sc_cur_chan, chan));
1298
1299	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1300
1301	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1302	    (rc = atw_rf3000_tune(sc, chan)) != 0)
1303		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1304		    chan);
1305
1306	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1307	ATW_WRITE(sc, ATW_CAP0,
1308	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1309
1310	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1311
1312	if (rc == 0)
1313		sc->sc_cur_chan = chan;
1314
1315	return rc;
1316}
1317
1318#ifdef ATW_DEBUG
1319static void
1320atw_si4126_print(struct atw_softc *sc)
1321{
1322	struct ifnet *ifp = &sc->sc_ic.ic_if;
1323	u_int addr, val;
1324
1325	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1326		return;
1327
1328	for (addr = 0; addr <= 8; addr++) {
1329		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1330		if (atw_si4126_read(sc, addr, &val) == 0) {
1331			printf("<unknown> (quitting print-out)\n");
1332			break;
1333		}
1334		printf("%05x\n", val);
1335	}
1336}
1337#endif /* ATW_DEBUG */
1338
1339/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1340 *
1341 * The RF/IF synthesizer produces two reference frequencies for
1342 * the RF2948B transceiver.  The first frequency the RF2948B requires
1343 * is two times the so-called "intermediate frequency" (IF). Since
1344 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1345 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1346 * frequency required by the transceiver is the radio frequency
1347 * (RF). This is a superheterodyne transceiver; for f(chan) the
1348 * center frequency of the channel we are tuning, RF = f(chan) -
1349 * IF.
1350 *
1351 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1352 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1353 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1354 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1355 */
1356static int
1357atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1358{
1359	int rc = 0;
1360	u_int mhz;
1361	u_int R;
1362	u_int32_t reg;
1363	u_int16_t gain;
1364
1365#ifdef ATW_DEBUG
1366	atw_si4126_print(sc);
1367#endif /* ATW_DEBUG */
1368
1369	if (chan == 14)
1370		mhz = 2484;
1371	else
1372		mhz = 2412 + 5 * (chan - 1);
1373
1374	/* Tune IF to 748MHz to suit the IF LO input of the
1375	 * RF2494B, which is 2 x IF. No need to set an IF divider
1376         * because an IF in 526MHz - 952MHz is allowed.
1377	 *
1378	 * XIN is 44.000MHz, so divide it by two to get allowable
1379	 * range of 2-25MHz. SiLabs tells me that this is not
1380	 * strictly necessary.
1381	 */
1382
1383	R = 44;
1384
1385	atw_rfio_enable(sc, 1);
1386
1387	/* Power-up RF, IF synthesizers. */
1388	if ((rc = atw_si4126_write(sc, SI4126_POWER,
1389	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1390		goto out;
1391
1392	/* If RF2 N > 2047, then set KP2 to 1. */
1393	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1394
1395	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1396		goto out;
1397
1398	/* set LPWR, too? */
1399	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1400	    SI4126_MAIN_XINDIV2)) != 0)
1401		goto out;
1402
1403	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
1404	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1405	 */
1406	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1407		goto out;
1408
1409	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1410		goto out;
1411
1412	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1413	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1414	 * which has no RF1!
1415	 */
1416	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1417		goto out;
1418
1419	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1420		goto out;
1421
1422	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1423	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1424	 * Now let's multiply it to mhz. So mhz - IF = N.
1425	 */
1426	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1427		goto out;
1428
1429	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1430		goto out;
1431
1432	/* wait 100us from power-up for RF, IF to settle */
1433	DELAY(100);
1434
1435	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1436		/* XXX there is a binary driver which sends
1437		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1438		 * that this enables the Si4126 by raising its PWDN#, but I
1439		 * think that it actually sets the Prism RF front-end
1440		 * to a special mode for channel 14.
1441		 */
1442		reg = ATW_READ(sc, ATW_GPIO);
1443		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1444		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1445		ATW_WRITE(sc, ATW_GPIO, reg);
1446	}
1447
1448#ifdef ATW_DEBUG
1449	atw_si4126_print(sc);
1450#endif /* ATW_DEBUG */
1451
1452out:
1453	atw_rfio_enable(sc, 0);
1454
1455	return rc;
1456}
1457
1458/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1459 * diversity.
1460 *
1461 * Call this w/ Tx/Rx suspended.
1462 */
1463static int
1464atw_rf3000_init(struct atw_softc *sc)
1465{
1466	int rc = 0;
1467
1468	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1469
1470	atw_rfio_enable(sc, 1);
1471
1472	/* enable diversity */
1473	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1474
1475	if (rc != 0)
1476		goto out;
1477
1478	/* sensible setting from a binary-only driver */
1479	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1480	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1481
1482	if (rc != 0)
1483		goto out;
1484
1485	/* magic from a binary-only driver */
1486	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1487	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1488
1489	if (rc != 0)
1490		goto out;
1491
1492	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1493
1494	if (rc != 0)
1495		goto out;
1496
1497	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1498
1499	if (rc != 0)
1500		goto out;
1501
1502	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1503
1504	if (rc != 0)
1505		goto out;
1506
1507	/* CCA is acquisition sensitive */
1508	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1509	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1510
1511	if (rc != 0)
1512		goto out;
1513
1514out:
1515	atw_rfio_enable(sc, 0);
1516	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1517	return rc;
1518}
1519
1520#ifdef ATW_DEBUG
1521static void
1522atw_rf3000_print(struct atw_softc *sc)
1523{
1524	struct ifnet *ifp = &sc->sc_ic.ic_if;
1525	u_int addr, val;
1526
1527	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1528		return;
1529
1530	for (addr = 0x01; addr <= 0x15; addr++) {
1531		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1532		if (atw_rf3000_read(sc, addr, &val) != 0) {
1533			printf("<unknown> (quitting print-out)\n");
1534			break;
1535		}
1536		printf("%08x\n", val);
1537	}
1538}
1539#endif /* ATW_DEBUG */
1540
1541/* Set the power settings on the BBP for channel `chan'. */
1542static int
1543atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1544{
1545	int rc = 0;
1546	u_int32_t reg;
1547	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1548
1549	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1550	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1551	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1552
1553	/* odd channels: LSB, even channels: MSB */
1554	if (chan % 2 == 1) {
1555		txpower &= 0xFF;
1556		lpf_cutoff &= 0xFF;
1557		lna_gs_thresh &= 0xFF;
1558	} else {
1559		txpower >>= 8;
1560		lpf_cutoff >>= 8;
1561		lna_gs_thresh >>= 8;
1562	}
1563
1564#ifdef ATW_DEBUG
1565	atw_rf3000_print(sc);
1566#endif /* ATW_DEBUG */
1567
1568	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1569	    "lna_gs_thresh %02x\n",
1570	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1571
1572	atw_rfio_enable(sc, 1);
1573
1574	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1575	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1576		goto out;
1577
1578	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1579		goto out;
1580
1581	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1582		goto out;
1583
1584	/* from a binary-only driver. */
1585	reg = ATW_READ(sc, ATW_PLCPHD);
1586	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1587	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1588	    ATW_PLCPHD_SERVICE_MASK);
1589	ATW_WRITE(sc, ATW_PLCPHD, reg);
1590
1591#ifdef ATW_DEBUG
1592	atw_rf3000_print(sc);
1593#endif /* ATW_DEBUG */
1594
1595out:
1596	atw_rfio_enable(sc, 0);
1597
1598	return rc;
1599}
1600
1601/* Write a register on the RF3000 baseband processor using the
1602 * registers provided by the ADM8211 for this purpose.
1603 *
1604 * Return 0 on success.
1605 */
1606static int
1607atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1608{
1609	u_int32_t reg;
1610	int i;
1611
1612	for (i = 1000; --i >= 0; ) {
1613		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1614			break;
1615		DELAY(100);
1616	}
1617
1618	if (i < 0) {
1619		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1620		return ETIMEDOUT;
1621	}
1622
1623	reg = sc->sc_bbpctl_wr |
1624	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1625	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1626
1627	ATW_WRITE(sc, ATW_BBPCTL, reg);
1628
1629	for (i = 1000; --i >= 0; ) {
1630		DELAY(100);
1631		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1632			break;
1633	}
1634
1635	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1636
1637	if (i < 0) {
1638		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1639		return ETIMEDOUT;
1640	}
1641	return 0;
1642}
1643
1644/* Read a register on the RF3000 baseband processor using the registers
1645 * the ADM8211 provides for this purpose.
1646 *
1647 * The 7-bit register address is addr.  Record the 8-bit data in the register
1648 * in *val.
1649 *
1650 * Return 0 on success.
1651 *
1652 * XXX This does not seem to work. The ADM8211 must require more or
1653 * different magic to read the chip than to write it. Possibly some
1654 * of the magic I have derived from a binary-only driver concerns
1655 * the "chip address" (see the RF3000 manual).
1656 */
1657#ifdef ATW_DEBUG
1658static int
1659atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1660{
1661	u_int32_t reg;
1662	int i;
1663
1664	for (i = 1000; --i >= 0; ) {
1665		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1666			break;
1667		DELAY(100);
1668	}
1669
1670	if (i < 0) {
1671		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1672		    sc->sc_dev.dv_xname);
1673		return ETIMEDOUT;
1674	}
1675
1676	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1677
1678	ATW_WRITE(sc, ATW_BBPCTL, reg);
1679
1680	for (i = 1000; --i >= 0; ) {
1681		DELAY(100);
1682		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1683			break;
1684	}
1685
1686	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1687
1688	if (i < 0) {
1689		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1690		    sc->sc_dev.dv_xname, reg);
1691		return ETIMEDOUT;
1692	}
1693	if (val != NULL)
1694		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1695	return 0;
1696}
1697#endif /* ATW_DEBUG */
1698
1699/* Write a register on the Si4126 RF/IF synthesizer using the registers
1700 * provided by the ADM8211 for that purpose.
1701 *
1702 * val is 18 bits of data, and val is the 4-bit address of the register.
1703 *
1704 * Return 0 on success.
1705 */
1706static int
1707atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1708{
1709	u_int32_t bits, reg;
1710	int i;
1711
1712	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1713	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1714
1715	for (i = 1000; --i >= 0; ) {
1716		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1717			break;
1718		DELAY(100);
1719	}
1720
1721	if (i < 0) {
1722		printf("%s: start atw_si4126_write, SYNCTL busy\n",
1723		    sc->sc_dev.dv_xname);
1724		return ETIMEDOUT;
1725	}
1726
1727	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1728	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1729
1730	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1731
1732	ATW_WRITE(sc, ATW_SYNCTL, reg);
1733
1734	for (i = 1000; --i >= 0; ) {
1735		DELAY(100);
1736		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1737			break;
1738	}
1739
1740	/* restore to acceptable starting condition */
1741	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1742
1743	if (i < 0) {
1744		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1745		    sc->sc_dev.dv_xname, reg);
1746		return ETIMEDOUT;
1747	}
1748	return 0;
1749}
1750
1751/* Read 18-bit data from the 4-bit address addr in Si4126
1752 * RF synthesizer and write the data to *val. Return 0 on success.
1753 *
1754 * XXX This does not seem to work. The ADM8211 must require more or
1755 * different magic to read the chip than to write it.
1756 */
1757#ifdef ATW_DEBUG
1758static int
1759atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1760{
1761	u_int32_t reg;
1762	int i;
1763
1764	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1765
1766	for (i = 1000; --i >= 0; ) {
1767		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1768			break;
1769		DELAY(100);
1770	}
1771
1772	if (i < 0) {
1773		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1774		    sc->sc_dev.dv_xname);
1775		return ETIMEDOUT;
1776	}
1777
1778	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1779
1780	ATW_WRITE(sc, ATW_SYNCTL, reg);
1781
1782	for (i = 1000; --i >= 0; ) {
1783		DELAY(100);
1784		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1785			break;
1786	}
1787
1788	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1789
1790	if (i < 0) {
1791		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1792		    sc->sc_dev.dv_xname, reg);
1793		return ETIMEDOUT;
1794	}
1795	if (val != NULL)
1796		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1797		                       ATW_SYNCTL_DATA_MASK);
1798	return 0;
1799}
1800#endif /* ATW_DEBUG */
1801
1802/* XXX is the endianness correct? test. */
1803#define	atw_calchash(addr) \
1804	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1805
1806/*
1807 * atw_filter_setup:
1808 *
1809 *	Set the ADM8211's receive filter.
1810 */
1811static void
1812atw_filter_setup(struct atw_softc *sc)
1813{
1814	struct ieee80211com *ic = &sc->sc_ic;
1815	struct ethercom *ec = &ic->ic_ec;
1816	struct ifnet *ifp = &sc->sc_ic.ic_if;
1817	int hash;
1818	u_int32_t hashes[2] = { 0, 0 };
1819	struct ether_multi *enm;
1820	struct ether_multistep step;
1821
1822	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1823	    sc->sc_dev.dv_xname, sc->sc_flags));
1824
1825	/*
1826	 * If we're running, idle the receive engine.  If we're NOT running,
1827	 * we're being called from atw_init(), and our writing ATW_NAR will
1828	 * start the transmit and receive processes in motion.
1829	 */
1830	if (ifp->if_flags & IFF_RUNNING)
1831		atw_idle(sc, ATW_NAR_SR);
1832
1833	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1834
1835	ifp->if_flags &= ~IFF_ALLMULTI;
1836
1837	if (ifp->if_flags & IFF_PROMISC) {
1838		sc->sc_opmode |= ATW_NAR_PR;
1839allmulti:
1840		ifp->if_flags |= IFF_ALLMULTI;
1841		goto setit;
1842	}
1843
1844	/*
1845	 * Program the 64-bit multicast hash filter.
1846	 */
1847	ETHER_FIRST_MULTI(step, ec, enm);
1848	while (enm != NULL) {
1849		/* XXX */
1850		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1851		    ETHER_ADDR_LEN) != 0)
1852			goto allmulti;
1853
1854		hash = atw_calchash(enm->enm_addrlo);
1855		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1856		ETHER_NEXT_MULTI(step, enm);
1857	}
1858
1859	if (ifp->if_flags & IFF_BROADCAST) {
1860		hash = atw_calchash(etherbroadcastaddr);
1861		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1862	}
1863
1864	/* all bits set => hash is useless */
1865	if (~(hashes[0] & hashes[1]) == 0)
1866		goto allmulti;
1867
1868 setit:
1869	if (ifp->if_flags & IFF_ALLMULTI)
1870		sc->sc_opmode |= ATW_NAR_MM;
1871
1872	/* XXX in scan mode, do not filter packets. maybe this is
1873	 * unnecessary.
1874	 */
1875	if (ic->ic_state == IEEE80211_S_SCAN)
1876		sc->sc_opmode |= ATW_NAR_PR;
1877
1878	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1879	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1880	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1881	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1882	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1883
1884	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1885}
1886
1887/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1888 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1889 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1890 * no beacon with the preferred BSSID and SSID in the number of
1891 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1892 */
1893static void
1894atw_write_bssid(struct atw_softc *sc)
1895{
1896	struct ieee80211com *ic = &sc->sc_ic;
1897	u_int8_t *bssid;
1898
1899	bssid = ic->ic_bss->ni_bssid;
1900
1901	ATW_WRITE(sc, ATW_BSSID0,
1902	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1903	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1904	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1905	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1906
1907	ATW_WRITE(sc, ATW_ABDA1,
1908	    (ATW_READ(sc, ATW_ABDA1) &
1909	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1910	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1911	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1912
1913	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1914	    ether_sprintf(sc->sc_bssid)));
1915	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1916
1917	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1918}
1919
1920/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1921 * 16-bit word.
1922 */
1923static void
1924atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1925{
1926	u_int i;
1927	u_int8_t *ptr;
1928
1929	memcpy(&sc->sc_sram[ofs], buf, buflen);
1930
1931	if (ofs % 2 != 0) {
1932		ofs--;
1933		buflen++;
1934	}
1935
1936	if (buflen % 2 != 0)
1937		buflen++;
1938
1939	assert(buflen + ofs <= ATW_SRAM_SIZE);
1940
1941	ptr = &sc->sc_sram[ofs];
1942
1943	for (i = 0; i < buflen; i += 2) {
1944		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1945		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1946		DELAY(atw_writewep_delay);
1947
1948		ATW_WRITE(sc, ATW_WESK,
1949		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1950		DELAY(atw_writewep_delay);
1951	}
1952	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1953
1954	if (sc->sc_if.if_flags & IFF_DEBUG) {
1955		int n_octets = 0;
1956		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1957		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1958		for (i = 0; i < buflen; i++) {
1959			printf(" %02x", ptr[i]);
1960			if (++n_octets % 24 == 0)
1961				printf("\n");
1962		}
1963		if (n_octets % 24 != 0)
1964			printf("\n");
1965	}
1966}
1967
1968/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
1969static void
1970atw_write_wep(struct atw_softc *sc)
1971{
1972	struct ieee80211com *ic = &sc->sc_ic;
1973	/* SRAM shared-key record format: key0 flags key1 ... key12 */
1974	u_int8_t buf[IEEE80211_WEP_NKID]
1975	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
1976	u_int32_t reg;
1977	int i;
1978
1979	sc->sc_wepctl = 0;
1980	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
1981
1982	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1983		return;
1984
1985	memset(&buf[0][0], 0, sizeof(buf));
1986
1987	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1988		if (ic->ic_nw_keys[i].wk_len > 5) {
1989			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
1990		} else if (ic->ic_nw_keys[i].wk_len != 0) {
1991			buf[i][1] = ATW_WEP_ENABLED;
1992		} else {
1993			buf[i][1] = 0;
1994			continue;
1995		}
1996		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
1997		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
1998		    ic->ic_nw_keys[i].wk_len - 1);
1999	}
2000
2001	reg = ATW_READ(sc, ATW_MACTEST);
2002	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2003	reg &= ~ATW_MACTEST_KEYID_MASK;
2004	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2005	ATW_WRITE(sc, ATW_MACTEST, reg);
2006
2007	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2008	 * throughout.)
2009	 */
2010	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2011	if (sc->sc_if.if_flags & IFF_LINK2)
2012		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2013
2014	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2015	    sizeof(buf));
2016}
2017
2018const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2019
2020static void
2021atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2022    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2023{
2024	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2025
2026	switch (subtype) {
2027	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2028		/* do nothing: hardware answers probe request */
2029		break;
2030	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2031	case IEEE80211_FC0_SUBTYPE_BEACON:
2032		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2033		break;
2034	default:
2035		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2036		break;
2037	}
2038	return;
2039}
2040
2041/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2042 * of IBSSs with like SSID/channel but different BSSID. It joins the
2043 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2044 * convention. Possibly the ADMtek chip does this for us; I will have
2045 * to test to find out.
2046 *
2047 * XXX we should add the duration field of the received beacon to
2048 * the TSF time it contains before comparing it with the ADM8211's
2049 * TSF.
2050 */
2051static void
2052atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2053    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2054{
2055	struct atw_softc *sc;
2056	struct ieee80211_frame *wh;
2057	uint32_t tsftl, tsfth;
2058	uint32_t bcn_tsftl, bcn_tsfth;
2059	int do_print = 0;
2060	union {
2061		uint32_t	words[2];
2062		uint8_t		tstamp[8];
2063	} u;
2064
2065	sc = (struct atw_softc*)ic->ic_if.if_softc;
2066
2067	if (ic->ic_if.if_flags & IFF_LINK0) {
2068		do_print = (ic->ic_if.if_flags & IFF_DEBUG)
2069		    ? 1 : ratecheck(&sc->sc_last_beacon,
2070		    &atw_beacon_mininterval);
2071	}
2072
2073	wh = mtod(m0, struct ieee80211_frame *);
2074
2075	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2076
2077	if (ic->ic_state != IEEE80211_S_RUN)
2078		return;
2079
2080	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2081	    ic->ic_bss->ni_chan)) == NULL) {
2082		if (do_print)
2083			printf("%s: atw_recv_beacon: no node %s\n",
2084			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2085		return;
2086	}
2087
2088	if (ieee80211_match_bss(ic, ni) != 0)
2089		return;
2090
2091	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2092		return;
2093
2094	if (do_print)
2095		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2096		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2097
2098	if (ic->ic_opmode != IEEE80211_M_IBSS)
2099		return;
2100
2101	atw_tsft(sc, &tsfth, &tsftl);
2102
2103	(void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2104	bcn_tsftl = le32toh(u.words[0]);
2105	bcn_tsfth = le32toh(u.words[1]);
2106
2107	if (do_print)
2108		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2109		    sc->sc_dev.dv_xname, ((uint64_t)tsfth << 32) | tsftl,
2110		    ((uint64_t)bcn_tsfth << 32) | bcn_tsftl);
2111
2112	/* we are faster, let the other guy catch up */
2113	if (bcn_tsfth < tsfth)
2114		return;
2115	else if (bcn_tsfth == tsfth && bcn_tsftl < tsftl)
2116		return;
2117
2118	if (do_print)
2119		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2120		    ether_sprintf(wh->i_addr2));
2121
2122	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2123
2124	atw_tsf(sc);
2125
2126	/* negotiate rates with new IBSS */
2127	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2128	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2129	if (ni->ni_rates.rs_nrates == 0) {
2130		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2131			ether_sprintf(ni->ni_bssid));
2132		return;
2133	}
2134
2135	if (do_print) {
2136		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2137		    ether_sprintf(ic->ic_bss->ni_bssid));
2138		printf("%s ", ether_sprintf(ni->ni_bssid));
2139		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2140	}
2141
2142	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2143
2144	atw_write_bssid(sc);
2145	atw_start_beacon(sc, 1);
2146}
2147
2148/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2149 * In ad hoc mode, the SSID is written to the beacons sent by the
2150 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2151 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2152 * indications.
2153 */
2154static void
2155atw_write_ssid(struct atw_softc *sc)
2156{
2157	struct ieee80211com *ic = &sc->sc_ic;
2158	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2159	 * it only expects the element length, not its ID.
2160	 */
2161	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2162
2163	memset(buf, 0, sizeof(buf));
2164	buf[0] = ic->ic_bss->ni_esslen;
2165	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2166
2167	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2168	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2169}
2170
2171/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2172 * In ad hoc mode, the supported rates are written to beacons sent by the
2173 * ADM8211.
2174 */
2175static void
2176atw_write_sup_rates(struct atw_softc *sc)
2177{
2178	struct ieee80211com *ic = &sc->sc_ic;
2179	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2180	 * supported rates
2181	 */
2182	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2183
2184	memset(buf, 0, sizeof(buf));
2185
2186	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2187
2188	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2189	    ic->ic_bss->ni_rates.rs_nrates);
2190
2191	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2192}
2193
2194/* Start/stop sending beacons. */
2195void
2196atw_start_beacon(struct atw_softc *sc, int start)
2197{
2198	struct ieee80211com *ic = &sc->sc_ic;
2199	uint16_t chan;
2200	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2201	size_t len;
2202
2203	if (ATW_IS_ENABLED(sc) == 0)
2204		return;
2205
2206	/* start beacons */
2207	len = sizeof(struct ieee80211_frame) +
2208	    8 /* timestamp */ + 2 /* beacon interval */ +
2209	    2 /* capability info */ +
2210	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2211	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2212	    3 /* DS parameters */ +
2213	    IEEE80211_CRC_LEN;
2214
2215	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2216	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2217	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2218
2219	ATW_WRITE(sc, ATW_BCNT, bcnt);
2220	ATW_WRITE(sc, ATW_CAP1, cap1);
2221
2222	if (!start)
2223		return;
2224
2225	/* TBD use ni_capinfo */
2226
2227	capinfo = 0;
2228	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2229		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2230	if (ic->ic_flags & IEEE80211_F_WEPON)
2231		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2232
2233	switch (ic->ic_opmode) {
2234	case IEEE80211_M_IBSS:
2235		len += 4; /* IBSS parameters */
2236		capinfo |= IEEE80211_CAPINFO_IBSS;
2237		break;
2238	case IEEE80211_M_HOSTAP:
2239		/* XXX 6-byte minimum TIM */
2240		len += atw_beacon_len_adjust;
2241		capinfo |= IEEE80211_CAPINFO_ESS;
2242		break;
2243	default:
2244		return;
2245	}
2246
2247	/* set listen interval
2248	 * XXX do software units agree w/ hardware?
2249	 */
2250	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2251	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2252
2253	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2254
2255	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2256	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2257	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2258
2259	ATW_WRITE(sc, ATW_BCNT, bcnt);
2260	ATW_WRITE(sc, ATW_BPLI, bpli);
2261	ATW_WRITE(sc, ATW_CAP0, cap0);
2262	ATW_WRITE(sc, ATW_CAP1, cap1);
2263
2264	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2265	    sc->sc_dev.dv_xname, bcnt));
2266
2267	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2268	    sc->sc_dev.dv_xname, cap1));
2269}
2270
2271/* Return the 32 lsb of the last TSFT divisible by ival. */
2272static __inline uint32_t
2273atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2274{
2275	/* Following the reference driver's lead, I compute
2276	 *
2277	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2278	 *
2279	 * without using 64-bit arithmetic, using the following
2280	 * relationship:
2281	 *
2282	 *     (0x100000000 * H + L) % m
2283	 *   = ((0x100000000 % m) * H + L) % m
2284	 *   = (((0xffffffff + 1) % m) * H + L) % m
2285	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2286	 *   = ((0xffffffff % m + 1) * H + L) % m
2287	 */
2288	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2289}
2290
2291static __inline void
2292atw_tsft(struct atw_softc *sc, uint32_t *tsfth, uint32_t *tsftl)
2293{
2294	int i;
2295	for (i = 0; i < 2; i++) {
2296		*tsfth = ATW_READ(sc, ATW_TSFTH);
2297		*tsftl = ATW_READ(sc, ATW_TSFTL);
2298		if (ATW_READ(sc, ATW_TSFTH) == *tsfth)
2299			break;
2300	}
2301}
2302
2303/* If we've created an IBSS, write the TSF time in the ADM8211 to
2304 * the ieee80211com.
2305 *
2306 * Predict the next target beacon transmission time (TBTT) and
2307 * write it to the ADM8211.
2308 */
2309static void
2310atw_tsf(struct atw_softc *sc)
2311{
2312#define TBTTOFS 20 /* TU */
2313
2314	struct ieee80211com *ic = &sc->sc_ic;
2315	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2316	union {
2317		uint32_t	words[2];
2318		uint8_t		tstamp[8];
2319	} u;
2320
2321	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2322	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2323	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2324		atw_tsft(sc, &tsfth, &tsftl);
2325		u.words[0] = htole32(tsftl);
2326		u.words[1] = htole32(tsfth);
2327		(void)memcpy(&ic->ic_bss->ni_tstamp[0], &u,
2328		    sizeof(ic->ic_bss->ni_tstamp));
2329	} else {
2330		(void)memcpy(&u, &ic->ic_bss->ni_tstamp[0], sizeof(u));
2331		tsftl = le32toh(u.words[0]);
2332		tsfth = le32toh(u.words[1]);
2333	}
2334
2335	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2336
2337	/* We sent/received the last beacon `past' microseconds
2338	 * after the interval divided the TSF timer.
2339	 */
2340	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2341
2342	/* Skip ten beacons so that the TBTT cannot pass before
2343	 * we've programmed it.  Ten is an arbitrary number.
2344	 */
2345	tbtt = past_even + ival * 10;
2346
2347	ATW_WRITE(sc, ATW_TOFS1,
2348	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2349	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2350	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2351	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2352#undef TBTTOFS
2353}
2354
2355static void
2356atw_next_scan(void *arg)
2357{
2358	struct atw_softc *sc = arg;
2359	struct ieee80211com *ic = &sc->sc_ic;
2360	struct ifnet *ifp = &ic->ic_if;
2361	int s;
2362
2363	/* don't call atw_start w/o network interrupts blocked */
2364	s = splnet();
2365	if (ic->ic_state == IEEE80211_S_SCAN)
2366		ieee80211_next_scan(ifp);
2367	splx(s);
2368}
2369
2370/* Synchronize the hardware state with the software state. */
2371static int
2372atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2373{
2374	struct ifnet *ifp = &ic->ic_if;
2375	struct atw_softc *sc = ifp->if_softc;
2376	enum ieee80211_state ostate;
2377	int error;
2378
2379	ostate = ic->ic_state;
2380
2381	if (nstate == IEEE80211_S_INIT) {
2382		callout_stop(&sc->sc_scan_ch);
2383		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2384		atw_start_beacon(sc, 0);
2385		return (*sc->sc_newstate)(ic, nstate, arg);
2386	}
2387
2388	if ((error = atw_tune(sc)) != 0)
2389		return error;
2390
2391	switch (nstate) {
2392	case IEEE80211_S_ASSOC:
2393		break;
2394	case IEEE80211_S_INIT:
2395		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2396		break;
2397	case IEEE80211_S_SCAN:
2398		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2399		    atw_next_scan, sc);
2400
2401		break;
2402	case IEEE80211_S_RUN:
2403		if (ic->ic_opmode == IEEE80211_M_STA)
2404			break;
2405		/*FALLTHROUGH*/
2406	case IEEE80211_S_AUTH:
2407		atw_write_bssid(sc);
2408		atw_write_ssid(sc);
2409		atw_write_sup_rates(sc);
2410
2411		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2412		    ic->ic_opmode == IEEE80211_M_MONITOR)
2413			break;
2414
2415		/* set listen interval
2416		 * XXX do software units agree w/ hardware?
2417		 */
2418		ATW_WRITE(sc, ATW_BPLI,
2419		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2420		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2421			   ATW_BPLI_LI_MASK));
2422
2423		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2424		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2425
2426		atw_tsf(sc);
2427		break;
2428	}
2429
2430	if (nstate != IEEE80211_S_SCAN)
2431		callout_stop(&sc->sc_scan_ch);
2432
2433	if (nstate == IEEE80211_S_RUN &&
2434	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2435	     ic->ic_opmode == IEEE80211_M_IBSS))
2436		atw_start_beacon(sc, 1);
2437	else
2438		atw_start_beacon(sc, 0);
2439
2440	error = (*sc->sc_newstate)(ic, nstate, arg);
2441
2442	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2443		atw_write_bssid(sc);
2444
2445	return error;
2446}
2447
2448/*
2449 * atw_add_rxbuf:
2450 *
2451 *	Add a receive buffer to the indicated descriptor.
2452 */
2453int
2454atw_add_rxbuf(struct atw_softc *sc, int idx)
2455{
2456	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2457	struct mbuf *m;
2458	int error;
2459
2460	MGETHDR(m, M_DONTWAIT, MT_DATA);
2461	if (m == NULL)
2462		return (ENOBUFS);
2463
2464	MCLGET(m, M_DONTWAIT);
2465	if ((m->m_flags & M_EXT) == 0) {
2466		m_freem(m);
2467		return (ENOBUFS);
2468	}
2469
2470	if (rxs->rxs_mbuf != NULL)
2471		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2472
2473	rxs->rxs_mbuf = m;
2474
2475	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2476	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2477	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2478	if (error) {
2479		printf("%s: can't load rx DMA map %d, error = %d\n",
2480		    sc->sc_dev.dv_xname, idx, error);
2481		panic("atw_add_rxbuf");	/* XXX */
2482	}
2483
2484	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2485	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2486
2487	ATW_INIT_RXDESC(sc, idx);
2488
2489	return (0);
2490}
2491
2492/*
2493 * Release any queued transmit buffers.
2494 */
2495void
2496atw_txdrain(struct atw_softc *sc)
2497{
2498	struct atw_txsoft *txs;
2499
2500	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2501		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2502		if (txs->txs_mbuf != NULL) {
2503			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2504			m_freem(txs->txs_mbuf);
2505			txs->txs_mbuf = NULL;
2506		}
2507		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2508	}
2509	sc->sc_tx_timer = 0;
2510}
2511
2512/*
2513 * atw_stop:		[ ifnet interface function ]
2514 *
2515 *	Stop transmission on the interface.
2516 */
2517void
2518atw_stop(struct ifnet *ifp, int disable)
2519{
2520	struct atw_softc *sc = ifp->if_softc;
2521	struct ieee80211com *ic = &sc->sc_ic;
2522
2523	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2524
2525	/* Disable interrupts. */
2526	ATW_WRITE(sc, ATW_IER, 0);
2527
2528	/* Stop the transmit and receive processes. */
2529	sc->sc_opmode = 0;
2530	ATW_WRITE(sc, ATW_NAR, 0);
2531	DELAY(20 * 1000);
2532	ATW_WRITE(sc, ATW_TDBD, 0);
2533	ATW_WRITE(sc, ATW_TDBP, 0);
2534	ATW_WRITE(sc, ATW_RDB, 0);
2535
2536	atw_txdrain(sc);
2537
2538	if (disable) {
2539		atw_rxdrain(sc);
2540		atw_disable(sc);
2541	}
2542
2543	/*
2544	 * Mark the interface down and cancel the watchdog timer.
2545	 */
2546	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2547	ifp->if_timer = 0;
2548
2549	if (!disable)
2550		atw_reset(sc);
2551}
2552
2553/*
2554 * atw_rxdrain:
2555 *
2556 *	Drain the receive queue.
2557 */
2558void
2559atw_rxdrain(struct atw_softc *sc)
2560{
2561	struct atw_rxsoft *rxs;
2562	int i;
2563
2564	for (i = 0; i < ATW_NRXDESC; i++) {
2565		rxs = &sc->sc_rxsoft[i];
2566		if (rxs->rxs_mbuf == NULL)
2567			continue;
2568		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2569		m_freem(rxs->rxs_mbuf);
2570		rxs->rxs_mbuf = NULL;
2571	}
2572}
2573
2574/*
2575 * atw_detach:
2576 *
2577 *	Detach an ADM8211 interface.
2578 */
2579int
2580atw_detach(struct atw_softc *sc)
2581{
2582	struct ifnet *ifp = &sc->sc_ic.ic_if;
2583	struct atw_rxsoft *rxs;
2584	struct atw_txsoft *txs;
2585	int i;
2586
2587	/*
2588	 * Succeed now if there isn't any work to do.
2589	 */
2590	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2591		return (0);
2592
2593	ieee80211_ifdetach(ifp);
2594	if_detach(ifp);
2595
2596	for (i = 0; i < ATW_NRXDESC; i++) {
2597		rxs = &sc->sc_rxsoft[i];
2598		if (rxs->rxs_mbuf != NULL) {
2599			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600			m_freem(rxs->rxs_mbuf);
2601			rxs->rxs_mbuf = NULL;
2602		}
2603		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2604	}
2605	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2606		txs = &sc->sc_txsoft[i];
2607		if (txs->txs_mbuf != NULL) {
2608			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2609			m_freem(txs->txs_mbuf);
2610			txs->txs_mbuf = NULL;
2611		}
2612		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2613	}
2614	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2615	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2616	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2617	    sizeof(struct atw_control_data));
2618	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2619
2620	shutdownhook_disestablish(sc->sc_sdhook);
2621	powerhook_disestablish(sc->sc_powerhook);
2622
2623	if (sc->sc_srom)
2624		free(sc->sc_srom, M_DEVBUF);
2625
2626	return (0);
2627}
2628
2629/* atw_shutdown: make sure the interface is stopped at reboot time. */
2630void
2631atw_shutdown(void *arg)
2632{
2633	struct atw_softc *sc = arg;
2634
2635	atw_stop(&sc->sc_ic.ic_if, 1);
2636}
2637
2638int
2639atw_intr(void *arg)
2640{
2641	struct atw_softc *sc = arg;
2642	struct ifnet *ifp = &sc->sc_ic.ic_if;
2643	u_int32_t status, rxstatus, txstatus, linkstatus;
2644	int handled = 0, txthresh;
2645
2646#ifdef DEBUG
2647	if (ATW_IS_ENABLED(sc) == 0)
2648		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2649#endif
2650
2651	/*
2652	 * If the interface isn't running, the interrupt couldn't
2653	 * possibly have come from us.
2654	 */
2655	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2656	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2657		return (0);
2658
2659	for (;;) {
2660		status = ATW_READ(sc, ATW_STSR);
2661
2662		if (status)
2663			ATW_WRITE(sc, ATW_STSR, status);
2664
2665#ifdef ATW_DEBUG
2666#define PRINTINTR(flag) do { \
2667	if ((status & flag) != 0) { \
2668		printf("%s" #flag, delim); \
2669		delim = ","; \
2670	} \
2671} while (0)
2672
2673		if (atw_debug > 1 && status) {
2674			const char *delim = "<";
2675
2676			printf("%s: reg[STSR] = %x",
2677			    sc->sc_dev.dv_xname, status);
2678
2679			PRINTINTR(ATW_INTR_FBE);
2680			PRINTINTR(ATW_INTR_LINKOFF);
2681			PRINTINTR(ATW_INTR_LINKON);
2682			PRINTINTR(ATW_INTR_RCI);
2683			PRINTINTR(ATW_INTR_RDU);
2684			PRINTINTR(ATW_INTR_REIS);
2685			PRINTINTR(ATW_INTR_RPS);
2686			PRINTINTR(ATW_INTR_TCI);
2687			PRINTINTR(ATW_INTR_TDU);
2688			PRINTINTR(ATW_INTR_TLT);
2689			PRINTINTR(ATW_INTR_TPS);
2690			PRINTINTR(ATW_INTR_TRT);
2691			PRINTINTR(ATW_INTR_TUF);
2692			PRINTINTR(ATW_INTR_BCNTC);
2693			PRINTINTR(ATW_INTR_ATIME);
2694			PRINTINTR(ATW_INTR_TBTT);
2695			PRINTINTR(ATW_INTR_TSCZ);
2696			PRINTINTR(ATW_INTR_TSFTF);
2697			printf(">\n");
2698		}
2699#undef PRINTINTR
2700#endif /* ATW_DEBUG */
2701
2702		if ((status & sc->sc_inten) == 0)
2703			break;
2704
2705		handled = 1;
2706
2707		rxstatus = status & sc->sc_rxint_mask;
2708		txstatus = status & sc->sc_txint_mask;
2709		linkstatus = status & sc->sc_linkint_mask;
2710
2711		if (linkstatus) {
2712			atw_linkintr(sc, linkstatus);
2713		}
2714
2715		if (rxstatus) {
2716			/* Grab any new packets. */
2717			atw_rxintr(sc);
2718
2719			if (rxstatus & ATW_INTR_RDU) {
2720				printf("%s: receive ring overrun\n",
2721				    sc->sc_dev.dv_xname);
2722				/* Get the receive process going again. */
2723				ATW_WRITE(sc, ATW_RDR, 0x1);
2724				break;
2725			}
2726		}
2727
2728		if (txstatus) {
2729			/* Sweep up transmit descriptors. */
2730			atw_txintr(sc);
2731
2732			if (txstatus & ATW_INTR_TLT)
2733				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2734				    sc->sc_dev.dv_xname));
2735
2736			if (txstatus & ATW_INTR_TRT)
2737				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2738				    sc->sc_dev.dv_xname));
2739
2740			/* If Tx under-run, increase our transmit threshold
2741			 * if another is available.
2742			 */
2743			txthresh = sc->sc_txthresh + 1;
2744			if ((txstatus & ATW_INTR_TUF) &&
2745			    sc->sc_txth[txthresh].txth_name != NULL) {
2746				/* Idle the transmit process. */
2747				atw_idle(sc, ATW_NAR_ST);
2748
2749				sc->sc_txthresh = txthresh;
2750				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2751				sc->sc_opmode |=
2752				    sc->sc_txth[txthresh].txth_opmode;
2753				printf("%s: transmit underrun; new "
2754				    "threshold: %s\n", sc->sc_dev.dv_xname,
2755				    sc->sc_txth[txthresh].txth_name);
2756
2757				/* Set the new threshold and restart
2758				 * the transmit process.
2759				 */
2760				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2761				DELAY(20 * 1000);
2762				ATW_WRITE(sc, ATW_RDR, 0x1);
2763				/* XXX Log every Nth underrun from
2764				 * XXX now on?
2765				 */
2766			}
2767		}
2768
2769		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2770			if (status & ATW_INTR_TPS)
2771				printf("%s: transmit process stopped\n",
2772				    sc->sc_dev.dv_xname);
2773			if (status & ATW_INTR_RPS)
2774				printf("%s: receive process stopped\n",
2775				    sc->sc_dev.dv_xname);
2776			(void)atw_init(ifp);
2777			break;
2778		}
2779
2780		if (status & ATW_INTR_FBE) {
2781			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2782			(void)atw_init(ifp);
2783			break;
2784		}
2785
2786		/*
2787		 * Not handled:
2788		 *
2789		 *	Transmit buffer unavailable -- normal
2790		 *	condition, nothing to do, really.
2791		 *
2792		 *	Early receive interrupt -- not available on
2793		 *	all chips, we just use RI.  We also only
2794		 *	use single-segment receive DMA, so this
2795		 *	is mostly useless.
2796		 *
2797		 *      TBD others
2798		 */
2799	}
2800
2801	/* Try to get more packets going. */
2802	atw_start(ifp);
2803
2804	return (handled);
2805}
2806
2807/*
2808 * atw_idle:
2809 *
2810 *	Cause the transmit and/or receive processes to go idle.
2811 *
2812 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2813 *	process in STSR if I clear SR or ST after the process has already
2814 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2815 *      do not seem to be too reliable. Perhaps I have the sense of the
2816 *	Rx bits switched with the Tx bits?
2817 */
2818void
2819atw_idle(struct atw_softc *sc, u_int32_t bits)
2820{
2821	u_int32_t ackmask = 0, opmode, stsr, test0;
2822	int i, s;
2823
2824	s = splnet();
2825
2826	opmode = sc->sc_opmode & ~bits;
2827
2828	if (bits & ATW_NAR_SR)
2829		ackmask |= ATW_INTR_RPS;
2830
2831	if (bits & ATW_NAR_ST) {
2832		ackmask |= ATW_INTR_TPS;
2833		/* set ATW_NAR_HF to flush TX FIFO. */
2834		opmode |= ATW_NAR_HF;
2835	}
2836
2837	ATW_WRITE(sc, ATW_NAR, opmode);
2838	DELAY(20 * 1000);
2839
2840	for (i = 0; i < 10; i++) {
2841		stsr = ATW_READ(sc, ATW_STSR);
2842		if ((stsr & ackmask) == ackmask)
2843			break;
2844		DELAY(1000);
2845	}
2846
2847	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2848
2849	if ((stsr & ackmask) == ackmask)
2850		goto out;
2851
2852	test0 = ATW_READ(sc, ATW_TEST0);
2853
2854	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2855	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2856		printf("%s: transmit process not idle [%s]\n",
2857		    sc->sc_dev.dv_xname,
2858		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2859		printf("%s: bits %08x test0 %08x stsr %08x\n",
2860		    sc->sc_dev.dv_xname, bits, test0, stsr);
2861	}
2862
2863	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2864	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2865		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2866		    sc->sc_dev.dv_xname,
2867		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2868		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2869		    sc->sc_dev.dv_xname, bits, test0, stsr));
2870	}
2871out:
2872	if ((bits & ATW_NAR_ST) != 0)
2873		atw_txdrain(sc);
2874	splx(s);
2875	return;
2876}
2877
2878/*
2879 * atw_linkintr:
2880 *
2881 *	Helper; handle link-status interrupts.
2882 */
2883void
2884atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2885{
2886	struct ieee80211com *ic = &sc->sc_ic;
2887
2888	if (ic->ic_state != IEEE80211_S_RUN)
2889		return;
2890
2891	if (linkstatus & ATW_INTR_LINKON) {
2892		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2893		sc->sc_rescan_timer = 0;
2894	} else if (linkstatus & ATW_INTR_LINKOFF) {
2895		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2896		if (ic->ic_opmode != IEEE80211_M_STA)
2897			return;
2898		sc->sc_rescan_timer = 3;
2899		ic->ic_if.if_timer = 1;
2900	}
2901}
2902
2903/*
2904 * atw_rxintr:
2905 *
2906 *	Helper; handle receive interrupts.
2907 */
2908void
2909atw_rxintr(struct atw_softc *sc)
2910{
2911	static int rate_tbl[] = {2, 4, 11, 22, 44};
2912	struct ieee80211com *ic = &sc->sc_ic;
2913	struct ieee80211_node *ni;
2914	struct ieee80211_frame *wh;
2915	struct ifnet *ifp = &ic->ic_if;
2916	struct atw_rxsoft *rxs;
2917	struct mbuf *m;
2918	u_int32_t rxstat;
2919	int i, len, rate, rate0;
2920	u_int32_t rssi;
2921
2922	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2923		rxs = &sc->sc_rxsoft[i];
2924
2925		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2926
2927		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2928		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2929		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2930
2931		if (rxstat & ATW_RXSTAT_OWN)
2932			break; /* We have processed all receive buffers. */
2933
2934		DPRINTF3(sc,
2935		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2936		    sc->sc_dev.dv_xname,
2937		    le32toh(sc->sc_rxdescs[i].ar_stat),
2938		    le32toh(sc->sc_rxdescs[i].ar_rssi),
2939		    le32toh(sc->sc_rxdescs[i].ar_buf1),
2940		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
2941
2942		/*
2943		 * Make sure the packet fits in one buffer.  This should
2944		 * always be the case.
2945		 */
2946		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2947		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2948			printf("%s: incoming packet spilled, resetting\n",
2949			    sc->sc_dev.dv_xname);
2950			(void)atw_init(ifp);
2951			return;
2952		}
2953
2954		/*
2955		 * If an error occurred, update stats, clear the status
2956		 * word, and leave the packet buffer in place.  It will
2957		 * simply be reused the next time the ring comes around.
2958	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2959		 * error.
2960		 */
2961
2962		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2963		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2964		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2965		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2966				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2967				ATW_RXSTAT_ICVE)) != 0)) {
2968#define	PRINTERR(bit, str)						\
2969			if (rxstat & (bit))				\
2970				printf("%s: receive error: %s\n",	\
2971				    sc->sc_dev.dv_xname, str)
2972			ifp->if_ierrors++;
2973			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2974			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2975			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2976			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2977			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2978			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2979			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2980#undef PRINTERR
2981			ATW_INIT_RXDESC(sc, i);
2982			continue;
2983		}
2984
2985		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2986		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2987
2988		/*
2989		 * No errors; receive the packet.  Note the ADM8211
2990		 * includes the CRC in promiscuous mode.
2991		 */
2992		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2993
2994		/*
2995		 * Allocate a new mbuf cluster.  If that fails, we are
2996		 * out of memory, and must drop the packet and recycle
2997		 * the buffer that's already attached to this descriptor.
2998		 */
2999		m = rxs->rxs_mbuf;
3000		if (atw_add_rxbuf(sc, i) != 0) {
3001			ifp->if_ierrors++;
3002			ATW_INIT_RXDESC(sc, i);
3003			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3004			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3005			continue;
3006		}
3007
3008		ifp->if_ipackets++;
3009		if (sc->sc_opmode & ATW_NAR_PR)
3010			m->m_flags |= M_HASFCS;
3011		m->m_pkthdr.rcvif = ifp;
3012		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3013
3014		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3015			rate = 0;
3016		else
3017			rate = rate_tbl[rate0];
3018
3019 #if NBPFILTER > 0
3020		/* Pass this up to any BPF listeners. */
3021		if (sc->sc_radiobpf != NULL) {
3022			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3023
3024			tap->ar_rate = rate;
3025			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3026			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3027
3028			/* TBD verify units are dB */
3029			tap->ar_antsignal = (int)rssi;
3030			/* TBD tap->ar_flags */
3031
3032			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3033			    tap->ar_ihdr.it_len, m);
3034 		}
3035 #endif /* NPBFILTER > 0 */
3036
3037		wh = mtod(m, struct ieee80211_frame *);
3038		ni = ieee80211_find_rxnode(ic, wh);
3039		ieee80211_input(ifp, m, ni, (int)rssi, 0);
3040		/*
3041		 * The frame may have caused the node to be marked for
3042		 * reclamation (e.g. in response to a DEAUTH message)
3043		 * so use free_node here instead of unref_node.
3044		 */
3045		if (ni == ic->ic_bss)
3046			ieee80211_unref_node(&ni);
3047		else
3048			ieee80211_free_node(ic, ni);
3049	}
3050
3051	/* Update the receive pointer. */
3052	sc->sc_rxptr = i;
3053}
3054
3055/*
3056 * atw_txintr:
3057 *
3058 *	Helper; handle transmit interrupts.
3059 */
3060void
3061atw_txintr(struct atw_softc *sc)
3062{
3063#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3064    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3065#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3066    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3067
3068	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3069	struct ifnet *ifp = &sc->sc_ic.ic_if;
3070	struct atw_txsoft *txs;
3071	u_int32_t txstat;
3072
3073	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3074	    sc->sc_dev.dv_xname, sc->sc_flags));
3075
3076	ifp->if_flags &= ~IFF_OACTIVE;
3077
3078	/*
3079	 * Go through our Tx list and free mbufs for those
3080	 * frames that have been transmitted.
3081	 */
3082	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3083		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3084		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3085
3086#ifdef ATW_DEBUG
3087		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3088			int i;
3089			printf("    txsoft %p transmit chain:\n", txs);
3090			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3091			    txs->txs_ndescs - 1,
3092			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3093			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3094				printf("     descriptor %d:\n", i);
3095				printf("       at_status:   0x%08x\n",
3096				    le32toh(sc->sc_txdescs[i].at_stat));
3097				printf("       at_flags:      0x%08x\n",
3098				    le32toh(sc->sc_txdescs[i].at_flags));
3099				printf("       at_buf1: 0x%08x\n",
3100				    le32toh(sc->sc_txdescs[i].at_buf1));
3101				printf("       at_buf2: 0x%08x\n",
3102				    le32toh(sc->sc_txdescs[i].at_buf2));
3103				if (i == txs->txs_lastdesc)
3104					break;
3105			}
3106		}
3107#endif
3108
3109		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3110		if (txstat & ATW_TXSTAT_OWN)
3111			break;
3112
3113		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3114
3115		sc->sc_txfree += txs->txs_ndescs;
3116
3117		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3118		    0, txs->txs_dmamap->dm_mapsize,
3119		    BUS_DMASYNC_POSTWRITE);
3120		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3121		m_freem(txs->txs_mbuf);
3122		txs->txs_mbuf = NULL;
3123
3124		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3125
3126		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3127		    (txstat & TXSTAT_ERRMASK) != 0) {
3128			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3129			    txstat_buf, sizeof(txstat_buf));
3130			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3131			    txstat_buf,
3132			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3133		}
3134
3135		/*
3136		 * Check for errors and collisions.
3137		 */
3138		if (txstat & ATW_TXSTAT_TUF)
3139			sc->sc_stats.ts_tx_tuf++;
3140		if (txstat & ATW_TXSTAT_TLT)
3141			sc->sc_stats.ts_tx_tlt++;
3142		if (txstat & ATW_TXSTAT_TRT)
3143			sc->sc_stats.ts_tx_trt++;
3144		if (txstat & ATW_TXSTAT_TRO)
3145			sc->sc_stats.ts_tx_tro++;
3146		if (txstat & ATW_TXSTAT_SOFBR) {
3147			sc->sc_stats.ts_tx_sofbr++;
3148		}
3149
3150		if ((txstat & ATW_TXSTAT_ES) == 0)
3151			ifp->if_collisions +=
3152			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3153		else
3154			ifp->if_oerrors++;
3155
3156		ifp->if_opackets++;
3157	}
3158
3159	/*
3160	 * If there are no more pending transmissions, cancel the watchdog
3161	 * timer.
3162	 */
3163	if (txs == NULL)
3164		sc->sc_tx_timer = 0;
3165#undef TXSTAT_ERRMASK
3166#undef TXSTAT_FMT
3167}
3168
3169/*
3170 * atw_watchdog:	[ifnet interface function]
3171 *
3172 *	Watchdog timer handler.
3173 */
3174void
3175atw_watchdog(struct ifnet *ifp)
3176{
3177	struct atw_softc *sc = ifp->if_softc;
3178	struct ieee80211com *ic = &sc->sc_ic;
3179
3180	ifp->if_timer = 0;
3181	if (ATW_IS_ENABLED(sc) == 0)
3182		return;
3183
3184	if (sc->sc_rescan_timer) {
3185		if (--sc->sc_rescan_timer == 0)
3186			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3187	}
3188	if (sc->sc_tx_timer) {
3189		if (--sc->sc_tx_timer == 0 &&
3190		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3191			printf("%s: transmit timeout\n", ifp->if_xname);
3192			ifp->if_oerrors++;
3193			(void)atw_init(ifp);
3194			atw_start(ifp);
3195		}
3196	}
3197	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3198		ifp->if_timer = 1;
3199	ieee80211_watchdog(ifp);
3200}
3201
3202/* Compute the 802.11 Duration field and the PLCP Length fields for
3203 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3204 * Write the fields to the ADM8211 Tx header, frm.
3205 *
3206 * TBD use the fragmentation threshold to find the right duration for
3207 * the first & last fragments.
3208 *
3209 * TBD make certain of the duration fields applied by the ADM8211 to each
3210 * fragment. I think that the ADM8211 knows how to subtract the CTS
3211 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3212 * I also think that the ADM8211 does *some* arithmetic for us, because
3213 * otherwise I think we would have to set a first duration for CTS/first
3214 * fragment, a second duration for fragments between the first and the
3215 * last, and a third duration for the last fragment.
3216 *
3217 * TBD make certain that duration fields reflect addition of FCS/WEP
3218 * and correct duration arithmetic as necessary.
3219 */
3220static void
3221atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3222    int len)
3223{
3224	int remainder;
3225
3226	/* deal also with encrypted fragments */
3227	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3228		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3229		    sc->sc_dev.dv_xname));
3230		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3231		       IEEE80211_WEP_CRCLEN;
3232	}
3233
3234	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3235	 * duration (XXX added by MAC?).
3236	 */
3237	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3238	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3239
3240	if (rate <= 4)
3241		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3242		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3243		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3244		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3245		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3246	else
3247		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3248		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3249		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3250		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3251		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3252
3253	/* lengthen duration if long preamble */
3254	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3255		frm->atw_head_dur +=
3256		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3257		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3258		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3259		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3260
3261	if (remainder != 0)
3262		frm->atw_head_dur++;
3263
3264	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3265	    (rate == 2 || rate == 4)) {
3266		/* derived from Linux: how could this be right? */
3267		frm->atw_head_plcplen = frm->atw_head_dur;
3268	} else {
3269		frm->atw_head_plcplen = (16 * len) / rate;
3270		remainder = (80 * len) % (rate * 5);
3271
3272		if (remainder != 0) {
3273			frm->atw_head_plcplen++;
3274
3275			/* XXX magic */
3276			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3277			    rate == 22 && remainder <= 30)
3278				frm->atw_head_plcplen |= 0x8000;
3279		}
3280	}
3281	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3282	    htole16(frm->atw_head_plcplen);
3283	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3284}
3285
3286#ifdef ATW_DEBUG
3287static void
3288atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3289{
3290	struct atw_softc *sc = ifp->if_softc;
3291	struct mbuf *m;
3292	int i, noctets = 0;
3293
3294	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3295	    m0->m_pkthdr.len);
3296
3297	for (m = m0; m; m = m->m_next) {
3298		if (m->m_len == 0)
3299			continue;
3300		for (i = 0; i < m->m_len; i++) {
3301			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3302			if (++noctets % 24 == 0)
3303				printf("\n");
3304		}
3305	}
3306	printf("%s%s: %d bytes emitted\n",
3307	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3308}
3309#endif /* ATW_DEBUG */
3310
3311/*
3312 * atw_start:		[ifnet interface function]
3313 *
3314 *	Start packet transmission on the interface.
3315 */
3316void
3317atw_start(struct ifnet *ifp)
3318{
3319	struct atw_softc *sc = ifp->if_softc;
3320	struct ieee80211com *ic = &sc->sc_ic;
3321	struct ieee80211_node *ni;
3322	struct ieee80211_frame *wh;
3323	struct atw_frame *hh;
3324	struct mbuf *m0, *m;
3325	struct atw_txsoft *txs, *last_txs;
3326	struct atw_txdesc *txd;
3327	int do_encrypt, rate;
3328	bus_dmamap_t dmamap;
3329	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3330
3331	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3332	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3333
3334	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3335		return;
3336
3337	/*
3338	 * Remember the previous number of free descriptors and
3339	 * the first descriptor we'll use.
3340	 */
3341	ofree = sc->sc_txfree;
3342	firsttx = sc->sc_txnext;
3343
3344	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3345	    sc->sc_dev.dv_xname, ofree, firsttx));
3346
3347	/*
3348	 * Loop through the send queue, setting up transmit descriptors
3349	 * until we drain the queue, or use up all available transmit
3350	 * descriptors.
3351	 */
3352	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3353	       sc->sc_txfree != 0) {
3354
3355		/*
3356		 * Grab a packet off the management queue, if it
3357		 * is not empty. Otherwise, from the data queue.
3358		 */
3359		IF_DEQUEUE(&ic->ic_mgtq, m0);
3360		if (m0 != NULL) {
3361			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3362			m0->m_pkthdr.rcvif = NULL;
3363		} else {
3364			/* send no data packets until we are associated */
3365			if (ic->ic_state != IEEE80211_S_RUN)
3366				break;
3367			IFQ_DEQUEUE(&ifp->if_snd, m0);
3368			if (m0 == NULL)
3369				break;
3370#if NBPFILTER > 0
3371			if (ifp->if_bpf != NULL)
3372				bpf_mtap(ifp->if_bpf, m0);
3373#endif /* NBPFILTER > 0 */
3374			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3375				ifp->if_oerrors++;
3376				break;
3377			}
3378		}
3379
3380		rate = MAX(ieee80211_get_rate(ic), 2);
3381
3382#if NBPFILTER > 0
3383		/*
3384		 * Pass the packet to any BPF listeners.
3385		 */
3386		if (ic->ic_rawbpf != NULL)
3387			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3388
3389		if (sc->sc_radiobpf != NULL) {
3390			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3391
3392			tap->at_rate = rate;
3393			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3394			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3395
3396			/* TBD tap->at_flags */
3397
3398			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3399			    tap->at_ihdr.it_len, m0);
3400		}
3401#endif /* NBPFILTER > 0 */
3402
3403		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3404
3405		if (ni != NULL && ni != ic->ic_bss)
3406			ieee80211_free_node(ic, ni);
3407
3408		if (m0 == NULL) {
3409			ifp->if_oerrors++;
3410			break;
3411		}
3412
3413		/* just to make sure. */
3414		m0 = m_pullup(m0, sizeof(struct atw_frame));
3415
3416		if (m0 == NULL) {
3417			ifp->if_oerrors++;
3418			break;
3419		}
3420
3421		hh = mtod(m0, struct atw_frame *);
3422		wh = &hh->atw_ihdr;
3423
3424		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3425
3426		/* Copy everything we need from the 802.11 header:
3427		 * Frame Control; address 1, address 3, or addresses
3428		 * 3 and 4. NIC fills in BSSID, SA.
3429		 */
3430		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3431			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3432				panic("%s: illegal WDS frame",
3433				    sc->sc_dev.dv_xname);
3434			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3435		} else
3436			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3437
3438		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3439
3440		/* initialize remaining Tx parameters */
3441		memset(&hh->u, 0, sizeof(hh->u));
3442
3443		hh->atw_rate = rate * 5;
3444		/* XXX this could be incorrect if M_FCS. _encap should
3445		 * probably strip FCS just in case it sticks around in
3446		 * bridged packets.
3447		 */
3448		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3449		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3450		    sizeof(struct atw_frame));
3451
3452		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3453		hh->atw_rtylmt = 3;
3454		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3455		if (do_encrypt) {
3456			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3457			hh->atw_keyid = ic->ic_wep_txkey;
3458		}
3459
3460		/* TBD 4-addr frames */
3461		atw_frame_setdurs(sc, hh, rate,
3462		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3463		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3464
3465		/* never fragment multicast frames */
3466		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3467			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3468		} else if (sc->sc_flags & ATWF_RTSCTS) {
3469			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3470		}
3471
3472#ifdef ATW_DEBUG
3473		hh->atw_fragnum = 0;
3474
3475		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3476			printf("%s: dst = %s, rate = 0x%02x, "
3477			    "service = 0x%02x, paylen = 0x%04x\n",
3478			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3479			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3480
3481			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3482			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3483			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3484			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3485			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3486			    hh->atw_tail_dur, hh->atw_head_dur);
3487
3488			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3489			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3490			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3491			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3492
3493			printf("%s: keyid = %d\n",
3494			    sc->sc_dev.dv_xname, hh->atw_keyid);
3495
3496			atw_dump_pkt(ifp, m0);
3497		}
3498#endif /* ATW_DEBUG */
3499
3500		dmamap = txs->txs_dmamap;
3501
3502		/*
3503		 * Load the DMA map.  Copy and try (once) again if the packet
3504		 * didn't fit in the alloted number of segments.
3505		 */
3506		for (first = 1;
3507		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3508		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3509		     first = 0) {
3510			MGETHDR(m, M_DONTWAIT, MT_DATA);
3511			if (m == NULL) {
3512				printf("%s: unable to allocate Tx mbuf\n",
3513				    sc->sc_dev.dv_xname);
3514				break;
3515			}
3516			if (m0->m_pkthdr.len > MHLEN) {
3517				MCLGET(m, M_DONTWAIT);
3518				if ((m->m_flags & M_EXT) == 0) {
3519					printf("%s: unable to allocate Tx "
3520					    "cluster\n", sc->sc_dev.dv_xname);
3521					m_freem(m);
3522					break;
3523				}
3524			}
3525			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3526			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3527			m_freem(m0);
3528			m0 = m;
3529			m = NULL;
3530		}
3531		if (error != 0) {
3532			printf("%s: unable to load Tx buffer, "
3533			    "error = %d\n", sc->sc_dev.dv_xname, error);
3534			m_freem(m0);
3535			break;
3536		}
3537
3538		/*
3539		 * Ensure we have enough descriptors free to describe
3540		 * the packet.
3541		 */
3542		if (dmamap->dm_nsegs > sc->sc_txfree) {
3543			/*
3544			 * Not enough free descriptors to transmit
3545			 * this packet.  Unload the DMA map and
3546			 * drop the packet.  Notify the upper layer
3547			 * that there are no more slots left.
3548			 *
3549			 * XXX We could allocate an mbuf and copy, but
3550			 * XXX it is worth it?
3551			 */
3552			ifp->if_flags |= IFF_OACTIVE;
3553			bus_dmamap_unload(sc->sc_dmat, dmamap);
3554			m_freem(m0);
3555			break;
3556		}
3557
3558		/*
3559		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3560		 */
3561
3562		/* Sync the DMA map. */
3563		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3564		    BUS_DMASYNC_PREWRITE);
3565
3566		/* XXX arbitrary retry limit; 8 because I have seen it in
3567		 * use already and maybe 0 means "no tries" !
3568		 */
3569		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3570
3571		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3572		    sc->sc_dev.dv_xname, rate * 5));
3573		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3574
3575		/*
3576		 * Initialize the transmit descriptors.
3577		 */
3578		for (nexttx = sc->sc_txnext, seg = 0;
3579		     seg < dmamap->dm_nsegs;
3580		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3581			/*
3582			 * If this is the first descriptor we're
3583			 * enqueueing, don't set the OWN bit just
3584			 * yet.  That could cause a race condition.
3585			 * We'll do it below.
3586			 */
3587			txd = &sc->sc_txdescs[nexttx];
3588			txd->at_ctl = ctl |
3589			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3590
3591			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3592			txd->at_flags =
3593			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3594			                   ATW_TXFLAG_TBS1_MASK)) |
3595			    ((nexttx == (ATW_NTXDESC - 1))
3596			        ? htole32(ATW_TXFLAG_TER) : 0);
3597			lasttx = nexttx;
3598		}
3599
3600		IASSERT(lasttx != -1, ("bad lastx"));
3601		/* Set `first segment' and `last segment' appropriately. */
3602		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3603		    htole32(ATW_TXFLAG_FS);
3604		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3605
3606#ifdef ATW_DEBUG
3607		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3608			printf("     txsoft %p transmit chain:\n", txs);
3609			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3610				printf("     descriptor %d:\n", seg);
3611				printf("       at_ctl:   0x%08x\n",
3612				    le32toh(sc->sc_txdescs[seg].at_ctl));
3613				printf("       at_flags:      0x%08x\n",
3614				    le32toh(sc->sc_txdescs[seg].at_flags));
3615				printf("       at_buf1: 0x%08x\n",
3616				    le32toh(sc->sc_txdescs[seg].at_buf1));
3617				printf("       at_buf2: 0x%08x\n",
3618				    le32toh(sc->sc_txdescs[seg].at_buf2));
3619				if (seg == lasttx)
3620					break;
3621			}
3622		}
3623#endif
3624
3625		/* Sync the descriptors we're using. */
3626		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3627		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3628
3629		/*
3630		 * Store a pointer to the packet so we can free it later,
3631		 * and remember what txdirty will be once the packet is
3632		 * done.
3633		 */
3634		txs->txs_mbuf = m0;
3635		txs->txs_firstdesc = sc->sc_txnext;
3636		txs->txs_lastdesc = lasttx;
3637		txs->txs_ndescs = dmamap->dm_nsegs;
3638
3639		/* Advance the tx pointer. */
3640		sc->sc_txfree -= dmamap->dm_nsegs;
3641		sc->sc_txnext = nexttx;
3642
3643		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3644		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3645
3646		last_txs = txs;
3647	}
3648
3649	if (txs == NULL || sc->sc_txfree == 0) {
3650		/* No more slots left; notify upper layer. */
3651		ifp->if_flags |= IFF_OACTIVE;
3652	}
3653
3654	if (sc->sc_txfree != ofree) {
3655		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3656		    sc->sc_dev.dv_xname, lasttx, firsttx));
3657		/*
3658		 * Cause a transmit interrupt to happen on the
3659		 * last packet we enqueued.
3660		 */
3661		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3662		ATW_CDTXSYNC(sc, lasttx, 1,
3663		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3664
3665		/*
3666		 * The entire packet chain is set up.  Give the
3667		 * first descriptor to the chip now.
3668		 */
3669		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3670		ATW_CDTXSYNC(sc, firsttx, 1,
3671		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3672
3673		/* Wake up the transmitter. */
3674		ATW_WRITE(sc, ATW_TDR, 0x1);
3675
3676		/* Set a watchdog timer in case the chip flakes out. */
3677		sc->sc_tx_timer = 5;
3678		ifp->if_timer = 1;
3679	}
3680}
3681
3682/*
3683 * atw_power:
3684 *
3685 *	Power management (suspend/resume) hook.
3686 */
3687void
3688atw_power(int why, void *arg)
3689{
3690	struct atw_softc *sc = arg;
3691	struct ifnet *ifp = &sc->sc_ic.ic_if;
3692	int s;
3693
3694	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3695
3696	s = splnet();
3697	switch (why) {
3698	case PWR_STANDBY:
3699		/* XXX do nothing. */
3700		break;
3701	case PWR_SUSPEND:
3702		atw_stop(ifp, 0);
3703		if (sc->sc_power != NULL)
3704			(*sc->sc_power)(sc, why);
3705		break;
3706	case PWR_RESUME:
3707		if (ifp->if_flags & IFF_UP) {
3708			if (sc->sc_power != NULL)
3709				(*sc->sc_power)(sc, why);
3710			atw_init(ifp);
3711		}
3712		break;
3713	case PWR_SOFTSUSPEND:
3714	case PWR_SOFTSTANDBY:
3715	case PWR_SOFTRESUME:
3716		break;
3717	}
3718	splx(s);
3719}
3720
3721/*
3722 * atw_ioctl:		[ifnet interface function]
3723 *
3724 *	Handle control requests from the operator.
3725 */
3726int
3727atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3728{
3729	struct atw_softc *sc = ifp->if_softc;
3730	struct ifreq *ifr = (struct ifreq *)data;
3731	int s, error = 0;
3732
3733	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3734	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3735		return ENXIO;
3736
3737	s = splnet();
3738
3739	switch (cmd) {
3740	case SIOCSIFFLAGS:
3741		if (ifp->if_flags & IFF_UP) {
3742			if (ATW_IS_ENABLED(sc)) {
3743				/*
3744				 * To avoid rescanning another access point,
3745				 * do not call atw_init() here.  Instead,
3746				 * only reflect media settings.
3747				 */
3748				atw_filter_setup(sc);
3749			} else
3750				error = atw_init(ifp);
3751		} else if (ATW_IS_ENABLED(sc))
3752			atw_stop(ifp, 1);
3753		break;
3754	case SIOCADDMULTI:
3755	case SIOCDELMULTI:
3756		error = (cmd == SIOCADDMULTI) ?
3757		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3758		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3759		if (error == ENETRESET) {
3760			if (ATW_IS_ENABLED(sc))
3761				atw_filter_setup(sc); /* do not rescan */
3762			error = 0;
3763		}
3764		break;
3765	default:
3766		error = ieee80211_ioctl(ifp, cmd, data);
3767		if (error == ENETRESET) {
3768			if (ATW_IS_ENABLED(sc))
3769				error = atw_init(ifp);
3770			else
3771				error = 0;
3772		}
3773		break;
3774	}
3775
3776	/* Try to get more packets going. */
3777	if (ATW_IS_ENABLED(sc))
3778		atw_start(ifp);
3779
3780	splx(s);
3781	return (error);
3782}
3783
3784static int
3785atw_media_change(struct ifnet *ifp)
3786{
3787	int error;
3788
3789	error = ieee80211_media_change(ifp);
3790	if (error == ENETRESET) {
3791		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3792		    (IFF_RUNNING|IFF_UP))
3793			atw_init(ifp);		/* XXX lose error */
3794		error = 0;
3795	}
3796	return error;
3797}
3798
3799static void
3800atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3801{
3802	struct atw_softc *sc = ifp->if_softc;
3803
3804	if (ATW_IS_ENABLED(sc) == 0) {
3805		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3806		imr->ifm_status = 0;
3807		return;
3808	}
3809	ieee80211_media_status(ifp, imr);
3810}
3811