atw.c revision 1.5
1/*	$NetBSD: atw.c,v 1.5 2003/10/25 18:35:42 christos Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.5 2003/10/25 18:35:42 christos Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_compat.h>
71
72#if NBPFILTER > 0
73#include <net/bpf.h>
74#endif
75
76#include <machine/bus.h>
77#include <machine/intr.h>
78
79#include <dev/ic/atwreg.h>
80#include <dev/ic/atwvar.h>
81#include <dev/ic/smc93cx6var.h>
82
83/* XXX TBD open questions
84 *
85 *
86 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
87 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
88 * handle this for me?
89 *
90 */
91/* device attachment
92 *
93 *    print TOFS[012]
94 *
95 * device initialization
96 *
97 *    clear ATW_FRCTL_MAXPSP to disable max power saving
98 *    set ATW_TXBR_ALCUPDATE to enable ALC
99 *    set TOFS[012]? (hope not)
100 *    disable rx/tx
101 *    set ATW_PAR_SWR (software reset)
102 *    wait for ATW_PAR_SWR clear
103 *    disable interrupts
104 *    ack status register
105 *    enable interrupts
106 *
107 * rx/tx initialization
108 *
109 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
110 *    allocate and init descriptor rings
111 *    write ATW_PAR_DSL (descriptor skip length)
112 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
113 *    write ATW_NAR_SQ for one/both transmit descriptor rings
114 *    write ATW_NAR_SQ for one/both transmit descriptor rings
115 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 *
117 * rx/tx end
118 *
119 *    stop DMA
120 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
121 *    flush tx w/ ATW_NAR_HF
122 *
123 * scan
124 *
125 *    initialize rx/tx
126 *
127 * IBSS join/create
128 *
129 *    set ATW_NAR_EA (is set by ASIC?)
130 *
131 * BSS join: (re)association response
132 *
133 *    set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
140#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
141int atw_voodoo = VOODOO_DUR_11_ROUNDING;
142
143int atw_rfio_enable_delay = 20 * 1000;
144int atw_rfio_disable_delay = 2 * 1000;
145int atw_writewep_delay = 5;
146int atw_beacon_len_adjust = 4;
147int atw_dwelltime = 200;
148
149#ifdef ATW_DEBUG
150int atw_xhdrctl = 0;
151int atw_xrtylmt = ~0;
152int atw_xservice = IEEE80211_PLCP_SERVICE;
153int atw_xpaylen = 0;
154
155int atw_debug = 0;
156
157#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
158#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
159#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
160#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
161#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
162#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
163static void atw_print_regs(struct atw_softc *, const char *);
164static void atw_rf3000_print(struct atw_softc *);
165static void atw_si4126_print(struct atw_softc *);
166static void atw_dump_pkt(struct ifnet *, struct mbuf *);
167#else
168#define ATW_DPRINTF(x)
169#define ATW_DPRINTF2(x)
170#define ATW_DPRINTF3(x)
171#define	DPRINTF(sc, x)	/* nothing */
172#define	DPRINTF2(sc, x)	/* nothing */
173#define	DPRINTF3(sc, x)	/* nothing */
174#endif
175
176#ifdef ATW_STATS
177void	atw_print_stats __P((struct atw_softc *));
178#endif
179
180void	atw_start __P((struct ifnet *));
181void	atw_watchdog __P((struct ifnet *));
182int	atw_ioctl __P((struct ifnet *, u_long, caddr_t));
183int	atw_init __P((struct ifnet *));
184void	atw_stop __P((struct ifnet *, int));
185
186void	atw_reset __P((struct atw_softc *));
187int	atw_read_srom __P((struct atw_softc *));
188
189void	atw_shutdown __P((void *));
190
191void	atw_rxdrain __P((struct atw_softc *));
192int	atw_add_rxbuf __P((struct atw_softc *, int));
193void	atw_idle __P((struct atw_softc *, u_int32_t));
194
195int	atw_enable __P((struct atw_softc *));
196void	atw_disable __P((struct atw_softc *));
197void	atw_power __P((int, void *));
198
199void	atw_rxintr __P((struct atw_softc *));
200void	atw_txintr __P((struct atw_softc *));
201void	atw_linkintr __P((struct atw_softc *, u_int32_t));
202
203static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
204static void atw_tsf(struct atw_softc *);
205static void atw_start_beacon(struct atw_softc *, int);
206static void atw_write_wep(struct atw_softc *);
207static void atw_write_bssid(struct atw_softc *);
208static void atw_write_bcn_thresh(struct atw_softc *);
209static void atw_write_ssid(struct atw_softc *);
210static void atw_write_sup_rates(struct atw_softc *);
211static void atw_clear_sram(struct atw_softc *);
212static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
213static int atw_media_change(struct ifnet *);
214static void atw_media_status(struct ifnet *, struct ifmediareq *);
215static void atw_filter_setup(struct atw_softc *);
216static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
217static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
218static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
219    struct ieee80211_node *, int, int, u_int32_t);
220static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
221    struct ieee80211_node *, int, int, u_int32_t);
222static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
223static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
224
225static int atw_tune(struct atw_softc *);
226
227static void atw_rfio_enable(struct atw_softc *, int);
228
229/* RFMD RF3000 Baseband Processor */
230static int atw_rf3000_init(struct atw_softc *);
231static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
232static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
233#ifdef ATW_DEBUG
234static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
235#endif /* ATW_DEBUG */
236
237/* Silicon Laboratories Si4126 RF/IF Synthesizer */
238static int atw_si4126_tune(struct atw_softc *, u_int8_t);
239static int atw_si4126_write(struct atw_softc *, u_int, u_int);
240#ifdef ATW_DEBUG
241static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
242#endif /* ATW_DEBUG */
243
244const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
245const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
246
247const char *atw_tx_state[] = {
248	"STOPPED",
249	"RUNNING - FETCH",
250	"RUNNING - WAIT",
251	"RUNNING - READING",
252	"-- RESERVED1 --",
253	"-- RESERVED2 --",
254	"SUSPENDED",
255	"RUNNING - CLOSE"
256};
257
258const char *atw_rx_state[] = {
259	"STOPPED",
260	"RUNNING - FETCH",
261	"RUNNING - CHECK",
262	"RUNNING - WAIT",
263	"SUSPENDED",
264	"RUNNING - CLOSE",
265	"RUNNING - FLUSH",
266	"RUNNING - QUEUE"
267};
268
269int
270atw_activate(struct device *self, enum devact act)
271{
272	struct atw_softc *sc = (struct atw_softc *)self;
273	int rv = 0, s;
274
275	s = splnet();
276	switch (act) {
277	case DVACT_ACTIVATE:
278		rv = EOPNOTSUPP;
279		break;
280
281	case DVACT_DEACTIVATE:
282		if_deactivate(&sc->sc_ic.ic_if);
283		break;
284	}
285	splx(s);
286	return rv;
287}
288
289/*
290 * atw_enable:
291 *
292 *	Enable the ADM8211 chip.
293 */
294int
295atw_enable(sc)
296	struct atw_softc *sc;
297{
298
299	if (ATW_IS_ENABLED(sc) == 0) {
300		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
301			printf("%s: device enable failed\n",
302			    sc->sc_dev.dv_xname);
303			return (EIO);
304		}
305		sc->sc_flags |= ATWF_ENABLED;
306	}
307	return (0);
308}
309
310/*
311 * atw_disable:
312 *
313 *	Disable the ADM8211 chip.
314 */
315void
316atw_disable(sc)
317	struct atw_softc *sc;
318{
319	if (!ATW_IS_ENABLED(sc))
320		return;
321	if (sc->sc_disable != NULL)
322		(*sc->sc_disable)(sc);
323	sc->sc_flags &= ~ATWF_ENABLED;
324}
325
326/* Returns -1 on failure. */
327int
328atw_read_srom(struct atw_softc *sc)
329{
330	struct seeprom_descriptor sd;
331	u_int32_t reg;
332
333	(void)memset(&sd, 0, sizeof(sd));
334
335	reg = ATW_READ(sc, ATW_TEST0);
336
337	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
338		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
339		return -1;
340	}
341
342	switch (reg & ATW_TEST0_EPTYP_MASK) {
343	case ATW_TEST0_EPTYP_93c66:
344		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
345		sc->sc_sromsz = 512;
346		sd.sd_chip = C56_66;
347		break;
348	case ATW_TEST0_EPTYP_93c46:
349		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
350		sc->sc_sromsz = 128;
351		sd.sd_chip = C46;
352		break;
353	default:
354		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
355		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
356		return -1;
357	}
358
359	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
360
361	if (sc->sc_srom == NULL) {
362		printf("%s: unable to allocate SROM buffer\n",
363		    sc->sc_dev.dv_xname);
364		return -1;
365	}
366
367	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
368
369	/* ADM8211 has a single 32-bit register for controlling the
370	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
371	 * "ready" bit. The ADM8211 input/output sense is the reverse
372	 * of read_seeprom's.
373	 */
374	sd.sd_tag = sc->sc_st;
375	sd.sd_bsh = sc->sc_sh;
376	sd.sd_regsize = 4;
377	sd.sd_control_offset = ATW_SPR;
378	sd.sd_status_offset = ATW_SPR;
379	sd.sd_dataout_offset = ATW_SPR;
380	sd.sd_CK = ATW_SPR_SCLK;
381	sd.sd_CS = ATW_SPR_SCS;
382	sd.sd_DI = ATW_SPR_SDO;
383	sd.sd_DO = ATW_SPR_SDI;
384	sd.sd_MS = ATW_SPR_SRS;
385	sd.sd_RDY = 0;
386
387	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
388		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
389		free(sc->sc_srom, M_DEVBUF);
390		return -1;
391	}
392#ifdef ATW_DEBUG
393	{
394		int i;
395		ATW_DPRINTF2(("\nSerial EEPROM:\n\t"));
396		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
397			if (((i % 8) == 0) && (i != 0)) {
398				ATW_DPRINTF2(("\n\t"));
399			}
400			ATW_DPRINTF2((" 0x%x", sc->sc_srom[i]));
401		}
402		ATW_DPRINTF2(("\n"));
403	}
404#endif /* ATW_DEBUG */
405	return 0;
406}
407
408#ifdef ATW_DEBUG
409static void
410atw_print_regs(struct atw_softc *sc, const char *where)
411{
412#define PRINTREG(sc, reg) \
413	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
414	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
415
416	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
417
418	PRINTREG(sc, ATW_PAR);
419	PRINTREG(sc, ATW_FRCTL);
420	PRINTREG(sc, ATW_TDR);
421	PRINTREG(sc, ATW_WTDP);
422	PRINTREG(sc, ATW_RDR);
423	PRINTREG(sc, ATW_WRDP);
424	PRINTREG(sc, ATW_RDB);
425	PRINTREG(sc, ATW_CSR3A);
426	PRINTREG(sc, ATW_TDBD);
427	PRINTREG(sc, ATW_TDBP);
428	PRINTREG(sc, ATW_STSR);
429	PRINTREG(sc, ATW_CSR5A);
430	PRINTREG(sc, ATW_NAR);
431	PRINTREG(sc, ATW_CSR6A);
432	PRINTREG(sc, ATW_IER);
433	PRINTREG(sc, ATW_CSR7A);
434	PRINTREG(sc, ATW_LPC);
435	PRINTREG(sc, ATW_TEST1);
436	PRINTREG(sc, ATW_SPR);
437	PRINTREG(sc, ATW_TEST0);
438	PRINTREG(sc, ATW_WCSR);
439	PRINTREG(sc, ATW_WPDR);
440	PRINTREG(sc, ATW_GPTMR);
441	PRINTREG(sc, ATW_GPIO);
442	PRINTREG(sc, ATW_BBPCTL);
443	PRINTREG(sc, ATW_SYNCTL);
444	PRINTREG(sc, ATW_PLCPHD);
445	PRINTREG(sc, ATW_MMIWADDR);
446	PRINTREG(sc, ATW_MMIRADDR1);
447	PRINTREG(sc, ATW_MMIRADDR2);
448	PRINTREG(sc, ATW_TXBR);
449	PRINTREG(sc, ATW_CSR15A);
450	PRINTREG(sc, ATW_ALCSTAT);
451	PRINTREG(sc, ATW_TOFS2);
452	PRINTREG(sc, ATW_CMDR);
453	PRINTREG(sc, ATW_PCIC);
454	PRINTREG(sc, ATW_PMCSR);
455	PRINTREG(sc, ATW_PAR0);
456	PRINTREG(sc, ATW_PAR1);
457	PRINTREG(sc, ATW_MAR0);
458	PRINTREG(sc, ATW_MAR1);
459	PRINTREG(sc, ATW_ATIMDA0);
460	PRINTREG(sc, ATW_ABDA1);
461	PRINTREG(sc, ATW_BSSID0);
462	PRINTREG(sc, ATW_TXLMT);
463	PRINTREG(sc, ATW_MIBCNT);
464	PRINTREG(sc, ATW_BCNT);
465	PRINTREG(sc, ATW_TSFTH);
466	PRINTREG(sc, ATW_TSC);
467	PRINTREG(sc, ATW_SYNRF);
468	PRINTREG(sc, ATW_BPLI);
469	PRINTREG(sc, ATW_CAP0);
470	PRINTREG(sc, ATW_CAP1);
471	PRINTREG(sc, ATW_RMD);
472	PRINTREG(sc, ATW_CFPP);
473	PRINTREG(sc, ATW_TOFS0);
474	PRINTREG(sc, ATW_TOFS1);
475	PRINTREG(sc, ATW_IFST);
476	PRINTREG(sc, ATW_RSPT);
477	PRINTREG(sc, ATW_TSFTL);
478	PRINTREG(sc, ATW_WEPCTL);
479	PRINTREG(sc, ATW_WESK);
480	PRINTREG(sc, ATW_WEPCNT);
481	PRINTREG(sc, ATW_MACTEST);
482	PRINTREG(sc, ATW_FER);
483	PRINTREG(sc, ATW_FEMR);
484	PRINTREG(sc, ATW_FPSR);
485	PRINTREG(sc, ATW_FFER);
486#undef PRINTREG
487}
488#endif /* ATW_DEBUG */
489
490/*
491 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
492 */
493void
494atw_attach(struct atw_softc *sc)
495{
496	struct ieee80211com *ic = &sc->sc_ic;
497	struct ifnet *ifp = &ic->ic_if;
498	int country_code, error, i, nrate;
499	u_int32_t reg;
500	static const char *type_strings[] = {"Intersil (not supported)",
501	    "RFMD", "Marvel (not supported)"};
502	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
503		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
504	};
505
506	sc->sc_txth = atw_txthresh_tab_lo;
507
508	SIMPLEQ_INIT(&sc->sc_txfreeq);
509	SIMPLEQ_INIT(&sc->sc_txdirtyq);
510
511#ifdef ATW_DEBUG
512	atw_print_regs(sc, "atw_attach");
513#endif /* ATW_DEBUG */
514
515	/*
516	 * Allocate the control data structures, and create and load the
517	 * DMA map for it.
518	 */
519	if ((error = bus_dmamem_alloc(sc->sc_dmat,
520	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
521	    1, &sc->sc_cdnseg, 0)) != 0) {
522		printf("%s: unable to allocate control data, error = %d\n",
523		    sc->sc_dev.dv_xname, error);
524		goto fail_0;
525	}
526
527	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
528	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
529	    BUS_DMA_COHERENT)) != 0) {
530		printf("%s: unable to map control data, error = %d\n",
531		    sc->sc_dev.dv_xname, error);
532		goto fail_1;
533	}
534
535	if ((error = bus_dmamap_create(sc->sc_dmat,
536	    sizeof(struct atw_control_data), 1,
537	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
538		printf("%s: unable to create control data DMA map, "
539		    "error = %d\n", sc->sc_dev.dv_xname, error);
540		goto fail_2;
541	}
542
543	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
544	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
545	    0)) != 0) {
546		printf("%s: unable to load control data DMA map, error = %d\n",
547		    sc->sc_dev.dv_xname, error);
548		goto fail_3;
549	}
550
551	/*
552	 * Create the transmit buffer DMA maps.
553	 */
554	sc->sc_ntxsegs = ATW_NTXSEGS;
555	for (i = 0; i < ATW_TXQUEUELEN; i++) {
556		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
557		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
558		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
559			printf("%s: unable to create tx DMA map %d, "
560			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
561			goto fail_4;
562		}
563	}
564
565	/*
566	 * Create the receive buffer DMA maps.
567	 */
568	for (i = 0; i < ATW_NRXDESC; i++) {
569		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
570		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
571			printf("%s: unable to create rx DMA map %d, "
572			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
573			goto fail_5;
574		}
575		sc->sc_rxsoft[i].rxs_mbuf = NULL;
576	}
577
578	/* Reset the chip to a known state. */
579	atw_reset(sc);
580
581	if (atw_read_srom(sc) == -1)
582		return;
583
584	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
585	    ATW_SR_RFTYPE_MASK);
586
587	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588	    ATW_SR_BBPTYPE_MASK);
589
590	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
591		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
592		return;
593	}
594	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
595		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
596		return;
597	}
598
599	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
600	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
601
602	/* XXX There exists a Linux driver which seems to use RFType = 0 for
603	 * MARVEL. My bug, or theirs?
604	 */
605
606	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
607
608	switch (sc->sc_rftype) {
609	case ATW_RFTYPE_INTERSIL:
610		reg |= ATW_SYNCTL_CS1;
611		break;
612	case ATW_RFTYPE_RFMD:
613		reg |= ATW_SYNCTL_CS0;
614		break;
615	case ATW_RFTYPE_MARVEL:
616		break;
617	}
618
619	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
620	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
621
622	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
623
624	switch (sc->sc_bbptype) {
625	case ATW_RFTYPE_INTERSIL:
626		reg |= ATW_BBPCTL_TWI;
627		break;
628	case ATW_RFTYPE_RFMD:
629		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
630		    ATW_BBPCTL_CCA_ACTLO;
631		break;
632	case ATW_RFTYPE_MARVEL:
633		break;
634	}
635
636	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
637	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
638
639	/*
640	 * From this point forward, the attachment cannot fail.  A failure
641	 * before this point releases all resources that may have been
642	 * allocated.
643	 */
644	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
645
646	ATW_DPRINTF2((" SROM MAC %04x%04x%04x",
647	    htole16(sc->sc_srom[ATW_SR_MAC00]),
648	    htole16(sc->sc_srom[ATW_SR_MAC01]),
649	    htole16(sc->sc_srom[ATW_SR_MAC10])));
650
651	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
652	    ATW_SR_CTRY_MASK);
653
654#define ADD_CHANNEL(_ic, _chan) do {					\
655	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
656	_ic->ic_channels[_chan].ic_freq =				\
657	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
658} while (0)
659
660	/* Find available channels */
661	switch (country_code) {
662	case COUNTRY_MMK2:	/* 1-14 */
663		ADD_CHANNEL(ic, 14);
664		/*FALLTHROUGH*/
665	case COUNTRY_ETSI:	/* 1-13 */
666		for (i = 1; i <= 13; i++)
667			ADD_CHANNEL(ic, i);
668		break;
669	case COUNTRY_FCC:	/* 1-11 */
670	case COUNTRY_IC:	/* 1-11 */
671		for (i = 1; i <= 11; i++)
672			ADD_CHANNEL(ic, i);
673		break;
674	case COUNTRY_MMK:	/* 14 */
675		ADD_CHANNEL(ic, 14);
676		break;
677	case COUNTRY_FRANCE:	/* 10-13 */
678		for (i = 10; i <= 13; i++)
679			ADD_CHANNEL(ic, i);
680		break;
681	default:	/* assume channels 10-11 */
682	case COUNTRY_SPAIN:	/* 10-11 */
683		for (i = 10; i <= 11; i++)
684			ADD_CHANNEL(ic, i);
685		break;
686	}
687
688	/* Read the MAC address. */
689	reg = ATW_READ(sc, ATW_PAR0);
690	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
691	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
692	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
693	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
694	reg = ATW_READ(sc, ATW_PAR1);
695	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
696	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
697
698	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
699		printf(" could not get mac address, attach failed\n");
700		return;
701	}
702
703	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
704
705	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
706	ifp->if_softc = sc;
707	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
708	    IFF_NOTRAILERS;
709	ifp->if_ioctl = atw_ioctl;
710	ifp->if_start = atw_start;
711	ifp->if_watchdog = atw_watchdog;
712	ifp->if_init = atw_init;
713	ifp->if_stop = atw_stop;
714	IFQ_SET_READY(&ifp->if_snd);
715
716	ic->ic_phytype = IEEE80211_T_DS;
717	ic->ic_opmode = IEEE80211_M_STA;
718	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
719	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
720
721	nrate = 0;
722	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
723	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
724	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
725	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
726	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
727
728	/*
729	 * Call MI attach routines.
730	 */
731
732	if_attach(ifp);
733	ieee80211_ifattach(ifp);
734
735	sc->sc_newstate = ic->ic_newstate;
736	ic->ic_newstate = atw_newstate;
737
738	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
739	ic->ic_recv_mgmt = atw_recv_mgmt;
740
741	sc->sc_node_free = ic->ic_node_free;
742	ic->ic_node_free = atw_node_free;
743
744	sc->sc_node_alloc = ic->ic_node_alloc;
745	ic->ic_node_alloc = atw_node_alloc;
746
747	/* possibly we should fill in our own sc_send_prresp, since
748	 * the ADM8211 is probably sending probe responses in ad hoc
749	 * mode.
750	 */
751
752	/* complete initialization */
753	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
754	callout_init(&sc->sc_scan_ch);
755
756#if 0
757#if NBPFILTER > 0
758	bpfattach2(ifp, DLT_IEEE802_11_RADIO, /* ??? */,
759		   &sc->sc_radiobpf);
760#endif
761#endif
762
763	/*
764	 * Make sure the interface is shutdown during reboot.
765	 */
766	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
767	if (sc->sc_sdhook == NULL)
768		printf("%s: WARNING: unable to establish shutdown hook\n",
769		    sc->sc_dev.dv_xname);
770
771	/*
772	 * Add a suspend hook to make sure we come back up after a
773	 * resume.
774	 */
775	sc->sc_powerhook = powerhook_establish(atw_power, sc);
776	if (sc->sc_powerhook == NULL)
777		printf("%s: WARNING: unable to establish power hook\n",
778		    sc->sc_dev.dv_xname);
779
780	return;
781
782	/*
783	 * Free any resources we've allocated during the failed attach
784	 * attempt.  Do this in reverse order and fall through.
785	 */
786 fail_5:
787	for (i = 0; i < ATW_NRXDESC; i++) {
788		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
789			continue;
790		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
791	}
792 fail_4:
793	for (i = 0; i < ATW_TXQUEUELEN; i++) {
794		if (sc->sc_txsoft[i].txs_dmamap == NULL)
795			continue;
796		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
797	}
798	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
799 fail_3:
800	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
801 fail_2:
802	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
803	    sizeof(struct atw_control_data));
804 fail_1:
805	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
806 fail_0:
807	return;
808}
809
810static struct ieee80211_node *
811atw_node_alloc(struct ieee80211com *ic)
812{
813	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
814	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
815
816	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
817	return ni;
818}
819
820static void
821atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
822{
823	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
824
825	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
826	    ether_sprintf(ni->ni_bssid)));
827	(*sc->sc_node_free)(ic, ni);
828}
829
830/*
831 * atw_reset:
832 *
833 *	Perform a soft reset on the ADM8211.
834 */
835void
836atw_reset(sc)
837	struct atw_softc *sc;
838{
839	int i;
840
841	if (ATW_IS_ENABLED(sc) == 0)
842		return;
843
844	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
845
846	for (i = 0; i < 10000; i++) {
847		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
848			break;
849		DELAY(1);
850	}
851
852	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
853
854	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
855		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
856
857	/* Turn off maximum power saving. */
858	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
859
860	/* Recall EEPROM. */
861	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
862
863	DELAY(10 * 1000);
864
865	/* A reset seems to affect the SRAM contents, so put them into
866	 * a known state.
867	 */
868	atw_clear_sram(sc);
869
870	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
871
872	sc->sc_lost_bcn_thresh = 0;
873}
874
875static void
876atw_clear_sram(sc)
877	struct atw_softc *sc;
878{
879#if 0
880	for (addr = 0; addr < 448; addr++) {
881		ATW_WRITE(sc, ATW_WEPCTL,
882		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
883		DELAY(1000);
884		ATW_WRITE(sc, ATW_WESK, 0);
885		DELAY(1000); /* paranoia */
886	}
887	return;
888#endif
889	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
890	/* XXX not for revision 0x20. */
891	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
892}
893
894/* TBD atw_init
895 *
896 * set MAC based on ic->ic_bss->myaddr
897 * write WEP keys
898 * set TX rate
899 */
900
901/*
902 * atw_init:		[ ifnet interface function ]
903 *
904 *	Initialize the interface.  Must be called at splnet().
905 */
906int
907atw_init(ifp)
908	struct ifnet *ifp;
909{
910	struct atw_softc *sc = ifp->if_softc;
911	struct ieee80211com *ic = &sc->sc_ic;
912	struct atw_txsoft *txs;
913	struct atw_rxsoft *rxs;
914	u_int32_t reg;
915	int i, error = 0;
916
917	if ((error = atw_enable(sc)) != 0)
918		goto out;
919
920	/*
921	 * Cancel any pending I/O. This also resets.
922	 */
923	atw_stop(ifp, 0);
924
925	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
926	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
927	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
928	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
929
930	/* Turn off APM??? (A binary-only driver does this.)
931	 *
932	 * Set Rx store-and-forward mode.
933	 */
934	reg = ATW_READ(sc, ATW_CMDR);
935	reg &= ~ATW_CMDR_APM;
936	reg &= ~ATW_CMDR_DRT_MASK;
937	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
938
939	ATW_WRITE(sc, ATW_CMDR, reg);
940
941	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
942	 *
943	 * XXX a binary-only driver sets a different service field than
944	 * 0. why?
945	 */
946	reg = ATW_READ(sc, ATW_PLCPHD);
947	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
948	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
949	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
950	ATW_WRITE(sc, ATW_PLCPHD, reg);
951
952	/* XXX */
953	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
954	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
955	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
956	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
957	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
958	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
959	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
960	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
961	ATW_WRITE(sc, ATW_TOFS2, reg);
962
963	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
964	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
965
966	/* XXX this resets an Intersil RF front-end? */
967	/* TBD condition on Intersil RFType? */
968	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
969	DELAY(10 * 1000);
970	ATW_WRITE(sc, ATW_SYNRF, 0);
971	DELAY(5 * 1000);
972
973	/* 16 TU max duration for contention-free period */
974	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
975	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
976
977	/* XXX I guess that the Cardbus clock is 22MHz?
978	 * I am assuming that the role of ATW_TOFS0_USCNT is
979	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
980	 * very clear on this point. It says in the datasheet that it is
981	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
982	 * and 33MHz; maybe this is the way? I see a binary-only driver write
983	 * these values. These values are also the power-on default.
984	 */
985	ATW_WRITE(sc, ATW_TOFS0,
986	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
987	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
988
989	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
990	 * driver. go figure.
991	 */
992	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
993	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
994	             ATW_IFST_SIFS_MASK) |
995	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
996	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
997
998	ATW_WRITE(sc, ATW_IFST, reg);
999
1000	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1001	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1002
1003	/* Set up the MMI read/write addresses for the BBP.
1004	 *
1005	 * TBD find out the Marvel settings.
1006	 */
1007	switch (sc->sc_bbptype) {
1008	case ATW_BBPTYPE_INTERSIL:
1009		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1010		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1011		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1012		break;
1013	case ATW_BBPTYPE_MARVEL:
1014		break;
1015	case ATW_BBPTYPE_RFMD:
1016		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1017		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1018		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1019	default:
1020		break;
1021	}
1022
1023	sc->sc_wepctl = 0;
1024	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1025
1026	if ((error = atw_rf3000_init(sc)) != 0)
1027		goto out;
1028
1029	/*
1030	 * Initialize the PCI Access Register.
1031	 */
1032	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
1033
1034	/*
1035	 * If we're allowed to do so, use Memory Read Line
1036	 * and Memory Read Multiple.
1037	 *
1038	 * XXX Should we use Memory Write and Invalidate?
1039	 */
1040	if (sc->sc_flags & ATWF_MRL)
1041		sc->sc_busmode |= ATW_PAR_MRLE;
1042	if (sc->sc_flags & ATWF_MRM)
1043		sc->sc_busmode |= ATW_PAR_MRME;
1044	if (sc->sc_flags & ATWF_MWI)
1045		sc->sc_busmode |= ATW_PAR_MWIE;
1046	if (sc->sc_maxburst == 0)
1047		sc->sc_maxburst = 8;	/* ADM8211 default */
1048
1049	switch (sc->sc_cacheline) {
1050	default:
1051		/* Use burst length. */
1052		break;
1053	case 8:
1054		sc->sc_busmode |= ATW_PAR_CAL_8DW;
1055		break;
1056	case 16:
1057		sc->sc_busmode |= ATW_PAR_CAL_16DW;
1058		break;
1059	case 32:
1060		sc->sc_busmode |= ATW_PAR_CAL_32DW;
1061		break;
1062	}
1063	switch (sc->sc_maxburst) {
1064	case 1:
1065		sc->sc_busmode |= ATW_PAR_PBL_1DW;
1066		break;
1067	case 2:
1068		sc->sc_busmode |= ATW_PAR_PBL_2DW;
1069		break;
1070	case 4:
1071		sc->sc_busmode |= ATW_PAR_PBL_4DW;
1072		break;
1073	case 8:
1074		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1075		break;
1076	case 16:
1077		sc->sc_busmode |= ATW_PAR_PBL_16DW;
1078		break;
1079	case 32:
1080		sc->sc_busmode |= ATW_PAR_PBL_32DW;
1081		break;
1082	default:
1083		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1084		break;
1085	}
1086
1087	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1088	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1089	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1090
1091	/*
1092	 * Initialize the OPMODE register.  We don't write it until
1093	 * we're ready to begin the transmit and receive processes.
1094	 */
1095	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1096	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1097
1098	/*
1099	 * Initialize the transmit descriptor ring.
1100	 */
1101	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1102	for (i = 0; i < ATW_NTXDESC; i++) {
1103		/* no transmit chaining */
1104		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1105		sc->sc_txdescs[i].at_buf2 =
1106		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1107	}
1108	/* use ring mode */
1109	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1110	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1111	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1112	sc->sc_txfree = ATW_NTXDESC;
1113	sc->sc_txnext = 0;
1114
1115	/*
1116	 * Initialize the transmit job descriptors.
1117	 */
1118	SIMPLEQ_INIT(&sc->sc_txfreeq);
1119	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1120	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1121		txs = &sc->sc_txsoft[i];
1122		txs->txs_mbuf = NULL;
1123		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1124	}
1125
1126	/*
1127	 * Initialize the receive descriptor and receive job
1128	 * descriptor rings.
1129	 */
1130	for (i = 0; i < ATW_NRXDESC; i++) {
1131		rxs = &sc->sc_rxsoft[i];
1132		if (rxs->rxs_mbuf == NULL) {
1133			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1134				printf("%s: unable to allocate or map rx "
1135				    "buffer %d, error = %d\n",
1136				    sc->sc_dev.dv_xname, i, error);
1137				/*
1138				 * XXX Should attempt to run with fewer receive
1139				 * XXX buffers instead of just failing.
1140				 */
1141				atw_rxdrain(sc);
1142				goto out;
1143			}
1144		} else
1145			ATW_INIT_RXDESC(sc, i);
1146	}
1147	sc->sc_rxptr = 0;
1148
1149	/* disable all wake-up events */
1150	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1151	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1152			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1153			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1154
1155	/* ack all wake-up events */
1156	ATW_SET(sc, ATW_WCSR, 0);
1157
1158	/*
1159	 * Initialize the interrupt mask and enable interrupts.
1160	 */
1161	/* normal interrupts */
1162	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1163	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1164
1165	/* abnormal interrupts */
1166	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1167	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1168	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1169
1170	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1171	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1172
1173	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1174	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1175	    ATW_INTR_TRT;
1176
1177	sc->sc_linkint_mask &= sc->sc_inten;
1178	sc->sc_rxint_mask &= sc->sc_inten;
1179	sc->sc_txint_mask &= sc->sc_inten;
1180
1181	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1182	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1183	if (sc->sc_intr_ack != NULL)
1184		(*sc->sc_intr_ack)(sc);
1185
1186	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1187	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1188
1189	/*
1190	 * Give the transmit and receive rings to the ADM8211.
1191	 */
1192	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1193	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1194
1195	/* common 802.11 configuration */
1196	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1197	switch (ic->ic_opmode) {
1198	case IEEE80211_M_HOSTAP: /* XXX */
1199	case IEEE80211_M_STA:
1200		sc->sc_opmode &= ~ATW_NAR_EA;
1201		break;
1202	case IEEE80211_M_AHDEMO: /* XXX */
1203	case IEEE80211_M_IBSS:
1204		/* EA bit seems important for ad hoc reception. */
1205		sc->sc_opmode |= ATW_NAR_EA;
1206		ic->ic_flags |= IEEE80211_F_IBSSON;
1207		break;
1208	case IEEE80211_M_MONITOR: /* XXX */
1209		break;
1210	}
1211
1212	atw_start_beacon(sc, 0);
1213
1214	switch (ic->ic_opmode) {
1215	case IEEE80211_M_IBSS:
1216	case IEEE80211_M_STA:
1217		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1218		if (error)
1219			goto out;
1220		break;
1221	case IEEE80211_M_AHDEMO:
1222	case IEEE80211_M_HOSTAP:
1223		ic->ic_bss->ni_intval = ic->ic_lintval;
1224		ic->ic_bss->ni_rssi = 0;
1225		ic->ic_bss->ni_rstamp = 0;
1226		ic->ic_state = IEEE80211_S_SCAN;	/*XXX*/
1227
1228		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1229		if (error)
1230			goto out;
1231		break;
1232	case IEEE80211_M_MONITOR: /* XXX */
1233		break;
1234	}
1235
1236	atw_write_ssid(sc);
1237	atw_write_sup_rates(sc);
1238	if (ic->ic_caps & IEEE80211_C_WEP)
1239		atw_write_wep(sc);
1240
1241	/*
1242	 * Set the receive filter.  This will start the transmit and
1243	 * receive processes.
1244	 */
1245	atw_filter_setup(sc);
1246
1247	/*
1248	 * Start the receive process.
1249	 */
1250	ATW_WRITE(sc, ATW_RDR, 0x1);
1251
1252	/*
1253	 * Note that the interface is now running.
1254	 */
1255	ifp->if_flags |= IFF_RUNNING;
1256	ifp->if_flags &= ~IFF_OACTIVE;
1257	ic->ic_state = IEEE80211_S_INIT;
1258
1259 out:
1260	if (error) {
1261		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1262		ifp->if_timer = 0;
1263		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1264	}
1265#ifdef ATW_DEBUG
1266	atw_print_regs(sc, "end of init");
1267#endif /* ATW_DEBUG */
1268
1269	return (error);
1270}
1271
1272/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1273 *           0: MAC control of RF3000/Si4126.
1274 *
1275 * Applies power, or selects RF front-end? Sets reset condition.
1276 *
1277 * TBD support non-RFMD BBP, non-SiLabs synth.
1278 */
1279static void
1280atw_rfio_enable(struct atw_softc *sc, int enable)
1281{
1282	if (enable) {
1283		ATW_WRITE(sc, ATW_SYNRF,
1284		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1285		DELAY(atw_rfio_enable_delay);
1286	} else {
1287		ATW_WRITE(sc, ATW_SYNRF, 0);
1288		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1289	}
1290}
1291
1292static int
1293atw_tune(sc)
1294	struct atw_softc *sc;
1295{
1296	int rc;
1297	u_int32_t reg;
1298	int chan;
1299	struct ieee80211com *ic = &sc->sc_ic;
1300
1301	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1302	if (chan == IEEE80211_CHAN_ANY)
1303		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1304
1305	if (chan == sc->sc_cur_chan)
1306		return 0;
1307
1308	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1309	    sc->sc_cur_chan, chan));
1310
1311	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1312
1313	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1314	    (rc = atw_rf3000_tune(sc, chan)) != 0)
1315		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1316		    chan);
1317
1318	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1319	ATW_WRITE(sc, ATW_CAP0,
1320	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1321
1322	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1323
1324	if (rc == 0)
1325		sc->sc_cur_chan = chan;
1326
1327	return rc;
1328}
1329
1330#ifdef ATW_DEBUG
1331static void
1332atw_si4126_print(sc)
1333	struct atw_softc *sc;
1334{
1335	struct ifnet *ifp = &sc->sc_ic.ic_if;
1336	u_int addr, val;
1337
1338	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1339		return;
1340
1341	for (addr = 0; addr <= 8; addr++) {
1342		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1343		if (atw_si4126_read(sc, addr, &val) == 0) {
1344			printf("<unknown> (quitting print-out)\n");
1345			break;
1346		}
1347		printf("%05x\n", val);
1348	}
1349}
1350#endif /* ATW_DEBUG */
1351
1352/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1353 *
1354 * The RF/IF synthesizer produces two reference frequencies for
1355 * the RF2948B transceiver.  The first frequency the RF2948B requires
1356 * is two times the so-called "intermediate frequency" (IF). Since
1357 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1358 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1359 * frequency required by the transceiver is the radio frequency
1360 * (RF). This is a superheterodyne transceiver; for f(chan) the
1361 * center frequency of the channel we are tuning, RF = f(chan) -
1362 * IF.
1363 *
1364 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1365 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1366 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1367 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1368 */
1369static int
1370atw_si4126_tune(sc, chan)
1371	struct atw_softc *sc;
1372	u_int8_t chan;
1373{
1374	int rc = 0;
1375	u_int mhz;
1376	u_int R;
1377	u_int32_t reg;
1378	u_int16_t gain;
1379
1380#ifdef ATW_DEBUG
1381	atw_si4126_print(sc);
1382#endif /* ATW_DEBUG */
1383
1384	if (chan == 14)
1385		mhz = 2484;
1386	else
1387		mhz = 2412 + 5 * (chan - 1);
1388
1389	/* Tune IF to 748MHz to suit the IF LO input of the
1390	 * RF2494B, which is 2 x IF. No need to set an IF divider
1391         * because an IF in 526MHz - 952MHz is allowed.
1392	 *
1393	 * XIN is 44.000MHz, so divide it by two to get allowable
1394	 * range of 2-25MHz. SiLabs tells me that this is not
1395	 * strictly necessary.
1396	 */
1397
1398	R = 44;
1399
1400	atw_rfio_enable(sc, 1);
1401
1402	/* Power-up RF, IF synthesizers. */
1403	if ((rc = atw_si4126_write(sc, SI4126_POWER,
1404	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1405		goto out;
1406
1407	/* If RF2 N > 2047, then set KP2 to 1. */
1408	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1409
1410	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1411		goto out;
1412
1413	/* set LPWR, too? */
1414	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1415	    SI4126_MAIN_XINDIV2)) != 0)
1416		goto out;
1417
1418	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
1419	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1420	 */
1421	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1422		goto out;
1423
1424	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1425		goto out;
1426
1427	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1428	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1429	 * which has no RF1!
1430	 */
1431	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1432		goto out;
1433
1434	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1435		goto out;
1436
1437	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1438	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1439	 * Now let's multiply it to mhz. So mhz - IF = N.
1440	 */
1441	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1442		goto out;
1443
1444	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1445		goto out;
1446
1447	/* wait 100us from power-up for RF, IF to settle */
1448	DELAY(100);
1449
1450	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1451		/* XXX there is a binary driver which sends
1452		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1453		 * that this enables the Si4126 by raising its PWDN#, but I
1454		 * think that it actually sets the Prism RF front-end
1455		 * to a special mode for channel 14.
1456		 */
1457		reg = ATW_READ(sc, ATW_GPIO);
1458		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1459		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1460		ATW_WRITE(sc, ATW_GPIO, reg);
1461	}
1462
1463#ifdef ATW_DEBUG
1464	atw_si4126_print(sc);
1465#endif /* ATW_DEBUG */
1466
1467out:
1468	atw_rfio_enable(sc, 0);
1469
1470	return rc;
1471}
1472
1473/* Baseline initialization of RF3000 BBP: set CCA mode, enable antenna
1474 * diversity, and write some magic.
1475 *
1476 * Call this w/ Tx/Rx suspended.
1477 */
1478static int
1479atw_rf3000_init(sc)
1480	struct atw_softc *sc;
1481{
1482	int rc = 0;
1483
1484	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1485
1486	atw_rfio_enable(sc, 1);
1487
1488	/* enable diversity */
1489	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1490
1491	if (rc != 0)
1492		goto out;
1493
1494	/* sensible setting from a binary-only driver */
1495	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1496	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1497
1498	if (rc != 0)
1499		goto out;
1500
1501	/* magic from a binary-only driver */
1502	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1503	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1504
1505	if (rc != 0)
1506		goto out;
1507
1508	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1509
1510	if (rc != 0)
1511		goto out;
1512
1513	/* magic derived from binary-only driver */
1514	rc = atw_rf3000_write(sc, RF3000_MAGIC0, RF3000_MAGIC0_VAL);
1515
1516	if (rc != 0)
1517		goto out;
1518
1519	rc = atw_rf3000_write(sc, RF3000_MAGIC1, RF3000_MAGIC1_VAL);
1520
1521	if (rc != 0)
1522		goto out;
1523
1524	/* CCA is acquisition sensitive */
1525	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1526	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1527
1528	if (rc != 0)
1529		goto out;
1530
1531out:
1532	atw_rfio_enable(sc, 0);
1533	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1534	return rc;
1535}
1536
1537#ifdef ATW_DEBUG
1538static void
1539atw_rf3000_print(sc)
1540	struct atw_softc *sc;
1541{
1542	struct ifnet *ifp = &sc->sc_ic.ic_if;
1543	u_int addr, val;
1544
1545	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1546		return;
1547
1548	for (addr = 0x01; addr <= 0x15; addr++) {
1549		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1550		if (atw_rf3000_read(sc, addr, &val) != 0) {
1551			printf("<unknown> (quitting print-out)\n");
1552			break;
1553		}
1554		printf("%08x\n", val);
1555	}
1556}
1557#endif /* ATW_DEBUG */
1558
1559/* Set the power settings on the BBP for channel `chan'. */
1560static int
1561atw_rf3000_tune(sc, chan)
1562	struct atw_softc *sc;
1563	u_int8_t chan;
1564{
1565	int rc = 0;
1566	u_int32_t reg;
1567	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1568
1569	atw_rfio_enable(sc, 1);
1570
1571	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1572	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1573	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1574
1575	/* odd channels: LSB, even channels: MSB */
1576	if (chan % 2 == 1) {
1577		txpower &= 0xFF;
1578		lpf_cutoff &= 0xFF;
1579		lna_gs_thresh &= 0xFF;
1580	} else {
1581		txpower >>= 8;
1582		lpf_cutoff >>= 8;
1583		lna_gs_thresh >>= 8;
1584	}
1585
1586#ifdef ATW_DEBUG
1587	atw_rf3000_print(sc);
1588#endif /* ATW_DEBUG */
1589
1590	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1591	    "lna_gs_thresh %02x\n",
1592	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1593
1594	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1595	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1596		goto out;
1597
1598	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1599		goto out;
1600
1601	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1602		goto out;
1603
1604	/* from a binary-only driver. */
1605	reg = ATW_READ(sc, ATW_PLCPHD);
1606	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1607	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1608	ATW_WRITE(sc, ATW_PLCPHD, reg);
1609
1610#ifdef ATW_DEBUG
1611	atw_rf3000_print(sc);
1612#endif /* ATW_DEBUG */
1613
1614out:
1615	atw_rfio_enable(sc, 0);
1616
1617	return rc;
1618}
1619
1620/* Write a register on the RF3000 baseband processor using the
1621 * registers provided by the ADM8211 for this purpose.
1622 *
1623 * Return 0 on success.
1624 */
1625static int
1626atw_rf3000_write(sc, addr, val)
1627	struct atw_softc *sc;
1628	u_int addr, val;
1629{
1630	u_int32_t reg;
1631	int i;
1632
1633	for (i = 1000; --i >= 0; ) {
1634		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1635			break;
1636		DELAY(100);
1637	}
1638
1639	if (i < 0) {
1640		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1641		return ETIMEDOUT;
1642	}
1643
1644	reg = sc->sc_bbpctl_wr |
1645	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1646	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1647
1648	ATW_WRITE(sc, ATW_BBPCTL, reg);
1649
1650	for (i = 1000; --i >= 0; ) {
1651		DELAY(100);
1652		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1653			break;
1654	}
1655
1656	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1657
1658	if (i < 0) {
1659		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1660		return ETIMEDOUT;
1661	}
1662	return 0;
1663}
1664
1665/* Read a register on the RF3000 baseband processor using the registers
1666 * the ADM8211 provides for this purpose.
1667 *
1668 * The 7-bit register address is addr.  Record the 8-bit data in the register
1669 * in *val.
1670 *
1671 * Return 0 on success.
1672 *
1673 * XXX This does not seem to work. The ADM8211 must require more or
1674 * different magic to read the chip than to write it. Possibly some
1675 * of the magic I have derived from a binary-only driver concerns
1676 * the "chip address" (see the RF3000 manual).
1677 */
1678#ifdef ATW_DEBUG
1679static int
1680atw_rf3000_read(sc, addr, val)
1681	struct atw_softc *sc;
1682	u_int addr, *val;
1683{
1684	u_int32_t reg;
1685	int i;
1686
1687	for (i = 1000; --i >= 0; ) {
1688		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1689			break;
1690		DELAY(100);
1691	}
1692
1693	if (i < 0) {
1694		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1695		    sc->sc_dev.dv_xname);
1696		return ETIMEDOUT;
1697	}
1698
1699	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1700
1701	ATW_WRITE(sc, ATW_BBPCTL, reg);
1702
1703	for (i = 1000; --i >= 0; ) {
1704		DELAY(100);
1705		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1706			break;
1707	}
1708
1709	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1710
1711	if (i < 0) {
1712		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1713		    sc->sc_dev.dv_xname, reg);
1714		return ETIMEDOUT;
1715	}
1716	if (val != NULL)
1717		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1718	return 0;
1719}
1720#endif /* ATW_DEBUG */
1721
1722/* Write a register on the Si4126 RF/IF synthesizer using the registers
1723 * provided by the ADM8211 for that purpose.
1724 *
1725 * val is 18 bits of data, and val is the 4-bit address of the register.
1726 *
1727 * Return 0 on success.
1728 */
1729static int
1730atw_si4126_write(sc, addr, val)
1731	struct atw_softc *sc;
1732	u_int addr, val;
1733{
1734	u_int32_t reg;
1735	int i;
1736
1737	for (i = 1000; --i >= 0; ) {
1738		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1739			break;
1740		DELAY(100);
1741	}
1742
1743	if (i < 0) {
1744		printf("%s: start atw_si4126_write, SYNCTL busy\n",
1745		    sc->sc_dev.dv_xname);
1746		return ETIMEDOUT;
1747	}
1748
1749	reg = sc->sc_synctl_wr |
1750	    LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1751
1752	ATW_WRITE(sc, ATW_SYNCTL, reg);
1753
1754	for (i = 1000; --i >= 0; ) {
1755		DELAY(100);
1756		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1757			break;
1758	}
1759
1760	/* restore to acceptable starting condition */
1761	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1762
1763	if (i < 0) {
1764		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1765		    sc->sc_dev.dv_xname, reg);
1766		return ETIMEDOUT;
1767	}
1768	return 0;
1769}
1770
1771/* Read 18-bit data from the 4-bit address addr in Si4126
1772 * RF synthesizer and write the data to *val. Return 0 on success.
1773 *
1774 * XXX This does not seem to work. The ADM8211 must require more or
1775 * different magic to read the chip than to write it.
1776 */
1777#ifdef ATW_DEBUG
1778static int
1779atw_si4126_read(sc, addr, val)
1780	struct atw_softc *sc;
1781	u_int addr;
1782	u_int *val;
1783{
1784	u_int32_t reg;
1785	int i;
1786
1787	for (i = 1000; --i >= 0; ) {
1788		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1789			break;
1790		DELAY(100);
1791	}
1792
1793	if (i < 0) {
1794		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1795		    sc->sc_dev.dv_xname);
1796		return ETIMEDOUT;
1797	}
1798
1799	reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1800
1801	ATW_WRITE(sc, ATW_SYNCTL, reg);
1802
1803	for (i = 1000; --i >= 0; ) {
1804		DELAY(100);
1805		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1806			break;
1807	}
1808
1809	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1810
1811	if (i < 0) {
1812		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1813		    sc->sc_dev.dv_xname, reg);
1814		return ETIMEDOUT;
1815	}
1816	if (val != NULL)
1817		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1818		                       ATW_SYNCTL_DATA_MASK);
1819	return 0;
1820}
1821#endif /* ATW_DEBUG */
1822
1823/* XXX is the endianness correct? test. */
1824#define	atw_calchash(addr) \
1825	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1826
1827/*
1828 * atw_filter_setup:
1829 *
1830 *	Set the ADM8211's receive filter.
1831 */
1832static void
1833atw_filter_setup(sc)
1834	struct atw_softc *sc;
1835{
1836	struct ieee80211com *ic = &sc->sc_ic;
1837	struct ethercom *ec = &ic->ic_ec;
1838	struct ifnet *ifp = &sc->sc_ic.ic_if;
1839	int hash;
1840	u_int32_t hashes[2] = { 0, 0 };
1841	struct ether_multi *enm;
1842	struct ether_multistep step;
1843
1844	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1845	    sc->sc_dev.dv_xname, sc->sc_flags));
1846
1847	/*
1848	 * If we're running, idle the receive engine.  If we're NOT running,
1849	 * we're being called from atw_init(), and our writing ATW_NAR will
1850	 * start the transmit and receive processes in motion.
1851	 */
1852	if (ifp->if_flags & IFF_RUNNING)
1853		atw_idle(sc, ATW_NAR_SR);
1854
1855	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1856
1857	ifp->if_flags &= ~IFF_ALLMULTI;
1858
1859	if (ifp->if_flags & IFF_PROMISC) {
1860		sc->sc_opmode |= ATW_NAR_PR;
1861allmulti:
1862		ifp->if_flags |= IFF_ALLMULTI;
1863		goto setit;
1864	}
1865
1866	/*
1867	 * Program the 64-bit multicast hash filter.
1868	 */
1869	ETHER_FIRST_MULTI(step, ec, enm);
1870	while (enm != NULL) {
1871		/* XXX */
1872		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1873		    ETHER_ADDR_LEN) != 0)
1874			goto allmulti;
1875
1876		hash = atw_calchash(enm->enm_addrlo);
1877		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1878		ETHER_NEXT_MULTI(step, enm);
1879	}
1880
1881	if (ifp->if_flags & IFF_BROADCAST) {
1882		hash = atw_calchash(etherbroadcastaddr);
1883		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1884	}
1885
1886	/* all bits set => hash is useless */
1887	if (~(hashes[0] & hashes[1]) == 0)
1888		goto allmulti;
1889
1890 setit:
1891	if (ifp->if_flags & IFF_ALLMULTI)
1892		sc->sc_opmode |= ATW_NAR_MM;
1893
1894	/* XXX in scan mode, do not filter packets. maybe this is
1895	 * unnecessary.
1896	 */
1897	if (ic->ic_state == IEEE80211_S_SCAN)
1898		sc->sc_opmode |= ATW_NAR_PR;
1899
1900	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1901	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1902	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1903	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1904	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1905
1906	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1907}
1908
1909/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1910 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1911 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1912 * no beacon with the preferred BSSID and SSID in the number of
1913 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1914 */
1915static void
1916atw_write_bssid(sc)
1917	struct atw_softc *sc;
1918{
1919	struct ieee80211com *ic = &sc->sc_ic;
1920	u_int8_t *bssid;
1921
1922	bssid = ic->ic_bss->ni_bssid;
1923
1924	ATW_WRITE(sc, ATW_ABDA1,
1925	    (ATW_READ(sc, ATW_ABDA1) &
1926	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1927	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1928	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1929
1930	ATW_WRITE(sc, ATW_BSSID0,
1931	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1932	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1933	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1934	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1935
1936	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1937	    ether_sprintf(sc->sc_bssid)));
1938	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1939
1940	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1941}
1942
1943/* Tell the ADM8211 how many beacon intervals must pass without
1944 * receiving a beacon with the preferred BSSID & SSID set by
1945 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1946 * raised.
1947 */
1948static void
1949atw_write_bcn_thresh(sc)
1950	struct atw_softc *sc;
1951{
1952	struct ieee80211com *ic = &sc->sc_ic;
1953	int lost_bcn_thresh;
1954
1955	/* Lose link after one second or 7 beacons, whichever comes
1956	 * first, but do not lose link before 2 beacons are lost.
1957	 *
1958	 * In host AP mode, set the lost-beacon threshold to 0.
1959	 */
1960	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1961		lost_bcn_thresh = 0;
1962	else
1963		lost_bcn_thresh = MAX(2,
1964		    MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
1965
1966	/* XXX resets wake-up status bits */
1967	ATW_WRITE(sc, ATW_WCSR,
1968	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1969	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1970
1971	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1972	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1973
1974	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1975
1976	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1977	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1978}
1979
1980/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1981 * 16-bit word.
1982 */
1983static void
1984atw_write_sram(sc, ofs, buf, buflen)
1985	struct atw_softc *sc;
1986	u_int ofs;
1987	u_int8_t *buf;
1988	u_int buflen;
1989{
1990	u_int i;
1991	u_int8_t *ptr;
1992
1993	memcpy(&sc->sc_sram[ofs], buf, buflen);
1994
1995	if (ofs % 2 != 0) {
1996		ofs--;
1997		buflen++;
1998	}
1999
2000	if (buflen % 2 != 0)
2001		buflen++;
2002
2003	assert(buflen + ofs <= ATW_SRAM_SIZE);
2004
2005	ptr = &sc->sc_sram[ofs];
2006
2007	for (i = 0; i < buflen; i += 2) {
2008		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2009		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2010		DELAY(atw_writewep_delay);
2011
2012		ATW_WRITE(sc, ATW_WESK,
2013		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2014		DELAY(atw_writewep_delay);
2015	}
2016	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2017
2018	if (sc->sc_if.if_flags & IFF_DEBUG) {
2019		int n_octets = 0;
2020		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2021		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2022		for (i = 0; i < buflen; i++) {
2023			printf(" %02x", ptr[i]);
2024			if (++n_octets % 24 == 0)
2025				printf("\n");
2026		}
2027		if (n_octets % 24 != 0)
2028			printf("\n");
2029	}
2030}
2031
2032/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2033static void
2034atw_write_wep(sc)
2035	struct atw_softc *sc;
2036{
2037	struct ieee80211com *ic = &sc->sc_ic;
2038	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2039	u_int8_t buf[IEEE80211_WEP_NKID]
2040	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2041	u_int32_t reg;
2042	int i;
2043
2044	sc->sc_wepctl = 0;
2045	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2046
2047	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2048		return;
2049
2050	memset(&buf[0][0], 0, sizeof(buf));
2051
2052	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2053		if (ic->ic_nw_keys[i].wk_len > 5) {
2054			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2055		} else if (ic->ic_nw_keys[i].wk_len != 0) {
2056			buf[i][1] = ATW_WEP_ENABLED;
2057		} else {
2058			buf[i][1] = 0;
2059			continue;
2060		}
2061		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2062		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2063		    ic->ic_nw_keys[i].wk_len - 1);
2064	}
2065
2066	reg = ATW_READ(sc, ATW_MACTEST);
2067	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2068	reg &= ~ATW_MACTEST_KEYID_MASK;
2069	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2070	ATW_WRITE(sc, ATW_MACTEST, reg);
2071
2072	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2073	 * throughout.)
2074	 */
2075	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2076	if (sc->sc_if.if_flags & IFF_LINK2)
2077		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2078
2079	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2080	    sizeof(buf));
2081}
2082
2083const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2084
2085static void
2086atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2087    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2088{
2089	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2090
2091	switch (subtype) {
2092	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2093		/* do nothing: hardware answers probe request */
2094		break;
2095	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2096	case IEEE80211_FC0_SUBTYPE_BEACON:
2097		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2098		break;
2099	default:
2100		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2101		break;
2102	}
2103	return;
2104}
2105
2106/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2107 * of IBSSs with like SSID/channel but different BSSID. It joins the
2108 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2109 * convention. Possibly the ADMtek chip does this for us; I will have
2110 * to test to find out.
2111 *
2112 * XXX we should add the duration field of the received beacon to
2113 * the TSF time it contains before comparing it with the ADM8211's
2114 * TSF.
2115 */
2116static void
2117atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2118    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2119{
2120	struct atw_softc *sc;
2121	struct ieee80211_frame *wh;
2122	u_int64_t tsft, bcn_tsft;
2123	u_int32_t tsftl, tsfth;
2124	int do_print = 0;
2125
2126	sc = (struct atw_softc*)ic->ic_if.if_softc;
2127
2128	if (ic->ic_if.if_flags & IFF_DEBUG)
2129		do_print = (ic->ic_if.if_flags & IFF_LINK0)
2130		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2131
2132	wh = mtod(m0, struct ieee80211_frame *);
2133
2134	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2135
2136	if (ic->ic_state != IEEE80211_S_RUN) {
2137		if (do_print)
2138			printf("%s: atw_recv_beacon: not running\n",
2139			    sc->sc_dev.dv_xname);
2140		return;
2141	}
2142
2143	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2144	    ic->ic_bss->ni_chan)) == NULL) {
2145		if (do_print)
2146			printf("%s: atw_recv_beacon: no node %s\n",
2147			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2148		return;
2149	}
2150
2151	if (ieee80211_match_bss(ic, ni) != 0) {
2152		if (do_print)
2153			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2154			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2155		return;
2156	}
2157
2158	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2159		return;
2160
2161	if (do_print)
2162		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2163		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2164
2165	if (sc->sc_opmode != IEEE80211_M_IBSS)
2166		return;
2167
2168	/* If we read TSFTL right before rollover, we read a TSF timer
2169	 * that is too high rather than too low. This prevents a spurious
2170	 * synchronization down the line, however, our IBSS could suffer
2171	 * from a creeping TSF....
2172	 */
2173	tsftl = ATW_READ(sc, ATW_TSFTL);
2174	tsfth = ATW_READ(sc, ATW_TSFTH);
2175
2176	tsft = (u_int64_t)tsfth << 32 | tsftl;
2177	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2178
2179	if (do_print)
2180		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2181		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
2182
2183	/* we are faster, let the other guy catch up */
2184	if (bcn_tsft < tsft)
2185		return;
2186
2187	if (do_print)
2188		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2189		    ether_sprintf(wh->i_addr2));
2190
2191	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2192
2193#if 0
2194	atw_tsf(sc);
2195#endif
2196
2197	/* negotiate rates with new IBSS */
2198	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2199	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2200	if (ni->ni_rates.rs_nrates == 0) {
2201		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2202			ether_sprintf(ni->ni_bssid));
2203		return;
2204	}
2205
2206	if (do_print) {
2207		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2208		    ether_sprintf(ic->ic_bss->ni_bssid));
2209		printf("%s ", ether_sprintf(ni->ni_bssid));
2210		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2211	}
2212
2213	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2214
2215	atw_write_bssid(sc);
2216	atw_write_bcn_thresh(sc);
2217	atw_start_beacon(sc, 1);
2218}
2219
2220/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2221 * In ad hoc mode, the SSID is written to the beacons sent by the
2222 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2223 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2224 * indications.
2225 */
2226static void
2227atw_write_ssid(sc)
2228	struct atw_softc *sc;
2229{
2230	struct ieee80211com *ic = &sc->sc_ic;
2231	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2232	u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
2233	             1 /* for a round number */];
2234
2235	memset(buf, 0, sizeof(buf));
2236	buf[0] = ic->ic_bss->ni_esslen;
2237	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2238
2239	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2240}
2241
2242/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2243 * In ad hoc mode, the supported rates are written to beacons sent by the
2244 * ADM8211.
2245 */
2246static void
2247atw_write_sup_rates(sc)
2248	struct atw_softc *sc;
2249{
2250	struct ieee80211com *ic = &sc->sc_ic;
2251	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2252	 * supported rates
2253	 */
2254	u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
2255	             1 /* for a round number */];
2256
2257	memset(buf, 0, sizeof(buf));
2258
2259	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2260
2261	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2262	    ic->ic_bss->ni_rates.rs_nrates);
2263
2264	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2265}
2266
2267/* Start/stop sending beacons. */
2268void
2269atw_start_beacon(struct atw_softc *sc, int start)
2270{
2271	struct ieee80211com *ic = &sc->sc_ic;
2272	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2273
2274	if (ATW_IS_ENABLED(sc) == 0)
2275		return;
2276
2277	len = capinfo = 0;
2278
2279	/* start beacons */
2280	len = sizeof(struct ieee80211_frame) +
2281	    8 /* timestamp */ + 2 /* beacon interval */ +
2282	    2 /* capability info */ +
2283	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2284	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2285	    3 /* DS parameters */ +
2286	    IEEE80211_CRC_LEN;
2287
2288	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2289
2290	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2291
2292	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2293	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2294
2295	if (!start)
2296		return;
2297
2298	/* TBD use ni_capinfo */
2299
2300	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2301		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2302	if (ic->ic_flags & IEEE80211_F_WEPON)
2303		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2304
2305	switch (ic->ic_opmode) {
2306	case IEEE80211_M_IBSS:
2307		len += 4; /* IBSS parameters */
2308		capinfo |= IEEE80211_CAPINFO_IBSS;
2309		break;
2310	case IEEE80211_M_HOSTAP:
2311		/* XXX 6-byte minimum TIM */
2312		len += atw_beacon_len_adjust;
2313		capinfo |= IEEE80211_CAPINFO_ESS;
2314		break;
2315	default:
2316		return;
2317	}
2318
2319	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2320	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2321
2322	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2323	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2324
2325	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2326	    sc->sc_dev.dv_xname, reg_bcnt));
2327
2328	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2329	    sc->sc_dev.dv_xname, reg_cap1));
2330}
2331
2332/* First beacon was sent at time 0 microseconds, current time is
2333 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2334 * microseconds.  Return the expected time in microseconds for the
2335 * beacon after next.
2336 */
2337static __inline u_int64_t
2338atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2339{
2340	return tsft + (tbtt - tsft % tbtt);
2341}
2342
2343/* If we've created an IBSS, write the TSF time in the ADM8211 to
2344 * the ieee80211com.
2345 *
2346 * Predict the next target beacon transmission time (TBTT) and
2347 * write it to the ADM8211.
2348 */
2349static void
2350atw_tsf(struct atw_softc *sc)
2351{
2352#define TBTTOFS 20 /* TU */
2353
2354	struct ieee80211com *ic = &sc->sc_ic;
2355	u_int64_t tsft, tbtt;
2356
2357	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2358	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2359	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2360		tsft = ATW_READ(sc, ATW_TSFTH);
2361		tsft <<= 32;
2362		tsft |= ATW_READ(sc, ATW_TSFTL);
2363		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2364	} else
2365		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2366
2367	tbtt = atw_predict_beacon(tsft,
2368	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2369
2370	/* skip one more beacon so that the TBTT cannot pass before
2371	 * we've programmed it, and also so that we can subtract a
2372	 * few TU so that we wake a little before TBTT.
2373	 */
2374	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2375
2376	/* wake up a little early */
2377	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2378
2379	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2380	    sc->sc_dev.dv_xname, tsft, tbtt));
2381
2382	ATW_WRITE(sc, ATW_TOFS1,
2383	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2384	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2385	    LSHIFT(
2386		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2387		ATW_TOFS1_TBTTPRE_MASK));
2388#undef TBTTOFS
2389}
2390
2391static void
2392atw_next_scan(void *arg)
2393{
2394	struct atw_softc *sc = arg;
2395	struct ieee80211com *ic = &sc->sc_ic;
2396	struct ifnet *ifp = &ic->ic_if;
2397	int s;
2398
2399	/* don't call atw_start w/o network interrupts blocked */
2400	s = splnet();
2401	if (ic->ic_state == IEEE80211_S_SCAN)
2402		ieee80211_next_scan(ifp);
2403	splx(s);
2404}
2405
2406/* Synchronize the hardware state with the software state. */
2407static int
2408atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2409{
2410	struct ifnet *ifp = &ic->ic_if;
2411	struct atw_softc *sc = ifp->if_softc;
2412	enum ieee80211_state ostate;
2413	int error;
2414
2415	ostate = ic->ic_state;
2416
2417	if (nstate == IEEE80211_S_INIT) {
2418		callout_stop(&sc->sc_scan_ch);
2419		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2420		atw_start_beacon(sc, 0);
2421		return (*sc->sc_newstate)(ic, nstate, arg);
2422	}
2423
2424	if ((error = atw_tune(sc)) != 0)
2425		return error;
2426
2427	switch (nstate) {
2428	case IEEE80211_S_ASSOC:
2429		break;
2430	case IEEE80211_S_INIT:
2431		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2432		break;
2433	case IEEE80211_S_SCAN:
2434		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2435		atw_write_bssid(sc);
2436
2437		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2438		    atw_next_scan, sc);
2439
2440		break;
2441	case IEEE80211_S_RUN:
2442		if (ic->ic_opmode == IEEE80211_M_STA)
2443			break;
2444		/*FALLTHROUGH*/
2445	case IEEE80211_S_AUTH:
2446		atw_write_bssid(sc);
2447		atw_write_bcn_thresh(sc);
2448		atw_write_ssid(sc);
2449		atw_write_sup_rates(sc);
2450
2451		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2452		    ic->ic_opmode == IEEE80211_M_MONITOR)
2453			break;
2454
2455		/* set listen interval
2456		 * XXX do software units agree w/ hardware?
2457		 */
2458		ATW_WRITE(sc, ATW_BPLI,
2459		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2460		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2461			   ATW_BPLI_LI_MASK));
2462
2463		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2464		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2465
2466		atw_tsf(sc);
2467		break;
2468	}
2469
2470	if (ostate == IEEE80211_S_SCAN && nstate != IEEE80211_S_SCAN)
2471		callout_stop(&sc->sc_scan_ch);
2472
2473	if (nstate == IEEE80211_S_RUN &&
2474	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2475	     ic->ic_opmode == IEEE80211_M_IBSS))
2476		atw_start_beacon(sc, 1);
2477	else
2478		atw_start_beacon(sc, 0);
2479
2480	return (*sc->sc_newstate)(ic, nstate, arg);
2481}
2482
2483/*
2484 * atw_add_rxbuf:
2485 *
2486 *	Add a receive buffer to the indicated descriptor.
2487 */
2488int
2489atw_add_rxbuf(sc, idx)
2490	struct atw_softc *sc;
2491	int idx;
2492{
2493	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2494	struct mbuf *m;
2495	int error;
2496
2497	MGETHDR(m, M_DONTWAIT, MT_DATA);
2498	if (m == NULL)
2499		return (ENOBUFS);
2500
2501	MCLGET(m, M_DONTWAIT);
2502	if ((m->m_flags & M_EXT) == 0) {
2503		m_freem(m);
2504		return (ENOBUFS);
2505	}
2506
2507	if (rxs->rxs_mbuf != NULL)
2508		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2509
2510	rxs->rxs_mbuf = m;
2511
2512	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2513	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2514	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2515	if (error) {
2516		printf("%s: can't load rx DMA map %d, error = %d\n",
2517		    sc->sc_dev.dv_xname, idx, error);
2518		panic("atw_add_rxbuf");	/* XXX */
2519	}
2520
2521	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2522	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2523
2524	ATW_INIT_RXDESC(sc, idx);
2525
2526	return (0);
2527}
2528
2529/*
2530 * atw_stop:		[ ifnet interface function ]
2531 *
2532 *	Stop transmission on the interface.
2533 */
2534void
2535atw_stop(ifp, disable)
2536	struct ifnet *ifp;
2537	int disable;
2538{
2539	struct atw_softc *sc = ifp->if_softc;
2540	struct ieee80211com *ic = &sc->sc_ic;
2541	struct atw_txsoft *txs;
2542
2543	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2544
2545	/* Disable interrupts. */
2546	ATW_WRITE(sc, ATW_IER, 0);
2547
2548	/* Stop the transmit and receive processes. */
2549	sc->sc_opmode = 0;
2550	ATW_WRITE(sc, ATW_NAR, 0);
2551	ATW_WRITE(sc, ATW_TDBD, 0);
2552	ATW_WRITE(sc, ATW_TDBP, 0);
2553	ATW_WRITE(sc, ATW_RDB, 0);
2554
2555	/*
2556	 * Release any queued transmit buffers.
2557	 */
2558	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2559		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2560		if (txs->txs_mbuf != NULL) {
2561			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2562			m_freem(txs->txs_mbuf);
2563			txs->txs_mbuf = NULL;
2564		}
2565		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2566	}
2567
2568	if (disable) {
2569		atw_rxdrain(sc);
2570		atw_disable(sc);
2571	}
2572
2573	/*
2574	 * Mark the interface down and cancel the watchdog timer.
2575	 */
2576	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2577	ifp->if_timer = 0;
2578
2579	/* XXX */
2580	atw_reset(sc);
2581}
2582
2583/*
2584 * atw_rxdrain:
2585 *
2586 *	Drain the receive queue.
2587 */
2588void
2589atw_rxdrain(sc)
2590	struct atw_softc *sc;
2591{
2592	struct atw_rxsoft *rxs;
2593	int i;
2594
2595	for (i = 0; i < ATW_NRXDESC; i++) {
2596		rxs = &sc->sc_rxsoft[i];
2597		if (rxs->rxs_mbuf == NULL)
2598			continue;
2599		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600		m_freem(rxs->rxs_mbuf);
2601		rxs->rxs_mbuf = NULL;
2602	}
2603}
2604
2605/*
2606 * atw_detach:
2607 *
2608 *	Detach an ADM8211 interface.
2609 */
2610int
2611atw_detach(sc)
2612	struct atw_softc *sc;
2613{
2614	struct ifnet *ifp = &sc->sc_ic.ic_if;
2615	struct atw_rxsoft *rxs;
2616	struct atw_txsoft *txs;
2617	int i;
2618
2619	/*
2620	 * Succeed now if there isn't any work to do.
2621	 */
2622	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2623		return (0);
2624
2625	ieee80211_ifdetach(ifp);
2626	if_detach(ifp);
2627
2628	for (i = 0; i < ATW_NRXDESC; i++) {
2629		rxs = &sc->sc_rxsoft[i];
2630		if (rxs->rxs_mbuf != NULL) {
2631			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2632			m_freem(rxs->rxs_mbuf);
2633			rxs->rxs_mbuf = NULL;
2634		}
2635		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2636	}
2637	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2638		txs = &sc->sc_txsoft[i];
2639		if (txs->txs_mbuf != NULL) {
2640			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2641			m_freem(txs->txs_mbuf);
2642			txs->txs_mbuf = NULL;
2643		}
2644		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2645	}
2646	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2647	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2648	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2649	    sizeof(struct atw_control_data));
2650	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2651
2652	shutdownhook_disestablish(sc->sc_sdhook);
2653	powerhook_disestablish(sc->sc_powerhook);
2654
2655	if (sc->sc_srom)
2656		free(sc->sc_srom, M_DEVBUF);
2657
2658	return (0);
2659}
2660
2661/* atw_shutdown: make sure the interface is stopped at reboot time. */
2662void
2663atw_shutdown(arg)
2664	void *arg;
2665{
2666	struct atw_softc *sc = arg;
2667
2668	atw_stop(&sc->sc_ic.ic_if, 1);
2669}
2670
2671int
2672atw_intr(arg)
2673	void *arg;
2674{
2675	struct atw_softc *sc = arg;
2676	struct ifnet *ifp = &sc->sc_ic.ic_if;
2677	u_int32_t status, rxstatus, txstatus, linkstatus;
2678	int handled = 0, txthresh;
2679
2680#ifdef DEBUG
2681	if (ATW_IS_ENABLED(sc) == 0)
2682		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2683#endif
2684
2685	/*
2686	 * If the interface isn't running, the interrupt couldn't
2687	 * possibly have come from us.
2688	 */
2689	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2690	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2691		return (0);
2692
2693	for (;;) {
2694		status = ATW_READ(sc, ATW_STSR);
2695
2696		if (status)
2697			ATW_WRITE(sc, ATW_STSR, status);
2698
2699		if (sc->sc_intr_ack != NULL)
2700			(*sc->sc_intr_ack)(sc);
2701
2702#ifdef ATW_DEBUG
2703#define PRINTINTR(flag) do { \
2704	if ((status & flag) != 0) { \
2705		printf("%s" #flag, delim); \
2706		delim = ","; \
2707	} \
2708} while (0)
2709
2710		if (atw_debug > 1 && status) {
2711			const char *delim = "<";
2712
2713			printf("%s: reg[STSR] = %x",
2714			    sc->sc_dev.dv_xname, status);
2715
2716			PRINTINTR(ATW_INTR_FBE);
2717			PRINTINTR(ATW_INTR_LINKOFF);
2718			PRINTINTR(ATW_INTR_LINKON);
2719			PRINTINTR(ATW_INTR_RCI);
2720			PRINTINTR(ATW_INTR_RDU);
2721			PRINTINTR(ATW_INTR_RPS);
2722			PRINTINTR(ATW_INTR_TCI);
2723			PRINTINTR(ATW_INTR_TDU);
2724			PRINTINTR(ATW_INTR_TLT);
2725			PRINTINTR(ATW_INTR_TPS);
2726			PRINTINTR(ATW_INTR_TRT);
2727			PRINTINTR(ATW_INTR_TUF);
2728			PRINTINTR(ATW_INTR_BCNTC);
2729			PRINTINTR(ATW_INTR_ATIME);
2730			PRINTINTR(ATW_INTR_TBTT);
2731			PRINTINTR(ATW_INTR_TSCZ);
2732			PRINTINTR(ATW_INTR_TSFTF);
2733			printf(">\n");
2734		}
2735#undef PRINTINTR
2736#endif /* ATW_DEBUG */
2737
2738		if ((status & sc->sc_inten) == 0)
2739			break;
2740
2741		handled = 1;
2742
2743		rxstatus = status & sc->sc_rxint_mask;
2744		txstatus = status & sc->sc_txint_mask;
2745		linkstatus = status & sc->sc_linkint_mask;
2746
2747		if (linkstatus) {
2748			atw_linkintr(sc, linkstatus);
2749		}
2750
2751		if (rxstatus) {
2752			/* Grab any new packets. */
2753			atw_rxintr(sc);
2754
2755			if (rxstatus & ATW_INTR_RDU) {
2756				printf("%s: receive ring overrun\n",
2757				    sc->sc_dev.dv_xname);
2758				/* Get the receive process going again. */
2759				ATW_WRITE(sc, ATW_RDR, 0x1);
2760				break;
2761			}
2762		}
2763
2764		if (txstatus) {
2765			/* Sweep up transmit descriptors. */
2766			atw_txintr(sc);
2767
2768			if (txstatus & ATW_INTR_TLT)
2769				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2770				    sc->sc_dev.dv_xname));
2771
2772			if (txstatus & ATW_INTR_TRT)
2773				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2774				    sc->sc_dev.dv_xname));
2775
2776			/* If Tx under-run, increase our transmit threshold
2777			 * if another is available.
2778			 */
2779			txthresh = sc->sc_txthresh + 1;
2780			if ((txstatus & ATW_INTR_TUF) &&
2781			    sc->sc_txth[txthresh].txth_name != NULL) {
2782				/* Idle the transmit process. */
2783				atw_idle(sc, ATW_NAR_ST);
2784
2785				sc->sc_txthresh = txthresh;
2786				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2787				sc->sc_opmode |=
2788				    sc->sc_txth[txthresh].txth_opmode;
2789				printf("%s: transmit underrun; new "
2790				    "threshold: %s\n", sc->sc_dev.dv_xname,
2791				    sc->sc_txth[txthresh].txth_name);
2792
2793				/* Set the new threshold and restart
2794				 * the transmit process.
2795				 */
2796				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2797				/* XXX Log every Nth underrun from
2798				 * XXX now on?
2799				 */
2800			}
2801		}
2802
2803		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2804			if (status & ATW_INTR_TPS)
2805				printf("%s: transmit process stopped\n",
2806				    sc->sc_dev.dv_xname);
2807			if (status & ATW_INTR_RPS)
2808				printf("%s: receive process stopped\n",
2809				    sc->sc_dev.dv_xname);
2810			(void)atw_init(ifp);
2811			break;
2812		}
2813
2814		if (status & ATW_INTR_FBE) {
2815			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2816			(void)atw_init(ifp);
2817			break;
2818		}
2819
2820		/*
2821		 * Not handled:
2822		 *
2823		 *	Transmit buffer unavailable -- normal
2824		 *	condition, nothing to do, really.
2825		 *
2826		 *	Early receive interrupt -- not available on
2827		 *	all chips, we just use RI.  We also only
2828		 *	use single-segment receive DMA, so this
2829		 *	is mostly useless.
2830		 *
2831		 *      TBD others
2832		 */
2833	}
2834
2835	/* Try to get more packets going. */
2836	atw_start(ifp);
2837
2838	return (handled);
2839}
2840
2841/*
2842 * atw_idle:
2843 *
2844 *	Cause the transmit and/or receive processes to go idle.
2845 *
2846 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2847 *	process in STSR if I clear SR or ST after the process has already
2848 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2849 *      do not seem to be too reliable. Perhaps I have the sense of the
2850 *	Rx bits switched with the Tx bits?
2851 */
2852void
2853atw_idle(sc, bits)
2854	struct atw_softc *sc;
2855	u_int32_t bits;
2856{
2857	u_int32_t ackmask = 0, opmode, stsr, test0;
2858	int i, s;
2859
2860	/* without this, somehow we run concurrently w/ interrupt handler */
2861	s = splnet();
2862
2863	opmode = sc->sc_opmode & ~bits;
2864
2865	if (bits & ATW_NAR_SR)
2866		ackmask |= ATW_INTR_RPS;
2867
2868	if (bits & ATW_NAR_ST) {
2869		ackmask |= ATW_INTR_TPS;
2870		/* set ATW_NAR_HF to flush TX FIFO. */
2871		opmode |= ATW_NAR_HF;
2872	}
2873
2874	ATW_WRITE(sc, ATW_NAR, opmode);
2875
2876	for (i = 0; i < 1000; i++) {
2877		stsr = ATW_READ(sc, ATW_STSR);
2878		if ((stsr & ackmask) == ackmask)
2879			break;
2880		DELAY(10);
2881	}
2882
2883	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2884
2885	if ((stsr & ackmask) == ackmask)
2886		goto out;
2887
2888	test0 = ATW_READ(sc, ATW_TEST0);
2889
2890	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2891	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2892		printf("%s: transmit process not idle [%s]\n",
2893		    sc->sc_dev.dv_xname,
2894		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2895		printf("%s: bits %08x test0 %08x stsr %08x\n",
2896		    sc->sc_dev.dv_xname, bits, test0, stsr);
2897	}
2898
2899	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2900	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2901		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2902		    sc->sc_dev.dv_xname,
2903		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2904		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2905		    sc->sc_dev.dv_xname, bits, test0, stsr));
2906	}
2907out:
2908	splx(s);
2909	return;
2910}
2911
2912/*
2913 * atw_linkintr:
2914 *
2915 *	Helper; handle link-status interrupts.
2916 */
2917void
2918atw_linkintr(sc, linkstatus)
2919	struct atw_softc *sc;
2920	u_int32_t linkstatus;
2921{
2922	struct ieee80211com *ic = &sc->sc_ic;
2923
2924	if (ic->ic_state != IEEE80211_S_RUN)
2925		return;
2926
2927	if (linkstatus & ATW_INTR_LINKON) {
2928		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2929		sc->sc_rescan_timer = 0;
2930	} else if (linkstatus & ATW_INTR_LINKOFF) {
2931		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2932		switch (ic->ic_opmode) {
2933		case IEEE80211_M_IBSS:
2934			if (ic->ic_flags & IEEE80211_F_SIBSS)
2935				return;
2936			/* FALL THROUGH */
2937		case IEEE80211_M_STA:
2938			sc->sc_rescan_timer = 3;
2939			ic->ic_if.if_timer = 1;
2940			break;
2941		default:
2942			break;
2943		}
2944	}
2945}
2946
2947/*
2948 * atw_rxintr:
2949 *
2950 *	Helper; handle receive interrupts.
2951 */
2952void
2953atw_rxintr(sc)
2954	struct atw_softc *sc;
2955{
2956	static int rate_tbl[] = {2, 4, 11, 22, 44};
2957	struct ieee80211com *ic = &sc->sc_ic;
2958	struct ieee80211_node *ni;
2959	struct ieee80211_frame *wh;
2960	struct ifnet *ifp = &ic->ic_if;
2961	struct atw_rxsoft *rxs;
2962	struct mbuf *m;
2963	u_int32_t rxstat;
2964	int i, len, rate, rate0, rssi;
2965
2966	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2967		rxs = &sc->sc_rxsoft[i];
2968
2969		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2970
2971		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2972		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2973		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2974
2975		if (rxstat & ATW_RXSTAT_OWN)
2976			break; /* We have processed all receive buffers. */
2977
2978		ATW_DPRINTF3(("%s: rssi %d\n", sc->sc_dev.dv_xname, rssi));
2979
2980		/*
2981		 * Make sure the packet fit in one buffer.  This should
2982		 * always be the case.
2983		 */
2984		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2985		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2986			printf("%s: incoming packet spilled, resetting\n",
2987			    sc->sc_dev.dv_xname);
2988			(void)atw_init(ifp);
2989			return;
2990		}
2991
2992		/*
2993		 * If an error occurred, update stats, clear the status
2994		 * word, and leave the packet buffer in place.  It will
2995		 * simply be reused the next time the ring comes around.
2996	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2997		 * error.
2998		 */
2999
3000		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3001		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3002		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3003		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3004				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3005				ATW_RXSTAT_ICVE)) != 0)) {
3006#define	PRINTERR(bit, str)						\
3007			if (rxstat & (bit))				\
3008				printf("%s: receive error: %s\n",	\
3009				    sc->sc_dev.dv_xname, str)
3010			ifp->if_ierrors++;
3011			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3012			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3013			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3014			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3015			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3016			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3017			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3018#undef PRINTERR
3019			ATW_INIT_RXDESC(sc, i);
3020			continue;
3021		}
3022
3023		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3024		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3025
3026		/*
3027		 * No errors; receive the packet.  Note the ADM8211
3028		 * includes the CRC in promiscuous mode.
3029		 */
3030		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3031
3032		/*
3033		 * Allocate a new mbuf cluster.  If that fails, we are
3034		 * out of memory, and must drop the packet and recycle
3035		 * the buffer that's already attached to this descriptor.
3036		 */
3037		m = rxs->rxs_mbuf;
3038		if (atw_add_rxbuf(sc, i) != 0) {
3039			ifp->if_ierrors++;
3040			ATW_INIT_RXDESC(sc, i);
3041			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3042			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3043			continue;
3044		}
3045
3046		ifp->if_ipackets++;
3047		if (sc->sc_opmode & ATW_NAR_PR)
3048			m->m_flags |= M_HASFCS;
3049		m->m_pkthdr.rcvif = ifp;
3050		m->m_pkthdr.len = m->m_len = len;
3051
3052		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3053			rate = 0;
3054		else
3055			rate = rate_tbl[rate0];
3056
3057#if NBPFILTER > 0
3058		/*
3059		 * Pass this up to any BPF listeners, but only
3060		 * pass it up the stack if it's for us.
3061		 */
3062		if (sc->sc_radiobpf) {
3063			/* TBD capture DLT_IEEE802_11_RADIO */
3064		}
3065#endif /* NPBFILTER > 0 */
3066
3067		wh = mtod(m, struct ieee80211_frame *);
3068		if (ic->ic_opmode != IEEE80211_M_STA) {
3069			ni = ieee80211_find_node(ic, wh->i_addr2);
3070			if (ni == NULL)
3071				ni = ieee80211_ref_node(ic->ic_bss);
3072		} else
3073			ni = ieee80211_ref_node(ic->ic_bss);
3074		ieee80211_input(ifp, m, ni, rssi, 0);
3075		/*
3076		 * The frame may have caused the node to be marked for
3077		 * reclamation (e.g. in response to a DEAUTH message)
3078		 * so use free_node here instead of unref_node.
3079		 */
3080		if (ni == ic->ic_bss)
3081			ieee80211_unref_node(&ni);
3082		else
3083			ieee80211_free_node(ic, ni);
3084	}
3085
3086	/* Update the receive pointer. */
3087	sc->sc_rxptr = i;
3088}
3089
3090/*
3091 * atw_txintr:
3092 *
3093 *	Helper; handle transmit interrupts.
3094 */
3095void
3096atw_txintr(sc)
3097	struct atw_softc *sc;
3098{
3099#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3100    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3101#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3102    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3103
3104	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3105	struct ifnet *ifp = &sc->sc_ic.ic_if;
3106	struct atw_txsoft *txs;
3107	u_int32_t txstat;
3108
3109	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3110	    sc->sc_dev.dv_xname, sc->sc_flags));
3111
3112	ifp->if_flags &= ~IFF_OACTIVE;
3113
3114	/*
3115	 * Go through our Tx list and free mbufs for those
3116	 * frames that have been transmitted.
3117	 */
3118	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3119		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3120		    txs->txs_ndescs,
3121		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3122
3123#ifdef ATW_DEBUG
3124		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3125			int i;
3126			printf("    txsoft %p transmit chain:\n", txs);
3127			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3128				printf("     descriptor %d:\n", i);
3129				printf("       at_status:   0x%08x\n",
3130				    le32toh(sc->sc_txdescs[i].at_stat));
3131				printf("       at_flags:      0x%08x\n",
3132				    le32toh(sc->sc_txdescs[i].at_flags));
3133				printf("       at_buf1: 0x%08x\n",
3134				    le32toh(sc->sc_txdescs[i].at_buf1));
3135				printf("       at_buf2: 0x%08x\n",
3136				    le32toh(sc->sc_txdescs[i].at_buf2));
3137				if (i == txs->txs_lastdesc)
3138					break;
3139			}
3140		}
3141#endif
3142
3143		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3144		if (txstat & ATW_TXSTAT_OWN)
3145			break;
3146
3147		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3148
3149		sc->sc_txfree += txs->txs_ndescs;
3150
3151		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3152		    0, txs->txs_dmamap->dm_mapsize,
3153		    BUS_DMASYNC_POSTWRITE);
3154		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3155		m_freem(txs->txs_mbuf);
3156		txs->txs_mbuf = NULL;
3157
3158		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3159
3160		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3161		    (txstat & TXSTAT_ERRMASK) != 0) {
3162			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3163			    txstat_buf, sizeof(txstat_buf));
3164			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3165			    txstat_buf,
3166			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3167		}
3168
3169		/*
3170		 * Check for errors and collisions.
3171		 */
3172		if (txstat & ATW_TXSTAT_TUF)
3173			sc->sc_stats.ts_tx_tuf++;
3174		if (txstat & ATW_TXSTAT_TLT)
3175			sc->sc_stats.ts_tx_tlt++;
3176		if (txstat & ATW_TXSTAT_TRT)
3177			sc->sc_stats.ts_tx_trt++;
3178		if (txstat & ATW_TXSTAT_TRO)
3179			sc->sc_stats.ts_tx_tro++;
3180		if (txstat & ATW_TXSTAT_SOFBR) {
3181			sc->sc_stats.ts_tx_sofbr++;
3182		}
3183
3184		if ((txstat & ATW_TXSTAT_ES) == 0)
3185			ifp->if_collisions +=
3186			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3187		else
3188			ifp->if_oerrors++;
3189
3190		ifp->if_opackets++;
3191	}
3192
3193	/*
3194	 * If there are no more pending transmissions, cancel the watchdog
3195	 * timer.
3196	 */
3197	if (txs == NULL)
3198		sc->sc_tx_timer = 0;
3199#undef TXSTAT_ERRMASK
3200#undef TXSTAT_FMT
3201}
3202
3203/*
3204 * atw_watchdog:	[ifnet interface function]
3205 *
3206 *	Watchdog timer handler.
3207 */
3208void
3209atw_watchdog(ifp)
3210	struct ifnet *ifp;
3211{
3212	struct atw_softc *sc = ifp->if_softc;
3213	struct ieee80211com *ic = &sc->sc_ic;
3214
3215	ifp->if_timer = 0;
3216	if (ATW_IS_ENABLED(sc) == 0)
3217		return;
3218
3219	if (sc->sc_rescan_timer) {
3220		if (--sc->sc_rescan_timer == 0)
3221			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3222	}
3223	if (sc->sc_tx_timer) {
3224		if (--sc->sc_tx_timer == 0 &&
3225		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3226			printf("%s: transmit timeout\n", ifp->if_xname);
3227			ifp->if_oerrors++;
3228			(void)atw_init(ifp);
3229			atw_start(ifp);
3230		}
3231	}
3232	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3233		ifp->if_timer = 1;
3234	ieee80211_watchdog(ifp);
3235}
3236
3237/* Compute the 802.11 Duration field and the PLCP Length fields for
3238 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3239 * Write the fields to the ADM8211 Tx header, frm.
3240 *
3241 * TBD use the fragmentation threshold to find the right duration for
3242 * the first & last fragments.
3243 *
3244 * TBD make certain of the duration fields applied by the ADM8211 to each
3245 * fragment. I think that the ADM8211 knows how to subtract the CTS
3246 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3247 * I also think that the ADM8211 does *some* arithmetic for us, because
3248 * otherwise I think we would have to set a first duration for CTS/first
3249 * fragment, a second duration for fragments between the first and the
3250 * last, and a third duration for the last fragment.
3251 *
3252 * TBD make certain that duration fields reflect addition of FCS/WEP
3253 * and correct duration arithmetic as necessary.
3254 */
3255static void
3256atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3257    int len)
3258{
3259	int remainder;
3260
3261	/* deal also with encrypted fragments */
3262	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3263		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3264		    sc->sc_dev.dv_xname));
3265		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3266		       IEEE80211_WEP_CRCLEN;
3267	}
3268
3269	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3270	 * duration (XXX added by MAC?).
3271	 */
3272	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3273	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3274
3275	if (rate <= 4)
3276		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3277		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3278		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3279		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3280		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3281	else
3282		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3283		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3284		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3285		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3286		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3287
3288	/* lengthen duration if long preamble */
3289	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3290		frm->atw_head_dur +=
3291		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3292		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3293		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3294		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3295
3296	if (remainder != 0)
3297		frm->atw_head_dur++;
3298
3299	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3300	    (rate == 2 || rate == 4)) {
3301		/* derived from Linux: how could this be right? */
3302		frm->atw_head_plcplen = frm->atw_head_dur;
3303	} else {
3304		frm->atw_head_plcplen = (16 * len) / rate;
3305		remainder = (80 * len) % (rate * 5);
3306
3307		if (remainder != 0) {
3308			frm->atw_head_plcplen++;
3309
3310			/* XXX magic */
3311			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3312			    rate == 22 && remainder <= 30)
3313				frm->atw_head_plcplen |= 0x8000;
3314		}
3315	}
3316	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3317	    htole16(frm->atw_head_plcplen);
3318	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3319}
3320
3321#ifdef ATW_DEBUG
3322static void
3323atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3324{
3325	struct atw_softc *sc = ifp->if_softc;
3326	struct mbuf *m;
3327	int i, noctets = 0;
3328
3329	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3330	    m0->m_pkthdr.len);
3331
3332	for (m = m0; m; m = m->m_next) {
3333		if (m->m_len == 0)
3334			continue;
3335		for (i = 0; i < m->m_len; i++) {
3336			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3337			if (++noctets % 24 == 0)
3338				printf("\n");
3339		}
3340	}
3341	printf("%s%s: %d bytes emitted\n",
3342	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3343}
3344#endif /* ATW_DEBUG */
3345
3346/*
3347 * atw_start:		[ifnet interface function]
3348 *
3349 *	Start packet transmission on the interface.
3350 */
3351void
3352atw_start(ifp)
3353	struct ifnet *ifp;
3354{
3355	struct atw_softc *sc = ifp->if_softc;
3356	struct ieee80211com *ic = &sc->sc_ic;
3357	struct ieee80211_node *ni;
3358	struct ieee80211_frame *wh;
3359	struct atw_frame *hh;
3360	struct mbuf *m0, *m;
3361	struct atw_txsoft *txs, *last_txs;
3362	struct atw_txdesc *txd;
3363	int do_encrypt, rate;
3364	bus_dmamap_t dmamap;
3365	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3366
3367	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3368	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3369
3370	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3371		return;
3372
3373#if 0 /* TBD ??? */
3374	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3375		return;
3376#endif
3377
3378	/*
3379	 * Remember the previous number of free descriptors and
3380	 * the first descriptor we'll use.
3381	 */
3382	ofree = sc->sc_txfree;
3383	firsttx = sc->sc_txnext;
3384
3385	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3386	    sc->sc_dev.dv_xname, ofree, firsttx));
3387
3388	/*
3389	 * Loop through the send queue, setting up transmit descriptors
3390	 * until we drain the queue, or use up all available transmit
3391	 * descriptors.
3392	 */
3393	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3394	       sc->sc_txfree != 0) {
3395
3396		do_encrypt = 0;
3397		/*
3398		 * Grab a packet off the management queue, if it
3399		 * is not empty. Otherwise, from the data queue.
3400		 */
3401		IF_DEQUEUE(&ic->ic_mgtq, m0);
3402		if (m0 != NULL) {
3403			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3404			m0->m_pkthdr.rcvif = NULL;
3405		} else {
3406			IFQ_DEQUEUE(&ifp->if_snd, m0);
3407			if (m0 == NULL)
3408				break;
3409#if NBPFILTER > 0
3410			if (ifp->if_bpf != NULL)
3411				bpf_mtap(ifp->if_bpf, m0);
3412#endif /* NBPFILTER > 0 */
3413			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3414				ifp->if_oerrors++;
3415				break;
3416			}
3417		}
3418
3419#if NBPFILTER > 0
3420		/*
3421		 * Pass the packet to any BPF listeners.
3422		 */
3423		if (ic->ic_rawbpf != NULL)
3424			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3425		if (sc->sc_radiobpf != NULL)
3426			; /* TBD tap w/ radio header */
3427#endif /* NBPFILTER > 0 */
3428
3429		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3430
3431		if (ni != NULL && ni != ic->ic_bss)
3432			ieee80211_free_node(ic, ni);
3433
3434		if (m0 == NULL) {
3435			ifp->if_oerrors++;
3436			break;
3437		}
3438
3439		/* just to make sure. */
3440		m0 = m_pullup(m0, sizeof(struct atw_frame));
3441
3442		if (m0 == NULL) {
3443			ifp->if_oerrors++;
3444			break;
3445		}
3446
3447		hh = mtod(m0, struct atw_frame *);
3448		wh = &hh->atw_ihdr;
3449
3450		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3451
3452		/* Copy everything we need from the 802.11 header:
3453		 * Frame Control; address 1, address 3, or addresses
3454		 * 3 and 4. NIC fills in BSSID, SA.
3455		 */
3456		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3457			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3458				panic("%s: illegal WDS frame",
3459				    sc->sc_dev.dv_xname);
3460			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3461		} else
3462			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3463
3464		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3465
3466		/* initialize remaining Tx parameters */
3467		memset(&hh->u, 0, sizeof(hh->u));
3468
3469		rate = MAX(ieee80211_get_rate(ic), 2);
3470
3471		hh->atw_rate = rate * 5;
3472		/* XXX this could be incorrect if M_FCS. _encap should
3473		 * probably strip FCS just in case it sticks around in
3474		 * bridged packets.
3475		 */
3476		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3477		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3478		    sizeof(struct atw_frame));
3479
3480#if 0
3481		/* this virtually guaranteed that WEP-encrypted frames
3482		 * are fragmented. oops.
3483		 */
3484		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3485		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3486		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3487#else
3488		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3489#endif
3490
3491		hh->atw_rtylmt = 3;
3492		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3493		if (do_encrypt) {
3494			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3495			hh->atw_keyid = ic->ic_wep_txkey;
3496		}
3497
3498		/* TBD 4-addr frames */
3499		atw_frame_setdurs(sc, hh, rate,
3500		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3501		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3502
3503		/* never fragment multicast frames */
3504		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3505			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3506		} else if (sc->sc_flags & ATWF_RTSCTS) {
3507			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3508		}
3509
3510#ifdef ATW_DEBUG
3511		/* experimental stuff */
3512		if (atw_xrtylmt != ~0)
3513			hh->atw_rtylmt = atw_xrtylmt;
3514		if (atw_xhdrctl != 0)
3515			hh->atw_hdrctl |= htole16(atw_xhdrctl);
3516		if (atw_xservice != IEEE80211_PLCP_SERVICE)
3517			hh->atw_service = atw_xservice;
3518		if (atw_xpaylen != 0)
3519			hh->atw_paylen = htole16(atw_xpaylen);
3520		hh->atw_fragnum = 0;
3521
3522		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3523			printf("%s: dst = %s, rate = 0x%02x, "
3524			    "service = 0x%02x, paylen = 0x%04x\n",
3525			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3526			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3527
3528			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3529			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3530			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3531			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3532			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3533			    hh->atw_tail_dur, hh->atw_head_dur);
3534
3535			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3536			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3537			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3538			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3539
3540			printf("%s: keyid = %d\n",
3541			    sc->sc_dev.dv_xname, hh->atw_keyid);
3542
3543			atw_dump_pkt(ifp, m0);
3544		}
3545#endif /* ATW_DEBUG */
3546
3547		dmamap = txs->txs_dmamap;
3548
3549		/*
3550		 * Load the DMA map.  Copy and try (once) again if the packet
3551		 * didn't fit in the alloted number of segments.
3552		 */
3553		for (first = 1;
3554		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3555		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3556		     first = 0) {
3557			MGETHDR(m, M_DONTWAIT, MT_DATA);
3558			if (m == NULL) {
3559				printf("%s: unable to allocate Tx mbuf\n",
3560				    sc->sc_dev.dv_xname);
3561				break;
3562			}
3563			if (m0->m_pkthdr.len > MHLEN) {
3564				MCLGET(m, M_DONTWAIT);
3565				if ((m->m_flags & M_EXT) == 0) {
3566					printf("%s: unable to allocate Tx "
3567					    "cluster\n", sc->sc_dev.dv_xname);
3568					m_freem(m);
3569					break;
3570				}
3571			}
3572			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3573			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3574			m_freem(m0);
3575			m0 = m;
3576			m = NULL;
3577		}
3578		if (error != 0) {
3579			printf("%s: unable to load Tx buffer, "
3580			    "error = %d\n", sc->sc_dev.dv_xname, error);
3581			m_freem(m0);
3582			break;
3583		}
3584
3585		/*
3586		 * Ensure we have enough descriptors free to describe
3587		 * the packet.
3588		 */
3589		if (dmamap->dm_nsegs > sc->sc_txfree) {
3590			/*
3591			 * Not enough free descriptors to transmit
3592			 * this packet.  Unload the DMA map and
3593			 * drop the packet.  Notify the upper layer
3594			 * that there are no more slots left.
3595			 *
3596			 * XXX We could allocate an mbuf and copy, but
3597			 * XXX it is worth it?
3598			 */
3599			ifp->if_flags |= IFF_OACTIVE;
3600			bus_dmamap_unload(sc->sc_dmat, dmamap);
3601			m_freem(m0);
3602			break;
3603		}
3604
3605		/*
3606		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3607		 */
3608
3609		/* Sync the DMA map. */
3610		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3611		    BUS_DMASYNC_PREWRITE);
3612
3613		/* XXX arbitrary retry limit; 8 because I have seen it in
3614		 * use already and maybe 0 means "no tries" !
3615		 */
3616		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3617
3618		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3619		    sc->sc_dev.dv_xname, rate * 5));
3620		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3621
3622		/*
3623		 * Initialize the transmit descriptors.
3624		 */
3625		for (nexttx = sc->sc_txnext, seg = 0;
3626		     seg < dmamap->dm_nsegs;
3627		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3628			/*
3629			 * If this is the first descriptor we're
3630			 * enqueueing, don't set the OWN bit just
3631			 * yet.  That could cause a race condition.
3632			 * We'll do it below.
3633			 */
3634			txd = &sc->sc_txdescs[nexttx];
3635			txd->at_ctl = ctl |
3636			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3637
3638			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3639			txd->at_flags =
3640			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3641			                   ATW_TXFLAG_TBS1_MASK)) |
3642			    ((nexttx == (ATW_NTXDESC - 1))
3643			        ? htole32(ATW_TXFLAG_TER) : 0);
3644			lasttx = nexttx;
3645		}
3646
3647		KASSERT(lasttx != -1);
3648		/* Set `first segment' and `last segment' appropriately. */
3649		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3650		    htole32(ATW_TXFLAG_FS);
3651		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3652
3653#ifdef ATW_DEBUG
3654		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3655			printf("     txsoft %p transmit chain:\n", txs);
3656			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3657				printf("     descriptor %d:\n", seg);
3658				printf("       at_ctl:   0x%08x\n",
3659				    le32toh(sc->sc_txdescs[seg].at_ctl));
3660				printf("       at_flags:      0x%08x\n",
3661				    le32toh(sc->sc_txdescs[seg].at_flags));
3662				printf("       at_buf1: 0x%08x\n",
3663				    le32toh(sc->sc_txdescs[seg].at_buf1));
3664				printf("       at_buf2: 0x%08x\n",
3665				    le32toh(sc->sc_txdescs[seg].at_buf2));
3666				if (seg == lasttx)
3667					break;
3668			}
3669		}
3670#endif
3671
3672		/* Sync the descriptors we're using. */
3673		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3674		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3675
3676		/*
3677		 * Store a pointer to the packet so we can free it later,
3678		 * and remember what txdirty will be once the packet is
3679		 * done.
3680		 */
3681		txs->txs_mbuf = m0;
3682		txs->txs_firstdesc = sc->sc_txnext;
3683		txs->txs_lastdesc = lasttx;
3684		txs->txs_ndescs = dmamap->dm_nsegs;
3685
3686		/* Advance the tx pointer. */
3687		sc->sc_txfree -= dmamap->dm_nsegs;
3688		sc->sc_txnext = nexttx;
3689
3690		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3691		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3692
3693		last_txs = txs;
3694	}
3695
3696	if (txs == NULL || sc->sc_txfree == 0) {
3697		/* No more slots left; notify upper layer. */
3698		ifp->if_flags |= IFF_OACTIVE;
3699	}
3700
3701	if (sc->sc_txfree != ofree) {
3702		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3703		    sc->sc_dev.dv_xname, lasttx, firsttx));
3704		/*
3705		 * Cause a transmit interrupt to happen on the
3706		 * last packet we enqueued.
3707		 */
3708		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3709		ATW_CDTXSYNC(sc, lasttx, 1,
3710		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3711
3712		/*
3713		 * The entire packet chain is set up.  Give the
3714		 * first descriptor to the chip now.
3715		 */
3716		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3717		ATW_CDTXSYNC(sc, firsttx, 1,
3718		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3719
3720		/* Wake up the transmitter. */
3721		/* XXX USE AUTOPOLLING? */
3722		ATW_WRITE(sc, ATW_TDR, 0x1);
3723
3724		/* Set a watchdog timer in case the chip flakes out. */
3725		sc->sc_tx_timer = 5;
3726		ifp->if_timer = 1;
3727	}
3728}
3729
3730/*
3731 * atw_power:
3732 *
3733 *	Power management (suspend/resume) hook.
3734 */
3735void
3736atw_power(why, arg)
3737	int why;
3738	void *arg;
3739{
3740	struct atw_softc *sc = arg;
3741	struct ifnet *ifp = &sc->sc_ic.ic_if;
3742	int s;
3743
3744	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3745
3746	s = splnet();
3747	switch (why) {
3748	case PWR_STANDBY:
3749		/* XXX do nothing. */
3750		break;
3751	case PWR_SUSPEND:
3752		atw_stop(ifp, 0);
3753		if (sc->sc_power != NULL)
3754			(*sc->sc_power)(sc, why);
3755		break;
3756	case PWR_RESUME:
3757		if (ifp->if_flags & IFF_UP) {
3758			if (sc->sc_power != NULL)
3759				(*sc->sc_power)(sc, why);
3760			atw_init(ifp);
3761		}
3762		break;
3763	case PWR_SOFTSUSPEND:
3764	case PWR_SOFTSTANDBY:
3765	case PWR_SOFTRESUME:
3766		break;
3767	}
3768	splx(s);
3769}
3770
3771/*
3772 * atw_ioctl:		[ifnet interface function]
3773 *
3774 *	Handle control requests from the operator.
3775 */
3776int
3777atw_ioctl(ifp, cmd, data)
3778	struct ifnet *ifp;
3779	u_long cmd;
3780	caddr_t data;
3781{
3782	struct atw_softc *sc = ifp->if_softc;
3783	struct ifreq *ifr = (struct ifreq *)data;
3784	int s, error = 0;
3785
3786	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3787	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3788		return ENXIO;
3789
3790	s = splnet();
3791
3792	switch (cmd) {
3793	case SIOCSIFFLAGS:
3794		if (ifp->if_flags & IFF_UP) {
3795			if (ATW_IS_ENABLED(sc)) {
3796				/*
3797				 * To avoid rescanning another access point,
3798				 * do not call atw_init() here.  Instead,
3799				 * only reflect media settings.
3800				 */
3801				atw_filter_setup(sc);
3802			} else
3803				error = atw_init(ifp);
3804		} else if (ATW_IS_ENABLED(sc))
3805			atw_stop(ifp, 1);
3806		break;
3807	case SIOCADDMULTI:
3808	case SIOCDELMULTI:
3809		error = (cmd == SIOCADDMULTI) ?
3810		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3811		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3812		if (error == ENETRESET) {
3813			if (ATW_IS_ENABLED(sc))
3814				atw_filter_setup(sc); /* do not rescan */
3815			error = 0;
3816		}
3817		break;
3818	default:
3819		error = ieee80211_ioctl(ifp, cmd, data);
3820		if (error == ENETRESET) {
3821			if (ATW_IS_ENABLED(sc))
3822				error = atw_init(ifp);
3823			else
3824				error = 0;
3825		}
3826		break;
3827	}
3828
3829	/* Try to get more packets going. */
3830	if (ATW_IS_ENABLED(sc))
3831		atw_start(ifp);
3832
3833	splx(s);
3834	return (error);
3835}
3836
3837static int
3838atw_media_change(struct ifnet *ifp)
3839{
3840	int error;
3841
3842	error = ieee80211_media_change(ifp);
3843	if (error == ENETRESET) {
3844		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3845		    (IFF_RUNNING|IFF_UP))
3846			atw_init(ifp);		/* XXX lose error */
3847		error = 0;
3848	}
3849	return error;
3850}
3851
3852static void
3853atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3854{
3855	struct atw_softc *sc = ifp->if_softc;
3856
3857	if (ATW_IS_ENABLED(sc) == 0) {
3858		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3859		imr->ifm_status = 0;
3860		return;
3861	}
3862	ieee80211_media_status(ifp, imr);
3863}
3864