atw.c revision 1.54
1/*	$NetBSD: atw.c,v 1.54 2004/07/15 07:00:43 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.54 2004/07/15 07:00:43 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_compat.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/rf3000reg.h>
82#include <dev/ic/si4136reg.h>
83#include <dev/ic/atwvar.h>
84#include <dev/ic/smc93cx6var.h>
85
86/* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94/* device attachment
95 *
96 *    print TOFS[012]
97 *
98 * device initialization
99 *
100 *    clear ATW_FRCTL_MAXPSP to disable max power saving
101 *    set ATW_TXBR_ALCUPDATE to enable ALC
102 *    set TOFS[012]? (hope not)
103 *    disable rx/tx
104 *    set ATW_PAR_SWR (software reset)
105 *    wait for ATW_PAR_SWR clear
106 *    disable interrupts
107 *    ack status register
108 *    enable interrupts
109 *
110 * rx/tx initialization
111 *
112 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *    allocate and init descriptor rings
114 *    write ATW_PAR_DSL (descriptor skip length)
115 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 *    write ATW_NAR_SQ for one/both transmit descriptor rings
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 *    stop DMA
123 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 *    flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 *    initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 *    set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
139#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
140int atw_voodoo = VOODOO_DUR_11_ROUNDING;
141
142int atw_rfio_enable_delay = 20 * 1000;
143int atw_rfio_disable_delay = 2 * 1000;
144int atw_writewep_delay = 5;
145int atw_beacon_len_adjust = 4;
146int atw_dwelltime = 200;
147
148#ifdef ATW_DEBUG
149int atw_debug = 0;
150
151#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
155#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158static void atw_print_regs(struct atw_softc *, const char *);
159static void atw_dump_pkt(struct ifnet *, struct mbuf *);
160
161/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162#	ifdef ATW_BBPDEBUG
163static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164static void atw_rf3000_print(struct atw_softc *);
165#	endif /* ATW_BBPDEBUG */
166
167#	ifdef ATW_SYNDEBUG
168static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
169static void atw_si4126_print(struct atw_softc *);
170#	endif /* ATW_SYNDEBUG */
171
172#else
173#define ATW_DPRINTF(x)
174#define ATW_DPRINTF2(x)
175#define ATW_DPRINTF3(x)
176#define	DPRINTF(sc, x)	/* nothing */
177#define	DPRINTF2(sc, x)	/* nothing */
178#define	DPRINTF3(sc, x)	/* nothing */
179#endif
180
181#ifdef ATW_STATS
182void	atw_print_stats(struct atw_softc *);
183#endif
184
185void	atw_start(struct ifnet *);
186void	atw_watchdog(struct ifnet *);
187int	atw_ioctl(struct ifnet *, u_long, caddr_t);
188int	atw_init(struct ifnet *);
189void	atw_txdrain(struct atw_softc *);
190void	atw_stop(struct ifnet *, int);
191
192void	atw_reset(struct atw_softc *);
193int	atw_read_srom(struct atw_softc *);
194
195void	atw_shutdown(void *);
196
197void	atw_rxdrain(struct atw_softc *);
198int	atw_add_rxbuf(struct atw_softc *, int);
199void	atw_idle(struct atw_softc *, u_int32_t);
200
201int	atw_enable(struct atw_softc *);
202void	atw_disable(struct atw_softc *);
203void	atw_power(int, void *);
204
205void	atw_rxintr(struct atw_softc *);
206void	atw_txintr(struct atw_softc *);
207void	atw_linkintr(struct atw_softc *, u_int32_t);
208
209static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
210static void atw_tsf(struct atw_softc *);
211static void atw_start_beacon(struct atw_softc *, int);
212static void atw_write_wep(struct atw_softc *);
213static void atw_write_bssid(struct atw_softc *);
214static void atw_write_ssid(struct atw_softc *);
215static void atw_write_sup_rates(struct atw_softc *);
216static void atw_clear_sram(struct atw_softc *);
217static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
218static int atw_media_change(struct ifnet *);
219static void atw_media_status(struct ifnet *, struct ifmediareq *);
220static void atw_filter_setup(struct atw_softc *);
221static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
222static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
223static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
224    struct ieee80211_node *, int, int, u_int32_t);
225static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226    struct ieee80211_node *, int, int, u_int32_t);
227static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
228static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
229
230static int atw_tune(struct atw_softc *);
231
232static void atw_rfio_enable(struct atw_softc *, int);
233
234/* RFMD RF3000 Baseband Processor */
235static int atw_rf3000_init(struct atw_softc *);
236static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
237static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
238#ifdef ATW_DEBUG
239static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
240#endif /* ATW_DEBUG */
241
242/* Silicon Laboratories Si4126 RF/IF Synthesizer */
243static int atw_si4126_tune(struct atw_softc *, u_int8_t);
244static int atw_si4126_write(struct atw_softc *, u_int, u_int);
245#ifdef ATW_DEBUG
246static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
247#endif /* ATW_DEBUG */
248
249const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
250const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
251
252const char *atw_tx_state[] = {
253	"STOPPED",
254	"RUNNING - read descriptor",
255	"RUNNING - transmitting",
256	"RUNNING - filling fifo",	/* XXX */
257	"SUSPENDED",
258	"RUNNING -- write descriptor",
259	"RUNNING -- write last descriptor",
260	"RUNNING - fifo full"
261};
262
263const char *atw_rx_state[] = {
264	"STOPPED",
265	"RUNNING - read descriptor",
266	"RUNNING - check this packet, pre-fetch next",
267	"RUNNING - wait for reception",
268	"SUSPENDED",
269	"RUNNING - write descriptor",
270	"RUNNING - flush fifo",
271	"RUNNING - fifo drain"
272};
273
274int
275atw_activate(struct device *self, enum devact act)
276{
277	struct atw_softc *sc = (struct atw_softc *)self;
278	int rv = 0, s;
279
280	s = splnet();
281	switch (act) {
282	case DVACT_ACTIVATE:
283		rv = EOPNOTSUPP;
284		break;
285
286	case DVACT_DEACTIVATE:
287		if_deactivate(&sc->sc_ic.ic_if);
288		break;
289	}
290	splx(s);
291	return rv;
292}
293
294/*
295 * atw_enable:
296 *
297 *	Enable the ADM8211 chip.
298 */
299int
300atw_enable(struct atw_softc *sc)
301{
302
303	if (ATW_IS_ENABLED(sc) == 0) {
304		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
305			printf("%s: device enable failed\n",
306			    sc->sc_dev.dv_xname);
307			return (EIO);
308		}
309		sc->sc_flags |= ATWF_ENABLED;
310	}
311	return (0);
312}
313
314/*
315 * atw_disable:
316 *
317 *	Disable the ADM8211 chip.
318 */
319void
320atw_disable(struct atw_softc *sc)
321{
322	if (!ATW_IS_ENABLED(sc))
323		return;
324	if (sc->sc_disable != NULL)
325		(*sc->sc_disable)(sc);
326	sc->sc_flags &= ~ATWF_ENABLED;
327}
328
329/* Returns -1 on failure. */
330int
331atw_read_srom(struct atw_softc *sc)
332{
333	struct seeprom_descriptor sd;
334	u_int32_t reg;
335
336	(void)memset(&sd, 0, sizeof(sd));
337
338	reg = ATW_READ(sc, ATW_TEST0);
339
340	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
341		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
342		return -1;
343	}
344
345	switch (reg & ATW_TEST0_EPTYP_MASK) {
346	case ATW_TEST0_EPTYP_93c66:
347		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
348		sc->sc_sromsz = 512;
349		sd.sd_chip = C56_66;
350		break;
351	case ATW_TEST0_EPTYP_93c46:
352		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
353		sc->sc_sromsz = 128;
354		sd.sd_chip = C46;
355		break;
356	default:
357		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
358		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
359		return -1;
360	}
361
362	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
363
364	if (sc->sc_srom == NULL) {
365		printf("%s: unable to allocate SROM buffer\n",
366		    sc->sc_dev.dv_xname);
367		return -1;
368	}
369
370	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
371
372	/* ADM8211 has a single 32-bit register for controlling the
373	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
374	 * "ready" bit. The ADM8211 input/output sense is the reverse
375	 * of read_seeprom's.
376	 */
377	sd.sd_tag = sc->sc_st;
378	sd.sd_bsh = sc->sc_sh;
379	sd.sd_regsize = 4;
380	sd.sd_control_offset = ATW_SPR;
381	sd.sd_status_offset = ATW_SPR;
382	sd.sd_dataout_offset = ATW_SPR;
383	sd.sd_CK = ATW_SPR_SCLK;
384	sd.sd_CS = ATW_SPR_SCS;
385	sd.sd_DI = ATW_SPR_SDO;
386	sd.sd_DO = ATW_SPR_SDI;
387	sd.sd_MS = ATW_SPR_SRS;
388	sd.sd_RDY = 0;
389
390	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
391		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
392		free(sc->sc_srom, M_DEVBUF);
393		return -1;
394	}
395#ifdef ATW_DEBUG
396	{
397		int i;
398		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
399		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
400			if (((i % 8) == 0) && (i != 0)) {
401				ATW_DPRINTF(("\n\t"));
402			}
403			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
404		}
405		ATW_DPRINTF(("\n"));
406	}
407#endif /* ATW_DEBUG */
408	return 0;
409}
410
411#ifdef ATW_DEBUG
412static void
413atw_print_regs(struct atw_softc *sc, const char *where)
414{
415#define PRINTREG(sc, reg) \
416	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
417	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
418
419	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
420
421	PRINTREG(sc, ATW_PAR);
422	PRINTREG(sc, ATW_FRCTL);
423	PRINTREG(sc, ATW_TDR);
424	PRINTREG(sc, ATW_WTDP);
425	PRINTREG(sc, ATW_RDR);
426	PRINTREG(sc, ATW_WRDP);
427	PRINTREG(sc, ATW_RDB);
428	PRINTREG(sc, ATW_CSR3A);
429	PRINTREG(sc, ATW_TDBD);
430	PRINTREG(sc, ATW_TDBP);
431	PRINTREG(sc, ATW_STSR);
432	PRINTREG(sc, ATW_CSR5A);
433	PRINTREG(sc, ATW_NAR);
434	PRINTREG(sc, ATW_CSR6A);
435	PRINTREG(sc, ATW_IER);
436	PRINTREG(sc, ATW_CSR7A);
437	PRINTREG(sc, ATW_LPC);
438	PRINTREG(sc, ATW_TEST1);
439	PRINTREG(sc, ATW_SPR);
440	PRINTREG(sc, ATW_TEST0);
441	PRINTREG(sc, ATW_WCSR);
442	PRINTREG(sc, ATW_WPDR);
443	PRINTREG(sc, ATW_GPTMR);
444	PRINTREG(sc, ATW_GPIO);
445	PRINTREG(sc, ATW_BBPCTL);
446	PRINTREG(sc, ATW_SYNCTL);
447	PRINTREG(sc, ATW_PLCPHD);
448	PRINTREG(sc, ATW_MMIWADDR);
449	PRINTREG(sc, ATW_MMIRADDR1);
450	PRINTREG(sc, ATW_MMIRADDR2);
451	PRINTREG(sc, ATW_TXBR);
452	PRINTREG(sc, ATW_CSR15A);
453	PRINTREG(sc, ATW_ALCSTAT);
454	PRINTREG(sc, ATW_TOFS2);
455	PRINTREG(sc, ATW_CMDR);
456	PRINTREG(sc, ATW_PCIC);
457	PRINTREG(sc, ATW_PMCSR);
458	PRINTREG(sc, ATW_PAR0);
459	PRINTREG(sc, ATW_PAR1);
460	PRINTREG(sc, ATW_MAR0);
461	PRINTREG(sc, ATW_MAR1);
462	PRINTREG(sc, ATW_ATIMDA0);
463	PRINTREG(sc, ATW_ABDA1);
464	PRINTREG(sc, ATW_BSSID0);
465	PRINTREG(sc, ATW_TXLMT);
466	PRINTREG(sc, ATW_MIBCNT);
467	PRINTREG(sc, ATW_BCNT);
468	PRINTREG(sc, ATW_TSFTH);
469	PRINTREG(sc, ATW_TSC);
470	PRINTREG(sc, ATW_SYNRF);
471	PRINTREG(sc, ATW_BPLI);
472	PRINTREG(sc, ATW_CAP0);
473	PRINTREG(sc, ATW_CAP1);
474	PRINTREG(sc, ATW_RMD);
475	PRINTREG(sc, ATW_CFPP);
476	PRINTREG(sc, ATW_TOFS0);
477	PRINTREG(sc, ATW_TOFS1);
478	PRINTREG(sc, ATW_IFST);
479	PRINTREG(sc, ATW_RSPT);
480	PRINTREG(sc, ATW_TSFTL);
481	PRINTREG(sc, ATW_WEPCTL);
482	PRINTREG(sc, ATW_WESK);
483	PRINTREG(sc, ATW_WEPCNT);
484	PRINTREG(sc, ATW_MACTEST);
485	PRINTREG(sc, ATW_FER);
486	PRINTREG(sc, ATW_FEMR);
487	PRINTREG(sc, ATW_FPSR);
488	PRINTREG(sc, ATW_FFER);
489#undef PRINTREG
490}
491#endif /* ATW_DEBUG */
492
493/*
494 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
495 */
496void
497atw_attach(struct atw_softc *sc)
498{
499	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
500		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
501	};
502	struct ieee80211com *ic = &sc->sc_ic;
503	struct ifnet *ifp = &ic->ic_if;
504	int country_code, error, i, nrate;
505	u_int32_t reg;
506	static const char *type_strings[] = {"Intersil (not supported)",
507	    "RFMD", "Marvel (not supported)"};
508
509	sc->sc_txth = atw_txthresh_tab_lo;
510
511	SIMPLEQ_INIT(&sc->sc_txfreeq);
512	SIMPLEQ_INIT(&sc->sc_txdirtyq);
513
514#ifdef ATW_DEBUG
515	atw_print_regs(sc, "atw_attach");
516#endif /* ATW_DEBUG */
517
518	/*
519	 * Allocate the control data structures, and create and load the
520	 * DMA map for it.
521	 */
522	if ((error = bus_dmamem_alloc(sc->sc_dmat,
523	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
524	    1, &sc->sc_cdnseg, 0)) != 0) {
525		printf("%s: unable to allocate control data, error = %d\n",
526		    sc->sc_dev.dv_xname, error);
527		goto fail_0;
528	}
529
530	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
531	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
532	    BUS_DMA_COHERENT)) != 0) {
533		printf("%s: unable to map control data, error = %d\n",
534		    sc->sc_dev.dv_xname, error);
535		goto fail_1;
536	}
537
538	if ((error = bus_dmamap_create(sc->sc_dmat,
539	    sizeof(struct atw_control_data), 1,
540	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
541		printf("%s: unable to create control data DMA map, "
542		    "error = %d\n", sc->sc_dev.dv_xname, error);
543		goto fail_2;
544	}
545
546	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
547	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
548	    0)) != 0) {
549		printf("%s: unable to load control data DMA map, error = %d\n",
550		    sc->sc_dev.dv_xname, error);
551		goto fail_3;
552	}
553
554	/*
555	 * Create the transmit buffer DMA maps.
556	 */
557	sc->sc_ntxsegs = ATW_NTXSEGS;
558	for (i = 0; i < ATW_TXQUEUELEN; i++) {
559		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
560		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
561		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
562			printf("%s: unable to create tx DMA map %d, "
563			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
564			goto fail_4;
565		}
566	}
567
568	/*
569	 * Create the receive buffer DMA maps.
570	 */
571	for (i = 0; i < ATW_NRXDESC; i++) {
572		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
573		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
574			printf("%s: unable to create rx DMA map %d, "
575			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
576			goto fail_5;
577		}
578	}
579	for (i = 0; i < ATW_NRXDESC; i++) {
580		sc->sc_rxsoft[i].rxs_mbuf = NULL;
581	}
582
583	/* Reset the chip to a known state. */
584	atw_reset(sc);
585
586	if (atw_read_srom(sc) == -1)
587		return;
588
589	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
590	    ATW_SR_RFTYPE_MASK);
591
592	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
593	    ATW_SR_BBPTYPE_MASK);
594
595	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
596		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
597		return;
598	}
599	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
600		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
601		return;
602	}
603
604	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
605	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
606
607	/* XXX There exists a Linux driver which seems to use RFType = 0 for
608	 * MARVEL. My bug, or theirs?
609	 */
610
611	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
612
613	switch (sc->sc_rftype) {
614	case ATW_RFTYPE_INTERSIL:
615		reg |= ATW_SYNCTL_CS1;
616		break;
617	case ATW_RFTYPE_RFMD:
618		reg |= ATW_SYNCTL_CS0;
619		break;
620	case ATW_RFTYPE_MARVEL:
621		break;
622	}
623
624	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
625	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
626
627	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
628
629	switch (sc->sc_bbptype) {
630	case ATW_BBPTYPE_INTERSIL:
631		reg |= ATW_BBPCTL_TWI;
632		break;
633	case ATW_BBPTYPE_RFMD:
634		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
635		    ATW_BBPCTL_CCA_ACTLO;
636		break;
637	case ATW_BBPTYPE_MARVEL:
638		break;
639	case ATW_C_BBPTYPE_RFMD:
640		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
641		    sc->sc_dev.dv_xname);
642		break;
643	}
644
645	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
646	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
647
648	/*
649	 * From this point forward, the attachment cannot fail.  A failure
650	 * before this point releases all resources that may have been
651	 * allocated.
652	 */
653	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
654
655	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
656	    htole16(sc->sc_srom[ATW_SR_MAC00]),
657	    htole16(sc->sc_srom[ATW_SR_MAC01]),
658	    htole16(sc->sc_srom[ATW_SR_MAC10])));
659
660	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
661	    ATW_SR_CTRY_MASK);
662
663#define ADD_CHANNEL(_ic, _chan) do {					\
664	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
665	_ic->ic_channels[_chan].ic_freq =				\
666	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
667} while (0)
668
669	/* Find available channels */
670	switch (country_code) {
671	case COUNTRY_MMK2:	/* 1-14 */
672		ADD_CHANNEL(ic, 14);
673		/*FALLTHROUGH*/
674	case COUNTRY_ETSI:	/* 1-13 */
675		for (i = 1; i <= 13; i++)
676			ADD_CHANNEL(ic, i);
677		break;
678	case COUNTRY_FCC:	/* 1-11 */
679	case COUNTRY_IC:	/* 1-11 */
680		for (i = 1; i <= 11; i++)
681			ADD_CHANNEL(ic, i);
682		break;
683	case COUNTRY_MMK:	/* 14 */
684		ADD_CHANNEL(ic, 14);
685		break;
686	case COUNTRY_FRANCE:	/* 10-13 */
687		for (i = 10; i <= 13; i++)
688			ADD_CHANNEL(ic, i);
689		break;
690	default:	/* assume channels 10-11 */
691	case COUNTRY_SPAIN:	/* 10-11 */
692		for (i = 10; i <= 11; i++)
693			ADD_CHANNEL(ic, i);
694		break;
695	}
696
697	/* Read the MAC address. */
698	reg = ATW_READ(sc, ATW_PAR0);
699	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
700	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
701	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
702	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
703	reg = ATW_READ(sc, ATW_PAR1);
704	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
705	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
706
707	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
708		printf(" could not get mac address, attach failed\n");
709		return;
710	}
711
712	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
713
714	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
715	ifp->if_softc = sc;
716	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
717	    IFF_NOTRAILERS;
718	ifp->if_ioctl = atw_ioctl;
719	ifp->if_start = atw_start;
720	ifp->if_watchdog = atw_watchdog;
721	ifp->if_init = atw_init;
722	ifp->if_stop = atw_stop;
723	IFQ_SET_READY(&ifp->if_snd);
724
725	ic->ic_phytype = IEEE80211_T_DS;
726	ic->ic_opmode = IEEE80211_M_STA;
727	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
728	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
729
730	nrate = 0;
731	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
732	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
733	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
734	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
735	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
736
737	/*
738	 * Call MI attach routines.
739	 */
740
741	if_attach(ifp);
742	ieee80211_ifattach(ifp);
743
744	sc->sc_newstate = ic->ic_newstate;
745	ic->ic_newstate = atw_newstate;
746
747	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
748	ic->ic_recv_mgmt = atw_recv_mgmt;
749
750	sc->sc_node_free = ic->ic_node_free;
751	ic->ic_node_free = atw_node_free;
752
753	sc->sc_node_alloc = ic->ic_node_alloc;
754	ic->ic_node_alloc = atw_node_alloc;
755
756	/* possibly we should fill in our own sc_send_prresp, since
757	 * the ADM8211 is probably sending probe responses in ad hoc
758	 * mode.
759	 */
760
761	/* complete initialization */
762	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
763	callout_init(&sc->sc_scan_ch);
764
765#if NBPFILTER > 0
766	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
767	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
768#endif
769
770	/*
771	 * Make sure the interface is shutdown during reboot.
772	 */
773	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
774	if (sc->sc_sdhook == NULL)
775		printf("%s: WARNING: unable to establish shutdown hook\n",
776		    sc->sc_dev.dv_xname);
777
778	/*
779	 * Add a suspend hook to make sure we come back up after a
780	 * resume.
781	 */
782	sc->sc_powerhook = powerhook_establish(atw_power, sc);
783	if (sc->sc_powerhook == NULL)
784		printf("%s: WARNING: unable to establish power hook\n",
785		    sc->sc_dev.dv_xname);
786
787	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
788	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
789	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
790
791	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
792	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
793	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
794
795	return;
796
797	/*
798	 * Free any resources we've allocated during the failed attach
799	 * attempt.  Do this in reverse order and fall through.
800	 */
801 fail_5:
802	for (i = 0; i < ATW_NRXDESC; i++) {
803		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
804			continue;
805		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
806	}
807 fail_4:
808	for (i = 0; i < ATW_TXQUEUELEN; i++) {
809		if (sc->sc_txsoft[i].txs_dmamap == NULL)
810			continue;
811		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
812	}
813	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
814 fail_3:
815	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
816 fail_2:
817	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
818	    sizeof(struct atw_control_data));
819 fail_1:
820	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
821 fail_0:
822	return;
823}
824
825static struct ieee80211_node *
826atw_node_alloc(struct ieee80211com *ic)
827{
828	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
829	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
830
831	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
832	return ni;
833}
834
835static void
836atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
837{
838	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
839
840	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
841	    ether_sprintf(ni->ni_bssid)));
842	(*sc->sc_node_free)(ic, ni);
843}
844
845/*
846 * atw_reset:
847 *
848 *	Perform a soft reset on the ADM8211.
849 */
850void
851atw_reset(struct atw_softc *sc)
852{
853	int i;
854
855	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
856
857	for (i = 0; i < 10000; i++) {
858		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
859			break;
860		DELAY(1);
861	}
862
863	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
864
865	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
866		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
867
868	/* Turn off maximum power saving. */
869	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
870
871	/* Recall EEPROM. */
872	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
873
874	DELAY(10 * 1000);
875
876	/* A reset seems to affect the SRAM contents, so put them into
877	 * a known state.
878	 */
879	atw_clear_sram(sc);
880
881	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
882}
883
884static void
885atw_clear_sram(struct atw_softc *sc)
886{
887	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
888	/* XXX not for revision 0x20. */
889	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
890}
891
892/* TBD atw_init
893 *
894 * set MAC based on ic->ic_bss->myaddr
895 * write WEP keys
896 * set TX rate
897 */
898
899/*
900 * atw_init:		[ ifnet interface function ]
901 *
902 *	Initialize the interface.  Must be called at splnet().
903 */
904int
905atw_init(struct ifnet *ifp)
906{
907	struct atw_softc *sc = ifp->if_softc;
908	struct ieee80211com *ic = &sc->sc_ic;
909	struct atw_txsoft *txs;
910	struct atw_rxsoft *rxs;
911	u_int32_t reg;
912	int i, error = 0;
913
914	if ((error = atw_enable(sc)) != 0)
915		goto out;
916
917	/*
918	 * Cancel any pending I/O. This also resets.
919	 */
920	atw_stop(ifp, 0);
921
922	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
923	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
924	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
925	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
926
927	/* Turn off APM??? (A binary-only driver does this.)
928	 *
929	 * Set Rx store-and-forward mode.
930	 */
931	reg = ATW_READ(sc, ATW_CMDR);
932	reg &= ~ATW_CMDR_APM;
933	reg &= ~ATW_CMDR_DRT_MASK;
934	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
935
936	ATW_WRITE(sc, ATW_CMDR, reg);
937
938	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
939	 *
940	 * XXX a binary-only driver sets a different service field than
941	 * 0. why?
942	 */
943	reg = ATW_READ(sc, ATW_PLCPHD);
944	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
945	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
946	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
947	ATW_WRITE(sc, ATW_PLCPHD, reg);
948
949	/* XXX this magic can probably be figured out from the RFMD docs */
950	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
951	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
952	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
953	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
954	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
955	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
956	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
957	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
958	ATW_WRITE(sc, ATW_TOFS2, reg);
959
960	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
961	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
962
963	/* XXX this resets an Intersil RF front-end? */
964	/* TBD condition on Intersil RFType? */
965	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
966	DELAY(10 * 1000);
967	ATW_WRITE(sc, ATW_SYNRF, 0);
968	DELAY(5 * 1000);
969
970	/* 16 TU max duration for contention-free period */
971	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
972	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
973
974	/* XXX I guess that the Cardbus clock is 22MHz?
975	 * I am assuming that the role of ATW_TOFS0_USCNT is
976	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
977	 * very clear on this point. It says in the datasheet that it is
978	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
979	 * and 33MHz; maybe this is the way? I see a binary-only driver write
980	 * these values. These values are also the power-on default.
981	 */
982	ATW_WRITE(sc, ATW_TOFS0,
983	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
984	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
985
986	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
987	 * driver. Go figure.
988	 */
989	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
990	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
991	             ATW_IFST_SIFS_MASK) |
992	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
993	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
994
995	ATW_WRITE(sc, ATW_IFST, reg);
996
997	/* XXX More magic. Might relate to ACK timing. */
998	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
999	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1000
1001	/* Set up the MMI read/write addresses for the BBP.
1002	 *
1003	 * TBD find out the Marvel settings.
1004	 */
1005	switch (sc->sc_bbptype) {
1006	case ATW_BBPTYPE_INTERSIL:
1007		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1008		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1009		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1010		break;
1011	case ATW_BBPTYPE_MARVEL:
1012		break;
1013	case ATW_BBPTYPE_RFMD:
1014		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1015		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1016		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1017	default:
1018		break;
1019	}
1020
1021	sc->sc_wepctl = 0;
1022	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1023
1024	if ((error = atw_rf3000_init(sc)) != 0)
1025		goto out;
1026
1027	/*
1028	 * Initialize the PCI Access Register.
1029	 */
1030	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
1031
1032	/*
1033	 * If we're allowed to do so, use Memory Read Line
1034	 * and Memory Read Multiple.
1035	 *
1036	 * XXX Should we use Memory Write and Invalidate?
1037	 */
1038	if (sc->sc_flags & ATWF_MRL)
1039		sc->sc_busmode |= ATW_PAR_MRLE;
1040	if (sc->sc_flags & ATWF_MRM)
1041		sc->sc_busmode |= ATW_PAR_MRME;
1042	if (sc->sc_flags & ATWF_MWI)
1043		sc->sc_busmode |= ATW_PAR_MWIE;
1044	if (sc->sc_maxburst == 0)
1045		sc->sc_maxburst = 8;	/* ADM8211 default */
1046
1047	switch (sc->sc_cacheline) {
1048	default:
1049		/* Use burst length. */
1050		break;
1051	case 8:
1052		sc->sc_busmode |= ATW_PAR_CAL_8DW;
1053		break;
1054	case 16:
1055		sc->sc_busmode |= ATW_PAR_CAL_16DW;
1056		break;
1057	case 32:
1058		sc->sc_busmode |= ATW_PAR_CAL_32DW;
1059		break;
1060	}
1061	switch (sc->sc_maxburst) {
1062	case 1:
1063		sc->sc_busmode |= ATW_PAR_PBL_1DW;
1064		break;
1065	case 2:
1066		sc->sc_busmode |= ATW_PAR_PBL_2DW;
1067		break;
1068	case 4:
1069		sc->sc_busmode |= ATW_PAR_PBL_4DW;
1070		break;
1071	case 8:
1072		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1073		break;
1074	case 16:
1075		sc->sc_busmode |= ATW_PAR_PBL_16DW;
1076		break;
1077	case 32:
1078		sc->sc_busmode |= ATW_PAR_PBL_32DW;
1079		break;
1080	default:
1081		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082		break;
1083	}
1084
1085	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1086	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1087	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1088
1089	/*
1090	 * Initialize the OPMODE register.  We don't write it until
1091	 * we're ready to begin the transmit and receive processes.
1092	 */
1093	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1094	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1095
1096	/*
1097	 * Initialize the transmit descriptor ring.
1098	 */
1099	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1100	for (i = 0; i < ATW_NTXDESC; i++) {
1101		sc->sc_txdescs[i].at_ctl = 0;
1102		/* no transmit chaining */
1103		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1104		sc->sc_txdescs[i].at_buf2 =
1105		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1106	}
1107	/* use ring mode */
1108	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1109	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1110	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1111	sc->sc_txfree = ATW_NTXDESC;
1112	sc->sc_txnext = 0;
1113
1114	/*
1115	 * Initialize the transmit job descriptors.
1116	 */
1117	SIMPLEQ_INIT(&sc->sc_txfreeq);
1118	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1120		txs = &sc->sc_txsoft[i];
1121		txs->txs_mbuf = NULL;
1122		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1123	}
1124
1125	/*
1126	 * Initialize the receive descriptor and receive job
1127	 * descriptor rings.
1128	 */
1129	for (i = 0; i < ATW_NRXDESC; i++) {
1130		rxs = &sc->sc_rxsoft[i];
1131		if (rxs->rxs_mbuf == NULL) {
1132			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1133				printf("%s: unable to allocate or map rx "
1134				    "buffer %d, error = %d\n",
1135				    sc->sc_dev.dv_xname, i, error);
1136				/*
1137				 * XXX Should attempt to run with fewer receive
1138				 * XXX buffers instead of just failing.
1139				 */
1140				atw_rxdrain(sc);
1141				goto out;
1142			}
1143		} else
1144			ATW_INIT_RXDESC(sc, i);
1145	}
1146	sc->sc_rxptr = 0;
1147
1148	/* disable all wake-up events */
1149	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1150	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1151			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1152			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1153
1154	/* ack all wake-up events */
1155	ATW_SET(sc, ATW_WCSR, 0);
1156
1157	/*
1158	 * Initialize the interrupt mask and enable interrupts.
1159	 */
1160	/* normal interrupts */
1161	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1162	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1163
1164	/* abnormal interrupts */
1165	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1166	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1167	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1168
1169	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1170	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1171	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1172	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1173	    ATW_INTR_TRT;
1174
1175	sc->sc_linkint_mask &= sc->sc_inten;
1176	sc->sc_rxint_mask &= sc->sc_inten;
1177	sc->sc_txint_mask &= sc->sc_inten;
1178
1179	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1180	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1181	if (sc->sc_intr_ack != NULL)
1182		(*sc->sc_intr_ack)(sc);
1183
1184	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1185	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1186
1187	/*
1188	 * Give the transmit and receive rings to the ADM8211.
1189	 */
1190	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1191	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1192
1193	/* common 802.11 configuration */
1194	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1195	switch (ic->ic_opmode) {
1196	case IEEE80211_M_STA:
1197		break;
1198	case IEEE80211_M_AHDEMO: /* XXX */
1199	case IEEE80211_M_IBSS:
1200		ic->ic_flags |= IEEE80211_F_IBSSON;
1201		/*FALLTHROUGH*/
1202	case IEEE80211_M_HOSTAP: /* XXX */
1203		break;
1204	case IEEE80211_M_MONITOR: /* XXX */
1205		break;
1206	}
1207
1208	atw_start_beacon(sc, 0);
1209
1210	switch (ic->ic_opmode) {
1211	case IEEE80211_M_AHDEMO:
1212	case IEEE80211_M_HOSTAP:
1213		ic->ic_bss->ni_intval = ic->ic_lintval;
1214		ic->ic_bss->ni_rssi = 0;
1215		ic->ic_bss->ni_rstamp = 0;
1216		break;
1217	default:					/* XXX */
1218		break;
1219	}
1220
1221	atw_write_ssid(sc);
1222	atw_write_sup_rates(sc);
1223	if (ic->ic_caps & IEEE80211_C_WEP)
1224		atw_write_wep(sc);
1225
1226	/*
1227	 * Set the receive filter.  This will start the transmit and
1228	 * receive processes.
1229	 */
1230	atw_filter_setup(sc);
1231
1232	/*
1233	 * Start the receive process.
1234	 */
1235	ATW_WRITE(sc, ATW_RDR, 0x1);
1236
1237	/*
1238	 * Note that the interface is now running.
1239	 */
1240	ifp->if_flags |= IFF_RUNNING;
1241	ifp->if_flags &= ~IFF_OACTIVE;
1242	ic->ic_state = IEEE80211_S_INIT;
1243
1244	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1245		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1246	else
1247		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1248 out:
1249	if (error) {
1250		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1251		ifp->if_timer = 0;
1252		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1253	}
1254#ifdef ATW_DEBUG
1255	atw_print_regs(sc, "end of init");
1256#endif /* ATW_DEBUG */
1257
1258	return (error);
1259}
1260
1261/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1262 *           0: MAC control of RF3000/Si4126.
1263 *
1264 * Applies power, or selects RF front-end? Sets reset condition.
1265 *
1266 * TBD support non-RFMD BBP, non-SiLabs synth.
1267 */
1268static void
1269atw_rfio_enable(struct atw_softc *sc, int enable)
1270{
1271	if (enable) {
1272		ATW_WRITE(sc, ATW_SYNRF,
1273		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1274		DELAY(atw_rfio_enable_delay);
1275	} else {
1276		ATW_WRITE(sc, ATW_SYNRF, 0);
1277		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1278	}
1279}
1280
1281static int
1282atw_tune(struct atw_softc *sc)
1283{
1284	int rc;
1285	u_int32_t reg;
1286	int chan;
1287	struct ieee80211com *ic = &sc->sc_ic;
1288
1289	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1290	if (chan == IEEE80211_CHAN_ANY)
1291		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1292
1293	if (chan == sc->sc_cur_chan)
1294		return 0;
1295
1296	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1297	    sc->sc_cur_chan, chan));
1298
1299	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1300
1301	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1302	    (rc = atw_rf3000_tune(sc, chan)) != 0)
1303		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1304		    chan);
1305
1306	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1307	ATW_WRITE(sc, ATW_CAP0,
1308	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1309
1310	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1311
1312	if (rc == 0)
1313		sc->sc_cur_chan = chan;
1314
1315	return rc;
1316}
1317
1318#ifdef ATW_DEBUG
1319static void
1320atw_si4126_print(struct atw_softc *sc)
1321{
1322	struct ifnet *ifp = &sc->sc_ic.ic_if;
1323	u_int addr, val;
1324
1325	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1326		return;
1327
1328	for (addr = 0; addr <= 8; addr++) {
1329		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1330		if (atw_si4126_read(sc, addr, &val) == 0) {
1331			printf("<unknown> (quitting print-out)\n");
1332			break;
1333		}
1334		printf("%05x\n", val);
1335	}
1336}
1337#endif /* ATW_DEBUG */
1338
1339/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1340 *
1341 * The RF/IF synthesizer produces two reference frequencies for
1342 * the RF2948B transceiver.  The first frequency the RF2948B requires
1343 * is two times the so-called "intermediate frequency" (IF). Since
1344 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1345 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1346 * frequency required by the transceiver is the radio frequency
1347 * (RF). This is a superheterodyne transceiver; for f(chan) the
1348 * center frequency of the channel we are tuning, RF = f(chan) -
1349 * IF.
1350 *
1351 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1352 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1353 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1354 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1355 */
1356static int
1357atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1358{
1359	int rc = 0;
1360	u_int mhz;
1361	u_int R;
1362	u_int32_t reg;
1363	u_int16_t gain;
1364
1365#ifdef ATW_DEBUG
1366	atw_si4126_print(sc);
1367#endif /* ATW_DEBUG */
1368
1369	if (chan == 14)
1370		mhz = 2484;
1371	else
1372		mhz = 2412 + 5 * (chan - 1);
1373
1374	/* Tune IF to 748MHz to suit the IF LO input of the
1375	 * RF2494B, which is 2 x IF. No need to set an IF divider
1376         * because an IF in 526MHz - 952MHz is allowed.
1377	 *
1378	 * XIN is 44.000MHz, so divide it by two to get allowable
1379	 * range of 2-25MHz. SiLabs tells me that this is not
1380	 * strictly necessary.
1381	 */
1382
1383	R = 44;
1384
1385	atw_rfio_enable(sc, 1);
1386
1387	/* Power-up RF, IF synthesizers. */
1388	if ((rc = atw_si4126_write(sc, SI4126_POWER,
1389	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1390		goto out;
1391
1392	/* If RF2 N > 2047, then set KP2 to 1. */
1393	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1394
1395	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1396		goto out;
1397
1398	/* set LPWR, too? */
1399	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1400	    SI4126_MAIN_XINDIV2)) != 0)
1401		goto out;
1402
1403	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
1404	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1405	 */
1406	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1407		goto out;
1408
1409	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1410		goto out;
1411
1412	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1413	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1414	 * which has no RF1!
1415	 */
1416	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1417		goto out;
1418
1419	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1420		goto out;
1421
1422	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1423	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1424	 * Now let's multiply it to mhz. So mhz - IF = N.
1425	 */
1426	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1427		goto out;
1428
1429	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1430		goto out;
1431
1432	/* wait 100us from power-up for RF, IF to settle */
1433	DELAY(100);
1434
1435	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1436		/* XXX there is a binary driver which sends
1437		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1438		 * that this enables the Si4126 by raising its PWDN#, but I
1439		 * think that it actually sets the Prism RF front-end
1440		 * to a special mode for channel 14.
1441		 */
1442		reg = ATW_READ(sc, ATW_GPIO);
1443		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1444		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1445		ATW_WRITE(sc, ATW_GPIO, reg);
1446	}
1447
1448#ifdef ATW_DEBUG
1449	atw_si4126_print(sc);
1450#endif /* ATW_DEBUG */
1451
1452out:
1453	atw_rfio_enable(sc, 0);
1454
1455	return rc;
1456}
1457
1458/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1459 * diversity.
1460 *
1461 * Call this w/ Tx/Rx suspended.
1462 */
1463static int
1464atw_rf3000_init(struct atw_softc *sc)
1465{
1466	int rc = 0;
1467
1468	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1469
1470	atw_rfio_enable(sc, 1);
1471
1472	/* enable diversity */
1473	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1474
1475	if (rc != 0)
1476		goto out;
1477
1478	/* sensible setting from a binary-only driver */
1479	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1480	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1481
1482	if (rc != 0)
1483		goto out;
1484
1485	/* magic from a binary-only driver */
1486	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1487	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1488
1489	if (rc != 0)
1490		goto out;
1491
1492	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1493
1494	if (rc != 0)
1495		goto out;
1496
1497	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1498
1499	if (rc != 0)
1500		goto out;
1501
1502	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1503
1504	if (rc != 0)
1505		goto out;
1506
1507	/* CCA is acquisition sensitive */
1508	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1509	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1510
1511	if (rc != 0)
1512		goto out;
1513
1514out:
1515	atw_rfio_enable(sc, 0);
1516	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1517	return rc;
1518}
1519
1520#ifdef ATW_DEBUG
1521static void
1522atw_rf3000_print(struct atw_softc *sc)
1523{
1524	struct ifnet *ifp = &sc->sc_ic.ic_if;
1525	u_int addr, val;
1526
1527	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1528		return;
1529
1530	for (addr = 0x01; addr <= 0x15; addr++) {
1531		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1532		if (atw_rf3000_read(sc, addr, &val) != 0) {
1533			printf("<unknown> (quitting print-out)\n");
1534			break;
1535		}
1536		printf("%08x\n", val);
1537	}
1538}
1539#endif /* ATW_DEBUG */
1540
1541/* Set the power settings on the BBP for channel `chan'. */
1542static int
1543atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1544{
1545	int rc = 0;
1546	u_int32_t reg;
1547	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1548
1549	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1550	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1551	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1552
1553	/* odd channels: LSB, even channels: MSB */
1554	if (chan % 2 == 1) {
1555		txpower &= 0xFF;
1556		lpf_cutoff &= 0xFF;
1557		lna_gs_thresh &= 0xFF;
1558	} else {
1559		txpower >>= 8;
1560		lpf_cutoff >>= 8;
1561		lna_gs_thresh >>= 8;
1562	}
1563
1564#ifdef ATW_DEBUG
1565	atw_rf3000_print(sc);
1566#endif /* ATW_DEBUG */
1567
1568	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1569	    "lna_gs_thresh %02x\n",
1570	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1571
1572	atw_rfio_enable(sc, 1);
1573
1574	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1575	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1576		goto out;
1577
1578	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1579		goto out;
1580
1581	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1582		goto out;
1583
1584	/* from a binary-only driver. */
1585	reg = ATW_READ(sc, ATW_PLCPHD);
1586	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1587	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1588	    ATW_PLCPHD_SERVICE_MASK);
1589	ATW_WRITE(sc, ATW_PLCPHD, reg);
1590
1591#ifdef ATW_DEBUG
1592	atw_rf3000_print(sc);
1593#endif /* ATW_DEBUG */
1594
1595out:
1596	atw_rfio_enable(sc, 0);
1597
1598	return rc;
1599}
1600
1601/* Write a register on the RF3000 baseband processor using the
1602 * registers provided by the ADM8211 for this purpose.
1603 *
1604 * Return 0 on success.
1605 */
1606static int
1607atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1608{
1609	u_int32_t reg;
1610	int i;
1611
1612	for (i = 1000; --i >= 0; ) {
1613		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1614			break;
1615		DELAY(100);
1616	}
1617
1618	if (i < 0) {
1619		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1620		return ETIMEDOUT;
1621	}
1622
1623	reg = sc->sc_bbpctl_wr |
1624	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1625	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1626
1627	ATW_WRITE(sc, ATW_BBPCTL, reg);
1628
1629	for (i = 1000; --i >= 0; ) {
1630		DELAY(100);
1631		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1632			break;
1633	}
1634
1635	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1636
1637	if (i < 0) {
1638		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1639		return ETIMEDOUT;
1640	}
1641	return 0;
1642}
1643
1644/* Read a register on the RF3000 baseband processor using the registers
1645 * the ADM8211 provides for this purpose.
1646 *
1647 * The 7-bit register address is addr.  Record the 8-bit data in the register
1648 * in *val.
1649 *
1650 * Return 0 on success.
1651 *
1652 * XXX This does not seem to work. The ADM8211 must require more or
1653 * different magic to read the chip than to write it. Possibly some
1654 * of the magic I have derived from a binary-only driver concerns
1655 * the "chip address" (see the RF3000 manual).
1656 */
1657#ifdef ATW_DEBUG
1658static int
1659atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1660{
1661	u_int32_t reg;
1662	int i;
1663
1664	for (i = 1000; --i >= 0; ) {
1665		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1666			break;
1667		DELAY(100);
1668	}
1669
1670	if (i < 0) {
1671		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1672		    sc->sc_dev.dv_xname);
1673		return ETIMEDOUT;
1674	}
1675
1676	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1677
1678	ATW_WRITE(sc, ATW_BBPCTL, reg);
1679
1680	for (i = 1000; --i >= 0; ) {
1681		DELAY(100);
1682		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1683			break;
1684	}
1685
1686	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1687
1688	if (i < 0) {
1689		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1690		    sc->sc_dev.dv_xname, reg);
1691		return ETIMEDOUT;
1692	}
1693	if (val != NULL)
1694		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1695	return 0;
1696}
1697#endif /* ATW_DEBUG */
1698
1699/* Write a register on the Si4126 RF/IF synthesizer using the registers
1700 * provided by the ADM8211 for that purpose.
1701 *
1702 * val is 18 bits of data, and val is the 4-bit address of the register.
1703 *
1704 * Return 0 on success.
1705 */
1706static int
1707atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1708{
1709	u_int32_t bits, reg;
1710	int i;
1711
1712	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1713	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1714
1715	for (i = 1000; --i >= 0; ) {
1716		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1717			break;
1718		DELAY(100);
1719	}
1720
1721	if (i < 0) {
1722		printf("%s: start atw_si4126_write, SYNCTL busy\n",
1723		    sc->sc_dev.dv_xname);
1724		return ETIMEDOUT;
1725	}
1726
1727	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1728	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1729
1730	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1731
1732	ATW_WRITE(sc, ATW_SYNCTL, reg);
1733
1734	for (i = 1000; --i >= 0; ) {
1735		DELAY(100);
1736		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1737			break;
1738	}
1739
1740	/* restore to acceptable starting condition */
1741	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1742
1743	if (i < 0) {
1744		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1745		    sc->sc_dev.dv_xname, reg);
1746		return ETIMEDOUT;
1747	}
1748	return 0;
1749}
1750
1751/* Read 18-bit data from the 4-bit address addr in Si4126
1752 * RF synthesizer and write the data to *val. Return 0 on success.
1753 *
1754 * XXX This does not seem to work. The ADM8211 must require more or
1755 * different magic to read the chip than to write it.
1756 */
1757#ifdef ATW_DEBUG
1758static int
1759atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1760{
1761	u_int32_t reg;
1762	int i;
1763
1764	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1765
1766	for (i = 1000; --i >= 0; ) {
1767		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1768			break;
1769		DELAY(100);
1770	}
1771
1772	if (i < 0) {
1773		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1774		    sc->sc_dev.dv_xname);
1775		return ETIMEDOUT;
1776	}
1777
1778	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1779
1780	ATW_WRITE(sc, ATW_SYNCTL, reg);
1781
1782	for (i = 1000; --i >= 0; ) {
1783		DELAY(100);
1784		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1785			break;
1786	}
1787
1788	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1789
1790	if (i < 0) {
1791		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1792		    sc->sc_dev.dv_xname, reg);
1793		return ETIMEDOUT;
1794	}
1795	if (val != NULL)
1796		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1797		                       ATW_SYNCTL_DATA_MASK);
1798	return 0;
1799}
1800#endif /* ATW_DEBUG */
1801
1802/* XXX is the endianness correct? test. */
1803#define	atw_calchash(addr) \
1804	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1805
1806/*
1807 * atw_filter_setup:
1808 *
1809 *	Set the ADM8211's receive filter.
1810 */
1811static void
1812atw_filter_setup(struct atw_softc *sc)
1813{
1814	struct ieee80211com *ic = &sc->sc_ic;
1815	struct ethercom *ec = &ic->ic_ec;
1816	struct ifnet *ifp = &sc->sc_ic.ic_if;
1817	int hash;
1818	u_int32_t hashes[2] = { 0, 0 };
1819	struct ether_multi *enm;
1820	struct ether_multistep step;
1821
1822	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1823	    sc->sc_dev.dv_xname, sc->sc_flags));
1824
1825	/*
1826	 * If we're running, idle the receive engine.  If we're NOT running,
1827	 * we're being called from atw_init(), and our writing ATW_NAR will
1828	 * start the transmit and receive processes in motion.
1829	 */
1830	if (ifp->if_flags & IFF_RUNNING)
1831		atw_idle(sc, ATW_NAR_SR);
1832
1833	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1834
1835	ifp->if_flags &= ~IFF_ALLMULTI;
1836
1837	if (ifp->if_flags & IFF_PROMISC) {
1838		sc->sc_opmode |= ATW_NAR_PR;
1839allmulti:
1840		ifp->if_flags |= IFF_ALLMULTI;
1841		goto setit;
1842	}
1843
1844	/*
1845	 * Program the 64-bit multicast hash filter.
1846	 */
1847	ETHER_FIRST_MULTI(step, ec, enm);
1848	while (enm != NULL) {
1849		/* XXX */
1850		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1851		    ETHER_ADDR_LEN) != 0)
1852			goto allmulti;
1853
1854		hash = atw_calchash(enm->enm_addrlo);
1855		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1856		ETHER_NEXT_MULTI(step, enm);
1857	}
1858
1859	if (ifp->if_flags & IFF_BROADCAST) {
1860		hash = atw_calchash(etherbroadcastaddr);
1861		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1862	}
1863
1864	/* all bits set => hash is useless */
1865	if (~(hashes[0] & hashes[1]) == 0)
1866		goto allmulti;
1867
1868 setit:
1869	if (ifp->if_flags & IFF_ALLMULTI)
1870		sc->sc_opmode |= ATW_NAR_MM;
1871
1872	/* XXX in scan mode, do not filter packets. maybe this is
1873	 * unnecessary.
1874	 */
1875	if (ic->ic_state == IEEE80211_S_SCAN)
1876		sc->sc_opmode |= ATW_NAR_PR;
1877
1878	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1879	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1880	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1881	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1882	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1883
1884	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1885}
1886
1887/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1888 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1889 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1890 * no beacon with the preferred BSSID and SSID in the number of
1891 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1892 */
1893static void
1894atw_write_bssid(struct atw_softc *sc)
1895{
1896	struct ieee80211com *ic = &sc->sc_ic;
1897	u_int8_t *bssid;
1898
1899	bssid = ic->ic_bss->ni_bssid;
1900
1901	ATW_WRITE(sc, ATW_BSSID0,
1902	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1903	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1904	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1905	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1906
1907	ATW_WRITE(sc, ATW_ABDA1,
1908	    (ATW_READ(sc, ATW_ABDA1) &
1909	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1910	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1911	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1912
1913	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1914	    ether_sprintf(sc->sc_bssid)));
1915	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1916
1917	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1918}
1919
1920/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1921 * 16-bit word.
1922 */
1923static void
1924atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1925{
1926	u_int i;
1927	u_int8_t *ptr;
1928
1929	memcpy(&sc->sc_sram[ofs], buf, buflen);
1930
1931	if (ofs % 2 != 0) {
1932		ofs--;
1933		buflen++;
1934	}
1935
1936	if (buflen % 2 != 0)
1937		buflen++;
1938
1939	assert(buflen + ofs <= ATW_SRAM_SIZE);
1940
1941	ptr = &sc->sc_sram[ofs];
1942
1943	for (i = 0; i < buflen; i += 2) {
1944		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1945		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1946		DELAY(atw_writewep_delay);
1947
1948		ATW_WRITE(sc, ATW_WESK,
1949		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1950		DELAY(atw_writewep_delay);
1951	}
1952	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1953
1954	if (sc->sc_if.if_flags & IFF_DEBUG) {
1955		int n_octets = 0;
1956		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1957		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1958		for (i = 0; i < buflen; i++) {
1959			printf(" %02x", ptr[i]);
1960			if (++n_octets % 24 == 0)
1961				printf("\n");
1962		}
1963		if (n_octets % 24 != 0)
1964			printf("\n");
1965	}
1966}
1967
1968/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
1969static void
1970atw_write_wep(struct atw_softc *sc)
1971{
1972	struct ieee80211com *ic = &sc->sc_ic;
1973	/* SRAM shared-key record format: key0 flags key1 ... key12 */
1974	u_int8_t buf[IEEE80211_WEP_NKID]
1975	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
1976	u_int32_t reg;
1977	int i;
1978
1979	sc->sc_wepctl = 0;
1980	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
1981
1982	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
1983		return;
1984
1985	memset(&buf[0][0], 0, sizeof(buf));
1986
1987	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1988		if (ic->ic_nw_keys[i].wk_len > 5) {
1989			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
1990		} else if (ic->ic_nw_keys[i].wk_len != 0) {
1991			buf[i][1] = ATW_WEP_ENABLED;
1992		} else {
1993			buf[i][1] = 0;
1994			continue;
1995		}
1996		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
1997		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
1998		    ic->ic_nw_keys[i].wk_len - 1);
1999	}
2000
2001	reg = ATW_READ(sc, ATW_MACTEST);
2002	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2003	reg &= ~ATW_MACTEST_KEYID_MASK;
2004	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2005	ATW_WRITE(sc, ATW_MACTEST, reg);
2006
2007	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2008	 * throughout.)
2009	 */
2010	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2011	if (sc->sc_if.if_flags & IFF_LINK2)
2012		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2013
2014	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2015	    sizeof(buf));
2016}
2017
2018const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2019
2020static void
2021atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2022    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2023{
2024	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2025
2026	switch (subtype) {
2027	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2028		/* do nothing: hardware answers probe request */
2029		break;
2030	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2031	case IEEE80211_FC0_SUBTYPE_BEACON:
2032		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2033		break;
2034	default:
2035		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2036		break;
2037	}
2038	return;
2039}
2040
2041/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2042 * of IBSSs with like SSID/channel but different BSSID. It joins the
2043 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2044 * convention. Possibly the ADMtek chip does this for us; I will have
2045 * to test to find out.
2046 *
2047 * XXX we should add the duration field of the received beacon to
2048 * the TSF time it contains before comparing it with the ADM8211's
2049 * TSF.
2050 */
2051static void
2052atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2053    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2054{
2055	struct atw_softc *sc;
2056	struct ieee80211_frame *wh;
2057	u_int64_t tsft, bcn_tsft;
2058	u_int32_t tsftl, tsfth;
2059	int do_print = 0;
2060
2061	sc = (struct atw_softc*)ic->ic_if.if_softc;
2062
2063	if (ic->ic_if.if_flags & IFF_LINK0) {
2064		do_print = (ic->ic_if.if_flags & IFF_DEBUG)
2065		    ? 1 : ratecheck(&sc->sc_last_beacon,
2066		    &atw_beacon_mininterval);
2067	}
2068
2069	wh = mtod(m0, struct ieee80211_frame *);
2070
2071	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2072
2073	if (ic->ic_state != IEEE80211_S_RUN)
2074		return;
2075
2076	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2077	    ic->ic_bss->ni_chan)) == NULL) {
2078		if (do_print)
2079			printf("%s: atw_recv_beacon: no node %s\n",
2080			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2081		return;
2082	}
2083
2084	if (ieee80211_match_bss(ic, ni) != 0)
2085		return;
2086
2087	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2088		return;
2089
2090	if (do_print)
2091		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2092		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2093
2094	if (ic->ic_opmode != IEEE80211_M_IBSS)
2095		return;
2096
2097	/* If we read TSFTL right before rollover, we read a TSF timer
2098	 * that is too high rather than too low. This prevents a spurious
2099	 * synchronization down the line, however, our IBSS could suffer
2100	 * from a creeping TSF....
2101	 */
2102	tsftl = ATW_READ(sc, ATW_TSFTL);
2103	tsfth = ATW_READ(sc, ATW_TSFTH);
2104
2105	tsft = (u_int64_t)tsfth << 32 | tsftl;
2106	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2107
2108	if (do_print)
2109		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2110		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
2111
2112	/* we are faster, let the other guy catch up */
2113	if (bcn_tsft < tsft)
2114		return;
2115
2116	if (do_print)
2117		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2118		    ether_sprintf(wh->i_addr2));
2119
2120	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2121
2122	atw_tsf(sc);
2123
2124	/* negotiate rates with new IBSS */
2125	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2126	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2127	if (ni->ni_rates.rs_nrates == 0) {
2128		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2129			ether_sprintf(ni->ni_bssid));
2130		return;
2131	}
2132
2133	if (do_print) {
2134		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2135		    ether_sprintf(ic->ic_bss->ni_bssid));
2136		printf("%s ", ether_sprintf(ni->ni_bssid));
2137		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2138	}
2139
2140	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2141
2142	atw_write_bssid(sc);
2143	atw_start_beacon(sc, 1);
2144}
2145
2146/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2147 * In ad hoc mode, the SSID is written to the beacons sent by the
2148 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2149 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2150 * indications.
2151 */
2152static void
2153atw_write_ssid(struct atw_softc *sc)
2154{
2155	struct ieee80211com *ic = &sc->sc_ic;
2156	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2157	 * it only expects the element length, not its ID.
2158	 */
2159	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2160
2161	memset(buf, 0, sizeof(buf));
2162	buf[0] = ic->ic_bss->ni_esslen;
2163	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2164
2165	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2166	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2167}
2168
2169/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2170 * In ad hoc mode, the supported rates are written to beacons sent by the
2171 * ADM8211.
2172 */
2173static void
2174atw_write_sup_rates(struct atw_softc *sc)
2175{
2176	struct ieee80211com *ic = &sc->sc_ic;
2177	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2178	 * supported rates
2179	 */
2180	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2181
2182	memset(buf, 0, sizeof(buf));
2183
2184	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2185
2186	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2187	    ic->ic_bss->ni_rates.rs_nrates);
2188
2189	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2190}
2191
2192/* Start/stop sending beacons. */
2193void
2194atw_start_beacon(struct atw_softc *sc, int start)
2195{
2196	struct ieee80211com *ic = &sc->sc_ic;
2197	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2198
2199	if (ATW_IS_ENABLED(sc) == 0)
2200		return;
2201
2202	len = capinfo = 0;
2203
2204	/* start beacons */
2205	len = sizeof(struct ieee80211_frame) +
2206	    8 /* timestamp */ + 2 /* beacon interval */ +
2207	    2 /* capability info */ +
2208	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2209	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2210	    3 /* DS parameters */ +
2211	    IEEE80211_CRC_LEN;
2212
2213	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2214
2215	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2216
2217	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2218	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2219
2220	if (!start)
2221		return;
2222
2223	/* TBD use ni_capinfo */
2224
2225	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2226		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2227	if (ic->ic_flags & IEEE80211_F_WEPON)
2228		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2229
2230	switch (ic->ic_opmode) {
2231	case IEEE80211_M_IBSS:
2232		len += 4; /* IBSS parameters */
2233		capinfo |= IEEE80211_CAPINFO_IBSS;
2234		break;
2235	case IEEE80211_M_HOSTAP:
2236		/* XXX 6-byte minimum TIM */
2237		len += atw_beacon_len_adjust;
2238		capinfo |= IEEE80211_CAPINFO_ESS;
2239		break;
2240	default:
2241		return;
2242	}
2243
2244	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2245	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2246
2247	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2248	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2249
2250	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2251	    sc->sc_dev.dv_xname, reg_bcnt));
2252
2253	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2254	    sc->sc_dev.dv_xname, reg_cap1));
2255}
2256
2257/* First beacon was sent at time 0 microseconds, current time is
2258 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2259 * microseconds.  Return the expected time in microseconds for the
2260 * beacon after next.
2261 */
2262static __inline u_int64_t
2263atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2264{
2265	return tsft + (tbtt - tsft % tbtt);
2266}
2267
2268/* If we've created an IBSS, write the TSF time in the ADM8211 to
2269 * the ieee80211com.
2270 *
2271 * Predict the next target beacon transmission time (TBTT) and
2272 * write it to the ADM8211.
2273 */
2274static void
2275atw_tsf(struct atw_softc *sc)
2276{
2277#define TBTTOFS 20 /* TU */
2278
2279	struct ieee80211com *ic = &sc->sc_ic;
2280	u_int64_t tsft, tbtt;
2281
2282	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2283	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2284	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2285		tsft = ATW_READ(sc, ATW_TSFTH);
2286		tsft <<= 32;
2287		tsft |= ATW_READ(sc, ATW_TSFTL);
2288		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2289	} else
2290		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2291
2292	tbtt = atw_predict_beacon(tsft,
2293	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2294
2295	/* skip one more beacon so that the TBTT cannot pass before
2296	 * we've programmed it, and also so that we can subtract a
2297	 * few TU so that we wake a little before TBTT.
2298	 */
2299	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2300
2301	/* wake up a little early */
2302	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2303
2304	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2305	    sc->sc_dev.dv_xname, tsft, tbtt));
2306
2307	ATW_WRITE(sc, ATW_TOFS1,
2308	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2309	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2310	    LSHIFT(
2311		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2312		ATW_TOFS1_TBTTPRE_MASK));
2313#undef TBTTOFS
2314}
2315
2316static void
2317atw_next_scan(void *arg)
2318{
2319	struct atw_softc *sc = arg;
2320	struct ieee80211com *ic = &sc->sc_ic;
2321	struct ifnet *ifp = &ic->ic_if;
2322	int s;
2323
2324	/* don't call atw_start w/o network interrupts blocked */
2325	s = splnet();
2326	if (ic->ic_state == IEEE80211_S_SCAN)
2327		ieee80211_next_scan(ifp);
2328	splx(s);
2329}
2330
2331/* Synchronize the hardware state with the software state. */
2332static int
2333atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2334{
2335	struct ifnet *ifp = &ic->ic_if;
2336	struct atw_softc *sc = ifp->if_softc;
2337	enum ieee80211_state ostate;
2338	int error;
2339
2340	ostate = ic->ic_state;
2341
2342	if (nstate == IEEE80211_S_INIT) {
2343		callout_stop(&sc->sc_scan_ch);
2344		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2345		atw_start_beacon(sc, 0);
2346		return (*sc->sc_newstate)(ic, nstate, arg);
2347	}
2348
2349	if ((error = atw_tune(sc)) != 0)
2350		return error;
2351
2352	switch (nstate) {
2353	case IEEE80211_S_ASSOC:
2354		break;
2355	case IEEE80211_S_INIT:
2356		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2357		break;
2358	case IEEE80211_S_SCAN:
2359		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2360		    atw_next_scan, sc);
2361
2362		break;
2363	case IEEE80211_S_RUN:
2364		if (ic->ic_opmode == IEEE80211_M_STA)
2365			break;
2366		/*FALLTHROUGH*/
2367	case IEEE80211_S_AUTH:
2368		atw_write_bssid(sc);
2369		atw_write_ssid(sc);
2370		atw_write_sup_rates(sc);
2371
2372		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2373		    ic->ic_opmode == IEEE80211_M_MONITOR)
2374			break;
2375
2376		/* set listen interval
2377		 * XXX do software units agree w/ hardware?
2378		 */
2379		ATW_WRITE(sc, ATW_BPLI,
2380		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2381		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2382			   ATW_BPLI_LI_MASK));
2383
2384		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2385		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2386
2387		atw_tsf(sc);
2388		break;
2389	}
2390
2391	if (nstate != IEEE80211_S_SCAN)
2392		callout_stop(&sc->sc_scan_ch);
2393
2394	if (nstate == IEEE80211_S_RUN &&
2395	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2396	     ic->ic_opmode == IEEE80211_M_IBSS))
2397		atw_start_beacon(sc, 1);
2398	else
2399		atw_start_beacon(sc, 0);
2400
2401	error = (*sc->sc_newstate)(ic, nstate, arg);
2402
2403	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2404		atw_write_bssid(sc);
2405
2406	return error;
2407}
2408
2409/*
2410 * atw_add_rxbuf:
2411 *
2412 *	Add a receive buffer to the indicated descriptor.
2413 */
2414int
2415atw_add_rxbuf(struct atw_softc *sc, int idx)
2416{
2417	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2418	struct mbuf *m;
2419	int error;
2420
2421	MGETHDR(m, M_DONTWAIT, MT_DATA);
2422	if (m == NULL)
2423		return (ENOBUFS);
2424
2425	MCLGET(m, M_DONTWAIT);
2426	if ((m->m_flags & M_EXT) == 0) {
2427		m_freem(m);
2428		return (ENOBUFS);
2429	}
2430
2431	if (rxs->rxs_mbuf != NULL)
2432		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2433
2434	rxs->rxs_mbuf = m;
2435
2436	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2437	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2438	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2439	if (error) {
2440		printf("%s: can't load rx DMA map %d, error = %d\n",
2441		    sc->sc_dev.dv_xname, idx, error);
2442		panic("atw_add_rxbuf");	/* XXX */
2443	}
2444
2445	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2446	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2447
2448	ATW_INIT_RXDESC(sc, idx);
2449
2450	return (0);
2451}
2452
2453/*
2454 * Release any queued transmit buffers.
2455 */
2456void
2457atw_txdrain(struct atw_softc *sc)
2458{
2459	struct atw_txsoft *txs;
2460
2461	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2462		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2463		if (txs->txs_mbuf != NULL) {
2464			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2465			m_freem(txs->txs_mbuf);
2466			txs->txs_mbuf = NULL;
2467		}
2468		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2469	}
2470	sc->sc_tx_timer = 0;
2471}
2472
2473/*
2474 * atw_stop:		[ ifnet interface function ]
2475 *
2476 *	Stop transmission on the interface.
2477 */
2478void
2479atw_stop(struct ifnet *ifp, int disable)
2480{
2481	struct atw_softc *sc = ifp->if_softc;
2482	struct ieee80211com *ic = &sc->sc_ic;
2483
2484	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2485
2486	/* Disable interrupts. */
2487	ATW_WRITE(sc, ATW_IER, 0);
2488
2489	/* Stop the transmit and receive processes. */
2490	sc->sc_opmode = 0;
2491	ATW_WRITE(sc, ATW_NAR, 0);
2492	DELAY(20 * 1000);
2493	ATW_WRITE(sc, ATW_TDBD, 0);
2494	ATW_WRITE(sc, ATW_TDBP, 0);
2495	ATW_WRITE(sc, ATW_RDB, 0);
2496
2497	atw_txdrain(sc);
2498
2499	if (disable) {
2500		atw_rxdrain(sc);
2501		atw_disable(sc);
2502	}
2503
2504	/*
2505	 * Mark the interface down and cancel the watchdog timer.
2506	 */
2507	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2508	ifp->if_timer = 0;
2509
2510	if (!disable)
2511		atw_reset(sc);
2512}
2513
2514/*
2515 * atw_rxdrain:
2516 *
2517 *	Drain the receive queue.
2518 */
2519void
2520atw_rxdrain(struct atw_softc *sc)
2521{
2522	struct atw_rxsoft *rxs;
2523	int i;
2524
2525	for (i = 0; i < ATW_NRXDESC; i++) {
2526		rxs = &sc->sc_rxsoft[i];
2527		if (rxs->rxs_mbuf == NULL)
2528			continue;
2529		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2530		m_freem(rxs->rxs_mbuf);
2531		rxs->rxs_mbuf = NULL;
2532	}
2533}
2534
2535/*
2536 * atw_detach:
2537 *
2538 *	Detach an ADM8211 interface.
2539 */
2540int
2541atw_detach(struct atw_softc *sc)
2542{
2543	struct ifnet *ifp = &sc->sc_ic.ic_if;
2544	struct atw_rxsoft *rxs;
2545	struct atw_txsoft *txs;
2546	int i;
2547
2548	/*
2549	 * Succeed now if there isn't any work to do.
2550	 */
2551	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2552		return (0);
2553
2554	ieee80211_ifdetach(ifp);
2555	if_detach(ifp);
2556
2557	for (i = 0; i < ATW_NRXDESC; i++) {
2558		rxs = &sc->sc_rxsoft[i];
2559		if (rxs->rxs_mbuf != NULL) {
2560			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2561			m_freem(rxs->rxs_mbuf);
2562			rxs->rxs_mbuf = NULL;
2563		}
2564		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2565	}
2566	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2567		txs = &sc->sc_txsoft[i];
2568		if (txs->txs_mbuf != NULL) {
2569			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2570			m_freem(txs->txs_mbuf);
2571			txs->txs_mbuf = NULL;
2572		}
2573		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2574	}
2575	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2576	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2577	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2578	    sizeof(struct atw_control_data));
2579	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2580
2581	shutdownhook_disestablish(sc->sc_sdhook);
2582	powerhook_disestablish(sc->sc_powerhook);
2583
2584	if (sc->sc_srom)
2585		free(sc->sc_srom, M_DEVBUF);
2586
2587	return (0);
2588}
2589
2590/* atw_shutdown: make sure the interface is stopped at reboot time. */
2591void
2592atw_shutdown(void *arg)
2593{
2594	struct atw_softc *sc = arg;
2595
2596	atw_stop(&sc->sc_ic.ic_if, 1);
2597}
2598
2599int
2600atw_intr(void *arg)
2601{
2602	struct atw_softc *sc = arg;
2603	struct ifnet *ifp = &sc->sc_ic.ic_if;
2604	u_int32_t status, rxstatus, txstatus, linkstatus;
2605	int handled = 0, txthresh;
2606
2607#ifdef DEBUG
2608	if (ATW_IS_ENABLED(sc) == 0)
2609		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2610#endif
2611
2612	/*
2613	 * If the interface isn't running, the interrupt couldn't
2614	 * possibly have come from us.
2615	 */
2616	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2617	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2618		return (0);
2619
2620	for (;;) {
2621		status = ATW_READ(sc, ATW_STSR);
2622
2623		if (status)
2624			ATW_WRITE(sc, ATW_STSR, status);
2625
2626#ifdef ATW_DEBUG
2627#define PRINTINTR(flag) do { \
2628	if ((status & flag) != 0) { \
2629		printf("%s" #flag, delim); \
2630		delim = ","; \
2631	} \
2632} while (0)
2633
2634		if (atw_debug > 1 && status) {
2635			const char *delim = "<";
2636
2637			printf("%s: reg[STSR] = %x",
2638			    sc->sc_dev.dv_xname, status);
2639
2640			PRINTINTR(ATW_INTR_FBE);
2641			PRINTINTR(ATW_INTR_LINKOFF);
2642			PRINTINTR(ATW_INTR_LINKON);
2643			PRINTINTR(ATW_INTR_RCI);
2644			PRINTINTR(ATW_INTR_RDU);
2645			PRINTINTR(ATW_INTR_REIS);
2646			PRINTINTR(ATW_INTR_RPS);
2647			PRINTINTR(ATW_INTR_TCI);
2648			PRINTINTR(ATW_INTR_TDU);
2649			PRINTINTR(ATW_INTR_TLT);
2650			PRINTINTR(ATW_INTR_TPS);
2651			PRINTINTR(ATW_INTR_TRT);
2652			PRINTINTR(ATW_INTR_TUF);
2653			PRINTINTR(ATW_INTR_BCNTC);
2654			PRINTINTR(ATW_INTR_ATIME);
2655			PRINTINTR(ATW_INTR_TBTT);
2656			PRINTINTR(ATW_INTR_TSCZ);
2657			PRINTINTR(ATW_INTR_TSFTF);
2658			printf(">\n");
2659		}
2660#undef PRINTINTR
2661#endif /* ATW_DEBUG */
2662
2663		if ((status & sc->sc_inten) == 0)
2664			break;
2665
2666		handled = 1;
2667
2668		rxstatus = status & sc->sc_rxint_mask;
2669		txstatus = status & sc->sc_txint_mask;
2670		linkstatus = status & sc->sc_linkint_mask;
2671
2672		if (linkstatus) {
2673			atw_linkintr(sc, linkstatus);
2674		}
2675
2676		if (rxstatus) {
2677			/* Grab any new packets. */
2678			atw_rxintr(sc);
2679
2680			if (rxstatus & ATW_INTR_RDU) {
2681				printf("%s: receive ring overrun\n",
2682				    sc->sc_dev.dv_xname);
2683				/* Get the receive process going again. */
2684				ATW_WRITE(sc, ATW_RDR, 0x1);
2685				break;
2686			}
2687		}
2688
2689		if (txstatus) {
2690			/* Sweep up transmit descriptors. */
2691			atw_txintr(sc);
2692
2693			if (txstatus & ATW_INTR_TLT)
2694				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2695				    sc->sc_dev.dv_xname));
2696
2697			if (txstatus & ATW_INTR_TRT)
2698				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2699				    sc->sc_dev.dv_xname));
2700
2701			/* If Tx under-run, increase our transmit threshold
2702			 * if another is available.
2703			 */
2704			txthresh = sc->sc_txthresh + 1;
2705			if ((txstatus & ATW_INTR_TUF) &&
2706			    sc->sc_txth[txthresh].txth_name != NULL) {
2707				/* Idle the transmit process. */
2708				atw_idle(sc, ATW_NAR_ST);
2709
2710				sc->sc_txthresh = txthresh;
2711				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2712				sc->sc_opmode |=
2713				    sc->sc_txth[txthresh].txth_opmode;
2714				printf("%s: transmit underrun; new "
2715				    "threshold: %s\n", sc->sc_dev.dv_xname,
2716				    sc->sc_txth[txthresh].txth_name);
2717
2718				/* Set the new threshold and restart
2719				 * the transmit process.
2720				 */
2721				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2722				DELAY(20 * 1000);
2723				ATW_WRITE(sc, ATW_RDR, 0x1);
2724				/* XXX Log every Nth underrun from
2725				 * XXX now on?
2726				 */
2727			}
2728		}
2729
2730		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2731			if (status & ATW_INTR_TPS)
2732				printf("%s: transmit process stopped\n",
2733				    sc->sc_dev.dv_xname);
2734			if (status & ATW_INTR_RPS)
2735				printf("%s: receive process stopped\n",
2736				    sc->sc_dev.dv_xname);
2737			(void)atw_init(ifp);
2738			break;
2739		}
2740
2741		if (status & ATW_INTR_FBE) {
2742			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2743			(void)atw_init(ifp);
2744			break;
2745		}
2746
2747		/*
2748		 * Not handled:
2749		 *
2750		 *	Transmit buffer unavailable -- normal
2751		 *	condition, nothing to do, really.
2752		 *
2753		 *	Early receive interrupt -- not available on
2754		 *	all chips, we just use RI.  We also only
2755		 *	use single-segment receive DMA, so this
2756		 *	is mostly useless.
2757		 *
2758		 *      TBD others
2759		 */
2760	}
2761
2762	/* Try to get more packets going. */
2763	atw_start(ifp);
2764
2765	return (handled);
2766}
2767
2768/*
2769 * atw_idle:
2770 *
2771 *	Cause the transmit and/or receive processes to go idle.
2772 *
2773 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2774 *	process in STSR if I clear SR or ST after the process has already
2775 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2776 *      do not seem to be too reliable. Perhaps I have the sense of the
2777 *	Rx bits switched with the Tx bits?
2778 */
2779void
2780atw_idle(struct atw_softc *sc, u_int32_t bits)
2781{
2782	u_int32_t ackmask = 0, opmode, stsr, test0;
2783	int i, s;
2784
2785	s = splnet();
2786
2787	opmode = sc->sc_opmode & ~bits;
2788
2789	if (bits & ATW_NAR_SR)
2790		ackmask |= ATW_INTR_RPS;
2791
2792	if (bits & ATW_NAR_ST) {
2793		ackmask |= ATW_INTR_TPS;
2794		/* set ATW_NAR_HF to flush TX FIFO. */
2795		opmode |= ATW_NAR_HF;
2796	}
2797
2798	ATW_WRITE(sc, ATW_NAR, opmode);
2799	DELAY(20 * 1000);
2800
2801	for (i = 0; i < 10; i++) {
2802		stsr = ATW_READ(sc, ATW_STSR);
2803		if ((stsr & ackmask) == ackmask)
2804			break;
2805		DELAY(1000);
2806	}
2807
2808	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2809
2810	if ((stsr & ackmask) == ackmask)
2811		goto out;
2812
2813	test0 = ATW_READ(sc, ATW_TEST0);
2814
2815	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2816	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2817		printf("%s: transmit process not idle [%s]\n",
2818		    sc->sc_dev.dv_xname,
2819		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2820		printf("%s: bits %08x test0 %08x stsr %08x\n",
2821		    sc->sc_dev.dv_xname, bits, test0, stsr);
2822	}
2823
2824	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2825	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2826		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2827		    sc->sc_dev.dv_xname,
2828		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2829		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2830		    sc->sc_dev.dv_xname, bits, test0, stsr));
2831	}
2832out:
2833	if ((bits & ATW_NAR_ST) != 0)
2834		atw_txdrain(sc);
2835	splx(s);
2836	return;
2837}
2838
2839/*
2840 * atw_linkintr:
2841 *
2842 *	Helper; handle link-status interrupts.
2843 */
2844void
2845atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2846{
2847	struct ieee80211com *ic = &sc->sc_ic;
2848
2849	if (ic->ic_state != IEEE80211_S_RUN)
2850		return;
2851
2852	if (linkstatus & ATW_INTR_LINKON) {
2853		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2854		sc->sc_rescan_timer = 0;
2855	} else if (linkstatus & ATW_INTR_LINKOFF) {
2856		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2857		if (ic->ic_opmode != IEEE80211_M_STA)
2858			return;
2859		sc->sc_rescan_timer = 3;
2860		ic->ic_if.if_timer = 1;
2861	}
2862}
2863
2864/*
2865 * atw_rxintr:
2866 *
2867 *	Helper; handle receive interrupts.
2868 */
2869void
2870atw_rxintr(struct atw_softc *sc)
2871{
2872	static int rate_tbl[] = {2, 4, 11, 22, 44};
2873	struct ieee80211com *ic = &sc->sc_ic;
2874	struct ieee80211_node *ni;
2875	struct ieee80211_frame *wh;
2876	struct ifnet *ifp = &ic->ic_if;
2877	struct atw_rxsoft *rxs;
2878	struct mbuf *m;
2879	u_int32_t rxstat;
2880	int i, len, rate, rate0;
2881	u_int32_t rssi;
2882
2883	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2884		rxs = &sc->sc_rxsoft[i];
2885
2886		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2887
2888		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2889		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2890		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2891
2892		if (rxstat & ATW_RXSTAT_OWN)
2893			break; /* We have processed all receive buffers. */
2894
2895		DPRINTF3(sc,
2896		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2897		    sc->sc_dev.dv_xname,
2898		    le32toh(sc->sc_rxdescs[i].ar_stat),
2899		    le32toh(sc->sc_rxdescs[i].ar_rssi),
2900		    le32toh(sc->sc_rxdescs[i].ar_buf1),
2901		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
2902
2903		/*
2904		 * Make sure the packet fits in one buffer.  This should
2905		 * always be the case.
2906		 */
2907		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2908		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2909			printf("%s: incoming packet spilled, resetting\n",
2910			    sc->sc_dev.dv_xname);
2911			(void)atw_init(ifp);
2912			return;
2913		}
2914
2915		/*
2916		 * If an error occurred, update stats, clear the status
2917		 * word, and leave the packet buffer in place.  It will
2918		 * simply be reused the next time the ring comes around.
2919	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2920		 * error.
2921		 */
2922
2923		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2924		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2925		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2926		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2927				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2928				ATW_RXSTAT_ICVE)) != 0)) {
2929#define	PRINTERR(bit, str)						\
2930			if (rxstat & (bit))				\
2931				printf("%s: receive error: %s\n",	\
2932				    sc->sc_dev.dv_xname, str)
2933			ifp->if_ierrors++;
2934			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2935			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2936			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2937			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2938			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2939			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2940			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2941#undef PRINTERR
2942			ATW_INIT_RXDESC(sc, i);
2943			continue;
2944		}
2945
2946		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2947		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2948
2949		/*
2950		 * No errors; receive the packet.  Note the ADM8211
2951		 * includes the CRC in promiscuous mode.
2952		 */
2953		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2954
2955		/*
2956		 * Allocate a new mbuf cluster.  If that fails, we are
2957		 * out of memory, and must drop the packet and recycle
2958		 * the buffer that's already attached to this descriptor.
2959		 */
2960		m = rxs->rxs_mbuf;
2961		if (atw_add_rxbuf(sc, i) != 0) {
2962			ifp->if_ierrors++;
2963			ATW_INIT_RXDESC(sc, i);
2964			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2965			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2966			continue;
2967		}
2968
2969		ifp->if_ipackets++;
2970		if (sc->sc_opmode & ATW_NAR_PR)
2971			m->m_flags |= M_HASFCS;
2972		m->m_pkthdr.rcvif = ifp;
2973		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
2974
2975		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
2976			rate = 0;
2977		else
2978			rate = rate_tbl[rate0];
2979
2980 #if NBPFILTER > 0
2981		/* Pass this up to any BPF listeners. */
2982		if (sc->sc_radiobpf != NULL) {
2983			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
2984
2985			tap->ar_rate = rate;
2986			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
2987			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
2988
2989			/* TBD verify units are dB */
2990			tap->ar_antsignal = (int)rssi;
2991			/* TBD tap->ar_flags */
2992
2993			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
2994			    tap->ar_ihdr.it_len, m);
2995 		}
2996 #endif /* NPBFILTER > 0 */
2997
2998		wh = mtod(m, struct ieee80211_frame *);
2999		ni = ieee80211_find_rxnode(ic, wh);
3000		ieee80211_input(ifp, m, ni, (int)rssi, 0);
3001		/*
3002		 * The frame may have caused the node to be marked for
3003		 * reclamation (e.g. in response to a DEAUTH message)
3004		 * so use free_node here instead of unref_node.
3005		 */
3006		if (ni == ic->ic_bss)
3007			ieee80211_unref_node(&ni);
3008		else
3009			ieee80211_free_node(ic, ni);
3010	}
3011
3012	/* Update the receive pointer. */
3013	sc->sc_rxptr = i;
3014}
3015
3016/*
3017 * atw_txintr:
3018 *
3019 *	Helper; handle transmit interrupts.
3020 */
3021void
3022atw_txintr(struct atw_softc *sc)
3023{
3024#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3025    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3026#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3027    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3028
3029	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3030	struct ifnet *ifp = &sc->sc_ic.ic_if;
3031	struct atw_txsoft *txs;
3032	u_int32_t txstat;
3033
3034	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3035	    sc->sc_dev.dv_xname, sc->sc_flags));
3036
3037	ifp->if_flags &= ~IFF_OACTIVE;
3038
3039	/*
3040	 * Go through our Tx list and free mbufs for those
3041	 * frames that have been transmitted.
3042	 */
3043	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3044		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3045		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3046
3047#ifdef ATW_DEBUG
3048		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3049			int i;
3050			printf("    txsoft %p transmit chain:\n", txs);
3051			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3052			    txs->txs_ndescs - 1,
3053			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3054			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3055				printf("     descriptor %d:\n", i);
3056				printf("       at_status:   0x%08x\n",
3057				    le32toh(sc->sc_txdescs[i].at_stat));
3058				printf("       at_flags:      0x%08x\n",
3059				    le32toh(sc->sc_txdescs[i].at_flags));
3060				printf("       at_buf1: 0x%08x\n",
3061				    le32toh(sc->sc_txdescs[i].at_buf1));
3062				printf("       at_buf2: 0x%08x\n",
3063				    le32toh(sc->sc_txdescs[i].at_buf2));
3064				if (i == txs->txs_lastdesc)
3065					break;
3066			}
3067		}
3068#endif
3069
3070		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3071		if (txstat & ATW_TXSTAT_OWN)
3072			break;
3073
3074		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3075
3076		sc->sc_txfree += txs->txs_ndescs;
3077
3078		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3079		    0, txs->txs_dmamap->dm_mapsize,
3080		    BUS_DMASYNC_POSTWRITE);
3081		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3082		m_freem(txs->txs_mbuf);
3083		txs->txs_mbuf = NULL;
3084
3085		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3086
3087		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3088		    (txstat & TXSTAT_ERRMASK) != 0) {
3089			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3090			    txstat_buf, sizeof(txstat_buf));
3091			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3092			    txstat_buf,
3093			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3094		}
3095
3096		/*
3097		 * Check for errors and collisions.
3098		 */
3099		if (txstat & ATW_TXSTAT_TUF)
3100			sc->sc_stats.ts_tx_tuf++;
3101		if (txstat & ATW_TXSTAT_TLT)
3102			sc->sc_stats.ts_tx_tlt++;
3103		if (txstat & ATW_TXSTAT_TRT)
3104			sc->sc_stats.ts_tx_trt++;
3105		if (txstat & ATW_TXSTAT_TRO)
3106			sc->sc_stats.ts_tx_tro++;
3107		if (txstat & ATW_TXSTAT_SOFBR) {
3108			sc->sc_stats.ts_tx_sofbr++;
3109		}
3110
3111		if ((txstat & ATW_TXSTAT_ES) == 0)
3112			ifp->if_collisions +=
3113			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3114		else
3115			ifp->if_oerrors++;
3116
3117		ifp->if_opackets++;
3118	}
3119
3120	/*
3121	 * If there are no more pending transmissions, cancel the watchdog
3122	 * timer.
3123	 */
3124	if (txs == NULL)
3125		sc->sc_tx_timer = 0;
3126#undef TXSTAT_ERRMASK
3127#undef TXSTAT_FMT
3128}
3129
3130/*
3131 * atw_watchdog:	[ifnet interface function]
3132 *
3133 *	Watchdog timer handler.
3134 */
3135void
3136atw_watchdog(struct ifnet *ifp)
3137{
3138	struct atw_softc *sc = ifp->if_softc;
3139	struct ieee80211com *ic = &sc->sc_ic;
3140
3141	ifp->if_timer = 0;
3142	if (ATW_IS_ENABLED(sc) == 0)
3143		return;
3144
3145	if (sc->sc_rescan_timer) {
3146		if (--sc->sc_rescan_timer == 0)
3147			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3148	}
3149	if (sc->sc_tx_timer) {
3150		if (--sc->sc_tx_timer == 0 &&
3151		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3152			printf("%s: transmit timeout\n", ifp->if_xname);
3153			ifp->if_oerrors++;
3154			(void)atw_init(ifp);
3155			atw_start(ifp);
3156		}
3157	}
3158	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3159		ifp->if_timer = 1;
3160	ieee80211_watchdog(ifp);
3161}
3162
3163/* Compute the 802.11 Duration field and the PLCP Length fields for
3164 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3165 * Write the fields to the ADM8211 Tx header, frm.
3166 *
3167 * TBD use the fragmentation threshold to find the right duration for
3168 * the first & last fragments.
3169 *
3170 * TBD make certain of the duration fields applied by the ADM8211 to each
3171 * fragment. I think that the ADM8211 knows how to subtract the CTS
3172 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3173 * I also think that the ADM8211 does *some* arithmetic for us, because
3174 * otherwise I think we would have to set a first duration for CTS/first
3175 * fragment, a second duration for fragments between the first and the
3176 * last, and a third duration for the last fragment.
3177 *
3178 * TBD make certain that duration fields reflect addition of FCS/WEP
3179 * and correct duration arithmetic as necessary.
3180 */
3181static void
3182atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3183    int len)
3184{
3185	int remainder;
3186
3187	/* deal also with encrypted fragments */
3188	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3189		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3190		    sc->sc_dev.dv_xname));
3191		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3192		       IEEE80211_WEP_CRCLEN;
3193	}
3194
3195	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3196	 * duration (XXX added by MAC?).
3197	 */
3198	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3199	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3200
3201	if (rate <= 4)
3202		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3203		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3204		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3205		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3206		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3207	else
3208		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3209		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3210		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3211		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3212		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3213
3214	/* lengthen duration if long preamble */
3215	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3216		frm->atw_head_dur +=
3217		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3218		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3219		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3220		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3221
3222	if (remainder != 0)
3223		frm->atw_head_dur++;
3224
3225	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3226	    (rate == 2 || rate == 4)) {
3227		/* derived from Linux: how could this be right? */
3228		frm->atw_head_plcplen = frm->atw_head_dur;
3229	} else {
3230		frm->atw_head_plcplen = (16 * len) / rate;
3231		remainder = (80 * len) % (rate * 5);
3232
3233		if (remainder != 0) {
3234			frm->atw_head_plcplen++;
3235
3236			/* XXX magic */
3237			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3238			    rate == 22 && remainder <= 30)
3239				frm->atw_head_plcplen |= 0x8000;
3240		}
3241	}
3242	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3243	    htole16(frm->atw_head_plcplen);
3244	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3245}
3246
3247#ifdef ATW_DEBUG
3248static void
3249atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3250{
3251	struct atw_softc *sc = ifp->if_softc;
3252	struct mbuf *m;
3253	int i, noctets = 0;
3254
3255	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3256	    m0->m_pkthdr.len);
3257
3258	for (m = m0; m; m = m->m_next) {
3259		if (m->m_len == 0)
3260			continue;
3261		for (i = 0; i < m->m_len; i++) {
3262			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3263			if (++noctets % 24 == 0)
3264				printf("\n");
3265		}
3266	}
3267	printf("%s%s: %d bytes emitted\n",
3268	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3269}
3270#endif /* ATW_DEBUG */
3271
3272/*
3273 * atw_start:		[ifnet interface function]
3274 *
3275 *	Start packet transmission on the interface.
3276 */
3277void
3278atw_start(struct ifnet *ifp)
3279{
3280	struct atw_softc *sc = ifp->if_softc;
3281	struct ieee80211com *ic = &sc->sc_ic;
3282	struct ieee80211_node *ni;
3283	struct ieee80211_frame *wh;
3284	struct atw_frame *hh;
3285	struct mbuf *m0, *m;
3286	struct atw_txsoft *txs, *last_txs;
3287	struct atw_txdesc *txd;
3288	int do_encrypt, rate;
3289	bus_dmamap_t dmamap;
3290	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3291
3292	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3293	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3294
3295	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3296		return;
3297
3298	/*
3299	 * Remember the previous number of free descriptors and
3300	 * the first descriptor we'll use.
3301	 */
3302	ofree = sc->sc_txfree;
3303	firsttx = sc->sc_txnext;
3304
3305	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3306	    sc->sc_dev.dv_xname, ofree, firsttx));
3307
3308	/*
3309	 * Loop through the send queue, setting up transmit descriptors
3310	 * until we drain the queue, or use up all available transmit
3311	 * descriptors.
3312	 */
3313	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3314	       sc->sc_txfree != 0) {
3315
3316		/*
3317		 * Grab a packet off the management queue, if it
3318		 * is not empty. Otherwise, from the data queue.
3319		 */
3320		IF_DEQUEUE(&ic->ic_mgtq, m0);
3321		if (m0 != NULL) {
3322			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3323			m0->m_pkthdr.rcvif = NULL;
3324		} else {
3325			/* send no data packets until we are associated */
3326			if (ic->ic_state != IEEE80211_S_RUN)
3327				break;
3328			IFQ_DEQUEUE(&ifp->if_snd, m0);
3329			if (m0 == NULL)
3330				break;
3331#if NBPFILTER > 0
3332			if (ifp->if_bpf != NULL)
3333				bpf_mtap(ifp->if_bpf, m0);
3334#endif /* NBPFILTER > 0 */
3335			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3336				ifp->if_oerrors++;
3337				break;
3338			}
3339		}
3340
3341		rate = MAX(ieee80211_get_rate(ic), 2);
3342
3343#if NBPFILTER > 0
3344		/*
3345		 * Pass the packet to any BPF listeners.
3346		 */
3347		if (ic->ic_rawbpf != NULL)
3348			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3349
3350		if (sc->sc_radiobpf != NULL) {
3351			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3352
3353			tap->at_rate = rate;
3354			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3355			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3356
3357			/* TBD tap->at_flags */
3358
3359			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3360			    tap->at_ihdr.it_len, m0);
3361		}
3362#endif /* NBPFILTER > 0 */
3363
3364		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3365
3366		if (ni != NULL && ni != ic->ic_bss)
3367			ieee80211_free_node(ic, ni);
3368
3369		if (m0 == NULL) {
3370			ifp->if_oerrors++;
3371			break;
3372		}
3373
3374		/* just to make sure. */
3375		m0 = m_pullup(m0, sizeof(struct atw_frame));
3376
3377		if (m0 == NULL) {
3378			ifp->if_oerrors++;
3379			break;
3380		}
3381
3382		hh = mtod(m0, struct atw_frame *);
3383		wh = &hh->atw_ihdr;
3384
3385		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3386
3387		/* Copy everything we need from the 802.11 header:
3388		 * Frame Control; address 1, address 3, or addresses
3389		 * 3 and 4. NIC fills in BSSID, SA.
3390		 */
3391		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3392			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3393				panic("%s: illegal WDS frame",
3394				    sc->sc_dev.dv_xname);
3395			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3396		} else
3397			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3398
3399		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3400
3401		/* initialize remaining Tx parameters */
3402		memset(&hh->u, 0, sizeof(hh->u));
3403
3404		hh->atw_rate = rate * 5;
3405		/* XXX this could be incorrect if M_FCS. _encap should
3406		 * probably strip FCS just in case it sticks around in
3407		 * bridged packets.
3408		 */
3409		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3410		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3411		    sizeof(struct atw_frame));
3412
3413		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3414		hh->atw_rtylmt = 3;
3415		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3416		if (do_encrypt) {
3417			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3418			hh->atw_keyid = ic->ic_wep_txkey;
3419		}
3420
3421		/* TBD 4-addr frames */
3422		atw_frame_setdurs(sc, hh, rate,
3423		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3424		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3425
3426		/* never fragment multicast frames */
3427		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3428			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3429		} else if (sc->sc_flags & ATWF_RTSCTS) {
3430			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3431		}
3432
3433#ifdef ATW_DEBUG
3434		hh->atw_fragnum = 0;
3435
3436		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3437			printf("%s: dst = %s, rate = 0x%02x, "
3438			    "service = 0x%02x, paylen = 0x%04x\n",
3439			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3440			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3441
3442			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3443			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3444			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3445			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3446			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3447			    hh->atw_tail_dur, hh->atw_head_dur);
3448
3449			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3450			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3451			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3452			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3453
3454			printf("%s: keyid = %d\n",
3455			    sc->sc_dev.dv_xname, hh->atw_keyid);
3456
3457			atw_dump_pkt(ifp, m0);
3458		}
3459#endif /* ATW_DEBUG */
3460
3461		dmamap = txs->txs_dmamap;
3462
3463		/*
3464		 * Load the DMA map.  Copy and try (once) again if the packet
3465		 * didn't fit in the alloted number of segments.
3466		 */
3467		for (first = 1;
3468		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3469		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3470		     first = 0) {
3471			MGETHDR(m, M_DONTWAIT, MT_DATA);
3472			if (m == NULL) {
3473				printf("%s: unable to allocate Tx mbuf\n",
3474				    sc->sc_dev.dv_xname);
3475				break;
3476			}
3477			if (m0->m_pkthdr.len > MHLEN) {
3478				MCLGET(m, M_DONTWAIT);
3479				if ((m->m_flags & M_EXT) == 0) {
3480					printf("%s: unable to allocate Tx "
3481					    "cluster\n", sc->sc_dev.dv_xname);
3482					m_freem(m);
3483					break;
3484				}
3485			}
3486			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3487			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3488			m_freem(m0);
3489			m0 = m;
3490			m = NULL;
3491		}
3492		if (error != 0) {
3493			printf("%s: unable to load Tx buffer, "
3494			    "error = %d\n", sc->sc_dev.dv_xname, error);
3495			m_freem(m0);
3496			break;
3497		}
3498
3499		/*
3500		 * Ensure we have enough descriptors free to describe
3501		 * the packet.
3502		 */
3503		if (dmamap->dm_nsegs > sc->sc_txfree) {
3504			/*
3505			 * Not enough free descriptors to transmit
3506			 * this packet.  Unload the DMA map and
3507			 * drop the packet.  Notify the upper layer
3508			 * that there are no more slots left.
3509			 *
3510			 * XXX We could allocate an mbuf and copy, but
3511			 * XXX it is worth it?
3512			 */
3513			ifp->if_flags |= IFF_OACTIVE;
3514			bus_dmamap_unload(sc->sc_dmat, dmamap);
3515			m_freem(m0);
3516			break;
3517		}
3518
3519		/*
3520		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3521		 */
3522
3523		/* Sync the DMA map. */
3524		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3525		    BUS_DMASYNC_PREWRITE);
3526
3527		/* XXX arbitrary retry limit; 8 because I have seen it in
3528		 * use already and maybe 0 means "no tries" !
3529		 */
3530		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3531
3532		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3533		    sc->sc_dev.dv_xname, rate * 5));
3534		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3535
3536		/*
3537		 * Initialize the transmit descriptors.
3538		 */
3539		for (nexttx = sc->sc_txnext, seg = 0;
3540		     seg < dmamap->dm_nsegs;
3541		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3542			/*
3543			 * If this is the first descriptor we're
3544			 * enqueueing, don't set the OWN bit just
3545			 * yet.  That could cause a race condition.
3546			 * We'll do it below.
3547			 */
3548			txd = &sc->sc_txdescs[nexttx];
3549			txd->at_ctl = ctl |
3550			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3551
3552			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3553			txd->at_flags =
3554			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3555			                   ATW_TXFLAG_TBS1_MASK)) |
3556			    ((nexttx == (ATW_NTXDESC - 1))
3557			        ? htole32(ATW_TXFLAG_TER) : 0);
3558			lasttx = nexttx;
3559		}
3560
3561		IASSERT(lasttx != -1, ("bad lastx"));
3562		/* Set `first segment' and `last segment' appropriately. */
3563		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3564		    htole32(ATW_TXFLAG_FS);
3565		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3566
3567#ifdef ATW_DEBUG
3568		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3569			printf("     txsoft %p transmit chain:\n", txs);
3570			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3571				printf("     descriptor %d:\n", seg);
3572				printf("       at_ctl:   0x%08x\n",
3573				    le32toh(sc->sc_txdescs[seg].at_ctl));
3574				printf("       at_flags:      0x%08x\n",
3575				    le32toh(sc->sc_txdescs[seg].at_flags));
3576				printf("       at_buf1: 0x%08x\n",
3577				    le32toh(sc->sc_txdescs[seg].at_buf1));
3578				printf("       at_buf2: 0x%08x\n",
3579				    le32toh(sc->sc_txdescs[seg].at_buf2));
3580				if (seg == lasttx)
3581					break;
3582			}
3583		}
3584#endif
3585
3586		/* Sync the descriptors we're using. */
3587		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3588		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3589
3590		/*
3591		 * Store a pointer to the packet so we can free it later,
3592		 * and remember what txdirty will be once the packet is
3593		 * done.
3594		 */
3595		txs->txs_mbuf = m0;
3596		txs->txs_firstdesc = sc->sc_txnext;
3597		txs->txs_lastdesc = lasttx;
3598		txs->txs_ndescs = dmamap->dm_nsegs;
3599
3600		/* Advance the tx pointer. */
3601		sc->sc_txfree -= dmamap->dm_nsegs;
3602		sc->sc_txnext = nexttx;
3603
3604		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3605		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3606
3607		last_txs = txs;
3608	}
3609
3610	if (txs == NULL || sc->sc_txfree == 0) {
3611		/* No more slots left; notify upper layer. */
3612		ifp->if_flags |= IFF_OACTIVE;
3613	}
3614
3615	if (sc->sc_txfree != ofree) {
3616		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3617		    sc->sc_dev.dv_xname, lasttx, firsttx));
3618		/*
3619		 * Cause a transmit interrupt to happen on the
3620		 * last packet we enqueued.
3621		 */
3622		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3623		ATW_CDTXSYNC(sc, lasttx, 1,
3624		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3625
3626		/*
3627		 * The entire packet chain is set up.  Give the
3628		 * first descriptor to the chip now.
3629		 */
3630		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3631		ATW_CDTXSYNC(sc, firsttx, 1,
3632		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3633
3634		/* Wake up the transmitter. */
3635		ATW_WRITE(sc, ATW_TDR, 0x1);
3636
3637		/* Set a watchdog timer in case the chip flakes out. */
3638		sc->sc_tx_timer = 5;
3639		ifp->if_timer = 1;
3640	}
3641}
3642
3643/*
3644 * atw_power:
3645 *
3646 *	Power management (suspend/resume) hook.
3647 */
3648void
3649atw_power(int why, void *arg)
3650{
3651	struct atw_softc *sc = arg;
3652	struct ifnet *ifp = &sc->sc_ic.ic_if;
3653	int s;
3654
3655	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3656
3657	s = splnet();
3658	switch (why) {
3659	case PWR_STANDBY:
3660		/* XXX do nothing. */
3661		break;
3662	case PWR_SUSPEND:
3663		atw_stop(ifp, 0);
3664		if (sc->sc_power != NULL)
3665			(*sc->sc_power)(sc, why);
3666		break;
3667	case PWR_RESUME:
3668		if (ifp->if_flags & IFF_UP) {
3669			if (sc->sc_power != NULL)
3670				(*sc->sc_power)(sc, why);
3671			atw_init(ifp);
3672		}
3673		break;
3674	case PWR_SOFTSUSPEND:
3675	case PWR_SOFTSTANDBY:
3676	case PWR_SOFTRESUME:
3677		break;
3678	}
3679	splx(s);
3680}
3681
3682/*
3683 * atw_ioctl:		[ifnet interface function]
3684 *
3685 *	Handle control requests from the operator.
3686 */
3687int
3688atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3689{
3690	struct atw_softc *sc = ifp->if_softc;
3691	struct ifreq *ifr = (struct ifreq *)data;
3692	int s, error = 0;
3693
3694	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3695	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3696		return ENXIO;
3697
3698	s = splnet();
3699
3700	switch (cmd) {
3701	case SIOCSIFFLAGS:
3702		if (ifp->if_flags & IFF_UP) {
3703			if (ATW_IS_ENABLED(sc)) {
3704				/*
3705				 * To avoid rescanning another access point,
3706				 * do not call atw_init() here.  Instead,
3707				 * only reflect media settings.
3708				 */
3709				atw_filter_setup(sc);
3710			} else
3711				error = atw_init(ifp);
3712		} else if (ATW_IS_ENABLED(sc))
3713			atw_stop(ifp, 1);
3714		break;
3715	case SIOCADDMULTI:
3716	case SIOCDELMULTI:
3717		error = (cmd == SIOCADDMULTI) ?
3718		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3719		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3720		if (error == ENETRESET) {
3721			if (ATW_IS_ENABLED(sc))
3722				atw_filter_setup(sc); /* do not rescan */
3723			error = 0;
3724		}
3725		break;
3726	default:
3727		error = ieee80211_ioctl(ifp, cmd, data);
3728		if (error == ENETRESET) {
3729			if (ATW_IS_ENABLED(sc))
3730				error = atw_init(ifp);
3731			else
3732				error = 0;
3733		}
3734		break;
3735	}
3736
3737	/* Try to get more packets going. */
3738	if (ATW_IS_ENABLED(sc))
3739		atw_start(ifp);
3740
3741	splx(s);
3742	return (error);
3743}
3744
3745static int
3746atw_media_change(struct ifnet *ifp)
3747{
3748	int error;
3749
3750	error = ieee80211_media_change(ifp);
3751	if (error == ENETRESET) {
3752		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3753		    (IFF_RUNNING|IFF_UP))
3754			atw_init(ifp);		/* XXX lose error */
3755		error = 0;
3756	}
3757	return error;
3758}
3759
3760static void
3761atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3762{
3763	struct atw_softc *sc = ifp->if_softc;
3764
3765	if (ATW_IS_ENABLED(sc) == 0) {
3766		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3767		imr->ifm_status = 0;
3768		return;
3769	}
3770	ieee80211_media_status(ifp, imr);
3771}
3772