atw.c revision 1.172
1/*	$NetBSD: atw.c,v 1.172 2021/09/21 14:42:01 christos Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.172 2021/09/21 14:42:01 christos Exp $");
38
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/device.h>
50#include <sys/kauth.h>
51#include <sys/time.h>
52#include <sys/proc.h>
53#include <sys/atomic.h>
54#include <lib/libkern/libkern.h>
55
56#include <machine/endian.h>
57
58#include <net/if.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_ether.h>
62
63#include <net80211/ieee80211_netbsd.h>
64#include <net80211/ieee80211_var.h>
65#include <net80211/ieee80211_radiotap.h>
66
67#include <net/bpf.h>
68
69#include <sys/bus.h>
70#include <sys/intr.h>
71
72#include <dev/ic/atwreg.h>
73#include <dev/ic/rf3000reg.h>
74#include <dev/ic/si4136reg.h>
75#include <dev/ic/atwvar.h>
76#include <dev/ic/smc93cx6var.h>
77
78/* XXX TBD open questions
79 *
80 *
81 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83 * handle this for me?
84 *
85 */
86/* device attachment
87 *
88 *    print TOFS[012]
89 *
90 * device initialization
91 *
92 *    clear ATW_FRCTL_MAXPSP to disable max power saving
93 *    set ATW_TXBR_ALCUPDATE to enable ALC
94 *    set TOFS[012]? (hope not)
95 *    disable rx/tx
96 *    set ATW_PAR_SWR (software reset)
97 *    wait for ATW_PAR_SWR clear
98 *    disable interrupts
99 *    ack status register
100 *    enable interrupts
101 *
102 * rx/tx initialization
103 *
104 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105 *    allocate and init descriptor rings
106 *    write ATW_PAR_DSL (descriptor skip length)
107 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108 *    write ATW_NAR_SQ for one/both transmit descriptor rings
109 *    write ATW_NAR_SQ for one/both transmit descriptor rings
110 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *
112 * rx/tx end
113 *
114 *    stop DMA
115 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 *    flush tx w/ ATW_NAR_HF
117 *
118 * scan
119 *
120 *    initialize rx/tx
121 *
122 * BSS join: (re)association response
123 *
124 *    set ATW_FRCTL_AID
125 *
126 * optimizations ???
127 *
128 */
129
130#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
131
132int atw_pseudo_milli = 1;
133int atw_magic_delay1 = 100 * 1000;
134int atw_magic_delay2 = 100 * 1000;
135/* more magic multi-millisecond delays (units: microseconds) */
136int atw_nar_delay = 20 * 1000;
137int atw_magic_delay4 = 10 * 1000;
138int atw_rf_delay1 = 10 * 1000;
139int atw_rf_delay2 = 5 * 1000;
140int atw_plcphd_delay = 2 * 1000;
141int atw_bbp_io_enable_delay = 20 * 1000;
142int atw_bbp_io_disable_delay = 2 * 1000;
143int atw_writewep_delay = 1000;
144int atw_beacon_len_adjust = 4;
145int atw_dwelltime = 200;
146int atw_xindiv2 = 0;
147
148#ifdef ATW_DEBUG
149int atw_debug = 0;
150
151#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
159static void	atw_print_regs(struct atw_softc *, const char *);
160
161/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162#	ifdef ATW_BBPDEBUG
163static void	atw_rf3000_print(struct atw_softc *);
164static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165#	endif /* ATW_BBPDEBUG */
166
167#	ifdef ATW_SYNDEBUG
168static void	atw_si4126_print(struct atw_softc *);
169static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
170#	endif /* ATW_SYNDEBUG */
171#define __atwdebugused	/* empty */
172#else
173#define ATW_DPRINTF(x)
174#define ATW_DPRINTF2(x)
175#define ATW_DPRINTF3(x)
176#define	DPRINTF(sc, x)	/* nothing */
177#define	DPRINTF2(sc, x)	/* nothing */
178#define	DPRINTF3(sc, x)	/* nothing */
179#define __atwdebugused	__unused
180#endif
181
182/* ifnet methods */
183int	atw_init(struct ifnet *);
184int	atw_ioctl(struct ifnet *, u_long, void *);
185void	atw_start(struct ifnet *);
186void	atw_stop(struct ifnet *, int);
187void	atw_watchdog(struct ifnet *);
188
189/* Device attachment */
190void	atw_attach(struct atw_softc *);
191int	atw_detach(struct atw_softc *);
192static void atw_evcnt_attach(struct atw_softc *);
193static void atw_evcnt_detach(struct atw_softc *);
194
195/* Rx/Tx process */
196int	atw_add_rxbuf(struct atw_softc *, int);
197void	atw_idle(struct atw_softc *, uint32_t);
198void	atw_rxdrain(struct atw_softc *);
199void	atw_txdrain(struct atw_softc *);
200
201/* Device (de)activation and power state */
202void	atw_reset(struct atw_softc *);
203
204/* Interrupt handlers */
205void	atw_softintr(void *);
206void	atw_linkintr(struct atw_softc *, uint32_t);
207void	atw_rxintr(struct atw_softc *);
208void	atw_txintr(struct atw_softc *, uint32_t);
209
210/* 802.11 state machine */
211static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212static void	atw_next_scan(void *);
213static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214			      struct ieee80211_node *, int, int, uint32_t);
215static int	atw_tune(struct atw_softc *);
216
217/* Device initialization */
218static void	atw_bbp_io_init(struct atw_softc *);
219static void	atw_cfp_init(struct atw_softc *);
220static void	atw_cmdr_init(struct atw_softc *);
221static void	atw_ifs_init(struct atw_softc *);
222static void	atw_nar_init(struct atw_softc *);
223static void	atw_response_times_init(struct atw_softc *);
224static void	atw_rf_reset(struct atw_softc *);
225static void	atw_test1_init(struct atw_softc *);
226static void	atw_tofs0_init(struct atw_softc *);
227static void	atw_tofs2_init(struct atw_softc *);
228static void	atw_txlmt_init(struct atw_softc *);
229static void	atw_wcsr_init(struct atw_softc *);
230
231/* Key management */
232static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234	const uint8_t[IEEE80211_ADDR_LEN]);
235static void atw_key_update_begin(struct ieee80211com *);
236static void atw_key_update_end(struct ieee80211com *);
237
238/* RAM/ROM utilities */
239static void	atw_clear_sram(struct atw_softc *);
240static void	atw_write_sram(struct atw_softc *, u_int, uint8_t *, u_int);
241static int	atw_read_srom(struct atw_softc *);
242
243/* BSS setup */
244static void	atw_predict_beacon(struct atw_softc *);
245static void	atw_start_beacon(struct atw_softc *, int);
246static void	atw_write_bssid(struct atw_softc *);
247static void	atw_write_ssid(struct atw_softc *);
248static void	atw_write_sup_rates(struct atw_softc *);
249static void	atw_write_wep(struct atw_softc *);
250
251/* Media */
252static int	atw_media_change(struct ifnet *);
253
254static void	atw_filter_setup(struct atw_softc *);
255
256/* 802.11 utilities */
257static uint64_t			atw_get_tsft(struct atw_softc *);
258static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
259						   uint32_t);
260static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
261static void			atw_node_free(struct ieee80211_node *);
262
263/*
264 * Tuner/transceiver/modem
265 */
266static void	atw_bbp_io_enable(struct atw_softc *, int);
267
268/* RFMD RF3000 Baseband Processor */
269static int	atw_rf3000_init(struct atw_softc *);
270static int	atw_rf3000_tune(struct atw_softc *, u_int);
271static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
272
273/* Silicon Laboratories Si4126 RF/IF Synthesizer */
274static void	atw_si4126_tune(struct atw_softc *, u_int);
275static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
276
277const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279
280const char *atw_tx_state[] = {
281	"STOPPED",
282	"RUNNING - read descriptor",
283	"RUNNING - transmitting",
284	"RUNNING - filling fifo",	/* XXX */
285	"SUSPENDED",
286	"RUNNING -- write descriptor",
287	"RUNNING -- write last descriptor",
288	"RUNNING - fifo full"
289};
290
291const char *atw_rx_state[] = {
292	"STOPPED",
293	"RUNNING - read descriptor",
294	"RUNNING - check this packet, pre-fetch next",
295	"RUNNING - wait for reception",
296	"SUSPENDED",
297	"RUNNING - write descriptor",
298	"RUNNING - flush fifo",
299	"RUNNING - fifo drain"
300};
301
302static inline int
303is_running(struct ifnet *ifp)
304{
305	return (ifp->if_flags & (IFF_RUNNING | IFF_UP))
306	    == (IFF_RUNNING | IFF_UP);
307}
308
309int
310atw_activate(device_t self, enum devact act)
311{
312	struct atw_softc *sc = device_private(self);
313
314	switch (act) {
315	case DVACT_DEACTIVATE:
316		if_deactivate(&sc->sc_if);
317		return 0;
318	default:
319		return EOPNOTSUPP;
320	}
321}
322
323bool
324atw_suspend(device_t self, const pmf_qual_t *qual)
325{
326	struct atw_softc *sc = device_private(self);
327
328	atw_rxdrain(sc);
329	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330
331	return true;
332}
333
334/* Returns -1 on failure. */
335static int
336atw_read_srom(struct atw_softc *sc)
337{
338	struct seeprom_descriptor sd;
339	uint32_t test0, fail_bits;
340
341	(void)memset(&sd, 0, sizeof(sd));
342
343	test0 = ATW_READ(sc, ATW_TEST0);
344
345	switch (sc->sc_rev) {
346	case ATW_REVISION_BA:
347	case ATW_REVISION_CA:
348		fail_bits = ATW_TEST0_EPNE;
349		break;
350	default:
351		fail_bits = ATW_TEST0_EPNE | ATW_TEST0_EPSNM;
352		break;
353	}
354	if ((test0 & fail_bits) != 0) {
355		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356		return -1;
357	}
358
359	switch (test0 & ATW_TEST0_EPTYP_MASK) {
360	case ATW_TEST0_EPTYP_93c66:
361		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362		sc->sc_sromsz = 512;
363		sd.sd_chip = C56_66;
364		break;
365	case ATW_TEST0_EPTYP_93c46:
366		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367		sc->sc_sromsz = 128;
368		sd.sd_chip = C46;
369		break;
370	default:
371		printf("%s: unknown SROM type %" __PRIuBITS "\n",
372		    device_xname(sc->sc_dev),
373		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374		return -1;
375	}
376
377	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_WAITOK | M_ZERO);
378
379	/* ADM8211 has a single 32-bit register for controlling the
380	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
381	 * "ready" bit. The ADM8211 input/output sense is the reverse
382	 * of read_seeprom's.
383	 */
384	sd.sd_tag = sc->sc_st;
385	sd.sd_bsh = sc->sc_sh;
386	sd.sd_regsize = 4;
387	sd.sd_control_offset = ATW_SPR;
388	sd.sd_status_offset = ATW_SPR;
389	sd.sd_dataout_offset = ATW_SPR;
390	sd.sd_CK = ATW_SPR_SCLK;
391	sd.sd_CS = ATW_SPR_SCS;
392	sd.sd_DI = ATW_SPR_SDO;
393	sd.sd_DO = ATW_SPR_SDI;
394	sd.sd_MS = ATW_SPR_SRS;
395	sd.sd_RDY = 0;
396
397	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
398		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
399		free(sc->sc_srom, M_DEVBUF);
400		return -1;
401	}
402#ifdef ATW_DEBUG
403	{
404		int i;
405		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
406		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
407			if (((i % 8) == 0) && (i != 0)) {
408				ATW_DPRINTF(("\n\t"));
409			}
410			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
411		}
412		ATW_DPRINTF(("\n"));
413	}
414#endif /* ATW_DEBUG */
415	return 0;
416}
417
418#ifdef ATW_DEBUG
419static void
420atw_print_regs(struct atw_softc *sc, const char *where)
421{
422#define PRINTREG(sc, reg) \
423	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
424	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
425
426	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
427
428	PRINTREG(sc, ATW_PAR);
429	PRINTREG(sc, ATW_FRCTL);
430	PRINTREG(sc, ATW_TDR);
431	PRINTREG(sc, ATW_WTDP);
432	PRINTREG(sc, ATW_RDR);
433	PRINTREG(sc, ATW_WRDP);
434	PRINTREG(sc, ATW_RDB);
435	PRINTREG(sc, ATW_CSR3A);
436	PRINTREG(sc, ATW_TDBD);
437	PRINTREG(sc, ATW_TDBP);
438	PRINTREG(sc, ATW_STSR);
439	PRINTREG(sc, ATW_CSR5A);
440	PRINTREG(sc, ATW_NAR);
441	PRINTREG(sc, ATW_CSR6A);
442	PRINTREG(sc, ATW_IER);
443	PRINTREG(sc, ATW_CSR7A);
444	PRINTREG(sc, ATW_LPC);
445	PRINTREG(sc, ATW_TEST1);
446	PRINTREG(sc, ATW_SPR);
447	PRINTREG(sc, ATW_TEST0);
448	PRINTREG(sc, ATW_WCSR);
449	PRINTREG(sc, ATW_WPDR);
450	PRINTREG(sc, ATW_GPTMR);
451	PRINTREG(sc, ATW_GPIO);
452	PRINTREG(sc, ATW_BBPCTL);
453	PRINTREG(sc, ATW_SYNCTL);
454	PRINTREG(sc, ATW_PLCPHD);
455	PRINTREG(sc, ATW_MMIWADDR);
456	PRINTREG(sc, ATW_MMIRADDR1);
457	PRINTREG(sc, ATW_MMIRADDR2);
458	PRINTREG(sc, ATW_TXBR);
459	PRINTREG(sc, ATW_CSR15A);
460	PRINTREG(sc, ATW_ALCSTAT);
461	PRINTREG(sc, ATW_TOFS2);
462	PRINTREG(sc, ATW_CMDR);
463	PRINTREG(sc, ATW_PCIC);
464	PRINTREG(sc, ATW_PMCSR);
465	PRINTREG(sc, ATW_PAR0);
466	PRINTREG(sc, ATW_PAR1);
467	PRINTREG(sc, ATW_MAR0);
468	PRINTREG(sc, ATW_MAR1);
469	PRINTREG(sc, ATW_ATIMDA0);
470	PRINTREG(sc, ATW_ABDA1);
471	PRINTREG(sc, ATW_BSSID0);
472	PRINTREG(sc, ATW_TXLMT);
473	PRINTREG(sc, ATW_MIBCNT);
474	PRINTREG(sc, ATW_BCNT);
475	PRINTREG(sc, ATW_TSFTH);
476	PRINTREG(sc, ATW_TSC);
477	PRINTREG(sc, ATW_SYNRF);
478	PRINTREG(sc, ATW_BPLI);
479	PRINTREG(sc, ATW_CAP0);
480	PRINTREG(sc, ATW_CAP1);
481	PRINTREG(sc, ATW_RMD);
482	PRINTREG(sc, ATW_CFPP);
483	PRINTREG(sc, ATW_TOFS0);
484	PRINTREG(sc, ATW_TOFS1);
485	PRINTREG(sc, ATW_IFST);
486	PRINTREG(sc, ATW_RSPT);
487	PRINTREG(sc, ATW_TSFTL);
488	PRINTREG(sc, ATW_WEPCTL);
489	PRINTREG(sc, ATW_WESK);
490	PRINTREG(sc, ATW_WEPCNT);
491	PRINTREG(sc, ATW_MACTEST);
492	PRINTREG(sc, ATW_FER);
493	PRINTREG(sc, ATW_FEMR);
494	PRINTREG(sc, ATW_FPSR);
495	PRINTREG(sc, ATW_FFER);
496#undef PRINTREG
497}
498#endif /* ATW_DEBUG */
499
500/*
501 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
502 */
503void
504atw_attach(struct atw_softc *sc)
505{
506	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
507		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
508	};
509	struct ieee80211com *ic = &sc->sc_ic;
510	struct ifnet *ifp = &sc->sc_if;
511	int country_code, error, i, srom_major;
512	uint32_t reg;
513	static const char *type_strings[] = {"Intersil (not supported)",
514	    "RFMD", "Marvel (not supported)"};
515
516	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
517
518	sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
519	if (sc->sc_soft_ih == NULL) {
520		aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
521		goto fail_0;
522	}
523
524	sc->sc_txth = atw_txthresh_tab_lo;
525
526	SIMPLEQ_INIT(&sc->sc_txfreeq);
527	SIMPLEQ_INIT(&sc->sc_txdirtyq);
528
529#ifdef ATW_DEBUG
530	atw_print_regs(sc, "atw_attach");
531#endif /* ATW_DEBUG */
532
533	/*
534	 * Allocate the control data structures, and create and load the
535	 * DMA map for it.
536	 */
537	if ((error = bus_dmamem_alloc(sc->sc_dmat,
538	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
539	    1, &sc->sc_cdnseg, 0)) != 0) {
540		aprint_error_dev(sc->sc_dev,
541		    "unable to allocate control data, error = %d\n",
542		    error);
543		goto fail_0;
544	}
545
546	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
547	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
548	    BUS_DMA_COHERENT)) != 0) {
549		aprint_error_dev(sc->sc_dev,
550		    "unable to map control data, error = %d\n",
551		    error);
552		goto fail_1;
553	}
554
555	if ((error = bus_dmamap_create(sc->sc_dmat,
556	    sizeof(struct atw_control_data), 1,
557	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
558		aprint_error_dev(sc->sc_dev,
559		    "unable to create control data DMA map, error = %d\n",
560		    error);
561		goto fail_2;
562	}
563
564	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
565	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
566	    0)) != 0) {
567		aprint_error_dev(sc->sc_dev,
568		    "unable to load control data DMA map, error = %d\n", error);
569		goto fail_3;
570	}
571
572	/*
573	 * Create the transmit buffer DMA maps.
574	 */
575	sc->sc_ntxsegs = ATW_NTXSEGS;
576	for (i = 0; i < ATW_TXQUEUELEN; i++) {
577		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
578		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
579		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
580			aprint_error_dev(sc->sc_dev,
581			    "unable to create tx DMA map %d, error = %d\n", i,
582			    error);
583			goto fail_4;
584		}
585	}
586
587	/*
588	 * Create the receive buffer DMA maps.
589	 */
590	for (i = 0; i < ATW_NRXDESC; i++) {
591		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
592		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
593			aprint_error_dev(sc->sc_dev,
594			    "unable to create rx DMA map %d, error = %d\n", i,
595			    error);
596			goto fail_5;
597		}
598	}
599	for (i = 0; i < ATW_NRXDESC; i++) {
600		sc->sc_rxsoft[i].rxs_mbuf = NULL;
601	}
602
603	switch (sc->sc_rev) {
604	case ATW_REVISION_AB:
605	case ATW_REVISION_AF:
606		sc->sc_sramlen = ATW_SRAM_A_SIZE;
607		break;
608	case ATW_REVISION_BA:
609	case ATW_REVISION_CA:
610		sc->sc_sramlen = ATW_SRAM_B_SIZE;
611		break;
612	}
613
614	/* Reset the chip to a known state. */
615	atw_reset(sc);
616
617	if (atw_read_srom(sc) == -1)
618		goto fail_5;
619
620	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
621	    ATW_SR_RFTYPE_MASK);
622
623	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
624	    ATW_SR_BBPTYPE_MASK);
625
626	if (sc->sc_rftype >= __arraycount(type_strings)) {
627		aprint_error_dev(sc->sc_dev, "unknown RF\n");
628		goto fail_5;
629	}
630	if (sc->sc_bbptype >= __arraycount(type_strings)) {
631		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
632		goto fail_5;
633	}
634
635	aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
636	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
637
638	/* XXX There exists a Linux driver which seems to use RFType = 0 for
639	 * MARVEL. My bug, or theirs?
640	 */
641
642	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
643
644	switch (sc->sc_rftype) {
645	case ATW_RFTYPE_INTERSIL:
646		reg |= ATW_SYNCTL_CS1;
647		break;
648	case ATW_RFTYPE_RFMD:
649		reg |= ATW_SYNCTL_CS0;
650		break;
651	case ATW_RFTYPE_MARVEL:
652		break;
653	}
654
655	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
656	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
657
658	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
659
660	switch (sc->sc_bbptype) {
661	case ATW_BBPTYPE_INTERSIL:
662		reg |= ATW_BBPCTL_TWI;
663		break;
664	case ATW_BBPTYPE_RFMD:
665		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
666		    ATW_BBPCTL_CCA_ACTLO;
667		break;
668	case ATW_BBPTYPE_MARVEL:
669		break;
670	case ATW_C_BBPTYPE_RFMD:
671		aprint_error_dev(sc->sc_dev,
672		    "ADM8211C MAC/RFMD BBP not supported yet.\n");
673		break;
674	}
675
676	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
677	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
678
679	/*
680	 * From this point forward, the attachment cannot fail.  A failure
681	 * before this point releases all resources that may have been
682	 * allocated.
683	 */
684	sc->sc_flags |= ATWF_ATTACHED;
685
686	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
687	    htole16(sc->sc_srom[ATW_SR_MAC00]),
688	    htole16(sc->sc_srom[ATW_SR_MAC01]),
689	    htole16(sc->sc_srom[ATW_SR_MAC10])));
690
691	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
692	    ATW_SR_MAJOR_MASK);
693
694	if (srom_major < 2)
695		sc->sc_rf3000_options1 = 0;
696	else if (sc->sc_rev == ATW_REVISION_BA) {
697		sc->sc_rf3000_options1 =
698		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
699		    ATW_SR_CR28_MASK);
700	} else
701		sc->sc_rf3000_options1 = 0;
702
703	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
704	    ATW_SR_CR29_MASK);
705
706	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
707	    ATW_SR_CTRY_MASK);
708
709#define ADD_CHANNEL(_ic, _chan) do {					\
710	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
711	_ic->ic_channels[_chan].ic_freq =				\
712	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
713} while (0)
714
715	/* Find available channels */
716	switch (country_code) {
717	case COUNTRY_MMK2:	/* 1-14 */
718		ADD_CHANNEL(ic, 14);
719		/*FALLTHROUGH*/
720	case COUNTRY_ETSI:	/* 1-13 */
721		for (i = 1; i <= 13; i++)
722			ADD_CHANNEL(ic, i);
723		break;
724	case COUNTRY_FCC:	/* 1-11 */
725	case COUNTRY_IC:	/* 1-11 */
726		for (i = 1; i <= 11; i++)
727			ADD_CHANNEL(ic, i);
728		break;
729	case COUNTRY_MMK:	/* 14 */
730		ADD_CHANNEL(ic, 14);
731		break;
732	case COUNTRY_FRANCE:	/* 10-13 */
733		for (i = 10; i <= 13; i++)
734			ADD_CHANNEL(ic, i);
735		break;
736	default:	/* assume channels 10-11 */
737	case COUNTRY_SPAIN:	/* 10-11 */
738		for (i = 10; i <= 11; i++)
739			ADD_CHANNEL(ic, i);
740		break;
741	}
742
743	/* Read the MAC address. */
744	reg = ATW_READ(sc, ATW_PAR0);
745	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
746	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
747	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
748	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
749	reg = ATW_READ(sc, ATW_PAR1);
750	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
751	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
752
753	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
754		aprint_error_dev(sc->sc_dev,
755		    "could not get mac address, attach failed\n");
756		goto fail_5;
757	}
758
759	aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
760
761	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
762	ifp->if_softc = sc;
763	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
764	ifp->if_ioctl = atw_ioctl;
765	ifp->if_start = atw_start;
766	ifp->if_watchdog = atw_watchdog;
767	ifp->if_init = atw_init;
768	ifp->if_stop = atw_stop;
769	IFQ_SET_READY(&ifp->if_snd);
770
771	ic->ic_ifp = ifp;
772	ic->ic_phytype = IEEE80211_T_DS;
773	ic->ic_opmode = IEEE80211_M_STA;
774	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
775	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
776
777	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
778
779	/*
780	 * Call MI attach routines.
781	 */
782
783	if_initialize(ifp);
784	ieee80211_ifattach(ic);
785	/* Use common softint-based if_input */
786	ifp->if_percpuq = if_percpuq_create(ifp);
787	if_register(ifp);
788
789	atw_evcnt_attach(sc);
790
791	sc->sc_newstate = ic->ic_newstate;
792	ic->ic_newstate = atw_newstate;
793
794	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
795	ic->ic_recv_mgmt = atw_recv_mgmt;
796
797	sc->sc_node_free = ic->ic_node_free;
798	ic->ic_node_free = atw_node_free;
799
800	sc->sc_node_alloc = ic->ic_node_alloc;
801	ic->ic_node_alloc = atw_node_alloc;
802
803	ic->ic_crypto.cs_key_delete = atw_key_delete;
804	ic->ic_crypto.cs_key_set = atw_key_set;
805	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
806	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
807
808	/* possibly we should fill in our own sc_send_prresp, since
809	 * the ADM8211 is probably sending probe responses in ad hoc
810	 * mode.
811	 */
812
813	/* complete initialization */
814	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
815	callout_init(&sc->sc_scan_ch, 0);
816
817	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
818	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
819
820	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
821	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
822	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
823
824	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
825	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
826	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
827
828	ieee80211_announce(ic);
829	return;
830
831	/*
832	 * Free any resources we've allocated during the failed attach
833	 * attempt.  Do this in reverse order and fall through.
834	 */
835 fail_5:
836	for (i = 0; i < ATW_NRXDESC; i++) {
837		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
838			continue;
839		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
840	}
841 fail_4:
842	for (i = 0; i < ATW_TXQUEUELEN; i++) {
843		if (sc->sc_txsoft[i].txs_dmamap == NULL)
844			continue;
845		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
846	}
847	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
848 fail_3:
849	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
850 fail_2:
851	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
852	    sizeof(struct atw_control_data));
853 fail_1:
854	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
855 fail_0:
856	if (sc->sc_soft_ih != NULL) {
857		softint_disestablish(sc->sc_soft_ih);
858		sc->sc_soft_ih = NULL;
859	}
860}
861
862static struct ieee80211_node *
863atw_node_alloc(struct ieee80211_node_table *nt)
864{
865	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
866	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
867
868	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
869	return ni;
870}
871
872static void
873atw_node_free(struct ieee80211_node *ni)
874{
875	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
876
877	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
878	    ether_sprintf(ni->ni_bssid)));
879	(*sc->sc_node_free)(ni);
880}
881
882
883static void
884atw_test1_reset(struct atw_softc *sc)
885{
886	switch (sc->sc_rev) {
887	case ATW_REVISION_BA:
888		if (1 /* XXX condition on transceiver type */) {
889			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
890		}
891		break;
892	case ATW_REVISION_CA:
893		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
894		break;
895	default:
896		break;
897	}
898}
899
900/*
901 * atw_reset:
902 *
903 *	Perform a soft reset on the ADM8211.
904 */
905void
906atw_reset(struct atw_softc *sc)
907{
908	int i;
909	uint32_t lpc __atwdebugused;
910
911	ATW_WRITE(sc, ATW_NAR, 0x0);
912	DELAY(atw_nar_delay);
913
914	/* Reference driver has a cryptic remark indicating that this might
915	 * power-on the chip.  I know that it turns off power-saving....
916	 */
917	ATW_WRITE(sc, ATW_FRCTL, 0x0);
918
919	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
920
921	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
922		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
923			break;
924		DELAY(atw_pseudo_milli);
925	}
926
927	/* ... and then pause 100ms longer for good measure. */
928	DELAY(atw_magic_delay1);
929
930	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
931
932	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
933		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
934
935	/*
936	 * Initialize the PCI Access Register.
937	 */
938	sc->sc_busmode = ATW_PAR_PBL_8DW;
939
940	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
941	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
942	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
943
944	atw_test1_reset(sc);
945
946	/* Turn off maximum power saving, etc. */
947	ATW_WRITE(sc, ATW_FRCTL, 0x0);
948
949	DELAY(atw_magic_delay2);
950
951	/* Recall EEPROM. */
952	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
953
954	DELAY(atw_magic_delay4);
955
956	lpc = ATW_READ(sc, ATW_LPC);
957
958	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
959
960	/* A reset seems to affect the SRAM contents, so put them into
961	 * a known state.
962	 */
963	atw_clear_sram(sc);
964
965	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
966}
967
968static void
969atw_clear_sram(struct atw_softc *sc)
970{
971	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
972	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
973	/* XXX not for revision 0x20. */
974	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
975}
976
977/* TBD atw_init
978 *
979 * set MAC based on ic->ic_bss->myaddr
980 * write WEP keys
981 * set TX rate
982 */
983
984/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
985 * without receiving a beacon with the preferred BSSID & SSID.
986 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
987 */
988static void
989atw_wcsr_init(struct atw_softc *sc)
990{
991	uint32_t wcsr;
992
993	wcsr = ATW_READ(sc, ATW_WCSR);
994	wcsr &= ~ATW_WCSR_BLN_MASK;
995	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
996	/* We always want to wake up on link loss or TSFT out of range */
997	wcsr |= ATW_WCSR_LSOE | ATW_WCSR_TSFTWE;
998	ATW_WRITE(sc, ATW_WCSR, wcsr);
999
1000	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1001	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1002}
1003
1004/* Turn off power management.  Set Rx store-and-forward mode. */
1005static void
1006atw_cmdr_init(struct atw_softc *sc)
1007{
1008	uint32_t cmdr;
1009	cmdr = ATW_READ(sc, ATW_CMDR);
1010	cmdr &= ~ATW_CMDR_APM;
1011	cmdr |= ATW_CMDR_RTE;
1012	cmdr &= ~ATW_CMDR_DRT_MASK;
1013	cmdr |= ATW_CMDR_DRT_SF;
1014
1015	ATW_WRITE(sc, ATW_CMDR, cmdr);
1016}
1017
1018static void
1019atw_tofs2_init(struct atw_softc *sc)
1020{
1021	uint32_t tofs2;
1022	/* XXX this magic can probably be figured out from the RFMD docs */
1023#ifndef ATW_REFSLAVE
1024	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1025	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1026	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1027	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1028	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1029	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1030	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1031	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1032#else
1033	/* XXX new magic from reference driver source */
1034	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1035	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1036	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1037	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1038	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1039	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1040	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1041	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1042#endif
1043	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1044}
1045
1046static void
1047atw_nar_init(struct atw_softc *sc)
1048{
1049	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF | ATW_NAR_PB);
1050}
1051
1052static void
1053atw_txlmt_init(struct atw_softc *sc)
1054{
1055	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1056				 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1057}
1058
1059static void
1060atw_test1_init(struct atw_softc *sc)
1061{
1062	uint32_t test1;
1063
1064	test1 = ATW_READ(sc, ATW_TEST1);
1065	test1 &= ~(ATW_TEST1_DBGREAD_MASK | ATW_TEST1_CONTROL);
1066	/* XXX magic 0x1 */
1067	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1068	ATW_WRITE(sc, ATW_TEST1, test1);
1069}
1070
1071static void
1072atw_rf_reset(struct atw_softc *sc)
1073{
1074	/* XXX this resets an Intersil RF front-end? */
1075	/* TBD condition on Intersil RFType? */
1076	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1077	DELAY(atw_rf_delay1);
1078	ATW_WRITE(sc, ATW_SYNRF, 0);
1079	DELAY(atw_rf_delay2);
1080}
1081
1082/* Set 16 TU max duration for the contention-free period (CFP). */
1083static void
1084atw_cfp_init(struct atw_softc *sc)
1085{
1086	uint32_t cfpp;
1087
1088	cfpp = ATW_READ(sc, ATW_CFPP);
1089	cfpp &= ~ATW_CFPP_CFPMD;
1090	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1091	ATW_WRITE(sc, ATW_CFPP, cfpp);
1092}
1093
1094static void
1095atw_tofs0_init(struct atw_softc *sc)
1096{
1097	/* XXX I guess that the Cardbus clock is 22 MHz?
1098	 * I am assuming that the role of ATW_TOFS0_USCNT is
1099	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1100	 * very clear on this point. It says in the datasheet that it is
1101	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1102	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1103	 * these values. These values are also the power-on default.
1104	 */
1105	ATW_WRITE(sc, ATW_TOFS0,
1106	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1107	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1108}
1109
1110/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1111static void
1112atw_ifs_init(struct atw_softc *sc)
1113{
1114	uint32_t ifst;
1115	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1116	 * Go figure.
1117	 */
1118	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1119	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1120		     ATW_IFST_SIFS_MASK) |
1121	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1122	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1123
1124	ATW_WRITE(sc, ATW_IFST, ifst);
1125}
1126
1127static void
1128atw_response_times_init(struct atw_softc *sc)
1129{
1130	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1131	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1132	 * to pass after it transmits a frame that requires a response;
1133	 * it waits at most SIFS + MART microseconds for the response.
1134	 * Surely this is not the ACK timeout?
1135	 */
1136	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1137	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1138}
1139
1140/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1141 * engines read and write baseband registers after Rx and before
1142 * Tx, respectively.
1143 */
1144static void
1145atw_bbp_io_init(struct atw_softc *sc)
1146{
1147	uint32_t mmiraddr2;
1148
1149	/* XXX The reference driver does this, but is it *really*
1150	 * necessary?
1151	 */
1152	switch (sc->sc_rev) {
1153	case ATW_REVISION_AB:
1154	case ATW_REVISION_AF:
1155		mmiraddr2 = 0x0;
1156		break;
1157	default:
1158		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1159		mmiraddr2 &=
1160		    ~(ATW_MMIRADDR2_PROREXT | ATW_MMIRADDR2_PRORLEN_MASK);
1161		break;
1162	}
1163
1164	switch (sc->sc_bbptype) {
1165	case ATW_BBPTYPE_INTERSIL:
1166		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1167		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1168		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1169		break;
1170	case ATW_BBPTYPE_MARVEL:
1171		/* TBD find out the Marvel settings. */
1172		break;
1173	case ATW_BBPTYPE_RFMD:
1174	default:
1175		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1176		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1177		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1178		break;
1179	}
1180	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1181	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1182}
1183
1184/*
1185 * atw_init:		[ ifnet interface function ]
1186 *
1187 *	Initialize the interface.  Must be called at splnet().
1188 */
1189int
1190atw_init(struct ifnet *ifp)
1191{
1192	struct atw_softc *sc = ifp->if_softc;
1193	struct ieee80211com *ic = &sc->sc_ic;
1194	struct atw_txsoft *txs;
1195	struct atw_rxsoft *rxs;
1196	int i, error = 0;
1197
1198	if (device_is_active(sc->sc_dev)) {
1199		/*
1200		 * Cancel any pending I/O.
1201		 */
1202		atw_stop(ifp, 0);
1203	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1204		   !device_is_active(sc->sc_dev))
1205		return 0;
1206
1207	/*
1208	 * Reset the chip to a known state.
1209	 */
1210	atw_reset(sc);
1211
1212	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1213	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1214	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1215
1216	atw_wcsr_init(sc);
1217
1218	atw_cmdr_init(sc);
1219
1220	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1221	 *
1222	 * XXX Set transmit power for ATIM, RTS, Beacon.
1223	 */
1224	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1225	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1226
1227	atw_tofs2_init(sc);
1228
1229	atw_nar_init(sc);
1230
1231	atw_txlmt_init(sc);
1232
1233	atw_test1_init(sc);
1234
1235	atw_rf_reset(sc);
1236
1237	atw_cfp_init(sc);
1238
1239	atw_tofs0_init(sc);
1240
1241	atw_ifs_init(sc);
1242
1243	/* XXX Fall asleep after one second of inactivity.
1244	 * XXX A frame may only dribble in for 65536us.
1245	 */
1246	ATW_WRITE(sc, ATW_RMD,
1247	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1248
1249	atw_response_times_init(sc);
1250
1251	atw_bbp_io_init(sc);
1252
1253	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1254
1255	if ((error = atw_rf3000_init(sc)) != 0)
1256		goto out;
1257
1258	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1259	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1260	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1261
1262	/*
1263	 * Initialize the transmit descriptor ring.
1264	 */
1265	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1266	for (i = 0; i < ATW_NTXDESC; i++) {
1267		sc->sc_txdescs[i].at_ctl = 0;
1268		/* no transmit chaining */
1269		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1270		sc->sc_txdescs[i].at_buf2 =
1271		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1272	}
1273	/* use ring mode */
1274	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1275	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1276	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1277	sc->sc_txfree = ATW_NTXDESC;
1278	sc->sc_txnext = 0;
1279
1280	/*
1281	 * Initialize the transmit job descriptors.
1282	 */
1283	SIMPLEQ_INIT(&sc->sc_txfreeq);
1284	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1285	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1286		txs = &sc->sc_txsoft[i];
1287		txs->txs_mbuf = NULL;
1288		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1289	}
1290
1291	/*
1292	 * Initialize the receive descriptor and receive job
1293	 * descriptor rings.
1294	 */
1295	for (i = 0; i < ATW_NRXDESC; i++) {
1296		rxs = &sc->sc_rxsoft[i];
1297		if (rxs->rxs_mbuf == NULL) {
1298			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1299				aprint_error_dev(sc->sc_dev,
1300				    "unable to allocate or map rx buffer %d, "
1301				    "error = %d\n", i, error);
1302				/*
1303				 * XXX Should attempt to run with fewer receive
1304				 * XXX buffers instead of just failing.
1305				 */
1306				atw_rxdrain(sc);
1307				goto out;
1308			}
1309		} else
1310			atw_init_rxdesc(sc, i);
1311	}
1312	sc->sc_rxptr = 0;
1313
1314	/*
1315	 * Initialize the interrupt mask and enable interrupts.
1316	 */
1317	/* normal interrupts */
1318	sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1319	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1320
1321	/* abnormal interrupts */
1322	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1323	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1324	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1325
1326	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1327	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1328	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1329	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1330	    ATW_INTR_TRT;
1331
1332	sc->sc_linkint_mask &= sc->sc_inten;
1333	sc->sc_rxint_mask &= sc->sc_inten;
1334	sc->sc_txint_mask &= sc->sc_inten;
1335
1336	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1337	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1338
1339	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1340	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1341
1342	/*
1343	 * Give the transmit and receive rings to the ADM8211.
1344	 */
1345	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1346	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1347
1348	sc->sc_txthresh = 0;
1349	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1350	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1351
1352	/* common 802.11 configuration */
1353	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1354	switch (ic->ic_opmode) {
1355	case IEEE80211_M_STA:
1356		break;
1357	case IEEE80211_M_AHDEMO: /* XXX */
1358	case IEEE80211_M_IBSS:
1359		ic->ic_flags |= IEEE80211_F_IBSSON;
1360		/*FALLTHROUGH*/
1361	case IEEE80211_M_HOSTAP: /* XXX */
1362		break;
1363	case IEEE80211_M_MONITOR: /* XXX */
1364		break;
1365	}
1366
1367	switch (ic->ic_opmode) {
1368	case IEEE80211_M_AHDEMO:
1369	case IEEE80211_M_HOSTAP:
1370#ifndef IEEE80211_NO_HOSTAP
1371		ic->ic_bss->ni_intval = ic->ic_lintval;
1372		ic->ic_bss->ni_rssi = 0;
1373		ic->ic_bss->ni_rstamp = 0;
1374#endif /* !IEEE80211_NO_HOSTAP */
1375		break;
1376	default:					/* XXX */
1377		break;
1378	}
1379
1380	sc->sc_wepctl = 0;
1381
1382	atw_write_ssid(sc);
1383	atw_write_sup_rates(sc);
1384	atw_write_wep(sc);
1385
1386	ic->ic_state = IEEE80211_S_INIT;
1387
1388	/*
1389	 * Set the receive filter.  This will start the transmit and
1390	 * receive processes.
1391	 */
1392	atw_filter_setup(sc);
1393
1394	/*
1395	 * Start the receive process.
1396	 */
1397	ATW_WRITE(sc, ATW_RDR, 0x1);
1398
1399	/*
1400	 * Note that the interface is now running.
1401	 */
1402	ifp->if_flags |= IFF_RUNNING;
1403
1404	/* send no beacons, yet. */
1405	atw_start_beacon(sc, 0);
1406
1407	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1408		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1409	else
1410		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1411 out:
1412	if (error) {
1413		ifp->if_flags &= ~IFF_RUNNING;
1414		sc->sc_tx_timer = 0;
1415		ifp->if_timer = 0;
1416		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1417	}
1418#ifdef ATW_DEBUG
1419	atw_print_regs(sc, "end of init");
1420#endif /* ATW_DEBUG */
1421
1422	return (error);
1423}
1424
1425/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1426 *           0: MAC control of RF3000/Si4126.
1427 *
1428 * Applies power, or selects RF front-end? Sets reset condition.
1429 *
1430 * TBD support non-RFMD BBP, non-SiLabs synth.
1431 */
1432static void
1433atw_bbp_io_enable(struct atw_softc *sc, int enable)
1434{
1435	if (enable) {
1436		ATW_WRITE(sc, ATW_SYNRF,
1437		    ATW_SYNRF_SELRF | ATW_SYNRF_PE1 | ATW_SYNRF_PHYRST);
1438		DELAY(atw_bbp_io_enable_delay);
1439	} else {
1440		ATW_WRITE(sc, ATW_SYNRF, 0);
1441		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1442	}
1443}
1444
1445static int
1446atw_tune(struct atw_softc *sc)
1447{
1448	int rc;
1449	u_int chan;
1450	struct ieee80211com *ic = &sc->sc_ic;
1451
1452	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1453	if (chan == IEEE80211_CHAN_ANY)
1454		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1455
1456	if (chan == sc->sc_cur_chan)
1457		return 0;
1458
1459	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1460	    sc->sc_cur_chan, chan));
1461
1462	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
1463
1464	atw_si4126_tune(sc, chan);
1465	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1466		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1467		    chan);
1468
1469	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1470	DELAY(atw_nar_delay);
1471	ATW_WRITE(sc, ATW_RDR, 0x1);
1472
1473	if (rc == 0) {
1474		sc->sc_cur_chan = chan;
1475		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1476		    htole16(ic->ic_curchan->ic_freq);
1477		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1478		    htole16(ic->ic_curchan->ic_flags);
1479	}
1480
1481	return rc;
1482}
1483
1484#ifdef ATW_SYNDEBUG
1485static void
1486atw_si4126_print(struct atw_softc *sc)
1487{
1488	struct ifnet *ifp = &sc->sc_if;
1489	u_int addr, val;
1490
1491	val = 0;
1492
1493	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1494		return;
1495
1496	for (addr = 0; addr <= 8; addr++) {
1497		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1498		if (atw_si4126_read(sc, addr, &val) == 0) {
1499			printf("<unknown> (quitting print-out)\n");
1500			break;
1501		}
1502		printf("%05x\n", val);
1503	}
1504}
1505#endif /* ATW_SYNDEBUG */
1506
1507/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1508 *
1509 * The RF/IF synthesizer produces two reference frequencies for
1510 * the RF2948B transceiver.  The first frequency the RF2948B requires
1511 * is two times the so-called "intermediate frequency" (IF). Since
1512 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1513 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1514 * frequency required by the transceiver is the radio frequency
1515 * (RF). This is a superheterodyne transceiver; for f(chan) the
1516 * center frequency of the channel we are tuning, RF = f(chan) -
1517 * IF.
1518 *
1519 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1520 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1521 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1522 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1523 */
1524static void
1525atw_si4126_tune(struct atw_softc *sc, u_int chan)
1526{
1527	u_int mhz;
1528	u_int R;
1529	uint32_t gpio;
1530	uint16_t gain;
1531
1532#ifdef ATW_SYNDEBUG
1533	atw_si4126_print(sc);
1534#endif /* ATW_SYNDEBUG */
1535
1536	if (chan == 14)
1537		mhz = 2484;
1538	else
1539		mhz = 2412 + 5 * (chan - 1);
1540
1541	/* Tune IF to 748 MHz to suit the IF LO input of the
1542	 * RF2494B, which is 2 x IF. No need to set an IF divider
1543	 * because an IF in 526 MHz - 952 MHz is allowed.
1544	 *
1545	 * XIN is 44.000 MHz, so divide it by two to get allowable
1546	 * range of 2-25 MHz. SiLabs tells me that this is not
1547	 * strictly necessary.
1548	 */
1549
1550	if (atw_xindiv2)
1551		R = 44;
1552	else
1553		R = 88;
1554
1555	/* Power-up RF, IF synthesizers. */
1556	atw_si4126_write(sc, SI4126_POWER,
1557	    SI4126_POWER_PDIB | SI4126_POWER_PDRB);
1558
1559	/* set LPWR, too? */
1560	atw_si4126_write(sc, SI4126_MAIN,
1561	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1562
1563	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1564	 * set KP2 to 1.
1565	 *
1566	 * REFDIF This is different from the reference driver, which
1567	 * always sets SI4126_GAIN to 0.
1568	 */
1569	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1570
1571	atw_si4126_write(sc, SI4126_GAIN, gain);
1572
1573	/* XIN = 44 MHz.
1574	 *
1575	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1576	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1577	 *
1578	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1579	 * so that 1496/88 * 44 MHz = 748 MHz.
1580	 */
1581	atw_si4126_write(sc, SI4126_IFN, 1496);
1582
1583	atw_si4126_write(sc, SI4126_IFR, R);
1584
1585#ifndef ATW_REFSLAVE
1586	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1587	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1588	 * which has no RF1!
1589	 */
1590	atw_si4126_write(sc, SI4126_RF1R, R);
1591
1592	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1593#endif
1594
1595	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1596	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1597	 * Now let's multiply it to mhz. So mhz - IF = N.
1598	 */
1599	atw_si4126_write(sc, SI4126_RF2R, R);
1600
1601	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1602
1603	/* wait 100us from power-up for RF, IF to settle */
1604	DELAY(100);
1605
1606	gpio = ATW_READ(sc, ATW_GPIO);
1607	gpio &= ~(ATW_GPIO_EN_MASK | ATW_GPIO_O_MASK | ATW_GPIO_I_MASK);
1608	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1609
1610	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1611		/* Set a Prism RF front-end to a special mode for channel 14?
1612		 *
1613		 * Apparently the SMC2635W needs this, although I don't think
1614		 * it has a Prism RF.
1615		 */
1616		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1617	}
1618	ATW_WRITE(sc, ATW_GPIO, gpio);
1619
1620#ifdef ATW_SYNDEBUG
1621	atw_si4126_print(sc);
1622#endif /* ATW_SYNDEBUG */
1623}
1624
1625/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1626 * diversity.
1627 *
1628 * !!!
1629 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1630 * !!!
1631 */
1632static int
1633atw_rf3000_init(struct atw_softc *sc)
1634{
1635	int rc = 0;
1636
1637	atw_bbp_io_enable(sc, 1);
1638
1639	/* CCA is acquisition sensitive */
1640	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1641	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1642
1643	if (rc != 0)
1644		goto out;
1645
1646	/* enable diversity */
1647	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1648
1649	if (rc != 0)
1650		goto out;
1651
1652	/* sensible setting from a binary-only driver */
1653	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1654	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1655
1656	if (rc != 0)
1657		goto out;
1658
1659	/* magic from a binary-only driver */
1660	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1661	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1662
1663	if (rc != 0)
1664		goto out;
1665
1666	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1667
1668	if (rc != 0)
1669		goto out;
1670
1671	/* XXX Reference driver remarks that Abocom sets this to 50.
1672	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1673	 * in the "reserved" area of register RF3000_OPTIONS1.
1674	 */
1675	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1676
1677	if (rc != 0)
1678		goto out;
1679
1680	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1681
1682	if (rc != 0)
1683		goto out;
1684
1685out:
1686	atw_bbp_io_enable(sc, 0);
1687	return rc;
1688}
1689
1690#ifdef ATW_BBPDEBUG
1691static void
1692atw_rf3000_print(struct atw_softc *sc)
1693{
1694	struct ifnet *ifp = &sc->sc_if;
1695	u_int addr, val;
1696
1697	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1698		return;
1699
1700	for (addr = 0x01; addr <= 0x15; addr++) {
1701		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1702		if (atw_rf3000_read(sc, addr, &val) != 0) {
1703			printf("<unknown> (quitting print-out)\n");
1704			break;
1705		}
1706		printf("%08x\n", val);
1707	}
1708}
1709#endif /* ATW_BBPDEBUG */
1710
1711/* Set the power settings on the BBP for channel `chan'. */
1712static int
1713atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1714{
1715	int rc = 0;
1716	uint32_t reg;
1717	uint16_t txpower, lpf_cutoff, lna_gs_thresh;
1718
1719	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1720	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1721	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1722
1723	/* odd channels: LSB, even channels: MSB */
1724	if (chan % 2 == 1) {
1725		txpower &= 0xFF;
1726		lpf_cutoff &= 0xFF;
1727		lna_gs_thresh &= 0xFF;
1728	} else {
1729		txpower >>= 8;
1730		lpf_cutoff >>= 8;
1731		lna_gs_thresh >>= 8;
1732	}
1733
1734#ifdef ATW_BBPDEBUG
1735	atw_rf3000_print(sc);
1736#endif /* ATW_BBPDEBUG */
1737
1738	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1739	    "lna_gs_thresh %02x\n",
1740	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1741
1742	atw_bbp_io_enable(sc, 1);
1743
1744	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1745	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1746		goto out;
1747
1748	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1749		goto out;
1750
1751	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1752		goto out;
1753
1754	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1755
1756	if (rc != 0)
1757		goto out;
1758
1759	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1760
1761	if (rc != 0)
1762		goto out;
1763
1764#ifdef ATW_BBPDEBUG
1765	atw_rf3000_print(sc);
1766#endif /* ATW_BBPDEBUG */
1767
1768out:
1769	atw_bbp_io_enable(sc, 0);
1770
1771	/* set beacon, rts, atim transmit power */
1772	reg = ATW_READ(sc, ATW_PLCPHD);
1773	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1774	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1775	    ATW_PLCPHD_SERVICE_MASK);
1776	ATW_WRITE(sc, ATW_PLCPHD, reg);
1777	DELAY(atw_plcphd_delay);
1778
1779	return rc;
1780}
1781
1782/* Write a register on the RF3000 baseband processor using the
1783 * registers provided by the ADM8211 for this purpose.
1784 *
1785 * Return 0 on success.
1786 */
1787static int
1788atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1789{
1790	uint32_t reg;
1791	int i;
1792
1793	reg = sc->sc_bbpctl_wr |
1794	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1795	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1796
1797	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1798		ATW_WRITE(sc, ATW_BBPCTL, reg);
1799		DELAY(2 * atw_pseudo_milli);
1800		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1801			break;
1802	}
1803
1804	if (i < 0) {
1805		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1806		return ETIMEDOUT;
1807	}
1808	return 0;
1809}
1810
1811/* Read a register on the RF3000 baseband processor using the registers
1812 * the ADM8211 provides for this purpose.
1813 *
1814 * The 7-bit register address is addr.  Record the 8-bit data in the register
1815 * in *val.
1816 *
1817 * Return 0 on success.
1818 *
1819 * XXX This does not seem to work. The ADM8211 must require more or
1820 * different magic to read the chip than to write it. Possibly some
1821 * of the magic I have derived from a binary-only driver concerns
1822 * the "chip address" (see the RF3000 manual).
1823 */
1824#ifdef ATW_BBPDEBUG
1825static int
1826atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1827{
1828	uint32_t reg;
1829	int i;
1830
1831	for (i = 1000; --i >= 0; ) {
1832		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD | ATW_BBPCTL_WR)
1833		    == 0)
1834			break;
1835		DELAY(100);
1836	}
1837
1838	if (i < 0) {
1839		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1840		    device_xname(sc->sc_dev));
1841		return ETIMEDOUT;
1842	}
1843
1844	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1845
1846	ATW_WRITE(sc, ATW_BBPCTL, reg);
1847
1848	for (i = 1000; --i >= 0; ) {
1849		DELAY(100);
1850		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1851			break;
1852	}
1853
1854	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1855
1856	if (i < 0) {
1857		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1858		    device_xname(sc->sc_dev), reg);
1859		return ETIMEDOUT;
1860	}
1861	if (val != NULL)
1862		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1863	return 0;
1864}
1865#endif /* ATW_BBPDEBUG */
1866
1867/* Write a register on the Si4126 RF/IF synthesizer using the registers
1868 * provided by the ADM8211 for that purpose.
1869 *
1870 * val is 18 bits of data, and val is the 4-bit address of the register.
1871 *
1872 * Return 0 on success.
1873 */
1874static void
1875atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1876{
1877	uint32_t bits, mask, reg;
1878	const int nbits = 22;
1879
1880	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1881	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1882
1883	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1884	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1885
1886	reg = ATW_SYNRF_SELSYN;
1887	/* reference driver: reset Si4126 serial bus to initial
1888	 * conditions?
1889	 */
1890	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1891	ATW_WRITE(sc, ATW_SYNRF, reg);
1892
1893	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1894		if ((bits & mask) != 0)
1895			reg |= ATW_SYNRF_SYNDATA;
1896		else
1897			reg &= ~ATW_SYNRF_SYNDATA;
1898		ATW_WRITE(sc, ATW_SYNRF, reg);
1899		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1900		ATW_WRITE(sc, ATW_SYNRF, reg);
1901	}
1902	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1903	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1904}
1905
1906/* Read 18-bit data from the 4-bit address addr in Si4126
1907 * RF synthesizer and write the data to *val. Return 0 on success.
1908 *
1909 * XXX This does not seem to work. The ADM8211 must require more or
1910 * different magic to read the chip than to write it.
1911 */
1912#ifdef ATW_SYNDEBUG
1913static int
1914atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1915{
1916	uint32_t reg;
1917	int i;
1918
1919	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1920
1921	for (i = 1000; --i >= 0; ) {
1922		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD | ATW_SYNCTL_WR)
1923		    == 0)
1924			break;
1925		DELAY(100);
1926	}
1927
1928	if (i < 0) {
1929		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1930		    device_xname(sc->sc_dev));
1931		return ETIMEDOUT;
1932	}
1933
1934	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1935
1936	ATW_WRITE(sc, ATW_SYNCTL, reg);
1937
1938	for (i = 1000; --i >= 0; ) {
1939		DELAY(100);
1940		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1941			break;
1942	}
1943
1944	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1945
1946	if (i < 0) {
1947		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1948		    device_xname(sc->sc_dev), reg);
1949		return ETIMEDOUT;
1950	}
1951	if (val != NULL)
1952		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1953				       ATW_SYNCTL_DATA_MASK);
1954	return 0;
1955}
1956#endif /* ATW_SYNDEBUG */
1957
1958/* XXX is the endianness correct? test. */
1959#define	atw_calchash(addr) \
1960	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1961
1962/*
1963 * atw_filter_setup:
1964 *
1965 *	Set the ADM8211's receive filter.
1966 */
1967static void
1968atw_filter_setup(struct atw_softc *sc)
1969{
1970	struct ieee80211com *ic = &sc->sc_ic;
1971	struct ethercom *ec = &sc->sc_ec;
1972	struct ifnet *ifp = &sc->sc_if;
1973	int hash;
1974	uint32_t hashes[2];
1975	struct ether_multi *enm;
1976	struct ether_multistep step;
1977
1978	/* According to comments in tlp_al981_filter_setup
1979	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1980	 * multicast filter to be set while it is running.  Hopefully
1981	 * the ADM8211 is not the same!
1982	 */
1983	if ((ifp->if_flags & IFF_RUNNING) != 0)
1984		atw_idle(sc, ATW_NAR_SR);
1985
1986	sc->sc_opmode &= ~(ATW_NAR_PB | ATW_NAR_PR | ATW_NAR_MM);
1987	ifp->if_flags &= ~IFF_ALLMULTI;
1988
1989	/* XXX in scan mode, do not filter packets.  Maybe this is
1990	 * unnecessary.
1991	 */
1992	if (ic->ic_state == IEEE80211_S_SCAN ||
1993	    (ifp->if_flags & IFF_PROMISC) != 0) {
1994		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1995		goto allmulti;
1996	}
1997
1998	hashes[0] = hashes[1] = 0x0;
1999
2000	/*
2001	 * Program the 64-bit multicast hash filter.
2002	 */
2003	ETHER_LOCK(ec);
2004	ETHER_FIRST_MULTI(step, ec, enm);
2005	while (enm != NULL) {
2006		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2007		    ETHER_ADDR_LEN) != 0) {
2008			ETHER_UNLOCK(ec);
2009			goto allmulti;
2010		}
2011
2012		hash = atw_calchash(enm->enm_addrlo);
2013		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2014		ETHER_NEXT_MULTI(step, enm);
2015		sc->sc_opmode |= ATW_NAR_MM;
2016	}
2017	ETHER_UNLOCK(ec);
2018	ifp->if_flags &= ~IFF_ALLMULTI;
2019	goto setit;
2020
2021allmulti:
2022	sc->sc_opmode |= ATW_NAR_MM;
2023	ifp->if_flags |= IFF_ALLMULTI;
2024	hashes[0] = hashes[1] = 0xffffffff;
2025
2026setit:
2027	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2028	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2029	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2030	DELAY(atw_nar_delay);
2031	ATW_WRITE(sc, ATW_RDR, 0x1);
2032
2033	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2034	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2035}
2036
2037/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2038 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2039 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2040 * no beacon with the preferred BSSID and SSID in the number of
2041 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2042 */
2043static void
2044atw_write_bssid(struct atw_softc *sc)
2045{
2046	struct ieee80211com *ic = &sc->sc_ic;
2047	uint8_t *bssid;
2048
2049	bssid = ic->ic_bss->ni_bssid;
2050
2051	ATW_WRITE(sc, ATW_BSSID0,
2052	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2053	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2054	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2055	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2056
2057	ATW_WRITE(sc, ATW_ABDA1,
2058	    (ATW_READ(sc, ATW_ABDA1) &
2059	    ~(ATW_ABDA1_BSSIDB4_MASK | ATW_ABDA1_BSSIDB5_MASK)) |
2060	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2061	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2062
2063	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2064	    ether_sprintf(sc->sc_bssid)));
2065	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2066
2067	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2068}
2069
2070/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2071 * 16-bit word.
2072 */
2073static void
2074atw_write_sram(struct atw_softc *sc, u_int ofs, uint8_t *buf, u_int buflen)
2075{
2076	u_int i;
2077	uint8_t *ptr;
2078
2079	memcpy(&sc->sc_sram[ofs], buf, buflen);
2080
2081	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2082
2083	KASSERT(buflen + ofs <= sc->sc_sramlen);
2084
2085	ptr = &sc->sc_sram[ofs];
2086
2087	for (i = 0; i < buflen; i += 2) {
2088		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2089		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2090		DELAY(atw_writewep_delay);
2091
2092		ATW_WRITE(sc, ATW_WESK,
2093		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2094		DELAY(atw_writewep_delay);
2095	}
2096	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2097
2098	if (sc->sc_if.if_flags & IFF_DEBUG) {
2099		int n_octets = 0;
2100		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2101		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2102		for (i = 0; i < buflen; i++) {
2103			printf(" %02x", ptr[i]);
2104			if (++n_octets % 24 == 0)
2105				printf("\n");
2106		}
2107		if (n_octets % 24 != 0)
2108			printf("\n");
2109	}
2110}
2111
2112static int
2113atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2114{
2115	struct atw_softc *sc = ic->ic_ifp->if_softc;
2116	u_int keyix = k->wk_keyix;
2117
2118	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2119
2120	if (keyix >= IEEE80211_WEP_NKID)
2121		return 0;
2122	if (k->wk_keylen != 0)
2123		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2124
2125	return 1;
2126}
2127
2128static int
2129atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2130	const uint8_t mac[IEEE80211_ADDR_LEN])
2131{
2132	struct atw_softc *sc = ic->ic_ifp->if_softc;
2133
2134	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2135
2136	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2137		return 0;
2138
2139	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2140
2141	return 1;
2142}
2143
2144static void
2145atw_key_update_begin(struct ieee80211com *ic)
2146{
2147#ifdef ATW_DEBUG
2148	struct ifnet *ifp = ic->ic_ifp;
2149	struct atw_softc *sc = ifp->if_softc;
2150#endif
2151
2152	DPRINTF(sc, ("%s:\n", __func__));
2153}
2154
2155static void
2156atw_key_update_end(struct ieee80211com *ic)
2157{
2158	struct ifnet *ifp = ic->ic_ifp;
2159	struct atw_softc *sc = ifp->if_softc;
2160
2161	DPRINTF(sc, ("%s:\n", __func__));
2162
2163	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2164		return;
2165	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2166		return;
2167	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2168	atw_write_wep(sc);
2169	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2170	DELAY(atw_nar_delay);
2171	ATW_WRITE(sc, ATW_RDR, 0x1);
2172}
2173
2174/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2175static void
2176atw_write_wep(struct atw_softc *sc)
2177{
2178#if 0
2179	struct ieee80211com *ic = &sc->sc_ic;
2180	uint32_t reg;
2181	int i;
2182#endif
2183	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2184	uint8_t buf[IEEE80211_WEP_NKID]
2185		    [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2186
2187	sc->sc_wepctl = 0;
2188	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2189
2190	memset(&buf[0][0], 0, sizeof(buf));
2191
2192#if 0
2193	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2194		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2195			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2196		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2197			buf[i][1] = ATW_WEP_ENABLED;
2198		} else {
2199			buf[i][1] = 0;
2200			continue;
2201		}
2202		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2203		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2204		    ic->ic_nw_keys[i].wk_keylen - 1);
2205	}
2206
2207	reg = ATW_READ(sc, ATW_MACTEST);
2208	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2209	reg &= ~ATW_MACTEST_KEYID_MASK;
2210	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2211	ATW_WRITE(sc, ATW_MACTEST, reg);
2212
2213	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2214		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2215
2216	switch (sc->sc_rev) {
2217	case ATW_REVISION_AB:
2218	case ATW_REVISION_AF:
2219		/* Bypass WEP on Rx. */
2220		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2221		break;
2222	default:
2223		break;
2224	}
2225#endif
2226
2227	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (uint8_t*)&buf[0][0],
2228	    sizeof(buf));
2229
2230	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2231}
2232
2233static void
2234atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2235    struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
2236{
2237	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2238
2239	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2240	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2241		return;
2242
2243	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2244
2245	switch (subtype) {
2246	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2247	case IEEE80211_FC0_SUBTYPE_BEACON:
2248		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2249		    ic->ic_state == IEEE80211_S_RUN) {
2250			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2251				(void)ieee80211_ibss_merge(ni);
2252		}
2253		break;
2254	default:
2255		break;
2256	}
2257	return;
2258}
2259
2260/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2261 * In ad hoc mode, the SSID is written to the beacons sent by the
2262 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2263 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2264 * indications.
2265 */
2266static void
2267atw_write_ssid(struct atw_softc *sc)
2268{
2269	struct ieee80211com *ic = &sc->sc_ic;
2270	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2271	 * it only expects the element length, not its ID.
2272	 */
2273	uint8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2274
2275	memset(buf, 0, sizeof(buf));
2276	buf[0] = ic->ic_bss->ni_esslen;
2277	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2278
2279	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2280	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2281}
2282
2283/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2284 * In ad hoc mode, the supported rates are written to beacons sent by the
2285 * ADM8211.
2286 */
2287static void
2288atw_write_sup_rates(struct atw_softc *sc)
2289{
2290	struct ieee80211com *ic = &sc->sc_ic;
2291	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2292	 * supported rates
2293	 */
2294	uint8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2295
2296	memset(buf, 0, sizeof(buf));
2297
2298	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2299
2300	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2301	    ic->ic_bss->ni_rates.rs_nrates);
2302
2303	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2304}
2305
2306/* Start/stop sending beacons. */
2307void
2308atw_start_beacon(struct atw_softc *sc, int start)
2309{
2310	struct ieee80211com *ic = &sc->sc_ic;
2311	uint16_t chan;
2312	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2313	size_t len;
2314
2315	if (!device_is_active(sc->sc_dev))
2316		return;
2317
2318	/* start beacons */
2319	len = sizeof(struct ieee80211_frame) +
2320	    8 /* timestamp */ + 2 /* beacon interval */ +
2321	    2 /* capability info */ +
2322	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2323	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2324	    3 /* DS parameters */ +
2325	    IEEE80211_CRC_LEN;
2326
2327	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2328	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2329	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2330
2331	ATW_WRITE(sc, ATW_BCNT, bcnt);
2332	ATW_WRITE(sc, ATW_CAP1, cap1);
2333
2334	if (!start)
2335		return;
2336
2337	/* TBD use ni_capinfo */
2338
2339	capinfo = 0;
2340	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2341		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2342	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2343		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2344
2345	switch (ic->ic_opmode) {
2346	case IEEE80211_M_IBSS:
2347		len += 4; /* IBSS parameters */
2348		capinfo |= IEEE80211_CAPINFO_IBSS;
2349		break;
2350	case IEEE80211_M_HOSTAP:
2351		/* XXX 6-byte minimum TIM */
2352		len += atw_beacon_len_adjust;
2353		capinfo |= IEEE80211_CAPINFO_ESS;
2354		break;
2355	default:
2356		return;
2357	}
2358
2359	/* set listen interval
2360	 * XXX do software units agree w/ hardware?
2361	 */
2362	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2363	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2364
2365	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2366
2367	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2368	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2369	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2370
2371	ATW_WRITE(sc, ATW_BCNT, bcnt);
2372	ATW_WRITE(sc, ATW_BPLI, bpli);
2373	ATW_WRITE(sc, ATW_CAP0, cap0);
2374	ATW_WRITE(sc, ATW_CAP1, cap1);
2375
2376	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2377	    device_xname(sc->sc_dev), bcnt));
2378
2379	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2380	    device_xname(sc->sc_dev), cap1));
2381}
2382
2383/* Return the 32 lsb of the last TSFT divisible by ival. */
2384static inline uint32_t
2385atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2386{
2387	/* Following the reference driver's lead, I compute
2388	 *
2389	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2390	 *
2391	 * without using 64-bit arithmetic, using the following
2392	 * relationship:
2393	 *
2394	 *     (0x100000000 * H + L) % m
2395	 *   = ((0x100000000 % m) * H + L) % m
2396	 *   = (((0xffffffff + 1) % m) * H + L) % m
2397	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2398	 *   = ((0xffffffff % m + 1) * H + L) % m
2399	 */
2400	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2401}
2402
2403static uint64_t
2404atw_get_tsft(struct atw_softc *sc)
2405{
2406	int i;
2407	uint32_t tsfth, tsftl;
2408	for (i = 0; i < 2; i++) {
2409		tsfth = ATW_READ(sc, ATW_TSFTH);
2410		tsftl = ATW_READ(sc, ATW_TSFTL);
2411		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2412			break;
2413	}
2414	return ((uint64_t)tsfth << 32) | tsftl;
2415}
2416
2417/* If we've created an IBSS, write the TSF time in the ADM8211 to
2418 * the ieee80211com.
2419 *
2420 * Predict the next target beacon transmission time (TBTT) and
2421 * write it to the ADM8211.
2422 */
2423static void
2424atw_predict_beacon(struct atw_softc *sc)
2425{
2426#define TBTTOFS 20 /* TU */
2427
2428	struct ieee80211com *ic = &sc->sc_ic;
2429	uint64_t tsft;
2430	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2431	union {
2432		uint64_t	word;
2433		uint8_t		tstamp[8];
2434	} u;
2435
2436	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2437	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2438	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2439		tsft = atw_get_tsft(sc);
2440		u.word = htole64(tsft);
2441		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2442		    sizeof(ic->ic_bss->ni_tstamp));
2443	} else
2444		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2445
2446	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2447
2448	tsftl = tsft & 0xFFFFFFFF;
2449	tsfth = tsft >> 32;
2450
2451	/* We sent/received the last beacon `past' microseconds
2452	 * after the interval divided the TSF timer.
2453	 */
2454	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2455
2456	/* Skip ten beacons so that the TBTT cannot pass before
2457	 * we've programmed it.  Ten is an arbitrary number.
2458	 */
2459	tbtt = past_even + ival * 10;
2460
2461	ATW_WRITE(sc, ATW_TOFS1,
2462	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2463	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2464	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2465		ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2466#undef TBTTOFS
2467}
2468
2469static void
2470atw_next_scan(void *arg)
2471{
2472	struct atw_softc *sc = arg;
2473	struct ieee80211com *ic = &sc->sc_ic;
2474	int s;
2475
2476	/* don't call atw_start w/o network interrupts blocked */
2477	s = splnet();
2478	if (ic->ic_state == IEEE80211_S_SCAN)
2479		ieee80211_next_scan(ic);
2480	splx(s);
2481}
2482
2483/* Synchronize the hardware state with the software state. */
2484static int
2485atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2486{
2487	struct ifnet *ifp = ic->ic_ifp;
2488	struct atw_softc *sc = ifp->if_softc;
2489	int error = 0;
2490
2491	callout_stop(&sc->sc_scan_ch);
2492
2493	switch (nstate) {
2494	case IEEE80211_S_AUTH:
2495	case IEEE80211_S_ASSOC:
2496		atw_write_bssid(sc);
2497		error = atw_tune(sc);
2498		break;
2499	case IEEE80211_S_INIT:
2500		callout_stop(&sc->sc_scan_ch);
2501		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2502		atw_start_beacon(sc, 0);
2503		break;
2504	case IEEE80211_S_SCAN:
2505		error = atw_tune(sc);
2506		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2507		    atw_next_scan, sc);
2508		break;
2509	case IEEE80211_S_RUN:
2510		error = atw_tune(sc);
2511		atw_write_bssid(sc);
2512		atw_write_ssid(sc);
2513		atw_write_sup_rates(sc);
2514
2515		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2516		    ic->ic_opmode == IEEE80211_M_MONITOR)
2517			break;
2518
2519		/* set listen interval
2520		 * XXX do software units agree w/ hardware?
2521		 */
2522		ATW_WRITE(sc, ATW_BPLI,
2523		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2524		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2525			   ATW_BPLI_LI_MASK));
2526
2527		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2528		    ATW_READ(sc, ATW_BPLI)));
2529
2530		atw_predict_beacon(sc);
2531
2532		switch (ic->ic_opmode) {
2533		case IEEE80211_M_AHDEMO:
2534		case IEEE80211_M_HOSTAP:
2535		case IEEE80211_M_IBSS:
2536			atw_start_beacon(sc, 1);
2537			break;
2538		case IEEE80211_M_MONITOR:
2539		case IEEE80211_M_STA:
2540			break;
2541		}
2542
2543		break;
2544	}
2545	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2546}
2547
2548/*
2549 * atw_add_rxbuf:
2550 *
2551 *	Add a receive buffer to the indicated descriptor.
2552 */
2553int
2554atw_add_rxbuf(struct atw_softc *sc, int idx)
2555{
2556	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2557	struct mbuf *m;
2558	int error;
2559
2560	MGETHDR(m, M_DONTWAIT, MT_DATA);
2561	if (m == NULL)
2562		return (ENOBUFS);
2563
2564	MCLGET(m, M_DONTWAIT);
2565	if ((m->m_flags & M_EXT) == 0) {
2566		m_freem(m);
2567		return (ENOBUFS);
2568	}
2569
2570	if (rxs->rxs_mbuf != NULL)
2571		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2572
2573	rxs->rxs_mbuf = m;
2574
2575	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2576	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2577	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2578	if (error) {
2579		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2580		    idx, error);
2581		panic("atw_add_rxbuf");	/* XXX */
2582	}
2583
2584	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2585	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2586
2587	atw_init_rxdesc(sc, idx);
2588
2589	return (0);
2590}
2591
2592/*
2593 * Release any queued transmit buffers.
2594 */
2595void
2596atw_txdrain(struct atw_softc *sc)
2597{
2598	struct atw_txsoft *txs;
2599
2600	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2601		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2602		if (txs->txs_mbuf != NULL) {
2603			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2604			m_freem(txs->txs_mbuf);
2605			txs->txs_mbuf = NULL;
2606		}
2607		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2608		sc->sc_txfree += txs->txs_ndescs;
2609	}
2610
2611	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2612		!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2613		  sc->sc_txfree != ATW_NTXDESC));
2614	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2615	sc->sc_tx_timer = 0;
2616}
2617
2618/*
2619 * atw_stop:		[ ifnet interface function ]
2620 *
2621 *	Stop transmission on the interface.
2622 */
2623void
2624atw_stop(struct ifnet *ifp, int disable)
2625{
2626	struct atw_softc *sc = ifp->if_softc;
2627	struct ieee80211com *ic = &sc->sc_ic;
2628
2629	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2630
2631	if (device_is_active(sc->sc_dev)) {
2632		/* Disable interrupts. */
2633		ATW_WRITE(sc, ATW_IER, 0);
2634
2635		/* Stop the transmit and receive processes. */
2636		ATW_WRITE(sc, ATW_NAR, 0);
2637		DELAY(atw_nar_delay);
2638		ATW_WRITE(sc, ATW_TDBD, 0);
2639		ATW_WRITE(sc, ATW_TDBP, 0);
2640		ATW_WRITE(sc, ATW_RDB, 0);
2641	}
2642
2643	sc->sc_opmode = 0;
2644
2645	atw_txdrain(sc);
2646
2647	/*
2648	 * Mark the interface down and cancel the watchdog timer.
2649	 */
2650	ifp->if_flags &= ~IFF_RUNNING;
2651	ifp->if_timer = 0;
2652
2653	if (disable)
2654		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2655}
2656
2657/*
2658 * atw_rxdrain:
2659 *
2660 *	Drain the receive queue.
2661 */
2662void
2663atw_rxdrain(struct atw_softc *sc)
2664{
2665	struct atw_rxsoft *rxs;
2666	int i;
2667
2668	for (i = 0; i < ATW_NRXDESC; i++) {
2669		rxs = &sc->sc_rxsoft[i];
2670		if (rxs->rxs_mbuf == NULL)
2671			continue;
2672		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2673		m_freem(rxs->rxs_mbuf);
2674		rxs->rxs_mbuf = NULL;
2675	}
2676}
2677
2678/*
2679 * atw_detach:
2680 *
2681 *	Detach an ADM8211 interface.
2682 */
2683int
2684atw_detach(struct atw_softc *sc)
2685{
2686	struct ifnet *ifp = &sc->sc_if;
2687	struct atw_rxsoft *rxs;
2688	struct atw_txsoft *txs;
2689	int i;
2690
2691	/*
2692	 * Succeed now if there isn't any work to do.
2693	 */
2694	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2695		return (0);
2696
2697	pmf_device_deregister(sc->sc_dev);
2698
2699	callout_stop(&sc->sc_scan_ch);
2700
2701	ieee80211_ifdetach(&sc->sc_ic);
2702	if_detach(ifp);
2703
2704	for (i = 0; i < ATW_NRXDESC; i++) {
2705		rxs = &sc->sc_rxsoft[i];
2706		if (rxs->rxs_mbuf != NULL) {
2707			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2708			m_freem(rxs->rxs_mbuf);
2709			rxs->rxs_mbuf = NULL;
2710		}
2711		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2712	}
2713	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2714		txs = &sc->sc_txsoft[i];
2715		if (txs->txs_mbuf != NULL) {
2716			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2717			m_freem(txs->txs_mbuf);
2718			txs->txs_mbuf = NULL;
2719		}
2720		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2721	}
2722	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2723	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2724	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2725	    sizeof(struct atw_control_data));
2726	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2727
2728	if (sc->sc_srom)
2729		free(sc->sc_srom, M_DEVBUF);
2730
2731	atw_evcnt_detach(sc);
2732
2733	if (sc->sc_soft_ih != NULL) {
2734		softint_disestablish(sc->sc_soft_ih);
2735		sc->sc_soft_ih = NULL;
2736	}
2737
2738	return (0);
2739}
2740
2741/* atw_shutdown: make sure the interface is stopped at reboot time. */
2742bool
2743atw_shutdown(device_t self, int flags)
2744{
2745	struct atw_softc *sc = device_private(self);
2746
2747	atw_stop(&sc->sc_if, 1);
2748	return true;
2749}
2750
2751#if 0
2752static void
2753atw_workaround1(struct atw_softc *sc)
2754{
2755	uint32_t test1;
2756
2757	test1 = ATW_READ(sc, ATW_TEST1);
2758
2759	sc->sc_misc_ev.ev_count++;
2760
2761	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2762		sc->sc_rxpkt1in_ev.ev_count++;
2763		return;
2764	}
2765	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2766	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2767		sc->sc_rxamatch_ev.ev_count++;
2768		return;
2769	}
2770	sc->sc_workaround1_ev.ev_count++;
2771	(void)atw_init(&sc->sc_if);
2772}
2773#endif
2774
2775int
2776atw_intr(void *arg)
2777{
2778	struct atw_softc *sc = arg;
2779	struct ifnet *ifp = &sc->sc_if;
2780	uint32_t status;
2781
2782#ifdef DEBUG
2783	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2784		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2785#endif
2786
2787	/*
2788	 * If the interface isn't running, the interrupt couldn't
2789	 * possibly have come from us.
2790	 */
2791	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2792	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2793		return (0);
2794
2795	status = ATW_READ(sc, ATW_STSR);
2796	if (status == 0)
2797		return 0;
2798
2799	if ((status & sc->sc_inten) == 0) {
2800		ATW_WRITE(sc, ATW_STSR, status);
2801		return 0;
2802	}
2803
2804	/* Disable interrupts */
2805	ATW_WRITE(sc, ATW_IER, 0);
2806
2807	softint_schedule(sc->sc_soft_ih);
2808	return 1;
2809}
2810
2811void
2812atw_softintr(void *arg)
2813{
2814	struct atw_softc *sc = arg;
2815	struct ifnet *ifp = &sc->sc_if;
2816	uint32_t status, rxstatus, txstatus, linkstatus;
2817	int txthresh, s;
2818
2819	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2820	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2821		return;
2822
2823	for (;;) {
2824		status = ATW_READ(sc, ATW_STSR);
2825
2826		if (status)
2827			ATW_WRITE(sc, ATW_STSR, status);
2828
2829#ifdef ATW_DEBUG
2830#define PRINTINTR(flag) do { \
2831	if ((status & flag) != 0) { \
2832		printf("%s" #flag, delim); \
2833		delim = ","; \
2834	} \
2835} while (0)
2836
2837		if (atw_debug > 1 && status) {
2838			const char *delim = "<";
2839
2840			printf("%s: reg[STSR] = %x",
2841			    device_xname(sc->sc_dev), status);
2842
2843			PRINTINTR(ATW_INTR_FBE);
2844			PRINTINTR(ATW_INTR_LINKOFF);
2845			PRINTINTR(ATW_INTR_LINKON);
2846			PRINTINTR(ATW_INTR_RCI);
2847			PRINTINTR(ATW_INTR_RDU);
2848			PRINTINTR(ATW_INTR_REIS);
2849			PRINTINTR(ATW_INTR_RPS);
2850			PRINTINTR(ATW_INTR_TCI);
2851			PRINTINTR(ATW_INTR_TDU);
2852			PRINTINTR(ATW_INTR_TLT);
2853			PRINTINTR(ATW_INTR_TPS);
2854			PRINTINTR(ATW_INTR_TRT);
2855			PRINTINTR(ATW_INTR_TUF);
2856			PRINTINTR(ATW_INTR_BCNTC);
2857			PRINTINTR(ATW_INTR_ATIME);
2858			PRINTINTR(ATW_INTR_TBTT);
2859			PRINTINTR(ATW_INTR_TSCZ);
2860			PRINTINTR(ATW_INTR_TSFTF);
2861			printf(">\n");
2862		}
2863#undef PRINTINTR
2864#endif /* ATW_DEBUG */
2865
2866		if ((status & sc->sc_inten) == 0)
2867			break;
2868
2869		rxstatus = status & sc->sc_rxint_mask;
2870		txstatus = status & sc->sc_txint_mask;
2871		linkstatus = status & sc->sc_linkint_mask;
2872
2873		if (linkstatus) {
2874			atw_linkintr(sc, linkstatus);
2875		}
2876
2877		if (rxstatus) {
2878			/* Grab any new packets. */
2879			atw_rxintr(sc);
2880
2881			if (rxstatus & ATW_INTR_RDU) {
2882				printf("%s: receive ring overrun\n",
2883				    device_xname(sc->sc_dev));
2884				/* Get the receive process going again. */
2885				ATW_WRITE(sc, ATW_RDR, 0x1);
2886			}
2887		}
2888
2889		if (txstatus) {
2890			/* Sweep up transmit descriptors. */
2891			atw_txintr(sc, txstatus);
2892
2893			if (txstatus & ATW_INTR_TLT) {
2894				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2895				    device_xname(sc->sc_dev)));
2896				(void)atw_init(&sc->sc_if);
2897			}
2898
2899			if (txstatus & ATW_INTR_TRT) {
2900				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2901				    device_xname(sc->sc_dev)));
2902			}
2903
2904			/* If Tx under-run, increase our transmit threshold
2905			 * if another is available.
2906			 */
2907			txthresh = sc->sc_txthresh + 1;
2908			if ((txstatus & ATW_INTR_TUF) &&
2909			    sc->sc_txth[txthresh].txth_name != NULL) {
2910				/* Idle the transmit process. */
2911				atw_idle(sc, ATW_NAR_ST);
2912
2913				sc->sc_txthresh = txthresh;
2914				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915				sc->sc_opmode |=
2916				    sc->sc_txth[txthresh].txth_opmode;
2917				printf("%s: transmit underrun; new "
2918				    "threshold: %s\n", device_xname(sc->sc_dev),
2919				    sc->sc_txth[txthresh].txth_name);
2920
2921				/* Set the new threshold and restart
2922				 * the transmit process.
2923				 */
2924				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925				DELAY(atw_nar_delay);
2926				ATW_WRITE(sc, ATW_TDR, 0x1);
2927				/* XXX Log every Nth underrun from
2928				 * XXX now on?
2929				 */
2930			}
2931		}
2932
2933		if (status & (ATW_INTR_TPS | ATW_INTR_RPS)) {
2934			if (status & ATW_INTR_TPS)
2935				printf("%s: transmit process stopped\n",
2936				    device_xname(sc->sc_dev));
2937			if (status & ATW_INTR_RPS)
2938				printf("%s: receive process stopped\n",
2939				    device_xname(sc->sc_dev));
2940			s = splnet();
2941			(void)atw_init(ifp);
2942			splx(s);
2943			break;
2944		}
2945
2946		if (status & ATW_INTR_FBE) {
2947			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2948			s = splnet();
2949			(void)atw_init(ifp);
2950			splx(s);
2951			break;
2952		}
2953
2954		/*
2955		 * Not handled:
2956		 *
2957		 *	Transmit buffer unavailable -- normal
2958		 *	condition, nothing to do, really.
2959		 *
2960		 *	Early receive interrupt -- not available on
2961		 *	all chips, we just use RI.  We also only
2962		 *	use single-segment receive DMA, so this
2963		 *	is mostly useless.
2964		 *
2965		 *	TBD others
2966		 */
2967	}
2968
2969	/* Try to get more packets going. */
2970	s = splnet();
2971	atw_start(ifp);
2972	splx(s);
2973
2974	/* Enable interrupts */
2975	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2976}
2977
2978/*
2979 * atw_idle:
2980 *
2981 *	Cause the transmit and/or receive processes to go idle.
2982 *
2983 *	XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2984 *	process in STSR if I clear SR or ST after the process has already
2985 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2986 *	do not seem to be too reliable. Perhaps I have the sense of the
2987 *	Rx bits switched with the Tx bits?
2988 */
2989void
2990atw_idle(struct atw_softc *sc, uint32_t bits)
2991{
2992	uint32_t ackmask = 0, opmode, stsr, test0;
2993	int i, s;
2994
2995	s = splnet();
2996
2997	opmode = sc->sc_opmode & ~bits;
2998
2999	if (bits & ATW_NAR_SR)
3000		ackmask |= ATW_INTR_RPS;
3001
3002	if (bits & ATW_NAR_ST) {
3003		ackmask |= ATW_INTR_TPS;
3004		/* set ATW_NAR_HF to flush TX FIFO. */
3005		opmode |= ATW_NAR_HF;
3006	}
3007
3008	ATW_WRITE(sc, ATW_NAR, opmode);
3009	DELAY(atw_nar_delay);
3010
3011	for (i = 0; i < 1000; i++) {
3012		stsr = ATW_READ(sc, ATW_STSR);
3013		if ((stsr & ackmask) == ackmask)
3014			break;
3015		DELAY(10);
3016	}
3017
3018	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3019
3020	if ((stsr & ackmask) == ackmask)
3021		goto out;
3022
3023	test0 = ATW_READ(sc, ATW_TEST0);
3024
3025	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3026	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3027		printf("%s: transmit process not idle [%s]\n",
3028		    device_xname(sc->sc_dev),
3029		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3030		printf("%s: bits %08x test0 %08x stsr %08x\n",
3031		    device_xname(sc->sc_dev), bits, test0, stsr);
3032	}
3033
3034	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3035	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3036		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3037		    device_xname(sc->sc_dev),
3038		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3039		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3040		    device_xname(sc->sc_dev), bits, test0, stsr));
3041	}
3042out:
3043	if ((bits & ATW_NAR_ST) != 0)
3044		atw_txdrain(sc);
3045	splx(s);
3046	return;
3047}
3048
3049/*
3050 * atw_linkintr:
3051 *
3052 *	Helper; handle link-status interrupts.
3053 */
3054void
3055atw_linkintr(struct atw_softc *sc, uint32_t linkstatus)
3056{
3057	struct ieee80211com *ic = &sc->sc_ic;
3058
3059	if (ic->ic_state != IEEE80211_S_RUN)
3060		return;
3061
3062	if (linkstatus & ATW_INTR_LINKON) {
3063		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3064		sc->sc_rescan_timer = 0;
3065	} else if (linkstatus & ATW_INTR_LINKOFF) {
3066		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3067		if (ic->ic_opmode != IEEE80211_M_STA)
3068			return;
3069		sc->sc_rescan_timer = 3;
3070		sc->sc_if.if_timer = 1;
3071	}
3072}
3073
3074#if 0
3075static inline int
3076atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3077{
3078	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3079		return 0;
3080	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3081		return 0;
3082	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3083}
3084#endif
3085
3086/*
3087 * atw_rxintr:
3088 *
3089 *	Helper; handle receive interrupts.
3090 */
3091void
3092atw_rxintr(struct atw_softc *sc)
3093{
3094	static int rate_tbl[] = {2, 4, 11, 22, 44};
3095	struct ieee80211com *ic = &sc->sc_ic;
3096	struct ieee80211_node *ni;
3097	struct ieee80211_frame_min *wh;
3098	struct ifnet *ifp = &sc->sc_if;
3099	struct atw_rxsoft *rxs;
3100	struct mbuf *m;
3101	uint32_t rxstat;
3102	int i, s, len, rate, rate0;
3103	uint32_t rssi, ctlrssi;
3104
3105	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3106		rxs = &sc->sc_rxsoft[i];
3107
3108		ATW_CDRXSYNC(sc, i,
3109		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3110
3111		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3112		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3113		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3114
3115		if (rxstat & ATW_RXSTAT_OWN) {
3116			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3117			break;
3118		}
3119
3120		sc->sc_rxptr = ATW_NEXTRX(i);
3121
3122		DPRINTF3(sc,
3123		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3124		    device_xname(sc->sc_dev),
3125		    rxstat, ctlrssi,
3126		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3127		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3128
3129		/*
3130		 * Make sure the packet fits in one buffer.  This should
3131		 * always be the case.
3132		 */
3133		if ((rxstat & (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) !=
3134		    (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) {
3135			printf("%s: incoming packet spilled, resetting\n",
3136			    device_xname(sc->sc_dev));
3137			(void)atw_init(ifp);
3138			return;
3139		}
3140
3141		/*
3142		 * If an error occurred, update stats, clear the status
3143		 * word, and leave the packet buffer in place.  It will
3144		 * simply be reused the next time the ring comes around.
3145		 */
3146		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3147#define	PRINTERR(bit, str)						\
3148			if (rxstat & (bit))				\
3149				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3150				    str)
3151			if_statinc(ifp, if_ierrors);
3152			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3153			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3154#if 0
3155			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3156			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3157			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3158			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3159#endif
3160#undef PRINTERR
3161			atw_init_rxdesc(sc, i);
3162			continue;
3163		}
3164
3165		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3166		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3167
3168		/*
3169		 * No errors; receive the packet.  Note the ADM8211
3170		 * includes the CRC in promiscuous mode.
3171		 */
3172		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3173
3174		/*
3175		 * Allocate a new mbuf cluster.  If that fails, we are
3176		 * out of memory, and must drop the packet and recycle
3177		 * the buffer that's already attached to this descriptor.
3178		 */
3179		m = rxs->rxs_mbuf;
3180		if (atw_add_rxbuf(sc, i) != 0) {
3181			if_statinc(ifp, if_ierrors);
3182			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3183			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3184			atw_init_rxdesc(sc, i);
3185			continue;
3186		}
3187
3188		if_statinc(ifp, if_ipackets);
3189		m_set_rcvif(m, ifp);
3190		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3191
3192		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3193
3194		/* The RSSI comes straight from a register in the
3195		 * baseband processor.  I know that for the RF3000,
3196		 * the RSSI register also contains the antenna-selection
3197		 * bits.  Mask those off.
3198		 *
3199		 * TBD Treat other basebands.
3200		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3201		 */
3202		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3203			rssi = ctlrssi & RF3000_RSSI_MASK;
3204		else
3205			rssi = ctlrssi;
3206
3207		s = splnet();
3208
3209		/* Pass this up to any BPF listeners. */
3210		if (sc->sc_radiobpf != NULL) {
3211			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3212
3213			tap->ar_rate = rate;
3214
3215			/* TBD verify units are dB */
3216			tap->ar_antsignal = (int)rssi;
3217			if (sc->sc_opmode & ATW_NAR_PR)
3218				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3219			else
3220				tap->ar_flags = 0;
3221
3222			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3223				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3224
3225			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3226			    m, BPF_D_IN);
3227		}
3228
3229		sc->sc_recv_ev.ev_count++;
3230
3231		if ((rxstat & (ATW_RXSTAT_CRC16E | ATW_RXSTAT_CRC32E |
3232		    ATW_RXSTAT_ICVE | ATW_RXSTAT_SFDE | ATW_RXSTAT_SIGE))
3233		    != 0) {
3234			if (rxstat & ATW_RXSTAT_CRC16E)
3235				sc->sc_crc16e_ev.ev_count++;
3236			if (rxstat & ATW_RXSTAT_CRC32E)
3237				sc->sc_crc32e_ev.ev_count++;
3238			if (rxstat & ATW_RXSTAT_ICVE)
3239				sc->sc_icve_ev.ev_count++;
3240			if (rxstat & ATW_RXSTAT_SFDE)
3241				sc->sc_sfde_ev.ev_count++;
3242			if (rxstat & ATW_RXSTAT_SIGE)
3243				sc->sc_sige_ev.ev_count++;
3244			if_statinc(ifp, if_ierrors);
3245			m_freem(m);
3246			splx(s);
3247			continue;
3248		}
3249
3250		if (sc->sc_opmode & ATW_NAR_PR)
3251			m_adj(m, -IEEE80211_CRC_LEN);
3252
3253		wh = mtod(m, struct ieee80211_frame_min *);
3254		ni = ieee80211_find_rxnode(ic, wh);
3255#if 0
3256		if (atw_hw_decrypted(sc, wh)) {
3257			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3258			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3259		}
3260#endif
3261		ieee80211_input(ic, m, ni, (int)rssi, 0);
3262		ieee80211_free_node(ni);
3263		splx(s);
3264	}
3265}
3266
3267/*
3268 * atw_txintr:
3269 *
3270 *	Helper; handle transmit interrupts.
3271 */
3272void
3273atw_txintr(struct atw_softc *sc, uint32_t status)
3274{
3275	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3276	struct ifnet *ifp = &sc->sc_if;
3277	struct atw_txsoft *txs;
3278	uint32_t txstat;
3279	int s;
3280
3281	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3282	    device_xname(sc->sc_dev), sc->sc_flags));
3283
3284	s = splnet();
3285
3286	/*
3287	 * Go through our Tx list and free mbufs for those
3288	 * frames that have been transmitted.
3289	 */
3290	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3291		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3292		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3293
3294#ifdef ATW_DEBUG
3295		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3296			int i;
3297			printf("    txsoft %p transmit chain:\n", txs);
3298			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3299			    txs->txs_ndescs - 1,
3300			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3301			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3302				printf("     descriptor %d:\n", i);
3303				printf("       at_status:   0x%08x\n",
3304				    le32toh(sc->sc_txdescs[i].at_stat));
3305				printf("       at_flags:      0x%08x\n",
3306				    le32toh(sc->sc_txdescs[i].at_flags));
3307				printf("       at_buf1: 0x%08x\n",
3308				    le32toh(sc->sc_txdescs[i].at_buf1));
3309				printf("       at_buf2: 0x%08x\n",
3310				    le32toh(sc->sc_txdescs[i].at_buf2));
3311				if (i == txs->txs_lastdesc)
3312					break;
3313			}
3314			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3315			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3316		}
3317#endif
3318
3319		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3320		if (txstat & ATW_TXSTAT_OWN) {
3321			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3322			    BUS_DMASYNC_PREREAD);
3323			break;
3324		}
3325
3326		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3327
3328		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3329		    0, txs->txs_dmamap->dm_mapsize,
3330		    BUS_DMASYNC_POSTWRITE);
3331		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3332		m_freem(txs->txs_mbuf);
3333		txs->txs_mbuf = NULL;
3334
3335		sc->sc_txfree += txs->txs_ndescs;
3336		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3337
3338		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3339		sc->sc_tx_timer = 0;
3340		ifp->if_flags &= ~IFF_OACTIVE;
3341
3342		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3343		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3344			snprintb(txstat_buf, sizeof(txstat_buf),
3345			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3346			printf("%s: txstat %s %" __PRIuBITS "\n",
3347			    device_xname(sc->sc_dev), txstat_buf,
3348			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3349		}
3350
3351		sc->sc_xmit_ev.ev_count++;
3352
3353		/*
3354		 * Check for errors and collisions.
3355		 */
3356		if (txstat & ATW_TXSTAT_TUF)
3357			sc->sc_tuf_ev.ev_count++;
3358		if (txstat & ATW_TXSTAT_TLT)
3359			sc->sc_tlt_ev.ev_count++;
3360		if (txstat & ATW_TXSTAT_TRT)
3361			sc->sc_trt_ev.ev_count++;
3362		if (txstat & ATW_TXSTAT_TRO)
3363			sc->sc_tro_ev.ev_count++;
3364		if (txstat & ATW_TXSTAT_SOFBR)
3365			sc->sc_sofbr_ev.ev_count++;
3366
3367		if ((txstat & ATW_TXSTAT_ES) == 0)
3368			if_statadd(ifp, if_collisions,
3369			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3370		else
3371			if_statinc(ifp, if_oerrors);
3372
3373		if_statinc(ifp, if_opackets);
3374	}
3375
3376	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3377
3378	splx(s);
3379}
3380
3381/*
3382 * atw_watchdog:	[ifnet interface function]
3383 *
3384 *	Watchdog timer handler.
3385 */
3386void
3387atw_watchdog(struct ifnet *ifp)
3388{
3389	struct atw_softc *sc = ifp->if_softc;
3390	struct ieee80211com *ic = &sc->sc_ic;
3391
3392	ifp->if_timer = 0;
3393	if (!device_is_active(sc->sc_dev))
3394		return;
3395
3396	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3397		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3398	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3399	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3400		printf("%s: transmit timeout\n", ifp->if_xname);
3401		if_statinc(ifp, if_oerrors);
3402		(void)atw_init(ifp);
3403		atw_start(ifp);
3404	}
3405	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3406		ifp->if_timer = 1;
3407	ieee80211_watchdog(ic);
3408}
3409
3410static void
3411atw_evcnt_detach(struct atw_softc *sc)
3412{
3413	evcnt_detach(&sc->sc_sige_ev);
3414	evcnt_detach(&sc->sc_sfde_ev);
3415	evcnt_detach(&sc->sc_icve_ev);
3416	evcnt_detach(&sc->sc_crc32e_ev);
3417	evcnt_detach(&sc->sc_crc16e_ev);
3418	evcnt_detach(&sc->sc_recv_ev);
3419
3420	evcnt_detach(&sc->sc_tuf_ev);
3421	evcnt_detach(&sc->sc_tro_ev);
3422	evcnt_detach(&sc->sc_trt_ev);
3423	evcnt_detach(&sc->sc_tlt_ev);
3424	evcnt_detach(&sc->sc_sofbr_ev);
3425	evcnt_detach(&sc->sc_xmit_ev);
3426
3427	evcnt_detach(&sc->sc_rxpkt1in_ev);
3428	evcnt_detach(&sc->sc_rxamatch_ev);
3429	evcnt_detach(&sc->sc_workaround1_ev);
3430	evcnt_detach(&sc->sc_misc_ev);
3431}
3432
3433static void
3434atw_evcnt_attach(struct atw_softc *sc)
3435{
3436	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3437	    NULL, sc->sc_if.if_xname, "recv");
3438	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3439	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3440	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3441	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3442	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3443	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3444	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3445	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3446	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3447	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3448
3449	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3450	    NULL, sc->sc_if.if_xname, "xmit");
3451	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3452	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3453	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3454	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3455	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3456	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3457	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3458	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3459	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3460	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3461
3462	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3463	    NULL, sc->sc_if.if_xname, "misc");
3464	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3465	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3466	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3467	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3468	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3469	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3470}
3471
3472#ifdef ATW_DEBUG
3473static void
3474atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3475{
3476	struct atw_softc *sc = ifp->if_softc;
3477	struct mbuf *m;
3478	int i, noctets = 0;
3479
3480	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3481	    m0->m_pkthdr.len);
3482
3483	for (m = m0; m; m = m->m_next) {
3484		if (m->m_len == 0)
3485			continue;
3486		for (i = 0; i < m->m_len; i++) {
3487			printf(" %02x", ((uint8_t*)m->m_data)[i]);
3488			if (++noctets % 24 == 0)
3489				printf("\n");
3490		}
3491	}
3492	printf("%s%s: %d bytes emitted\n",
3493	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3494}
3495#endif /* ATW_DEBUG */
3496
3497/*
3498 * atw_start:		[ifnet interface function]
3499 *
3500 *	Start packet transmission on the interface.
3501 */
3502void
3503atw_start(struct ifnet *ifp)
3504{
3505	struct atw_softc *sc = ifp->if_softc;
3506	struct ieee80211_key *k;
3507	struct ieee80211com *ic = &sc->sc_ic;
3508	struct ieee80211_node *ni;
3509	struct ieee80211_frame_min *whm;
3510	struct ieee80211_frame *wh;
3511	struct atw_frame *hh;
3512	uint16_t hdrctl;
3513	struct mbuf *m0, *m;
3514	struct atw_txsoft *txs;
3515	struct atw_txdesc *txd;
3516	int npkt, rate;
3517	bus_dmamap_t dmamap;
3518	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3519
3520	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3521	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3522
3523	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3524		return;
3525
3526	/*
3527	 * Remember the previous number of free descriptors and
3528	 * the first descriptor we'll use.
3529	 */
3530	ofree = sc->sc_txfree;
3531	firsttx = lasttx = sc->sc_txnext;
3532
3533	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3534	    device_xname(sc->sc_dev), ofree, firsttx));
3535
3536	/*
3537	 * Loop through the send queue, setting up transmit descriptors
3538	 * until we drain the queue, or use up all available transmit
3539	 * descriptors.
3540	 */
3541	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3542	       sc->sc_txfree != 0) {
3543
3544		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3545
3546		/*
3547		 * Grab a packet off the management queue, if it
3548		 * is not empty. Otherwise, from the data queue.
3549		 */
3550		IF_DEQUEUE(&ic->ic_mgtq, m0);
3551		if (m0 != NULL) {
3552			ni = M_GETCTX(m0, struct ieee80211_node *);
3553			M_CLEARCTX(m0);
3554		} else if (ic->ic_state != IEEE80211_S_RUN)
3555			break; /* send no data until associated */
3556		else {
3557			IFQ_DEQUEUE(&ifp->if_snd, m0);
3558			if (m0 == NULL)
3559				break;
3560			bpf_mtap(ifp, m0, BPF_D_OUT);
3561			ni = ieee80211_find_txnode(ic,
3562			    mtod(m0, struct ether_header *)->ether_dhost);
3563			if (ni == NULL) {
3564				if_statinc(ifp, if_oerrors);
3565				break;
3566			}
3567			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3568				ieee80211_free_node(ni);
3569				if_statinc(ifp, if_oerrors);
3570				break;
3571			}
3572		}
3573
3574		rate = MAX(ieee80211_get_rate(ni), 2);
3575
3576		whm = mtod(m0, struct ieee80211_frame_min *);
3577
3578		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3579			k = NULL;
3580		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3581			m_freem(m0);
3582			ieee80211_free_node(ni);
3583			if_statinc(ifp, if_oerrors);
3584			break;
3585		}
3586#if 0
3587		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3588		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3589			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3590#endif
3591
3592		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3593			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3594
3595		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3596		    ic->ic_flags, ic->ic_fragthreshold, rate,
3597		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3598			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3599			m_freem(m0);
3600			break;
3601		}
3602
3603		/* XXX Misleading if fragmentation is enabled.  Better
3604		 * to fragment in software?
3605		 */
3606		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3607
3608		/*
3609		 * Pass the packet to any BPF listeners.
3610		 */
3611		bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3612
3613		if (sc->sc_radiobpf != NULL) {
3614			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3615
3616			tap->at_rate = rate;
3617
3618			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3619			    m0, BPF_D_OUT);
3620		}
3621
3622		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3623
3624		if (ni != NULL)
3625			ieee80211_free_node(ni);
3626
3627		if (m0 == NULL) {
3628			if_statinc(ifp, if_oerrors);
3629			break;
3630		}
3631
3632		/* just to make sure. */
3633		m0 = m_pullup(m0, sizeof(struct atw_frame));
3634
3635		if (m0 == NULL) {
3636			if_statinc(ifp, if_oerrors);
3637			break;
3638		}
3639
3640		hh = mtod(m0, struct atw_frame *);
3641		wh = &hh->atw_ihdr;
3642
3643		/* Copy everything we need from the 802.11 header:
3644		 * Frame Control; address 1, address 3, or addresses
3645		 * 3 and 4. NIC fills in BSSID, SA.
3646		 */
3647		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3648			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3649				panic("%s: illegal WDS frame",
3650				    device_xname(sc->sc_dev));
3651			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3652		} else
3653			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3654
3655		*(uint16_t*)hh->atw_fc = *(uint16_t*)wh->i_fc;
3656
3657		/* initialize remaining Tx parameters */
3658		memset(&hh->u, 0, sizeof(hh->u));
3659
3660		hh->atw_rate = rate * 5;
3661		/* XXX this could be incorrect if M_FCS. _encap should
3662		 * probably strip FCS just in case it sticks around in
3663		 * bridged packets.
3664		 */
3665		hh->atw_service = 0x00; /* XXX guess */
3666		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3667		    sizeof(struct atw_frame));
3668
3669		/* never fragment multicast frames */
3670		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3671			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3672		else {
3673			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3674			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3675				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3676			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3677		}
3678
3679		hh->atw_rtylmt = 3;
3680#if 0
3681		if (do_encrypt) {
3682			hdrctl |= htole16(ATW_HDRCTL_WEP);
3683			hh->atw_keyid = ic->ic_def_txkey;
3684		}
3685#endif
3686
3687		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3688		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3689		if (txs->txs_d0.d_residue)
3690			hh->atw_head_plcplen |= htole16(0x8000);
3691		if (txs->txs_dn.d_residue)
3692			hh->atw_tail_plcplen |= htole16(0x8000);
3693		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3694		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3695
3696		hh->atw_hdrctl = hdrctl;
3697		hh->atw_fragnum = npkt << 4;
3698#ifdef ATW_DEBUG
3699
3700		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3701			printf("%s: dst = %s, rate = 0x%02x, "
3702			    "service = 0x%02x, paylen = 0x%04x\n",
3703			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3704			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3705
3706			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3707			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3708			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3709			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3710			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3711			    hh->atw_tail_dur, hh->atw_head_dur);
3712
3713			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3714			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3715			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3716			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3717
3718			printf("%s: keyid = %d\n",
3719			    device_xname(sc->sc_dev), hh->atw_keyid);
3720
3721			atw_dump_pkt(ifp, m0);
3722		}
3723#endif /* ATW_DEBUG */
3724
3725		dmamap = txs->txs_dmamap;
3726
3727		/*
3728		 * Load the DMA map.  Copy and try (once) again if the packet
3729		 * didn't fit in the alloted number of segments.
3730		 */
3731		for (first = 1;
3732		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3733			 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 && first;
3734		     first = 0) {
3735			MGETHDR(m, M_DONTWAIT, MT_DATA);
3736			if (m == NULL) {
3737				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3738				break;
3739			}
3740			if (m0->m_pkthdr.len > MHLEN) {
3741				MCLGET(m, M_DONTWAIT);
3742				if ((m->m_flags & M_EXT) == 0) {
3743					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3744					    "cluster\n");
3745					m_freem(m);
3746					break;
3747				}
3748			}
3749			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3750			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3751			m_freem(m0);
3752			m0 = m;
3753			m = NULL;
3754		}
3755		if (error != 0) {
3756			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3757			    "error = %d\n", error);
3758			m_freem(m0);
3759			break;
3760		}
3761
3762		/*
3763		 * Ensure we have enough descriptors free to describe
3764		 * the packet.
3765		 */
3766		if (dmamap->dm_nsegs > sc->sc_txfree) {
3767			/*
3768			 * Not enough free descriptors to transmit
3769			 * this packet.  Unload the DMA map and
3770			 * drop the packet.  Notify the upper layer
3771			 * that there are no more slots left.
3772			 *
3773			 * XXX We could allocate an mbuf and copy, but
3774			 * XXX it is worth it?
3775			 */
3776			bus_dmamap_unload(sc->sc_dmat, dmamap);
3777			m_freem(m0);
3778			break;
3779		}
3780
3781		/*
3782		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3783		 */
3784
3785		/* Sync the DMA map. */
3786		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3787		    BUS_DMASYNC_PREWRITE);
3788
3789		/* XXX arbitrary retry limit; 8 because I have seen it in
3790		 * use already and maybe 0 means "no tries" !
3791		 */
3792		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3793
3794		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3795		    device_xname(sc->sc_dev), rate * 5));
3796		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3797
3798		/*
3799		 * Initialize the transmit descriptors.
3800		 */
3801		for (nexttx = sc->sc_txnext, seg = 0;
3802		     seg < dmamap->dm_nsegs;
3803		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3804			/*
3805			 * If this is the first descriptor we're
3806			 * enqueueing, don't set the OWN bit just
3807			 * yet.  That could cause a race condition.
3808			 * We'll do it below.
3809			 */
3810			txd = &sc->sc_txdescs[nexttx];
3811			txd->at_ctl = ctl |
3812			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3813
3814			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3815			txd->at_flags =
3816			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3817					   ATW_TXFLAG_TBS1_MASK)) |
3818			    ((nexttx == (ATW_NTXDESC - 1))
3819			        ? htole32(ATW_TXFLAG_TER) : 0);
3820			lasttx = nexttx;
3821		}
3822
3823		/* Set `first segment' and `last segment' appropriately. */
3824		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3825		    htole32(ATW_TXFLAG_FS);
3826		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3827
3828#ifdef ATW_DEBUG
3829		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3830			printf("     txsoft %p transmit chain:\n", txs);
3831			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3832				printf("     descriptor %d:\n", seg);
3833				printf("       at_ctl:   0x%08x\n",
3834				    le32toh(sc->sc_txdescs[seg].at_ctl));
3835				printf("       at_flags:      0x%08x\n",
3836				    le32toh(sc->sc_txdescs[seg].at_flags));
3837				printf("       at_buf1: 0x%08x\n",
3838				    le32toh(sc->sc_txdescs[seg].at_buf1));
3839				printf("       at_buf2: 0x%08x\n",
3840				    le32toh(sc->sc_txdescs[seg].at_buf2));
3841				if (seg == lasttx)
3842					break;
3843			}
3844		}
3845#endif
3846
3847		/* Sync the descriptors we're using. */
3848		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3849		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3850
3851		/*
3852		 * Store a pointer to the packet so we can free it later,
3853		 * and remember what txdirty will be once the packet is
3854		 * done.
3855		 */
3856		txs->txs_mbuf = m0;
3857		txs->txs_firstdesc = sc->sc_txnext;
3858		txs->txs_lastdesc = lasttx;
3859		txs->txs_ndescs = dmamap->dm_nsegs;
3860
3861		/* Advance the tx pointer. */
3862		sc->sc_txfree -= dmamap->dm_nsegs;
3863		sc->sc_txnext = nexttx;
3864
3865		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3866		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3867	}
3868
3869	if (sc->sc_txfree != ofree) {
3870		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3871		    device_xname(sc->sc_dev), lasttx, firsttx));
3872		/*
3873		 * Cause a transmit interrupt to happen on the
3874		 * last packet we enqueued.
3875		 */
3876		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3877		ATW_CDTXSYNC(sc, lasttx, 1,
3878		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3879
3880		/*
3881		 * The entire packet chain is set up.  Give the
3882		 * first descriptor to the chip now.
3883		 */
3884		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3885		ATW_CDTXSYNC(sc, firsttx, 1,
3886		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3887
3888		/* Wake up the transmitter. */
3889		ATW_WRITE(sc, ATW_TDR, 0x1);
3890
3891		if (txs == NULL || sc->sc_txfree == 0)
3892			ifp->if_flags |= IFF_OACTIVE;
3893
3894		/* Set a watchdog timer in case the chip flakes out. */
3895		sc->sc_tx_timer = 5;
3896		ifp->if_timer = 1;
3897	}
3898}
3899
3900/*
3901 * atw_ioctl:		[ifnet interface function]
3902 *
3903 *	Handle control requests from the operator.
3904 */
3905int
3906atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3907{
3908	struct atw_softc *sc = ifp->if_softc;
3909	struct ieee80211req *ireq;
3910	int s, error = 0;
3911
3912	s = splnet();
3913
3914	switch (cmd) {
3915	case SIOCSIFFLAGS:
3916		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3917			break;
3918		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3919		case IFF_UP | IFF_RUNNING:
3920			/*
3921			 * To avoid rescanning another access point,
3922			 * do not call atw_init() here.  Instead,
3923			 * only reflect media settings.
3924			 */
3925			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3926				atw_filter_setup(sc);
3927			break;
3928		case IFF_UP:
3929			error = atw_init(ifp);
3930			break;
3931		case IFF_RUNNING:
3932			atw_stop(ifp, 1);
3933			break;
3934		case 0:
3935			break;
3936		}
3937		break;
3938	case SIOCADDMULTI:
3939	case SIOCDELMULTI:
3940		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3941			if (ifp->if_flags & IFF_RUNNING)
3942				atw_filter_setup(sc); /* do not rescan */
3943			error = 0;
3944		}
3945		break;
3946	case SIOCS80211:
3947		ireq = data;
3948		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3949			if ((error = kauth_authorize_network(
3950			    kauth_cred_get(), KAUTH_NETWORK_INTERFACE,
3951			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3952			    (void *)cmd, NULL)) != 0)
3953				break;
3954			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3955			      ireq->i_val <= IEEE80211_FRAG_MAX))
3956				error = EINVAL;
3957			else
3958				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3959			break;
3960		}
3961		/*FALLTHROUGH*/
3962	default:
3963		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3964		if (error == ENETRESET || error == ERESTART) {
3965			if (is_running(ifp))
3966				error = atw_init(ifp);
3967			else
3968				error = 0;
3969		}
3970		break;
3971	}
3972
3973	/* Try to get more packets going. */
3974	if (device_is_active(sc->sc_dev))
3975		atw_start(ifp);
3976
3977	splx(s);
3978	return (error);
3979}
3980
3981static int
3982atw_media_change(struct ifnet *ifp)
3983{
3984	int error;
3985
3986	error = ieee80211_media_change(ifp);
3987	if (error == ENETRESET) {
3988		if (is_running(ifp))
3989			error = atw_init(ifp);
3990		else
3991			error = 0;
3992	}
3993	return error;
3994}
3995