atw.c revision 1.19
1/*	$NetBSD: atw.c,v 1.19 2004/01/13 23:37:29 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.19 2004/01/13 23:37:29 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_compat.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/atwvar.h>
82#include <dev/ic/smc93cx6var.h>
83
84/* XXX TBD open questions
85 *
86 *
87 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
88 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
89 * handle this for me?
90 *
91 */
92/* device attachment
93 *
94 *    print TOFS[012]
95 *
96 * device initialization
97 *
98 *    clear ATW_FRCTL_MAXPSP to disable max power saving
99 *    set ATW_TXBR_ALCUPDATE to enable ALC
100 *    set TOFS[012]? (hope not)
101 *    disable rx/tx
102 *    set ATW_PAR_SWR (software reset)
103 *    wait for ATW_PAR_SWR clear
104 *    disable interrupts
105 *    ack status register
106 *    enable interrupts
107 *
108 * rx/tx initialization
109 *
110 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *    allocate and init descriptor rings
112 *    write ATW_PAR_DSL (descriptor skip length)
113 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
114 *    write ATW_NAR_SQ for one/both transmit descriptor rings
115 *    write ATW_NAR_SQ for one/both transmit descriptor rings
116 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
117 *
118 * rx/tx end
119 *
120 *    stop DMA
121 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
122 *    flush tx w/ ATW_NAR_HF
123 *
124 * scan
125 *
126 *    initialize rx/tx
127 *
128 * IBSS join/create
129 *
130 *    set ATW_NAR_EA (is set by ASIC?)
131 *
132 * BSS join: (re)association response
133 *
134 *    set ATW_FRCTL_AID
135 *
136 * optimizations ???
137 *
138 */
139
140#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144int atw_rfio_enable_delay = 20 * 1000;
145int atw_rfio_disable_delay = 2 * 1000;
146int atw_writewep_delay = 5;
147int atw_beacon_len_adjust = 4;
148int atw_dwelltime = 200;
149
150#ifdef ATW_DEBUG
151int atw_xhdrctl = 0;
152int atw_xrtylmt = ~0;
153int atw_xservice = IEEE80211_PLCP_SERVICE;
154int atw_xpaylen = 0;
155
156int atw_debug = 0;
157
158#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
159#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
160#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
161#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
162#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
163#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
164static void atw_print_regs(struct atw_softc *, const char *);
165static void atw_rf3000_print(struct atw_softc *);
166static void atw_si4126_print(struct atw_softc *);
167static void atw_dump_pkt(struct ifnet *, struct mbuf *);
168#else
169#define ATW_DPRINTF(x)
170#define ATW_DPRINTF2(x)
171#define ATW_DPRINTF3(x)
172#define	DPRINTF(sc, x)	/* nothing */
173#define	DPRINTF2(sc, x)	/* nothing */
174#define	DPRINTF3(sc, x)	/* nothing */
175#endif
176
177#ifdef ATW_STATS
178void	atw_print_stats __P((struct atw_softc *));
179#endif
180
181void	atw_start __P((struct ifnet *));
182void	atw_watchdog __P((struct ifnet *));
183int	atw_ioctl __P((struct ifnet *, u_long, caddr_t));
184int	atw_init __P((struct ifnet *));
185void	atw_stop __P((struct ifnet *, int));
186
187void	atw_reset __P((struct atw_softc *));
188int	atw_read_srom __P((struct atw_softc *));
189
190void	atw_shutdown __P((void *));
191
192void	atw_rxdrain __P((struct atw_softc *));
193int	atw_add_rxbuf __P((struct atw_softc *, int));
194void	atw_idle __P((struct atw_softc *, u_int32_t));
195
196int	atw_enable __P((struct atw_softc *));
197void	atw_disable __P((struct atw_softc *));
198void	atw_power __P((int, void *));
199
200void	atw_rxintr __P((struct atw_softc *));
201void	atw_txintr __P((struct atw_softc *));
202void	atw_linkintr __P((struct atw_softc *, u_int32_t));
203
204static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
205static void atw_tsf(struct atw_softc *);
206static void atw_start_beacon(struct atw_softc *, int);
207static void atw_write_wep(struct atw_softc *);
208static void atw_write_bssid(struct atw_softc *);
209static void atw_write_bcn_thresh(struct atw_softc *);
210static void atw_write_ssid(struct atw_softc *);
211static void atw_write_sup_rates(struct atw_softc *);
212static void atw_clear_sram(struct atw_softc *);
213static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
214static int atw_media_change(struct ifnet *);
215static void atw_media_status(struct ifnet *, struct ifmediareq *);
216static void atw_filter_setup(struct atw_softc *);
217static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
218static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
219static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
220    struct ieee80211_node *, int, int, u_int32_t);
221static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
222    struct ieee80211_node *, int, int, u_int32_t);
223static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
224static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
225
226static int atw_tune(struct atw_softc *);
227
228static void atw_rfio_enable(struct atw_softc *, int);
229
230/* RFMD RF3000 Baseband Processor */
231static int atw_rf3000_init(struct atw_softc *);
232static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
233static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
234#ifdef ATW_DEBUG
235static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
236#endif /* ATW_DEBUG */
237
238/* Silicon Laboratories Si4126 RF/IF Synthesizer */
239static int atw_si4126_tune(struct atw_softc *, u_int8_t);
240static int atw_si4126_write(struct atw_softc *, u_int, u_int);
241#ifdef ATW_DEBUG
242static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
243#endif /* ATW_DEBUG */
244
245const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
246const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
247
248const char *atw_tx_state[] = {
249	"STOPPED",
250	"RUNNING - FETCH",
251	"RUNNING - WAIT",
252	"RUNNING - READING",
253	"-- RESERVED1 --",
254	"-- RESERVED2 --",
255	"SUSPENDED",
256	"RUNNING - CLOSE"
257};
258
259const char *atw_rx_state[] = {
260	"STOPPED",
261	"RUNNING - FETCH",
262	"RUNNING - CHECK",
263	"RUNNING - WAIT",
264	"SUSPENDED",
265	"RUNNING - CLOSE",
266	"RUNNING - FLUSH",
267	"RUNNING - QUEUE"
268};
269
270int
271atw_activate(struct device *self, enum devact act)
272{
273	struct atw_softc *sc = (struct atw_softc *)self;
274	int rv = 0, s;
275
276	s = splnet();
277	switch (act) {
278	case DVACT_ACTIVATE:
279		rv = EOPNOTSUPP;
280		break;
281
282	case DVACT_DEACTIVATE:
283		if_deactivate(&sc->sc_ic.ic_if);
284		break;
285	}
286	splx(s);
287	return rv;
288}
289
290/*
291 * atw_enable:
292 *
293 *	Enable the ADM8211 chip.
294 */
295int
296atw_enable(sc)
297	struct atw_softc *sc;
298{
299
300	if (ATW_IS_ENABLED(sc) == 0) {
301		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
302			printf("%s: device enable failed\n",
303			    sc->sc_dev.dv_xname);
304			return (EIO);
305		}
306		sc->sc_flags |= ATWF_ENABLED;
307	}
308	return (0);
309}
310
311/*
312 * atw_disable:
313 *
314 *	Disable the ADM8211 chip.
315 */
316void
317atw_disable(sc)
318	struct atw_softc *sc;
319{
320	if (!ATW_IS_ENABLED(sc))
321		return;
322	if (sc->sc_disable != NULL)
323		(*sc->sc_disable)(sc);
324	sc->sc_flags &= ~ATWF_ENABLED;
325}
326
327/* Returns -1 on failure. */
328int
329atw_read_srom(struct atw_softc *sc)
330{
331	struct seeprom_descriptor sd;
332	u_int32_t reg;
333
334	(void)memset(&sd, 0, sizeof(sd));
335
336	reg = ATW_READ(sc, ATW_TEST0);
337
338	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340		return -1;
341	}
342
343	switch (reg & ATW_TEST0_EPTYP_MASK) {
344	case ATW_TEST0_EPTYP_93c66:
345		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346		sc->sc_sromsz = 512;
347		sd.sd_chip = C56_66;
348		break;
349	case ATW_TEST0_EPTYP_93c46:
350		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351		sc->sc_sromsz = 128;
352		sd.sd_chip = C46;
353		break;
354	default:
355		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357		return -1;
358	}
359
360	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361
362	if (sc->sc_srom == NULL) {
363		printf("%s: unable to allocate SROM buffer\n",
364		    sc->sc_dev.dv_xname);
365		return -1;
366	}
367
368	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369
370	/* ADM8211 has a single 32-bit register for controlling the
371	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
372	 * "ready" bit. The ADM8211 input/output sense is the reverse
373	 * of read_seeprom's.
374	 */
375	sd.sd_tag = sc->sc_st;
376	sd.sd_bsh = sc->sc_sh;
377	sd.sd_regsize = 4;
378	sd.sd_control_offset = ATW_SPR;
379	sd.sd_status_offset = ATW_SPR;
380	sd.sd_dataout_offset = ATW_SPR;
381	sd.sd_CK = ATW_SPR_SCLK;
382	sd.sd_CS = ATW_SPR_SCS;
383	sd.sd_DI = ATW_SPR_SDO;
384	sd.sd_DO = ATW_SPR_SDI;
385	sd.sd_MS = ATW_SPR_SRS;
386	sd.sd_RDY = 0;
387
388	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390		free(sc->sc_srom, M_DEVBUF);
391		return -1;
392	}
393#ifdef ATW_DEBUG
394	{
395		int i;
396		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398			if (((i % 8) == 0) && (i != 0)) {
399				ATW_DPRINTF(("\n\t"));
400			}
401			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402		}
403		ATW_DPRINTF(("\n"));
404	}
405#endif /* ATW_DEBUG */
406	return 0;
407}
408
409#ifdef ATW_DEBUG
410static void
411atw_print_regs(struct atw_softc *sc, const char *where)
412{
413#define PRINTREG(sc, reg) \
414	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416
417	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418
419	PRINTREG(sc, ATW_PAR);
420	PRINTREG(sc, ATW_FRCTL);
421	PRINTREG(sc, ATW_TDR);
422	PRINTREG(sc, ATW_WTDP);
423	PRINTREG(sc, ATW_RDR);
424	PRINTREG(sc, ATW_WRDP);
425	PRINTREG(sc, ATW_RDB);
426	PRINTREG(sc, ATW_CSR3A);
427	PRINTREG(sc, ATW_TDBD);
428	PRINTREG(sc, ATW_TDBP);
429	PRINTREG(sc, ATW_STSR);
430	PRINTREG(sc, ATW_CSR5A);
431	PRINTREG(sc, ATW_NAR);
432	PRINTREG(sc, ATW_CSR6A);
433	PRINTREG(sc, ATW_IER);
434	PRINTREG(sc, ATW_CSR7A);
435	PRINTREG(sc, ATW_LPC);
436	PRINTREG(sc, ATW_TEST1);
437	PRINTREG(sc, ATW_SPR);
438	PRINTREG(sc, ATW_TEST0);
439	PRINTREG(sc, ATW_WCSR);
440	PRINTREG(sc, ATW_WPDR);
441	PRINTREG(sc, ATW_GPTMR);
442	PRINTREG(sc, ATW_GPIO);
443	PRINTREG(sc, ATW_BBPCTL);
444	PRINTREG(sc, ATW_SYNCTL);
445	PRINTREG(sc, ATW_PLCPHD);
446	PRINTREG(sc, ATW_MMIWADDR);
447	PRINTREG(sc, ATW_MMIRADDR1);
448	PRINTREG(sc, ATW_MMIRADDR2);
449	PRINTREG(sc, ATW_TXBR);
450	PRINTREG(sc, ATW_CSR15A);
451	PRINTREG(sc, ATW_ALCSTAT);
452	PRINTREG(sc, ATW_TOFS2);
453	PRINTREG(sc, ATW_CMDR);
454	PRINTREG(sc, ATW_PCIC);
455	PRINTREG(sc, ATW_PMCSR);
456	PRINTREG(sc, ATW_PAR0);
457	PRINTREG(sc, ATW_PAR1);
458	PRINTREG(sc, ATW_MAR0);
459	PRINTREG(sc, ATW_MAR1);
460	PRINTREG(sc, ATW_ATIMDA0);
461	PRINTREG(sc, ATW_ABDA1);
462	PRINTREG(sc, ATW_BSSID0);
463	PRINTREG(sc, ATW_TXLMT);
464	PRINTREG(sc, ATW_MIBCNT);
465	PRINTREG(sc, ATW_BCNT);
466	PRINTREG(sc, ATW_TSFTH);
467	PRINTREG(sc, ATW_TSC);
468	PRINTREG(sc, ATW_SYNRF);
469	PRINTREG(sc, ATW_BPLI);
470	PRINTREG(sc, ATW_CAP0);
471	PRINTREG(sc, ATW_CAP1);
472	PRINTREG(sc, ATW_RMD);
473	PRINTREG(sc, ATW_CFPP);
474	PRINTREG(sc, ATW_TOFS0);
475	PRINTREG(sc, ATW_TOFS1);
476	PRINTREG(sc, ATW_IFST);
477	PRINTREG(sc, ATW_RSPT);
478	PRINTREG(sc, ATW_TSFTL);
479	PRINTREG(sc, ATW_WEPCTL);
480	PRINTREG(sc, ATW_WESK);
481	PRINTREG(sc, ATW_WEPCNT);
482	PRINTREG(sc, ATW_MACTEST);
483	PRINTREG(sc, ATW_FER);
484	PRINTREG(sc, ATW_FEMR);
485	PRINTREG(sc, ATW_FPSR);
486	PRINTREG(sc, ATW_FFER);
487#undef PRINTREG
488}
489#endif /* ATW_DEBUG */
490
491/*
492 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
493 */
494void
495atw_attach(struct atw_softc *sc)
496{
497	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499	};
500	struct ieee80211com *ic = &sc->sc_ic;
501	struct ifnet *ifp = &ic->ic_if;
502	int country_code, error, i, nrate;
503	u_int32_t reg;
504	static const char *type_strings[] = {"Intersil (not supported)",
505	    "RFMD", "Marvel (not supported)"};
506
507	sc->sc_txth = atw_txthresh_tab_lo;
508
509	SIMPLEQ_INIT(&sc->sc_txfreeq);
510	SIMPLEQ_INIT(&sc->sc_txdirtyq);
511
512#ifdef ATW_DEBUG
513	atw_print_regs(sc, "atw_attach");
514#endif /* ATW_DEBUG */
515
516	/*
517	 * Allocate the control data structures, and create and load the
518	 * DMA map for it.
519	 */
520	if ((error = bus_dmamem_alloc(sc->sc_dmat,
521	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522	    1, &sc->sc_cdnseg, 0)) != 0) {
523		printf("%s: unable to allocate control data, error = %d\n",
524		    sc->sc_dev.dv_xname, error);
525		goto fail_0;
526	}
527
528	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530	    BUS_DMA_COHERENT)) != 0) {
531		printf("%s: unable to map control data, error = %d\n",
532		    sc->sc_dev.dv_xname, error);
533		goto fail_1;
534	}
535
536	if ((error = bus_dmamap_create(sc->sc_dmat,
537	    sizeof(struct atw_control_data), 1,
538	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539		printf("%s: unable to create control data DMA map, "
540		    "error = %d\n", sc->sc_dev.dv_xname, error);
541		goto fail_2;
542	}
543
544	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546	    0)) != 0) {
547		printf("%s: unable to load control data DMA map, error = %d\n",
548		    sc->sc_dev.dv_xname, error);
549		goto fail_3;
550	}
551
552	/*
553	 * Create the transmit buffer DMA maps.
554	 */
555	sc->sc_ntxsegs = ATW_NTXSEGS;
556	for (i = 0; i < ATW_TXQUEUELEN; i++) {
557		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
559		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560			printf("%s: unable to create tx DMA map %d, "
561			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
562			goto fail_4;
563		}
564	}
565
566	/*
567	 * Create the receive buffer DMA maps.
568	 */
569	for (i = 0; i < ATW_NRXDESC; i++) {
570		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572			printf("%s: unable to create rx DMA map %d, "
573			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
574			goto fail_5;
575		}
576	}
577	for (i = 0; i < ATW_NRXDESC; i++) {
578		sc->sc_rxsoft[i].rxs_mbuf = NULL;
579	}
580
581	/* Reset the chip to a known state. */
582	atw_reset(sc);
583
584	if (atw_read_srom(sc) == -1)
585		return;
586
587	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588	    ATW_SR_RFTYPE_MASK);
589
590	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591	    ATW_SR_BBPTYPE_MASK);
592
593	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595		return;
596	}
597	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599		return;
600	}
601
602	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604
605	/* XXX There exists a Linux driver which seems to use RFType = 0 for
606	 * MARVEL. My bug, or theirs?
607	 */
608
609	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610
611	switch (sc->sc_rftype) {
612	case ATW_RFTYPE_INTERSIL:
613		reg |= ATW_SYNCTL_CS1;
614		break;
615	case ATW_RFTYPE_RFMD:
616		reg |= ATW_SYNCTL_CS0;
617		break;
618	case ATW_RFTYPE_MARVEL:
619		break;
620	}
621
622	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624
625	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626
627	switch (sc->sc_bbptype) {
628	case ATW_RFTYPE_INTERSIL:
629		reg |= ATW_BBPCTL_TWI;
630		break;
631	case ATW_RFTYPE_RFMD:
632		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633		    ATW_BBPCTL_CCA_ACTLO;
634		break;
635	case ATW_RFTYPE_MARVEL:
636		break;
637	}
638
639	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
640	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
641
642	/*
643	 * From this point forward, the attachment cannot fail.  A failure
644	 * before this point releases all resources that may have been
645	 * allocated.
646	 */
647	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
648
649	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
650	    htole16(sc->sc_srom[ATW_SR_MAC00]),
651	    htole16(sc->sc_srom[ATW_SR_MAC01]),
652	    htole16(sc->sc_srom[ATW_SR_MAC10])));
653
654	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
655	    ATW_SR_CTRY_MASK);
656
657#define ADD_CHANNEL(_ic, _chan) do {					\
658	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
659	_ic->ic_channels[_chan].ic_freq =				\
660	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
661} while (0)
662
663	/* Find available channels */
664	switch (country_code) {
665	case COUNTRY_MMK2:	/* 1-14 */
666		ADD_CHANNEL(ic, 14);
667		/*FALLTHROUGH*/
668	case COUNTRY_ETSI:	/* 1-13 */
669		for (i = 1; i <= 13; i++)
670			ADD_CHANNEL(ic, i);
671		break;
672	case COUNTRY_FCC:	/* 1-11 */
673	case COUNTRY_IC:	/* 1-11 */
674		for (i = 1; i <= 11; i++)
675			ADD_CHANNEL(ic, i);
676		break;
677	case COUNTRY_MMK:	/* 14 */
678		ADD_CHANNEL(ic, 14);
679		break;
680	case COUNTRY_FRANCE:	/* 10-13 */
681		for (i = 10; i <= 13; i++)
682			ADD_CHANNEL(ic, i);
683		break;
684	default:	/* assume channels 10-11 */
685	case COUNTRY_SPAIN:	/* 10-11 */
686		for (i = 10; i <= 11; i++)
687			ADD_CHANNEL(ic, i);
688		break;
689	}
690
691	/* Read the MAC address. */
692	reg = ATW_READ(sc, ATW_PAR0);
693	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
694	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
695	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
696	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
697	reg = ATW_READ(sc, ATW_PAR1);
698	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
699	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
700
701	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
702		printf(" could not get mac address, attach failed\n");
703		return;
704	}
705
706	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
707
708	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
709	ifp->if_softc = sc;
710	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
711	    IFF_NOTRAILERS;
712	ifp->if_ioctl = atw_ioctl;
713	ifp->if_start = atw_start;
714	ifp->if_watchdog = atw_watchdog;
715	ifp->if_init = atw_init;
716	ifp->if_stop = atw_stop;
717	IFQ_SET_READY(&ifp->if_snd);
718
719	ic->ic_phytype = IEEE80211_T_DS;
720	ic->ic_opmode = IEEE80211_M_STA;
721	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
722	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
723
724	nrate = 0;
725	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
726	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
727	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
728	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
729	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
730
731	/*
732	 * Call MI attach routines.
733	 */
734
735	if_attach(ifp);
736	ieee80211_ifattach(ifp);
737
738	sc->sc_newstate = ic->ic_newstate;
739	ic->ic_newstate = atw_newstate;
740
741	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
742	ic->ic_recv_mgmt = atw_recv_mgmt;
743
744	sc->sc_node_free = ic->ic_node_free;
745	ic->ic_node_free = atw_node_free;
746
747	sc->sc_node_alloc = ic->ic_node_alloc;
748	ic->ic_node_alloc = atw_node_alloc;
749
750	/* possibly we should fill in our own sc_send_prresp, since
751	 * the ADM8211 is probably sending probe responses in ad hoc
752	 * mode.
753	 */
754
755	/* complete initialization */
756	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
757	callout_init(&sc->sc_scan_ch);
758
759#if NBPFILTER > 0
760	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
761	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
762#endif
763
764	/*
765	 * Make sure the interface is shutdown during reboot.
766	 */
767	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
768	if (sc->sc_sdhook == NULL)
769		printf("%s: WARNING: unable to establish shutdown hook\n",
770		    sc->sc_dev.dv_xname);
771
772	/*
773	 * Add a suspend hook to make sure we come back up after a
774	 * resume.
775	 */
776	sc->sc_powerhook = powerhook_establish(atw_power, sc);
777	if (sc->sc_powerhook == NULL)
778		printf("%s: WARNING: unable to establish power hook\n",
779		    sc->sc_dev.dv_xname);
780
781	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
782	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
783	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
784
785	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
786	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
787	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
788
789	return;
790
791	/*
792	 * Free any resources we've allocated during the failed attach
793	 * attempt.  Do this in reverse order and fall through.
794	 */
795 fail_5:
796	for (i = 0; i < ATW_NRXDESC; i++) {
797		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
798			continue;
799		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
800	}
801 fail_4:
802	for (i = 0; i < ATW_TXQUEUELEN; i++) {
803		if (sc->sc_txsoft[i].txs_dmamap == NULL)
804			continue;
805		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
806	}
807	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
808 fail_3:
809	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
810 fail_2:
811	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
812	    sizeof(struct atw_control_data));
813 fail_1:
814	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
815 fail_0:
816	return;
817}
818
819static struct ieee80211_node *
820atw_node_alloc(struct ieee80211com *ic)
821{
822	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
823	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
824
825	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
826	return ni;
827}
828
829static void
830atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
831{
832	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
833
834	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
835	    ether_sprintf(ni->ni_bssid)));
836	(*sc->sc_node_free)(ic, ni);
837}
838
839/*
840 * atw_reset:
841 *
842 *	Perform a soft reset on the ADM8211.
843 */
844void
845atw_reset(sc)
846	struct atw_softc *sc;
847{
848	int i;
849
850	if (ATW_IS_ENABLED(sc) == 0)
851		return;
852
853	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
854
855	for (i = 0; i < 10000; i++) {
856		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
857			break;
858		DELAY(1);
859	}
860
861	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
862
863	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
864		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
865
866	/* Turn off maximum power saving. */
867	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
868
869	/* Recall EEPROM. */
870	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
871
872	DELAY(10 * 1000);
873
874	/* A reset seems to affect the SRAM contents, so put them into
875	 * a known state.
876	 */
877	atw_clear_sram(sc);
878
879	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
880
881	sc->sc_lost_bcn_thresh = 0;
882}
883
884static void
885atw_clear_sram(sc)
886	struct atw_softc *sc;
887{
888#if 0
889	for (addr = 0; addr < 448; addr++) {
890		ATW_WRITE(sc, ATW_WEPCTL,
891		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
892		DELAY(1000);
893		ATW_WRITE(sc, ATW_WESK, 0);
894		DELAY(1000); /* paranoia */
895	}
896	return;
897#endif
898	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
899	/* XXX not for revision 0x20. */
900	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
901}
902
903/* TBD atw_init
904 *
905 * set MAC based on ic->ic_bss->myaddr
906 * write WEP keys
907 * set TX rate
908 */
909
910/*
911 * atw_init:		[ ifnet interface function ]
912 *
913 *	Initialize the interface.  Must be called at splnet().
914 */
915int
916atw_init(ifp)
917	struct ifnet *ifp;
918{
919	struct atw_softc *sc = ifp->if_softc;
920	struct ieee80211com *ic = &sc->sc_ic;
921	struct atw_txsoft *txs;
922	struct atw_rxsoft *rxs;
923	u_int32_t reg;
924	int i, error = 0;
925
926	if ((error = atw_enable(sc)) != 0)
927		goto out;
928
929	/*
930	 * Cancel any pending I/O. This also resets.
931	 */
932	atw_stop(ifp, 0);
933
934	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
935	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
936	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
937	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
938
939	/* Turn off APM??? (A binary-only driver does this.)
940	 *
941	 * Set Rx store-and-forward mode.
942	 */
943	reg = ATW_READ(sc, ATW_CMDR);
944	reg &= ~ATW_CMDR_APM;
945	reg &= ~ATW_CMDR_DRT_MASK;
946	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
947
948	ATW_WRITE(sc, ATW_CMDR, reg);
949
950	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
951	 *
952	 * XXX a binary-only driver sets a different service field than
953	 * 0. why?
954	 */
955	reg = ATW_READ(sc, ATW_PLCPHD);
956	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
957	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
958	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
959	ATW_WRITE(sc, ATW_PLCPHD, reg);
960
961	/* XXX this magic can probably be figured out from the RFMD docs */
962	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
963	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
964	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
965	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
966	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
967	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
968	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
969	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
970	ATW_WRITE(sc, ATW_TOFS2, reg);
971
972	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
973	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
974
975	/* XXX this resets an Intersil RF front-end? */
976	/* TBD condition on Intersil RFType? */
977	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
978	DELAY(10 * 1000);
979	ATW_WRITE(sc, ATW_SYNRF, 0);
980	DELAY(5 * 1000);
981
982	/* 16 TU max duration for contention-free period */
983	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
984	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
985
986	/* XXX I guess that the Cardbus clock is 22MHz?
987	 * I am assuming that the role of ATW_TOFS0_USCNT is
988	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
989	 * very clear on this point. It says in the datasheet that it is
990	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
991	 * and 33MHz; maybe this is the way? I see a binary-only driver write
992	 * these values. These values are also the power-on default.
993	 */
994	ATW_WRITE(sc, ATW_TOFS0,
995	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
996	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
997
998	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
999	 * driver. Go figure.
1000	 */
1001	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1002	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1003	             ATW_IFST_SIFS_MASK) |
1004	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1005	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1006
1007	ATW_WRITE(sc, ATW_IFST, reg);
1008
1009	/* XXX More magic. Might relate to ACK timing. */
1010	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1011	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1012
1013	/* Set up the MMI read/write addresses for the BBP.
1014	 *
1015	 * TBD find out the Marvel settings.
1016	 */
1017	switch (sc->sc_bbptype) {
1018	case ATW_BBPTYPE_INTERSIL:
1019		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1020		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1021		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1022		break;
1023	case ATW_BBPTYPE_MARVEL:
1024		break;
1025	case ATW_BBPTYPE_RFMD:
1026		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1027		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1028		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1029	default:
1030		break;
1031	}
1032
1033	sc->sc_wepctl = 0;
1034	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1035
1036	if ((error = atw_rf3000_init(sc)) != 0)
1037		goto out;
1038
1039	/*
1040	 * Initialize the PCI Access Register.
1041	 */
1042	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
1043
1044	/*
1045	 * If we're allowed to do so, use Memory Read Line
1046	 * and Memory Read Multiple.
1047	 *
1048	 * XXX Should we use Memory Write and Invalidate?
1049	 */
1050	if (sc->sc_flags & ATWF_MRL)
1051		sc->sc_busmode |= ATW_PAR_MRLE;
1052	if (sc->sc_flags & ATWF_MRM)
1053		sc->sc_busmode |= ATW_PAR_MRME;
1054	if (sc->sc_flags & ATWF_MWI)
1055		sc->sc_busmode |= ATW_PAR_MWIE;
1056	if (sc->sc_maxburst == 0)
1057		sc->sc_maxburst = 8;	/* ADM8211 default */
1058
1059	switch (sc->sc_cacheline) {
1060	default:
1061		/* Use burst length. */
1062		break;
1063	case 8:
1064		sc->sc_busmode |= ATW_PAR_CAL_8DW;
1065		break;
1066	case 16:
1067		sc->sc_busmode |= ATW_PAR_CAL_16DW;
1068		break;
1069	case 32:
1070		sc->sc_busmode |= ATW_PAR_CAL_32DW;
1071		break;
1072	}
1073	switch (sc->sc_maxburst) {
1074	case 1:
1075		sc->sc_busmode |= ATW_PAR_PBL_1DW;
1076		break;
1077	case 2:
1078		sc->sc_busmode |= ATW_PAR_PBL_2DW;
1079		break;
1080	case 4:
1081		sc->sc_busmode |= ATW_PAR_PBL_4DW;
1082		break;
1083	case 8:
1084		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1085		break;
1086	case 16:
1087		sc->sc_busmode |= ATW_PAR_PBL_16DW;
1088		break;
1089	case 32:
1090		sc->sc_busmode |= ATW_PAR_PBL_32DW;
1091		break;
1092	default:
1093		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1094		break;
1095	}
1096
1097	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1098	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1099	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1100
1101	/*
1102	 * Initialize the OPMODE register.  We don't write it until
1103	 * we're ready to begin the transmit and receive processes.
1104	 */
1105	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1106	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1107
1108	/*
1109	 * Initialize the transmit descriptor ring.
1110	 */
1111	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1112	for (i = 0; i < ATW_NTXDESC; i++) {
1113		/* no transmit chaining */
1114		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1115		sc->sc_txdescs[i].at_buf2 =
1116		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1117	}
1118	/* use ring mode */
1119	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1120	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1121	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122	sc->sc_txfree = ATW_NTXDESC;
1123	sc->sc_txnext = 0;
1124
1125	/*
1126	 * Initialize the transmit job descriptors.
1127	 */
1128	SIMPLEQ_INIT(&sc->sc_txfreeq);
1129	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1130	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1131		txs = &sc->sc_txsoft[i];
1132		txs->txs_mbuf = NULL;
1133		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1134	}
1135
1136	/*
1137	 * Initialize the receive descriptor and receive job
1138	 * descriptor rings.
1139	 */
1140	for (i = 0; i < ATW_NRXDESC; i++) {
1141		rxs = &sc->sc_rxsoft[i];
1142		if (rxs->rxs_mbuf == NULL) {
1143			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1144				printf("%s: unable to allocate or map rx "
1145				    "buffer %d, error = %d\n",
1146				    sc->sc_dev.dv_xname, i, error);
1147				/*
1148				 * XXX Should attempt to run with fewer receive
1149				 * XXX buffers instead of just failing.
1150				 */
1151				atw_rxdrain(sc);
1152				goto out;
1153			}
1154		} else
1155			ATW_INIT_RXDESC(sc, i);
1156	}
1157	sc->sc_rxptr = 0;
1158
1159	/* disable all wake-up events */
1160	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1161	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1162			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1163			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1164
1165	/* ack all wake-up events */
1166	ATW_SET(sc, ATW_WCSR, 0);
1167
1168	/*
1169	 * Initialize the interrupt mask and enable interrupts.
1170	 */
1171	/* normal interrupts */
1172	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1173	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1174
1175	/* abnormal interrupts */
1176	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1177	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1178	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179
1180	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1181	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1182	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1183	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1184	    ATW_INTR_TRT;
1185
1186	sc->sc_linkint_mask &= sc->sc_inten;
1187	sc->sc_rxint_mask &= sc->sc_inten;
1188	sc->sc_txint_mask &= sc->sc_inten;
1189
1190	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1191	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1192	if (sc->sc_intr_ack != NULL)
1193		(*sc->sc_intr_ack)(sc);
1194
1195	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1196	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1197
1198	/*
1199	 * Give the transmit and receive rings to the ADM8211.
1200	 */
1201	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1202	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1203
1204	/* common 802.11 configuration */
1205	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1206	switch (ic->ic_opmode) {
1207	case IEEE80211_M_STA:
1208		sc->sc_opmode &= ~ATW_NAR_EA;
1209		break;
1210	case IEEE80211_M_AHDEMO: /* XXX */
1211	case IEEE80211_M_IBSS:
1212		ic->ic_flags |= IEEE80211_F_IBSSON;
1213		/*FALLTHROUGH*/
1214	case IEEE80211_M_HOSTAP: /* XXX */
1215		/* EA bit seems important for ad hoc reception. */
1216		sc->sc_opmode |= ATW_NAR_EA;
1217		break;
1218	case IEEE80211_M_MONITOR: /* XXX */
1219		break;
1220	}
1221
1222	atw_start_beacon(sc, 0);
1223
1224	switch (ic->ic_opmode) {
1225	case IEEE80211_M_AHDEMO:
1226	case IEEE80211_M_HOSTAP:
1227		ic->ic_bss->ni_intval = ic->ic_lintval;
1228		ic->ic_bss->ni_rssi = 0;
1229		ic->ic_bss->ni_rstamp = 0;
1230		break;
1231	default:					/* XXX */
1232		break;
1233	}
1234
1235	atw_write_ssid(sc);
1236	atw_write_sup_rates(sc);
1237	if (ic->ic_caps & IEEE80211_C_WEP)
1238		atw_write_wep(sc);
1239
1240	/*
1241	 * Set the receive filter.  This will start the transmit and
1242	 * receive processes.
1243	 */
1244	atw_filter_setup(sc);
1245
1246	/*
1247	 * Start the receive process.
1248	 */
1249	ATW_WRITE(sc, ATW_RDR, 0x1);
1250
1251	/*
1252	 * Note that the interface is now running.
1253	 */
1254	ifp->if_flags |= IFF_RUNNING;
1255	ifp->if_flags &= ~IFF_OACTIVE;
1256	ic->ic_state = IEEE80211_S_INIT;
1257
1258	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1259		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1260	else
1261		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1262 out:
1263	if (error) {
1264		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1265		ifp->if_timer = 0;
1266		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1267	}
1268#ifdef ATW_DEBUG
1269	atw_print_regs(sc, "end of init");
1270#endif /* ATW_DEBUG */
1271
1272	return (error);
1273}
1274
1275/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1276 *           0: MAC control of RF3000/Si4126.
1277 *
1278 * Applies power, or selects RF front-end? Sets reset condition.
1279 *
1280 * TBD support non-RFMD BBP, non-SiLabs synth.
1281 */
1282static void
1283atw_rfio_enable(struct atw_softc *sc, int enable)
1284{
1285	if (enable) {
1286		ATW_WRITE(sc, ATW_SYNRF,
1287		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1288		DELAY(atw_rfio_enable_delay);
1289	} else {
1290		ATW_WRITE(sc, ATW_SYNRF, 0);
1291		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1292	}
1293}
1294
1295static int
1296atw_tune(sc)
1297	struct atw_softc *sc;
1298{
1299	int rc;
1300	u_int32_t reg;
1301	int chan;
1302	struct ieee80211com *ic = &sc->sc_ic;
1303
1304	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1305	if (chan == IEEE80211_CHAN_ANY)
1306		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1307
1308	if (chan == sc->sc_cur_chan)
1309		return 0;
1310
1311	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1312	    sc->sc_cur_chan, chan));
1313
1314	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1315
1316	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1317	    (rc = atw_rf3000_tune(sc, chan)) != 0)
1318		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1319		    chan);
1320
1321	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1322	ATW_WRITE(sc, ATW_CAP0,
1323	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1324
1325	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1326
1327	if (rc == 0)
1328		sc->sc_cur_chan = chan;
1329
1330	return rc;
1331}
1332
1333#ifdef ATW_DEBUG
1334static void
1335atw_si4126_print(sc)
1336	struct atw_softc *sc;
1337{
1338	struct ifnet *ifp = &sc->sc_ic.ic_if;
1339	u_int addr, val;
1340
1341	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1342		return;
1343
1344	for (addr = 0; addr <= 8; addr++) {
1345		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1346		if (atw_si4126_read(sc, addr, &val) == 0) {
1347			printf("<unknown> (quitting print-out)\n");
1348			break;
1349		}
1350		printf("%05x\n", val);
1351	}
1352}
1353#endif /* ATW_DEBUG */
1354
1355/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1356 *
1357 * The RF/IF synthesizer produces two reference frequencies for
1358 * the RF2948B transceiver.  The first frequency the RF2948B requires
1359 * is two times the so-called "intermediate frequency" (IF). Since
1360 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1361 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1362 * frequency required by the transceiver is the radio frequency
1363 * (RF). This is a superheterodyne transceiver; for f(chan) the
1364 * center frequency of the channel we are tuning, RF = f(chan) -
1365 * IF.
1366 *
1367 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1368 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1369 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1370 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1371 */
1372static int
1373atw_si4126_tune(sc, chan)
1374	struct atw_softc *sc;
1375	u_int8_t chan;
1376{
1377	int rc = 0;
1378	u_int mhz;
1379	u_int R;
1380	u_int32_t reg;
1381	u_int16_t gain;
1382
1383#ifdef ATW_DEBUG
1384	atw_si4126_print(sc);
1385#endif /* ATW_DEBUG */
1386
1387	if (chan == 14)
1388		mhz = 2484;
1389	else
1390		mhz = 2412 + 5 * (chan - 1);
1391
1392	/* Tune IF to 748MHz to suit the IF LO input of the
1393	 * RF2494B, which is 2 x IF. No need to set an IF divider
1394         * because an IF in 526MHz - 952MHz is allowed.
1395	 *
1396	 * XIN is 44.000MHz, so divide it by two to get allowable
1397	 * range of 2-25MHz. SiLabs tells me that this is not
1398	 * strictly necessary.
1399	 */
1400
1401	R = 44;
1402
1403	atw_rfio_enable(sc, 1);
1404
1405	/* Power-up RF, IF synthesizers. */
1406	if ((rc = atw_si4126_write(sc, SI4126_POWER,
1407	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1408		goto out;
1409
1410	/* If RF2 N > 2047, then set KP2 to 1. */
1411	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1412
1413	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1414		goto out;
1415
1416	/* set LPWR, too? */
1417	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1418	    SI4126_MAIN_XINDIV2)) != 0)
1419		goto out;
1420
1421	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
1422	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1423	 */
1424	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1425		goto out;
1426
1427	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1428		goto out;
1429
1430	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1431	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1432	 * which has no RF1!
1433	 */
1434	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1435		goto out;
1436
1437	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1438		goto out;
1439
1440	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1441	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1442	 * Now let's multiply it to mhz. So mhz - IF = N.
1443	 */
1444	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1445		goto out;
1446
1447	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1448		goto out;
1449
1450	/* wait 100us from power-up for RF, IF to settle */
1451	DELAY(100);
1452
1453	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1454		/* XXX there is a binary driver which sends
1455		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1456		 * that this enables the Si4126 by raising its PWDN#, but I
1457		 * think that it actually sets the Prism RF front-end
1458		 * to a special mode for channel 14.
1459		 */
1460		reg = ATW_READ(sc, ATW_GPIO);
1461		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1462		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1463		ATW_WRITE(sc, ATW_GPIO, reg);
1464	}
1465
1466#ifdef ATW_DEBUG
1467	atw_si4126_print(sc);
1468#endif /* ATW_DEBUG */
1469
1470out:
1471	atw_rfio_enable(sc, 0);
1472
1473	return rc;
1474}
1475
1476/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1477 * diversity.
1478 *
1479 * Call this w/ Tx/Rx suspended.
1480 */
1481static int
1482atw_rf3000_init(sc)
1483	struct atw_softc *sc;
1484{
1485	int rc = 0;
1486
1487	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1488
1489	atw_rfio_enable(sc, 1);
1490
1491	/* enable diversity */
1492	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1493
1494	if (rc != 0)
1495		goto out;
1496
1497	/* sensible setting from a binary-only driver */
1498	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1499	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1500
1501	if (rc != 0)
1502		goto out;
1503
1504	/* magic from a binary-only driver */
1505	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1506	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1507
1508	if (rc != 0)
1509		goto out;
1510
1511	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1512
1513	if (rc != 0)
1514		goto out;
1515
1516	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1517
1518	if (rc != 0)
1519		goto out;
1520
1521	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1522
1523	if (rc != 0)
1524		goto out;
1525
1526	/* CCA is acquisition sensitive */
1527	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1528	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1529
1530	if (rc != 0)
1531		goto out;
1532
1533out:
1534	atw_rfio_enable(sc, 0);
1535	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1536	return rc;
1537}
1538
1539#ifdef ATW_DEBUG
1540static void
1541atw_rf3000_print(sc)
1542	struct atw_softc *sc;
1543{
1544	struct ifnet *ifp = &sc->sc_ic.ic_if;
1545	u_int addr, val;
1546
1547	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1548		return;
1549
1550	for (addr = 0x01; addr <= 0x15; addr++) {
1551		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1552		if (atw_rf3000_read(sc, addr, &val) != 0) {
1553			printf("<unknown> (quitting print-out)\n");
1554			break;
1555		}
1556		printf("%08x\n", val);
1557	}
1558}
1559#endif /* ATW_DEBUG */
1560
1561/* Set the power settings on the BBP for channel `chan'. */
1562static int
1563atw_rf3000_tune(sc, chan)
1564	struct atw_softc *sc;
1565	u_int8_t chan;
1566{
1567	int rc = 0;
1568	u_int32_t reg;
1569	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1570
1571	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1572	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1573	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1574
1575	/* odd channels: LSB, even channels: MSB */
1576	if (chan % 2 == 1) {
1577		txpower &= 0xFF;
1578		lpf_cutoff &= 0xFF;
1579		lna_gs_thresh &= 0xFF;
1580	} else {
1581		txpower >>= 8;
1582		lpf_cutoff >>= 8;
1583		lna_gs_thresh >>= 8;
1584	}
1585
1586#ifdef ATW_DEBUG
1587	atw_rf3000_print(sc);
1588#endif /* ATW_DEBUG */
1589
1590	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1591	    "lna_gs_thresh %02x\n",
1592	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1593
1594	atw_rfio_enable(sc, 1);
1595
1596	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1597	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1598		goto out;
1599
1600	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1601		goto out;
1602
1603	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1604		goto out;
1605
1606	/* from a binary-only driver. */
1607	reg = ATW_READ(sc, ATW_PLCPHD);
1608	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1609	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1610	ATW_WRITE(sc, ATW_PLCPHD, reg);
1611
1612#ifdef ATW_DEBUG
1613	atw_rf3000_print(sc);
1614#endif /* ATW_DEBUG */
1615
1616out:
1617	atw_rfio_enable(sc, 0);
1618
1619	return rc;
1620}
1621
1622/* Write a register on the RF3000 baseband processor using the
1623 * registers provided by the ADM8211 for this purpose.
1624 *
1625 * Return 0 on success.
1626 */
1627static int
1628atw_rf3000_write(sc, addr, val)
1629	struct atw_softc *sc;
1630	u_int addr, val;
1631{
1632	u_int32_t reg;
1633	int i;
1634
1635	for (i = 1000; --i >= 0; ) {
1636		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1637			break;
1638		DELAY(100);
1639	}
1640
1641	if (i < 0) {
1642		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1643		return ETIMEDOUT;
1644	}
1645
1646	reg = sc->sc_bbpctl_wr |
1647	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1648	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1649
1650	ATW_WRITE(sc, ATW_BBPCTL, reg);
1651
1652	for (i = 1000; --i >= 0; ) {
1653		DELAY(100);
1654		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1655			break;
1656	}
1657
1658	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1659
1660	if (i < 0) {
1661		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1662		return ETIMEDOUT;
1663	}
1664	return 0;
1665}
1666
1667/* Read a register on the RF3000 baseband processor using the registers
1668 * the ADM8211 provides for this purpose.
1669 *
1670 * The 7-bit register address is addr.  Record the 8-bit data in the register
1671 * in *val.
1672 *
1673 * Return 0 on success.
1674 *
1675 * XXX This does not seem to work. The ADM8211 must require more or
1676 * different magic to read the chip than to write it. Possibly some
1677 * of the magic I have derived from a binary-only driver concerns
1678 * the "chip address" (see the RF3000 manual).
1679 */
1680#ifdef ATW_DEBUG
1681static int
1682atw_rf3000_read(sc, addr, val)
1683	struct atw_softc *sc;
1684	u_int addr, *val;
1685{
1686	u_int32_t reg;
1687	int i;
1688
1689	for (i = 1000; --i >= 0; ) {
1690		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1691			break;
1692		DELAY(100);
1693	}
1694
1695	if (i < 0) {
1696		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1697		    sc->sc_dev.dv_xname);
1698		return ETIMEDOUT;
1699	}
1700
1701	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1702
1703	ATW_WRITE(sc, ATW_BBPCTL, reg);
1704
1705	for (i = 1000; --i >= 0; ) {
1706		DELAY(100);
1707		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1708			break;
1709	}
1710
1711	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1712
1713	if (i < 0) {
1714		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1715		    sc->sc_dev.dv_xname, reg);
1716		return ETIMEDOUT;
1717	}
1718	if (val != NULL)
1719		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1720	return 0;
1721}
1722#endif /* ATW_DEBUG */
1723
1724/* Write a register on the Si4126 RF/IF synthesizer using the registers
1725 * provided by the ADM8211 for that purpose.
1726 *
1727 * val is 18 bits of data, and val is the 4-bit address of the register.
1728 *
1729 * Return 0 on success.
1730 */
1731static int
1732atw_si4126_write(sc, addr, val)
1733	struct atw_softc *sc;
1734	u_int addr, val;
1735{
1736	u_int32_t reg;
1737	int i;
1738
1739	for (i = 1000; --i >= 0; ) {
1740		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1741			break;
1742		DELAY(100);
1743	}
1744
1745	if (i < 0) {
1746		printf("%s: start atw_si4126_write, SYNCTL busy\n",
1747		    sc->sc_dev.dv_xname);
1748		return ETIMEDOUT;
1749	}
1750
1751	reg = sc->sc_synctl_wr |
1752	    LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1753
1754	ATW_WRITE(sc, ATW_SYNCTL, reg);
1755
1756	for (i = 1000; --i >= 0; ) {
1757		DELAY(100);
1758		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1759			break;
1760	}
1761
1762	/* restore to acceptable starting condition */
1763	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1764
1765	if (i < 0) {
1766		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1767		    sc->sc_dev.dv_xname, reg);
1768		return ETIMEDOUT;
1769	}
1770	return 0;
1771}
1772
1773/* Read 18-bit data from the 4-bit address addr in Si4126
1774 * RF synthesizer and write the data to *val. Return 0 on success.
1775 *
1776 * XXX This does not seem to work. The ADM8211 must require more or
1777 * different magic to read the chip than to write it.
1778 */
1779#ifdef ATW_DEBUG
1780static int
1781atw_si4126_read(sc, addr, val)
1782	struct atw_softc *sc;
1783	u_int addr;
1784	u_int *val;
1785{
1786	u_int32_t reg;
1787	int i;
1788
1789	for (i = 1000; --i >= 0; ) {
1790		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1791			break;
1792		DELAY(100);
1793	}
1794
1795	if (i < 0) {
1796		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1797		    sc->sc_dev.dv_xname);
1798		return ETIMEDOUT;
1799	}
1800
1801	reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1802
1803	ATW_WRITE(sc, ATW_SYNCTL, reg);
1804
1805	for (i = 1000; --i >= 0; ) {
1806		DELAY(100);
1807		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1808			break;
1809	}
1810
1811	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1812
1813	if (i < 0) {
1814		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1815		    sc->sc_dev.dv_xname, reg);
1816		return ETIMEDOUT;
1817	}
1818	if (val != NULL)
1819		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1820		                       ATW_SYNCTL_DATA_MASK);
1821	return 0;
1822}
1823#endif /* ATW_DEBUG */
1824
1825/* XXX is the endianness correct? test. */
1826#define	atw_calchash(addr) \
1827	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1828
1829/*
1830 * atw_filter_setup:
1831 *
1832 *	Set the ADM8211's receive filter.
1833 */
1834static void
1835atw_filter_setup(sc)
1836	struct atw_softc *sc;
1837{
1838	struct ieee80211com *ic = &sc->sc_ic;
1839	struct ethercom *ec = &ic->ic_ec;
1840	struct ifnet *ifp = &sc->sc_ic.ic_if;
1841	int hash;
1842	u_int32_t hashes[2] = { 0, 0 };
1843	struct ether_multi *enm;
1844	struct ether_multistep step;
1845
1846	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1847	    sc->sc_dev.dv_xname, sc->sc_flags));
1848
1849	/*
1850	 * If we're running, idle the receive engine.  If we're NOT running,
1851	 * we're being called from atw_init(), and our writing ATW_NAR will
1852	 * start the transmit and receive processes in motion.
1853	 */
1854	if (ifp->if_flags & IFF_RUNNING)
1855		atw_idle(sc, ATW_NAR_SR);
1856
1857	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1858
1859	ifp->if_flags &= ~IFF_ALLMULTI;
1860
1861	if (ifp->if_flags & IFF_PROMISC) {
1862		sc->sc_opmode |= ATW_NAR_PR;
1863allmulti:
1864		ifp->if_flags |= IFF_ALLMULTI;
1865		goto setit;
1866	}
1867
1868	/*
1869	 * Program the 64-bit multicast hash filter.
1870	 */
1871	ETHER_FIRST_MULTI(step, ec, enm);
1872	while (enm != NULL) {
1873		/* XXX */
1874		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1875		    ETHER_ADDR_LEN) != 0)
1876			goto allmulti;
1877
1878		hash = atw_calchash(enm->enm_addrlo);
1879		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1880		ETHER_NEXT_MULTI(step, enm);
1881	}
1882
1883	if (ifp->if_flags & IFF_BROADCAST) {
1884		hash = atw_calchash(etherbroadcastaddr);
1885		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1886	}
1887
1888	/* all bits set => hash is useless */
1889	if (~(hashes[0] & hashes[1]) == 0)
1890		goto allmulti;
1891
1892 setit:
1893	if (ifp->if_flags & IFF_ALLMULTI)
1894		sc->sc_opmode |= ATW_NAR_MM;
1895
1896	/* XXX in scan mode, do not filter packets. maybe this is
1897	 * unnecessary.
1898	 */
1899	if (ic->ic_state == IEEE80211_S_SCAN)
1900		sc->sc_opmode |= ATW_NAR_PR;
1901
1902	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1903	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1904	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1905	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1906	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1907
1908	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1909}
1910
1911/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1912 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1913 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1914 * no beacon with the preferred BSSID and SSID in the number of
1915 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1916 */
1917static void
1918atw_write_bssid(sc)
1919	struct atw_softc *sc;
1920{
1921	struct ieee80211com *ic = &sc->sc_ic;
1922	u_int8_t *bssid;
1923
1924	bssid = ic->ic_bss->ni_bssid;
1925
1926	ATW_WRITE(sc, ATW_ABDA1,
1927	    (ATW_READ(sc, ATW_ABDA1) &
1928	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1929	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1930	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1931
1932	ATW_WRITE(sc, ATW_BSSID0,
1933	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1934	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1935	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1936	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1937
1938	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1939	    ether_sprintf(sc->sc_bssid)));
1940	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1941
1942	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1943}
1944
1945/* Tell the ADM8211 how many beacon intervals must pass without
1946 * receiving a beacon with the preferred BSSID & SSID set by
1947 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1948 * raised.
1949 */
1950static void
1951atw_write_bcn_thresh(sc)
1952	struct atw_softc *sc;
1953{
1954	struct ieee80211com *ic = &sc->sc_ic;
1955	int lost_bcn_thresh;
1956
1957	/* Lose link after one second or 7 beacons, whichever comes
1958	 * first, but do not lose link before 2 beacons are lost.
1959	 *
1960	 * In host AP mode, set the lost-beacon threshold to 0.
1961	 */
1962	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1963		lost_bcn_thresh = 0;
1964	else
1965		lost_bcn_thresh = MAX(2,
1966		    MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
1967
1968	/* XXX resets wake-up status bits */
1969	ATW_WRITE(sc, ATW_WCSR,
1970	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1971	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1972
1973	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1974	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1975
1976	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1977
1978	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1979	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1980}
1981
1982/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1983 * 16-bit word.
1984 */
1985static void
1986atw_write_sram(sc, ofs, buf, buflen)
1987	struct atw_softc *sc;
1988	u_int ofs;
1989	u_int8_t *buf;
1990	u_int buflen;
1991{
1992	u_int i;
1993	u_int8_t *ptr;
1994
1995	memcpy(&sc->sc_sram[ofs], buf, buflen);
1996
1997	if (ofs % 2 != 0) {
1998		ofs--;
1999		buflen++;
2000	}
2001
2002	if (buflen % 2 != 0)
2003		buflen++;
2004
2005	assert(buflen + ofs <= ATW_SRAM_SIZE);
2006
2007	ptr = &sc->sc_sram[ofs];
2008
2009	for (i = 0; i < buflen; i += 2) {
2010		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2011		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2012		DELAY(atw_writewep_delay);
2013
2014		ATW_WRITE(sc, ATW_WESK,
2015		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2016		DELAY(atw_writewep_delay);
2017	}
2018	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2019
2020	if (sc->sc_if.if_flags & IFF_DEBUG) {
2021		int n_octets = 0;
2022		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2023		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2024		for (i = 0; i < buflen; i++) {
2025			printf(" %02x", ptr[i]);
2026			if (++n_octets % 24 == 0)
2027				printf("\n");
2028		}
2029		if (n_octets % 24 != 0)
2030			printf("\n");
2031	}
2032}
2033
2034/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2035static void
2036atw_write_wep(sc)
2037	struct atw_softc *sc;
2038{
2039	struct ieee80211com *ic = &sc->sc_ic;
2040	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2041	u_int8_t buf[IEEE80211_WEP_NKID]
2042	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2043	u_int32_t reg;
2044	int i;
2045
2046	sc->sc_wepctl = 0;
2047	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2048
2049	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2050		return;
2051
2052	memset(&buf[0][0], 0, sizeof(buf));
2053
2054	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2055		if (ic->ic_nw_keys[i].wk_len > 5) {
2056			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2057		} else if (ic->ic_nw_keys[i].wk_len != 0) {
2058			buf[i][1] = ATW_WEP_ENABLED;
2059		} else {
2060			buf[i][1] = 0;
2061			continue;
2062		}
2063		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2064		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2065		    ic->ic_nw_keys[i].wk_len - 1);
2066	}
2067
2068	reg = ATW_READ(sc, ATW_MACTEST);
2069	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2070	reg &= ~ATW_MACTEST_KEYID_MASK;
2071	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2072	ATW_WRITE(sc, ATW_MACTEST, reg);
2073
2074	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2075	 * throughout.)
2076	 */
2077	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2078	if (sc->sc_if.if_flags & IFF_LINK2)
2079		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2080
2081	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2082	    sizeof(buf));
2083}
2084
2085const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2086
2087static void
2088atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2089    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2090{
2091	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2092
2093	switch (subtype) {
2094	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2095		/* do nothing: hardware answers probe request */
2096		break;
2097	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2098	case IEEE80211_FC0_SUBTYPE_BEACON:
2099		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2100		break;
2101	default:
2102		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2103		break;
2104	}
2105	return;
2106}
2107
2108/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2109 * of IBSSs with like SSID/channel but different BSSID. It joins the
2110 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2111 * convention. Possibly the ADMtek chip does this for us; I will have
2112 * to test to find out.
2113 *
2114 * XXX we should add the duration field of the received beacon to
2115 * the TSF time it contains before comparing it with the ADM8211's
2116 * TSF.
2117 */
2118static void
2119atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2120    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2121{
2122	struct atw_softc *sc;
2123	struct ieee80211_frame *wh;
2124	u_int64_t tsft, bcn_tsft;
2125	u_int32_t tsftl, tsfth;
2126	int do_print = 0;
2127
2128	sc = (struct atw_softc*)ic->ic_if.if_softc;
2129
2130	if (ic->ic_if.if_flags & IFF_DEBUG)
2131		do_print = (ic->ic_if.if_flags & IFF_LINK0)
2132		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2133
2134	wh = mtod(m0, struct ieee80211_frame *);
2135
2136	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2137
2138	if (ic->ic_state != IEEE80211_S_RUN) {
2139		if (do_print)
2140			printf("%s: atw_recv_beacon: not running\n",
2141			    sc->sc_dev.dv_xname);
2142		return;
2143	}
2144
2145	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2146	    ic->ic_bss->ni_chan)) == NULL) {
2147		if (do_print)
2148			printf("%s: atw_recv_beacon: no node %s\n",
2149			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2150		return;
2151	}
2152
2153	if (ieee80211_match_bss(ic, ni) != 0) {
2154		if (do_print)
2155			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2156			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2157		return;
2158	}
2159
2160	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2161		return;
2162
2163	if (do_print)
2164		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2165		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2166
2167	if (ic->ic_opmode != IEEE80211_M_IBSS)
2168		return;
2169
2170	/* If we read TSFTL right before rollover, we read a TSF timer
2171	 * that is too high rather than too low. This prevents a spurious
2172	 * synchronization down the line, however, our IBSS could suffer
2173	 * from a creeping TSF....
2174	 */
2175	tsftl = ATW_READ(sc, ATW_TSFTL);
2176	tsfth = ATW_READ(sc, ATW_TSFTH);
2177
2178	tsft = (u_int64_t)tsfth << 32 | tsftl;
2179	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2180
2181	if (do_print)
2182		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2183		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
2184
2185	/* we are faster, let the other guy catch up */
2186	if (bcn_tsft < tsft)
2187		return;
2188
2189	if (do_print)
2190		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2191		    ether_sprintf(wh->i_addr2));
2192
2193	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2194
2195#if 0
2196	atw_tsf(sc);
2197#endif
2198
2199	/* negotiate rates with new IBSS */
2200	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2201	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2202	if (ni->ni_rates.rs_nrates == 0) {
2203		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2204			ether_sprintf(ni->ni_bssid));
2205		return;
2206	}
2207
2208	if (do_print) {
2209		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2210		    ether_sprintf(ic->ic_bss->ni_bssid));
2211		printf("%s ", ether_sprintf(ni->ni_bssid));
2212		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2213	}
2214
2215	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2216
2217	atw_write_bssid(sc);
2218	atw_write_bcn_thresh(sc);
2219	atw_start_beacon(sc, 1);
2220}
2221
2222/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2223 * In ad hoc mode, the SSID is written to the beacons sent by the
2224 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2225 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2226 * indications.
2227 */
2228static void
2229atw_write_ssid(sc)
2230	struct atw_softc *sc;
2231{
2232	struct ieee80211com *ic = &sc->sc_ic;
2233	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2234	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2235
2236	memset(buf, 0, sizeof(buf));
2237	buf[0] = ic->ic_bss->ni_esslen;
2238	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2239
2240	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2241}
2242
2243/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2244 * In ad hoc mode, the supported rates are written to beacons sent by the
2245 * ADM8211.
2246 */
2247static void
2248atw_write_sup_rates(sc)
2249	struct atw_softc *sc;
2250{
2251	struct ieee80211com *ic = &sc->sc_ic;
2252	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2253	 * supported rates
2254	 */
2255	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2256
2257	memset(buf, 0, sizeof(buf));
2258
2259	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2260
2261	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2262	    ic->ic_bss->ni_rates.rs_nrates);
2263
2264	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2265}
2266
2267/* Start/stop sending beacons. */
2268void
2269atw_start_beacon(struct atw_softc *sc, int start)
2270{
2271	struct ieee80211com *ic = &sc->sc_ic;
2272	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2273
2274	if (ATW_IS_ENABLED(sc) == 0)
2275		return;
2276
2277	len = capinfo = 0;
2278
2279	/* start beacons */
2280	len = sizeof(struct ieee80211_frame) +
2281	    8 /* timestamp */ + 2 /* beacon interval */ +
2282	    2 /* capability info */ +
2283	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2284	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2285	    3 /* DS parameters */ +
2286	    IEEE80211_CRC_LEN;
2287
2288	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2289
2290	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2291
2292	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2293	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2294
2295	if (!start)
2296		return;
2297
2298	/* TBD use ni_capinfo */
2299
2300	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2301		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2302	if (ic->ic_flags & IEEE80211_F_WEPON)
2303		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2304
2305	switch (ic->ic_opmode) {
2306	case IEEE80211_M_IBSS:
2307		len += 4; /* IBSS parameters */
2308		capinfo |= IEEE80211_CAPINFO_IBSS;
2309		break;
2310	case IEEE80211_M_HOSTAP:
2311		/* XXX 6-byte minimum TIM */
2312		len += atw_beacon_len_adjust;
2313		capinfo |= IEEE80211_CAPINFO_ESS;
2314		break;
2315	default:
2316		return;
2317	}
2318
2319	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2320	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2321
2322	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2323	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2324
2325	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2326	    sc->sc_dev.dv_xname, reg_bcnt));
2327
2328	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2329	    sc->sc_dev.dv_xname, reg_cap1));
2330}
2331
2332/* First beacon was sent at time 0 microseconds, current time is
2333 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2334 * microseconds.  Return the expected time in microseconds for the
2335 * beacon after next.
2336 */
2337static __inline u_int64_t
2338atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2339{
2340	return tsft + (tbtt - tsft % tbtt);
2341}
2342
2343/* If we've created an IBSS, write the TSF time in the ADM8211 to
2344 * the ieee80211com.
2345 *
2346 * Predict the next target beacon transmission time (TBTT) and
2347 * write it to the ADM8211.
2348 */
2349static void
2350atw_tsf(struct atw_softc *sc)
2351{
2352#define TBTTOFS 20 /* TU */
2353
2354	struct ieee80211com *ic = &sc->sc_ic;
2355	u_int64_t tsft, tbtt;
2356
2357	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2358	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2359	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2360		tsft = ATW_READ(sc, ATW_TSFTH);
2361		tsft <<= 32;
2362		tsft |= ATW_READ(sc, ATW_TSFTL);
2363		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2364	} else
2365		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2366
2367	tbtt = atw_predict_beacon(tsft,
2368	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2369
2370	/* skip one more beacon so that the TBTT cannot pass before
2371	 * we've programmed it, and also so that we can subtract a
2372	 * few TU so that we wake a little before TBTT.
2373	 */
2374	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2375
2376	/* wake up a little early */
2377	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2378
2379	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2380	    sc->sc_dev.dv_xname, tsft, tbtt));
2381
2382	ATW_WRITE(sc, ATW_TOFS1,
2383	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2384	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2385	    LSHIFT(
2386		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2387		ATW_TOFS1_TBTTPRE_MASK));
2388#undef TBTTOFS
2389}
2390
2391static void
2392atw_next_scan(void *arg)
2393{
2394	struct atw_softc *sc = arg;
2395	struct ieee80211com *ic = &sc->sc_ic;
2396	struct ifnet *ifp = &ic->ic_if;
2397	int s;
2398
2399	/* don't call atw_start w/o network interrupts blocked */
2400	s = splnet();
2401	if (ic->ic_state == IEEE80211_S_SCAN)
2402		ieee80211_next_scan(ifp);
2403	splx(s);
2404}
2405
2406/* Synchronize the hardware state with the software state. */
2407static int
2408atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2409{
2410	struct ifnet *ifp = &ic->ic_if;
2411	struct atw_softc *sc = ifp->if_softc;
2412	enum ieee80211_state ostate;
2413	int error;
2414
2415	ostate = ic->ic_state;
2416
2417	if (nstate == IEEE80211_S_INIT) {
2418		callout_stop(&sc->sc_scan_ch);
2419		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2420		atw_start_beacon(sc, 0);
2421		return (*sc->sc_newstate)(ic, nstate, arg);
2422	}
2423
2424	if ((error = atw_tune(sc)) != 0)
2425		return error;
2426
2427	switch (nstate) {
2428	case IEEE80211_S_ASSOC:
2429		break;
2430	case IEEE80211_S_INIT:
2431		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2432		break;
2433	case IEEE80211_S_SCAN:
2434		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2435		atw_write_bssid(sc);
2436
2437		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2438		    atw_next_scan, sc);
2439
2440		break;
2441	case IEEE80211_S_RUN:
2442		if (ic->ic_opmode == IEEE80211_M_STA)
2443			break;
2444		/*FALLTHROUGH*/
2445	case IEEE80211_S_AUTH:
2446		atw_write_bssid(sc);
2447		atw_write_bcn_thresh(sc);
2448		atw_write_ssid(sc);
2449		atw_write_sup_rates(sc);
2450
2451		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2452		    ic->ic_opmode == IEEE80211_M_MONITOR)
2453			break;
2454
2455		/* set listen interval
2456		 * XXX do software units agree w/ hardware?
2457		 */
2458		ATW_WRITE(sc, ATW_BPLI,
2459		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2460		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2461			   ATW_BPLI_LI_MASK));
2462
2463		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2464		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2465
2466		atw_tsf(sc);
2467		break;
2468	}
2469
2470	if (nstate != IEEE80211_S_SCAN)
2471		callout_stop(&sc->sc_scan_ch);
2472
2473	if (nstate == IEEE80211_S_RUN &&
2474	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2475	     ic->ic_opmode == IEEE80211_M_IBSS))
2476		atw_start_beacon(sc, 1);
2477	else
2478		atw_start_beacon(sc, 0);
2479
2480	return (*sc->sc_newstate)(ic, nstate, arg);
2481}
2482
2483/*
2484 * atw_add_rxbuf:
2485 *
2486 *	Add a receive buffer to the indicated descriptor.
2487 */
2488int
2489atw_add_rxbuf(sc, idx)
2490	struct atw_softc *sc;
2491	int idx;
2492{
2493	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2494	struct mbuf *m;
2495	int error;
2496
2497	MGETHDR(m, M_DONTWAIT, MT_DATA);
2498	if (m == NULL)
2499		return (ENOBUFS);
2500
2501	MCLGET(m, M_DONTWAIT);
2502	if ((m->m_flags & M_EXT) == 0) {
2503		m_freem(m);
2504		return (ENOBUFS);
2505	}
2506
2507	if (rxs->rxs_mbuf != NULL)
2508		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2509
2510	rxs->rxs_mbuf = m;
2511
2512	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2513	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2514	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2515	if (error) {
2516		printf("%s: can't load rx DMA map %d, error = %d\n",
2517		    sc->sc_dev.dv_xname, idx, error);
2518		panic("atw_add_rxbuf");	/* XXX */
2519	}
2520
2521	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2522	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2523
2524	ATW_INIT_RXDESC(sc, idx);
2525
2526	return (0);
2527}
2528
2529/*
2530 * atw_stop:		[ ifnet interface function ]
2531 *
2532 *	Stop transmission on the interface.
2533 */
2534void
2535atw_stop(ifp, disable)
2536	struct ifnet *ifp;
2537	int disable;
2538{
2539	struct atw_softc *sc = ifp->if_softc;
2540	struct ieee80211com *ic = &sc->sc_ic;
2541	struct atw_txsoft *txs;
2542
2543	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2544
2545	/* Disable interrupts. */
2546	ATW_WRITE(sc, ATW_IER, 0);
2547
2548	/* Stop the transmit and receive processes. */
2549	sc->sc_opmode = 0;
2550	ATW_WRITE(sc, ATW_NAR, 0);
2551	ATW_WRITE(sc, ATW_TDBD, 0);
2552	ATW_WRITE(sc, ATW_TDBP, 0);
2553	ATW_WRITE(sc, ATW_RDB, 0);
2554
2555	/*
2556	 * Release any queued transmit buffers.
2557	 */
2558	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2559		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2560		if (txs->txs_mbuf != NULL) {
2561			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2562			m_freem(txs->txs_mbuf);
2563			txs->txs_mbuf = NULL;
2564		}
2565		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2566	}
2567
2568	if (disable) {
2569		atw_rxdrain(sc);
2570		atw_disable(sc);
2571	}
2572
2573	/*
2574	 * Mark the interface down and cancel the watchdog timer.
2575	 */
2576	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2577	ifp->if_timer = 0;
2578
2579	/* XXX */
2580	atw_reset(sc);
2581}
2582
2583/*
2584 * atw_rxdrain:
2585 *
2586 *	Drain the receive queue.
2587 */
2588void
2589atw_rxdrain(sc)
2590	struct atw_softc *sc;
2591{
2592	struct atw_rxsoft *rxs;
2593	int i;
2594
2595	for (i = 0; i < ATW_NRXDESC; i++) {
2596		rxs = &sc->sc_rxsoft[i];
2597		if (rxs->rxs_mbuf == NULL)
2598			continue;
2599		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600		m_freem(rxs->rxs_mbuf);
2601		rxs->rxs_mbuf = NULL;
2602	}
2603}
2604
2605/*
2606 * atw_detach:
2607 *
2608 *	Detach an ADM8211 interface.
2609 */
2610int
2611atw_detach(sc)
2612	struct atw_softc *sc;
2613{
2614	struct ifnet *ifp = &sc->sc_ic.ic_if;
2615	struct atw_rxsoft *rxs;
2616	struct atw_txsoft *txs;
2617	int i;
2618
2619	/*
2620	 * Succeed now if there isn't any work to do.
2621	 */
2622	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2623		return (0);
2624
2625	ieee80211_ifdetach(ifp);
2626	if_detach(ifp);
2627
2628	for (i = 0; i < ATW_NRXDESC; i++) {
2629		rxs = &sc->sc_rxsoft[i];
2630		if (rxs->rxs_mbuf != NULL) {
2631			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2632			m_freem(rxs->rxs_mbuf);
2633			rxs->rxs_mbuf = NULL;
2634		}
2635		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2636	}
2637	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2638		txs = &sc->sc_txsoft[i];
2639		if (txs->txs_mbuf != NULL) {
2640			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2641			m_freem(txs->txs_mbuf);
2642			txs->txs_mbuf = NULL;
2643		}
2644		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2645	}
2646	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2647	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2648	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2649	    sizeof(struct atw_control_data));
2650	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2651
2652	shutdownhook_disestablish(sc->sc_sdhook);
2653	powerhook_disestablish(sc->sc_powerhook);
2654
2655	if (sc->sc_srom)
2656		free(sc->sc_srom, M_DEVBUF);
2657
2658	return (0);
2659}
2660
2661/* atw_shutdown: make sure the interface is stopped at reboot time. */
2662void
2663atw_shutdown(arg)
2664	void *arg;
2665{
2666	struct atw_softc *sc = arg;
2667
2668	atw_stop(&sc->sc_ic.ic_if, 1);
2669}
2670
2671int
2672atw_intr(arg)
2673	void *arg;
2674{
2675	struct atw_softc *sc = arg;
2676	struct ifnet *ifp = &sc->sc_ic.ic_if;
2677	u_int32_t status, rxstatus, txstatus, linkstatus;
2678	int handled = 0, txthresh;
2679
2680#ifdef DEBUG
2681	if (ATW_IS_ENABLED(sc) == 0)
2682		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2683#endif
2684
2685	/*
2686	 * If the interface isn't running, the interrupt couldn't
2687	 * possibly have come from us.
2688	 */
2689	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2690	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2691		return (0);
2692
2693	for (;;) {
2694		status = ATW_READ(sc, ATW_STSR);
2695
2696		if (status)
2697			ATW_WRITE(sc, ATW_STSR, status);
2698
2699		if (sc->sc_intr_ack != NULL)
2700			(*sc->sc_intr_ack)(sc);
2701
2702#ifdef ATW_DEBUG
2703#define PRINTINTR(flag) do { \
2704	if ((status & flag) != 0) { \
2705		printf("%s" #flag, delim); \
2706		delim = ","; \
2707	} \
2708} while (0)
2709
2710		if (atw_debug > 1 && status) {
2711			const char *delim = "<";
2712
2713			printf("%s: reg[STSR] = %x",
2714			    sc->sc_dev.dv_xname, status);
2715
2716			PRINTINTR(ATW_INTR_FBE);
2717			PRINTINTR(ATW_INTR_LINKOFF);
2718			PRINTINTR(ATW_INTR_LINKON);
2719			PRINTINTR(ATW_INTR_RCI);
2720			PRINTINTR(ATW_INTR_RDU);
2721			PRINTINTR(ATW_INTR_REIS);
2722			PRINTINTR(ATW_INTR_RPS);
2723			PRINTINTR(ATW_INTR_TCI);
2724			PRINTINTR(ATW_INTR_TDU);
2725			PRINTINTR(ATW_INTR_TLT);
2726			PRINTINTR(ATW_INTR_TPS);
2727			PRINTINTR(ATW_INTR_TRT);
2728			PRINTINTR(ATW_INTR_TUF);
2729			PRINTINTR(ATW_INTR_BCNTC);
2730			PRINTINTR(ATW_INTR_ATIME);
2731			PRINTINTR(ATW_INTR_TBTT);
2732			PRINTINTR(ATW_INTR_TSCZ);
2733			PRINTINTR(ATW_INTR_TSFTF);
2734			printf(">\n");
2735		}
2736#undef PRINTINTR
2737#endif /* ATW_DEBUG */
2738
2739		if ((status & sc->sc_inten) == 0)
2740			break;
2741
2742		handled = 1;
2743
2744		rxstatus = status & sc->sc_rxint_mask;
2745		txstatus = status & sc->sc_txint_mask;
2746		linkstatus = status & sc->sc_linkint_mask;
2747
2748		if (linkstatus) {
2749			atw_linkintr(sc, linkstatus);
2750		}
2751
2752		if (rxstatus) {
2753			/* Grab any new packets. */
2754			atw_rxintr(sc);
2755
2756			if (rxstatus & ATW_INTR_RDU) {
2757				printf("%s: receive ring overrun\n",
2758				    sc->sc_dev.dv_xname);
2759				/* Get the receive process going again. */
2760				ATW_WRITE(sc, ATW_RDR, 0x1);
2761				break;
2762			}
2763		}
2764
2765		if (txstatus) {
2766			/* Sweep up transmit descriptors. */
2767			atw_txintr(sc);
2768
2769			if (txstatus & ATW_INTR_TLT)
2770				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2771				    sc->sc_dev.dv_xname));
2772
2773			if (txstatus & ATW_INTR_TRT)
2774				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2775				    sc->sc_dev.dv_xname));
2776
2777			/* If Tx under-run, increase our transmit threshold
2778			 * if another is available.
2779			 */
2780			txthresh = sc->sc_txthresh + 1;
2781			if ((txstatus & ATW_INTR_TUF) &&
2782			    sc->sc_txth[txthresh].txth_name != NULL) {
2783				/* Idle the transmit process. */
2784				atw_idle(sc, ATW_NAR_ST);
2785
2786				sc->sc_txthresh = txthresh;
2787				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2788				sc->sc_opmode |=
2789				    sc->sc_txth[txthresh].txth_opmode;
2790				printf("%s: transmit underrun; new "
2791				    "threshold: %s\n", sc->sc_dev.dv_xname,
2792				    sc->sc_txth[txthresh].txth_name);
2793
2794				/* Set the new threshold and restart
2795				 * the transmit process.
2796				 */
2797				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2798				/* XXX Log every Nth underrun from
2799				 * XXX now on?
2800				 */
2801			}
2802		}
2803
2804		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2805			if (status & ATW_INTR_TPS)
2806				printf("%s: transmit process stopped\n",
2807				    sc->sc_dev.dv_xname);
2808			if (status & ATW_INTR_RPS)
2809				printf("%s: receive process stopped\n",
2810				    sc->sc_dev.dv_xname);
2811			(void)atw_init(ifp);
2812			break;
2813		}
2814
2815		if (status & ATW_INTR_FBE) {
2816			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2817			(void)atw_init(ifp);
2818			break;
2819		}
2820
2821		/*
2822		 * Not handled:
2823		 *
2824		 *	Transmit buffer unavailable -- normal
2825		 *	condition, nothing to do, really.
2826		 *
2827		 *	Early receive interrupt -- not available on
2828		 *	all chips, we just use RI.  We also only
2829		 *	use single-segment receive DMA, so this
2830		 *	is mostly useless.
2831		 *
2832		 *      TBD others
2833		 */
2834	}
2835
2836	/* Try to get more packets going. */
2837	atw_start(ifp);
2838
2839	return (handled);
2840}
2841
2842/*
2843 * atw_idle:
2844 *
2845 *	Cause the transmit and/or receive processes to go idle.
2846 *
2847 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2848 *	process in STSR if I clear SR or ST after the process has already
2849 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2850 *      do not seem to be too reliable. Perhaps I have the sense of the
2851 *	Rx bits switched with the Tx bits?
2852 */
2853void
2854atw_idle(sc, bits)
2855	struct atw_softc *sc;
2856	u_int32_t bits;
2857{
2858	u_int32_t ackmask = 0, opmode, stsr, test0;
2859	int i, s;
2860
2861	/* without this, somehow we run concurrently w/ interrupt handler */
2862	s = splnet();
2863
2864	opmode = sc->sc_opmode & ~bits;
2865
2866	if (bits & ATW_NAR_SR)
2867		ackmask |= ATW_INTR_RPS;
2868
2869	if (bits & ATW_NAR_ST) {
2870		ackmask |= ATW_INTR_TPS;
2871		/* set ATW_NAR_HF to flush TX FIFO. */
2872		opmode |= ATW_NAR_HF;
2873	}
2874
2875	ATW_WRITE(sc, ATW_NAR, opmode);
2876
2877	for (i = 0; i < 1000; i++) {
2878		stsr = ATW_READ(sc, ATW_STSR);
2879		if ((stsr & ackmask) == ackmask)
2880			break;
2881		DELAY(10);
2882	}
2883
2884	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2885
2886	if ((stsr & ackmask) == ackmask)
2887		goto out;
2888
2889	test0 = ATW_READ(sc, ATW_TEST0);
2890
2891	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2892	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2893		printf("%s: transmit process not idle [%s]\n",
2894		    sc->sc_dev.dv_xname,
2895		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2896		printf("%s: bits %08x test0 %08x stsr %08x\n",
2897		    sc->sc_dev.dv_xname, bits, test0, stsr);
2898	}
2899
2900	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2901	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2902		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2903		    sc->sc_dev.dv_xname,
2904		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2905		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2906		    sc->sc_dev.dv_xname, bits, test0, stsr));
2907	}
2908out:
2909	splx(s);
2910	return;
2911}
2912
2913/*
2914 * atw_linkintr:
2915 *
2916 *	Helper; handle link-status interrupts.
2917 */
2918void
2919atw_linkintr(sc, linkstatus)
2920	struct atw_softc *sc;
2921	u_int32_t linkstatus;
2922{
2923	struct ieee80211com *ic = &sc->sc_ic;
2924
2925	if (ic->ic_state != IEEE80211_S_RUN)
2926		return;
2927
2928	if (linkstatus & ATW_INTR_LINKON) {
2929		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2930		sc->sc_rescan_timer = 0;
2931	} else if (linkstatus & ATW_INTR_LINKOFF) {
2932		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2933		switch (ic->ic_opmode) {
2934		case IEEE80211_M_HOSTAP:
2935			return;
2936		case IEEE80211_M_IBSS:
2937			if (ic->ic_flags & IEEE80211_F_SIBSS)
2938				return;
2939			/*FALLTHROUGH*/
2940		case IEEE80211_M_STA:
2941			sc->sc_rescan_timer = 3;
2942			ic->ic_if.if_timer = 1;
2943			break;
2944		default:
2945			break;
2946		}
2947	}
2948}
2949
2950/*
2951 * atw_rxintr:
2952 *
2953 *	Helper; handle receive interrupts.
2954 */
2955void
2956atw_rxintr(sc)
2957	struct atw_softc *sc;
2958{
2959	static int rate_tbl[] = {2, 4, 11, 22, 44};
2960	struct ieee80211com *ic = &sc->sc_ic;
2961	struct ieee80211_node *ni;
2962	struct ieee80211_frame *wh;
2963	struct ifnet *ifp = &ic->ic_if;
2964	struct atw_rxsoft *rxs;
2965	struct mbuf *m;
2966	u_int32_t rxstat;
2967	int i, len, rate, rate0, rssi;
2968
2969	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2970		rxs = &sc->sc_rxsoft[i];
2971
2972		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2973
2974		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2975		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2976		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2977
2978		if (rxstat & ATW_RXSTAT_OWN)
2979			break; /* We have processed all receive buffers. */
2980
2981		DPRINTF3(sc,
2982		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2983		    sc->sc_dev.dv_xname,
2984		    sc->sc_rxdescs[i].ar_stat,
2985		    sc->sc_rxdescs[i].ar_rssi,
2986		    sc->sc_rxdescs[i].ar_buf1,
2987		    sc->sc_rxdescs[i].ar_buf2));
2988
2989		/*
2990		 * Make sure the packet fit in one buffer.  This should
2991		 * always be the case.
2992		 */
2993		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2994		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2995			printf("%s: incoming packet spilled, resetting\n",
2996			    sc->sc_dev.dv_xname);
2997			(void)atw_init(ifp);
2998			return;
2999		}
3000
3001		/*
3002		 * If an error occurred, update stats, clear the status
3003		 * word, and leave the packet buffer in place.  It will
3004		 * simply be reused the next time the ring comes around.
3005	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3006		 * error.
3007		 */
3008
3009		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3010		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3011		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3012		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3013				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3014				ATW_RXSTAT_ICVE)) != 0)) {
3015#define	PRINTERR(bit, str)						\
3016			if (rxstat & (bit))				\
3017				printf("%s: receive error: %s\n",	\
3018				    sc->sc_dev.dv_xname, str)
3019			ifp->if_ierrors++;
3020			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3021			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3022			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3023			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3024			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3025			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3026			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3027#undef PRINTERR
3028			ATW_INIT_RXDESC(sc, i);
3029			continue;
3030		}
3031
3032		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3033		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3034
3035		/*
3036		 * No errors; receive the packet.  Note the ADM8211
3037		 * includes the CRC in promiscuous mode.
3038		 */
3039		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3040
3041		/*
3042		 * Allocate a new mbuf cluster.  If that fails, we are
3043		 * out of memory, and must drop the packet and recycle
3044		 * the buffer that's already attached to this descriptor.
3045		 */
3046		m = rxs->rxs_mbuf;
3047		if (atw_add_rxbuf(sc, i) != 0) {
3048			ifp->if_ierrors++;
3049			ATW_INIT_RXDESC(sc, i);
3050			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3051			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3052			continue;
3053		}
3054
3055		ifp->if_ipackets++;
3056		if (sc->sc_opmode & ATW_NAR_PR)
3057			m->m_flags |= M_HASFCS;
3058		m->m_pkthdr.rcvif = ifp;
3059		m->m_pkthdr.len = m->m_len = len;
3060
3061		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3062			rate = 0;
3063		else
3064			rate = rate_tbl[rate0];
3065
3066 #if NBPFILTER > 0
3067		/* Pass this up to any BPF listeners. */
3068		if (sc->sc_radiobpf != NULL) {
3069			struct mbuf mb;
3070
3071			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3072
3073			tap->ar_rate = rate;
3074			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3075			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3076
3077			/* TBD verify units are dB */
3078			tap->ar_antsignal = rssi;
3079			/* TBD tap->ar_flags */
3080
3081			M_COPY_PKTHDR(&mb, m);
3082			mb.m_data = (caddr_t)tap;
3083			mb.m_len = tap->ar_ihdr.it_len;
3084			mb.m_next = m;
3085			mb.m_pkthdr.len += mb.m_len;
3086			bpf_mtap(sc->sc_radiobpf, &mb);
3087 		}
3088 #endif /* NPBFILTER > 0 */
3089
3090		wh = mtod(m, struct ieee80211_frame *);
3091		ni = ieee80211_find_rxnode(ic, wh);
3092		ieee80211_input(ifp, m, ni, rssi, 0);
3093		/*
3094		 * The frame may have caused the node to be marked for
3095		 * reclamation (e.g. in response to a DEAUTH message)
3096		 * so use free_node here instead of unref_node.
3097		 */
3098		if (ni == ic->ic_bss)
3099			ieee80211_unref_node(&ni);
3100		else
3101			ieee80211_free_node(ic, ni);
3102	}
3103
3104	/* Update the receive pointer. */
3105	sc->sc_rxptr = i;
3106}
3107
3108/*
3109 * atw_txintr:
3110 *
3111 *	Helper; handle transmit interrupts.
3112 */
3113void
3114atw_txintr(sc)
3115	struct atw_softc *sc;
3116{
3117#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3118    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3119#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3120    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3121
3122	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3123	struct ifnet *ifp = &sc->sc_ic.ic_if;
3124	struct atw_txsoft *txs;
3125	u_int32_t txstat;
3126
3127	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3128	    sc->sc_dev.dv_xname, sc->sc_flags));
3129
3130	ifp->if_flags &= ~IFF_OACTIVE;
3131
3132	/*
3133	 * Go through our Tx list and free mbufs for those
3134	 * frames that have been transmitted.
3135	 */
3136	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3137		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3138		    txs->txs_ndescs,
3139		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3140
3141#ifdef ATW_DEBUG
3142		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3143			int i;
3144			printf("    txsoft %p transmit chain:\n", txs);
3145			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3146				printf("     descriptor %d:\n", i);
3147				printf("       at_status:   0x%08x\n",
3148				    le32toh(sc->sc_txdescs[i].at_stat));
3149				printf("       at_flags:      0x%08x\n",
3150				    le32toh(sc->sc_txdescs[i].at_flags));
3151				printf("       at_buf1: 0x%08x\n",
3152				    le32toh(sc->sc_txdescs[i].at_buf1));
3153				printf("       at_buf2: 0x%08x\n",
3154				    le32toh(sc->sc_txdescs[i].at_buf2));
3155				if (i == txs->txs_lastdesc)
3156					break;
3157			}
3158		}
3159#endif
3160
3161		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3162		if (txstat & ATW_TXSTAT_OWN)
3163			break;
3164
3165		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3166
3167		sc->sc_txfree += txs->txs_ndescs;
3168
3169		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3170		    0, txs->txs_dmamap->dm_mapsize,
3171		    BUS_DMASYNC_POSTWRITE);
3172		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3173		m_freem(txs->txs_mbuf);
3174		txs->txs_mbuf = NULL;
3175
3176		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3177
3178		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3179		    (txstat & TXSTAT_ERRMASK) != 0) {
3180			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3181			    txstat_buf, sizeof(txstat_buf));
3182			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3183			    txstat_buf,
3184			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3185		}
3186
3187		/*
3188		 * Check for errors and collisions.
3189		 */
3190		if (txstat & ATW_TXSTAT_TUF)
3191			sc->sc_stats.ts_tx_tuf++;
3192		if (txstat & ATW_TXSTAT_TLT)
3193			sc->sc_stats.ts_tx_tlt++;
3194		if (txstat & ATW_TXSTAT_TRT)
3195			sc->sc_stats.ts_tx_trt++;
3196		if (txstat & ATW_TXSTAT_TRO)
3197			sc->sc_stats.ts_tx_tro++;
3198		if (txstat & ATW_TXSTAT_SOFBR) {
3199			sc->sc_stats.ts_tx_sofbr++;
3200		}
3201
3202		if ((txstat & ATW_TXSTAT_ES) == 0)
3203			ifp->if_collisions +=
3204			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3205		else
3206			ifp->if_oerrors++;
3207
3208		ifp->if_opackets++;
3209	}
3210
3211	/*
3212	 * If there are no more pending transmissions, cancel the watchdog
3213	 * timer.
3214	 */
3215	if (txs == NULL)
3216		sc->sc_tx_timer = 0;
3217#undef TXSTAT_ERRMASK
3218#undef TXSTAT_FMT
3219}
3220
3221/*
3222 * atw_watchdog:	[ifnet interface function]
3223 *
3224 *	Watchdog timer handler.
3225 */
3226void
3227atw_watchdog(ifp)
3228	struct ifnet *ifp;
3229{
3230	struct atw_softc *sc = ifp->if_softc;
3231	struct ieee80211com *ic = &sc->sc_ic;
3232
3233	ifp->if_timer = 0;
3234	if (ATW_IS_ENABLED(sc) == 0)
3235		return;
3236
3237	if (sc->sc_rescan_timer) {
3238		if (--sc->sc_rescan_timer == 0)
3239			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3240	}
3241	if (sc->sc_tx_timer) {
3242		if (--sc->sc_tx_timer == 0 &&
3243		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3244			printf("%s: transmit timeout\n", ifp->if_xname);
3245			ifp->if_oerrors++;
3246			(void)atw_init(ifp);
3247			atw_start(ifp);
3248		}
3249	}
3250	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3251		ifp->if_timer = 1;
3252	ieee80211_watchdog(ifp);
3253}
3254
3255/* Compute the 802.11 Duration field and the PLCP Length fields for
3256 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3257 * Write the fields to the ADM8211 Tx header, frm.
3258 *
3259 * TBD use the fragmentation threshold to find the right duration for
3260 * the first & last fragments.
3261 *
3262 * TBD make certain of the duration fields applied by the ADM8211 to each
3263 * fragment. I think that the ADM8211 knows how to subtract the CTS
3264 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3265 * I also think that the ADM8211 does *some* arithmetic for us, because
3266 * otherwise I think we would have to set a first duration for CTS/first
3267 * fragment, a second duration for fragments between the first and the
3268 * last, and a third duration for the last fragment.
3269 *
3270 * TBD make certain that duration fields reflect addition of FCS/WEP
3271 * and correct duration arithmetic as necessary.
3272 */
3273static void
3274atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3275    int len)
3276{
3277	int remainder;
3278
3279	/* deal also with encrypted fragments */
3280	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3281		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3282		    sc->sc_dev.dv_xname));
3283		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3284		       IEEE80211_WEP_CRCLEN;
3285	}
3286
3287	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3288	 * duration (XXX added by MAC?).
3289	 */
3290	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3291	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3292
3293	if (rate <= 4)
3294		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3295		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3296		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3297		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3298		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3299	else
3300		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3301		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3302		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3303		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3304		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3305
3306	/* lengthen duration if long preamble */
3307	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3308		frm->atw_head_dur +=
3309		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3310		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3311		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3312		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3313
3314	if (remainder != 0)
3315		frm->atw_head_dur++;
3316
3317	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3318	    (rate == 2 || rate == 4)) {
3319		/* derived from Linux: how could this be right? */
3320		frm->atw_head_plcplen = frm->atw_head_dur;
3321	} else {
3322		frm->atw_head_plcplen = (16 * len) / rate;
3323		remainder = (80 * len) % (rate * 5);
3324
3325		if (remainder != 0) {
3326			frm->atw_head_plcplen++;
3327
3328			/* XXX magic */
3329			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3330			    rate == 22 && remainder <= 30)
3331				frm->atw_head_plcplen |= 0x8000;
3332		}
3333	}
3334	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3335	    htole16(frm->atw_head_plcplen);
3336	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3337}
3338
3339#ifdef ATW_DEBUG
3340static void
3341atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3342{
3343	struct atw_softc *sc = ifp->if_softc;
3344	struct mbuf *m;
3345	int i, noctets = 0;
3346
3347	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3348	    m0->m_pkthdr.len);
3349
3350	for (m = m0; m; m = m->m_next) {
3351		if (m->m_len == 0)
3352			continue;
3353		for (i = 0; i < m->m_len; i++) {
3354			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3355			if (++noctets % 24 == 0)
3356				printf("\n");
3357		}
3358	}
3359	printf("%s%s: %d bytes emitted\n",
3360	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3361}
3362#endif /* ATW_DEBUG */
3363
3364/*
3365 * atw_start:		[ifnet interface function]
3366 *
3367 *	Start packet transmission on the interface.
3368 */
3369void
3370atw_start(ifp)
3371	struct ifnet *ifp;
3372{
3373	struct atw_softc *sc = ifp->if_softc;
3374	struct ieee80211com *ic = &sc->sc_ic;
3375	struct ieee80211_node *ni;
3376	struct ieee80211_frame *wh;
3377	struct atw_frame *hh;
3378	struct mbuf *m0, *m;
3379	struct atw_txsoft *txs, *last_txs;
3380	struct atw_txdesc *txd;
3381	int do_encrypt, rate;
3382	bus_dmamap_t dmamap;
3383	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3384
3385	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3386	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3387
3388	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3389		return;
3390
3391#if 0 /* TBD ??? */
3392	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3393		return;
3394#endif
3395
3396	/*
3397	 * Remember the previous number of free descriptors and
3398	 * the first descriptor we'll use.
3399	 */
3400	ofree = sc->sc_txfree;
3401	firsttx = sc->sc_txnext;
3402
3403	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3404	    sc->sc_dev.dv_xname, ofree, firsttx));
3405
3406	/*
3407	 * Loop through the send queue, setting up transmit descriptors
3408	 * until we drain the queue, or use up all available transmit
3409	 * descriptors.
3410	 */
3411	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3412	       sc->sc_txfree != 0) {
3413
3414		do_encrypt = 0;
3415		/*
3416		 * Grab a packet off the management queue, if it
3417		 * is not empty. Otherwise, from the data queue.
3418		 */
3419		IF_DEQUEUE(&ic->ic_mgtq, m0);
3420		if (m0 != NULL) {
3421			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3422			m0->m_pkthdr.rcvif = NULL;
3423		} else {
3424			IFQ_DEQUEUE(&ifp->if_snd, m0);
3425			if (m0 == NULL)
3426				break;
3427#if NBPFILTER > 0
3428			if (ifp->if_bpf != NULL)
3429				bpf_mtap(ifp->if_bpf, m0);
3430#endif /* NBPFILTER > 0 */
3431			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3432				ifp->if_oerrors++;
3433				break;
3434			}
3435		}
3436
3437		rate = MAX(ieee80211_get_rate(ic), 2);
3438
3439#if NBPFILTER > 0
3440		/*
3441		 * Pass the packet to any BPF listeners.
3442		 */
3443		if (ic->ic_rawbpf != NULL)
3444			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3445
3446		if (sc->sc_radiobpf != NULL) {
3447			struct mbuf mb;
3448			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3449
3450			tap->at_rate = rate;
3451			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3452			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3453
3454			/* TBD tap->at_flags */
3455
3456			M_COPY_PKTHDR(&mb, m0);
3457			mb.m_data = (caddr_t)tap;
3458			mb.m_len = tap->at_ihdr.it_len;
3459			mb.m_next = m0;
3460			mb.m_pkthdr.len += mb.m_len;
3461			bpf_mtap(sc->sc_radiobpf, &mb);
3462		}
3463#endif /* NBPFILTER > 0 */
3464
3465		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3466
3467		if (ni != NULL && ni != ic->ic_bss)
3468			ieee80211_free_node(ic, ni);
3469
3470		if (m0 == NULL) {
3471			ifp->if_oerrors++;
3472			break;
3473		}
3474
3475		/* just to make sure. */
3476		m0 = m_pullup(m0, sizeof(struct atw_frame));
3477
3478		if (m0 == NULL) {
3479			ifp->if_oerrors++;
3480			break;
3481		}
3482
3483		hh = mtod(m0, struct atw_frame *);
3484		wh = &hh->atw_ihdr;
3485
3486		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3487
3488		/* Copy everything we need from the 802.11 header:
3489		 * Frame Control; address 1, address 3, or addresses
3490		 * 3 and 4. NIC fills in BSSID, SA.
3491		 */
3492		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3493			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3494				panic("%s: illegal WDS frame",
3495				    sc->sc_dev.dv_xname);
3496			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3497		} else
3498			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3499
3500		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3501
3502		/* initialize remaining Tx parameters */
3503		memset(&hh->u, 0, sizeof(hh->u));
3504
3505		hh->atw_rate = rate * 5;
3506		/* XXX this could be incorrect if M_FCS. _encap should
3507		 * probably strip FCS just in case it sticks around in
3508		 * bridged packets.
3509		 */
3510		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3511		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3512		    sizeof(struct atw_frame));
3513
3514#if 0
3515		/* this virtually guaranteed that WEP-encrypted frames
3516		 * are fragmented. oops.
3517		 */
3518		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3519		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3520		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3521#else
3522		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3523#endif
3524
3525		hh->atw_rtylmt = 3;
3526		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3527		if (do_encrypt) {
3528			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3529			hh->atw_keyid = ic->ic_wep_txkey;
3530		}
3531
3532		/* TBD 4-addr frames */
3533		atw_frame_setdurs(sc, hh, rate,
3534		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3535		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3536
3537		/* never fragment multicast frames */
3538		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3539			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3540		} else if (sc->sc_flags & ATWF_RTSCTS) {
3541			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3542		}
3543
3544#ifdef ATW_DEBUG
3545		/* experimental stuff */
3546		if (atw_xrtylmt != ~0)
3547			hh->atw_rtylmt = atw_xrtylmt;
3548		if (atw_xhdrctl != 0)
3549			hh->atw_hdrctl |= htole16(atw_xhdrctl);
3550		if (atw_xservice != IEEE80211_PLCP_SERVICE)
3551			hh->atw_service = atw_xservice;
3552		if (atw_xpaylen != 0)
3553			hh->atw_paylen = htole16(atw_xpaylen);
3554		hh->atw_fragnum = 0;
3555
3556		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3557			printf("%s: dst = %s, rate = 0x%02x, "
3558			    "service = 0x%02x, paylen = 0x%04x\n",
3559			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3560			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3561
3562			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3563			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3564			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3565			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3566			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3567			    hh->atw_tail_dur, hh->atw_head_dur);
3568
3569			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3570			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3571			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3572			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3573
3574			printf("%s: keyid = %d\n",
3575			    sc->sc_dev.dv_xname, hh->atw_keyid);
3576
3577			atw_dump_pkt(ifp, m0);
3578		}
3579#endif /* ATW_DEBUG */
3580
3581		dmamap = txs->txs_dmamap;
3582
3583		/*
3584		 * Load the DMA map.  Copy and try (once) again if the packet
3585		 * didn't fit in the alloted number of segments.
3586		 */
3587		for (first = 1;
3588		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3589		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3590		     first = 0) {
3591			MGETHDR(m, M_DONTWAIT, MT_DATA);
3592			if (m == NULL) {
3593				printf("%s: unable to allocate Tx mbuf\n",
3594				    sc->sc_dev.dv_xname);
3595				break;
3596			}
3597			if (m0->m_pkthdr.len > MHLEN) {
3598				MCLGET(m, M_DONTWAIT);
3599				if ((m->m_flags & M_EXT) == 0) {
3600					printf("%s: unable to allocate Tx "
3601					    "cluster\n", sc->sc_dev.dv_xname);
3602					m_freem(m);
3603					break;
3604				}
3605			}
3606			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3607			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3608			m_freem(m0);
3609			m0 = m;
3610			m = NULL;
3611		}
3612		if (error != 0) {
3613			printf("%s: unable to load Tx buffer, "
3614			    "error = %d\n", sc->sc_dev.dv_xname, error);
3615			m_freem(m0);
3616			break;
3617		}
3618
3619		/*
3620		 * Ensure we have enough descriptors free to describe
3621		 * the packet.
3622		 */
3623		if (dmamap->dm_nsegs > sc->sc_txfree) {
3624			/*
3625			 * Not enough free descriptors to transmit
3626			 * this packet.  Unload the DMA map and
3627			 * drop the packet.  Notify the upper layer
3628			 * that there are no more slots left.
3629			 *
3630			 * XXX We could allocate an mbuf and copy, but
3631			 * XXX it is worth it?
3632			 */
3633			ifp->if_flags |= IFF_OACTIVE;
3634			bus_dmamap_unload(sc->sc_dmat, dmamap);
3635			m_freem(m0);
3636			break;
3637		}
3638
3639		/*
3640		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3641		 */
3642
3643		/* Sync the DMA map. */
3644		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3645		    BUS_DMASYNC_PREWRITE);
3646
3647		/* XXX arbitrary retry limit; 8 because I have seen it in
3648		 * use already and maybe 0 means "no tries" !
3649		 */
3650		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3651
3652		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3653		    sc->sc_dev.dv_xname, rate * 5));
3654		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3655
3656		/*
3657		 * Initialize the transmit descriptors.
3658		 */
3659		for (nexttx = sc->sc_txnext, seg = 0;
3660		     seg < dmamap->dm_nsegs;
3661		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3662			/*
3663			 * If this is the first descriptor we're
3664			 * enqueueing, don't set the OWN bit just
3665			 * yet.  That could cause a race condition.
3666			 * We'll do it below.
3667			 */
3668			txd = &sc->sc_txdescs[nexttx];
3669			txd->at_ctl = ctl |
3670			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3671
3672			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3673			txd->at_flags =
3674			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3675			                   ATW_TXFLAG_TBS1_MASK)) |
3676			    ((nexttx == (ATW_NTXDESC - 1))
3677			        ? htole32(ATW_TXFLAG_TER) : 0);
3678			lasttx = nexttx;
3679		}
3680
3681		IASSERT(lasttx != -1, ("bad lastx"));
3682		/* Set `first segment' and `last segment' appropriately. */
3683		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3684		    htole32(ATW_TXFLAG_FS);
3685		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3686
3687#ifdef ATW_DEBUG
3688		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3689			printf("     txsoft %p transmit chain:\n", txs);
3690			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3691				printf("     descriptor %d:\n", seg);
3692				printf("       at_ctl:   0x%08x\n",
3693				    le32toh(sc->sc_txdescs[seg].at_ctl));
3694				printf("       at_flags:      0x%08x\n",
3695				    le32toh(sc->sc_txdescs[seg].at_flags));
3696				printf("       at_buf1: 0x%08x\n",
3697				    le32toh(sc->sc_txdescs[seg].at_buf1));
3698				printf("       at_buf2: 0x%08x\n",
3699				    le32toh(sc->sc_txdescs[seg].at_buf2));
3700				if (seg == lasttx)
3701					break;
3702			}
3703		}
3704#endif
3705
3706		/* Sync the descriptors we're using. */
3707		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3708		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3709
3710		/*
3711		 * Store a pointer to the packet so we can free it later,
3712		 * and remember what txdirty will be once the packet is
3713		 * done.
3714		 */
3715		txs->txs_mbuf = m0;
3716		txs->txs_firstdesc = sc->sc_txnext;
3717		txs->txs_lastdesc = lasttx;
3718		txs->txs_ndescs = dmamap->dm_nsegs;
3719
3720		/* Advance the tx pointer. */
3721		sc->sc_txfree -= dmamap->dm_nsegs;
3722		sc->sc_txnext = nexttx;
3723
3724		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3725		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3726
3727		last_txs = txs;
3728	}
3729
3730	if (txs == NULL || sc->sc_txfree == 0) {
3731		/* No more slots left; notify upper layer. */
3732		ifp->if_flags |= IFF_OACTIVE;
3733	}
3734
3735	if (sc->sc_txfree != ofree) {
3736		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3737		    sc->sc_dev.dv_xname, lasttx, firsttx));
3738		/*
3739		 * Cause a transmit interrupt to happen on the
3740		 * last packet we enqueued.
3741		 */
3742		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3743		ATW_CDTXSYNC(sc, lasttx, 1,
3744		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3745
3746		/*
3747		 * The entire packet chain is set up.  Give the
3748		 * first descriptor to the chip now.
3749		 */
3750		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3751		ATW_CDTXSYNC(sc, firsttx, 1,
3752		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3753
3754		/* Wake up the transmitter. */
3755		/* XXX USE AUTOPOLLING? */
3756		ATW_WRITE(sc, ATW_TDR, 0x1);
3757
3758		/* Set a watchdog timer in case the chip flakes out. */
3759		sc->sc_tx_timer = 5;
3760		ifp->if_timer = 1;
3761	}
3762}
3763
3764/*
3765 * atw_power:
3766 *
3767 *	Power management (suspend/resume) hook.
3768 */
3769void
3770atw_power(why, arg)
3771	int why;
3772	void *arg;
3773{
3774	struct atw_softc *sc = arg;
3775	struct ifnet *ifp = &sc->sc_ic.ic_if;
3776	int s;
3777
3778	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3779
3780	s = splnet();
3781	switch (why) {
3782	case PWR_STANDBY:
3783		/* XXX do nothing. */
3784		break;
3785	case PWR_SUSPEND:
3786		atw_stop(ifp, 0);
3787		if (sc->sc_power != NULL)
3788			(*sc->sc_power)(sc, why);
3789		break;
3790	case PWR_RESUME:
3791		if (ifp->if_flags & IFF_UP) {
3792			if (sc->sc_power != NULL)
3793				(*sc->sc_power)(sc, why);
3794			atw_init(ifp);
3795		}
3796		break;
3797	case PWR_SOFTSUSPEND:
3798	case PWR_SOFTSTANDBY:
3799	case PWR_SOFTRESUME:
3800		break;
3801	}
3802	splx(s);
3803}
3804
3805/*
3806 * atw_ioctl:		[ifnet interface function]
3807 *
3808 *	Handle control requests from the operator.
3809 */
3810int
3811atw_ioctl(ifp, cmd, data)
3812	struct ifnet *ifp;
3813	u_long cmd;
3814	caddr_t data;
3815{
3816	struct atw_softc *sc = ifp->if_softc;
3817	struct ifreq *ifr = (struct ifreq *)data;
3818	int s, error = 0;
3819
3820	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3821	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3822		return ENXIO;
3823
3824	s = splnet();
3825
3826	switch (cmd) {
3827	case SIOCSIFFLAGS:
3828		if (ifp->if_flags & IFF_UP) {
3829			if (ATW_IS_ENABLED(sc)) {
3830				/*
3831				 * To avoid rescanning another access point,
3832				 * do not call atw_init() here.  Instead,
3833				 * only reflect media settings.
3834				 */
3835				atw_filter_setup(sc);
3836			} else
3837				error = atw_init(ifp);
3838		} else if (ATW_IS_ENABLED(sc))
3839			atw_stop(ifp, 1);
3840		break;
3841	case SIOCADDMULTI:
3842	case SIOCDELMULTI:
3843		error = (cmd == SIOCADDMULTI) ?
3844		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3845		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3846		if (error == ENETRESET) {
3847			if (ATW_IS_ENABLED(sc))
3848				atw_filter_setup(sc); /* do not rescan */
3849			error = 0;
3850		}
3851		break;
3852	default:
3853		error = ieee80211_ioctl(ifp, cmd, data);
3854		if (error == ENETRESET) {
3855			if (ATW_IS_ENABLED(sc))
3856				error = atw_init(ifp);
3857			else
3858				error = 0;
3859		}
3860		break;
3861	}
3862
3863	/* Try to get more packets going. */
3864	if (ATW_IS_ENABLED(sc))
3865		atw_start(ifp);
3866
3867	splx(s);
3868	return (error);
3869}
3870
3871static int
3872atw_media_change(struct ifnet *ifp)
3873{
3874	int error;
3875
3876	error = ieee80211_media_change(ifp);
3877	if (error == ENETRESET) {
3878		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3879		    (IFF_RUNNING|IFF_UP))
3880			atw_init(ifp);		/* XXX lose error */
3881		error = 0;
3882	}
3883	return error;
3884}
3885
3886static void
3887atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3888{
3889	struct atw_softc *sc = ifp->if_softc;
3890
3891	if (ATW_IS_ENABLED(sc) == 0) {
3892		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3893		imr->ifm_status = 0;
3894		return;
3895	}
3896	ieee80211_media_status(ifp, imr);
3897}
3898