atw.c revision 1.165
1/*	$NetBSD: atw.c,v 1.165 2019/02/05 06:17:02 msaitoh Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.165 2019/02/05 06:17:02 msaitoh Exp $");
38
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/device.h>
50#include <sys/kauth.h>
51#include <sys/time.h>
52#include <sys/proc.h>
53#include <sys/atomic.h>
54#include <lib/libkern/libkern.h>
55
56#include <machine/endian.h>
57
58#include <net/if.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_ether.h>
62
63#include <net80211/ieee80211_netbsd.h>
64#include <net80211/ieee80211_var.h>
65#include <net80211/ieee80211_radiotap.h>
66
67#include <net/bpf.h>
68
69#include <sys/bus.h>
70#include <sys/intr.h>
71
72#include <dev/ic/atwreg.h>
73#include <dev/ic/rf3000reg.h>
74#include <dev/ic/si4136reg.h>
75#include <dev/ic/atwvar.h>
76#include <dev/ic/smc93cx6var.h>
77
78/* XXX TBD open questions
79 *
80 *
81 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83 * handle this for me?
84 *
85 */
86/* device attachment
87 *
88 *    print TOFS[012]
89 *
90 * device initialization
91 *
92 *    clear ATW_FRCTL_MAXPSP to disable max power saving
93 *    set ATW_TXBR_ALCUPDATE to enable ALC
94 *    set TOFS[012]? (hope not)
95 *    disable rx/tx
96 *    set ATW_PAR_SWR (software reset)
97 *    wait for ATW_PAR_SWR clear
98 *    disable interrupts
99 *    ack status register
100 *    enable interrupts
101 *
102 * rx/tx initialization
103 *
104 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105 *    allocate and init descriptor rings
106 *    write ATW_PAR_DSL (descriptor skip length)
107 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108 *    write ATW_NAR_SQ for one/both transmit descriptor rings
109 *    write ATW_NAR_SQ for one/both transmit descriptor rings
110 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111 *
112 * rx/tx end
113 *
114 *    stop DMA
115 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116 *    flush tx w/ ATW_NAR_HF
117 *
118 * scan
119 *
120 *    initialize rx/tx
121 *
122 * BSS join: (re)association response
123 *
124 *    set ATW_FRCTL_AID
125 *
126 * optimizations ???
127 *
128 */
129
130#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
131
132int atw_pseudo_milli = 1;
133int atw_magic_delay1 = 100 * 1000;
134int atw_magic_delay2 = 100 * 1000;
135/* more magic multi-millisecond delays (units: microseconds) */
136int atw_nar_delay = 20 * 1000;
137int atw_magic_delay4 = 10 * 1000;
138int atw_rf_delay1 = 10 * 1000;
139int atw_rf_delay2 = 5 * 1000;
140int atw_plcphd_delay = 2 * 1000;
141int atw_bbp_io_enable_delay = 20 * 1000;
142int atw_bbp_io_disable_delay = 2 * 1000;
143int atw_writewep_delay = 1000;
144int atw_beacon_len_adjust = 4;
145int atw_dwelltime = 200;
146int atw_xindiv2 = 0;
147
148#ifdef ATW_DEBUG
149int atw_debug = 0;
150
151#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157
158static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
159static void	atw_print_regs(struct atw_softc *, const char *);
160
161/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162#	ifdef ATW_BBPDEBUG
163static void	atw_rf3000_print(struct atw_softc *);
164static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165#	endif /* ATW_BBPDEBUG */
166
167#	ifdef ATW_SYNDEBUG
168static void	atw_si4126_print(struct atw_softc *);
169static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
170#	endif /* ATW_SYNDEBUG */
171#define __atwdebugused	/* empty */
172#else
173#define ATW_DPRINTF(x)
174#define ATW_DPRINTF2(x)
175#define ATW_DPRINTF3(x)
176#define	DPRINTF(sc, x)	/* nothing */
177#define	DPRINTF2(sc, x)	/* nothing */
178#define	DPRINTF3(sc, x)	/* nothing */
179#define __atwdebugused	__unused
180#endif
181
182/* ifnet methods */
183int	atw_init(struct ifnet *);
184int	atw_ioctl(struct ifnet *, u_long, void *);
185void	atw_start(struct ifnet *);
186void	atw_stop(struct ifnet *, int);
187void	atw_watchdog(struct ifnet *);
188
189/* Device attachment */
190void	atw_attach(struct atw_softc *);
191int	atw_detach(struct atw_softc *);
192static void atw_evcnt_attach(struct atw_softc *);
193static void atw_evcnt_detach(struct atw_softc *);
194
195/* Rx/Tx process */
196int	atw_add_rxbuf(struct atw_softc *, int);
197void	atw_idle(struct atw_softc *, u_int32_t);
198void	atw_rxdrain(struct atw_softc *);
199void	atw_txdrain(struct atw_softc *);
200
201/* Device (de)activation and power state */
202void	atw_reset(struct atw_softc *);
203
204/* Interrupt handlers */
205void	atw_softintr(void *);
206void	atw_linkintr(struct atw_softc *, u_int32_t);
207void	atw_rxintr(struct atw_softc *);
208void	atw_txintr(struct atw_softc *, uint32_t);
209
210/* 802.11 state machine */
211static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212static void	atw_next_scan(void *);
213static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214		              struct ieee80211_node *, int, int, u_int32_t);
215static int	atw_tune(struct atw_softc *);
216
217/* Device initialization */
218static void	atw_bbp_io_init(struct atw_softc *);
219static void	atw_cfp_init(struct atw_softc *);
220static void	atw_cmdr_init(struct atw_softc *);
221static void	atw_ifs_init(struct atw_softc *);
222static void	atw_nar_init(struct atw_softc *);
223static void	atw_response_times_init(struct atw_softc *);
224static void	atw_rf_reset(struct atw_softc *);
225static void	atw_test1_init(struct atw_softc *);
226static void	atw_tofs0_init(struct atw_softc *);
227static void	atw_tofs2_init(struct atw_softc *);
228static void	atw_txlmt_init(struct atw_softc *);
229static void	atw_wcsr_init(struct atw_softc *);
230
231/* Key management */
232static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234	const u_int8_t[IEEE80211_ADDR_LEN]);
235static void atw_key_update_begin(struct ieee80211com *);
236static void atw_key_update_end(struct ieee80211com *);
237
238/* RAM/ROM utilities */
239static void	atw_clear_sram(struct atw_softc *);
240static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
241static int	atw_read_srom(struct atw_softc *);
242
243/* BSS setup */
244static void	atw_predict_beacon(struct atw_softc *);
245static void	atw_start_beacon(struct atw_softc *, int);
246static void	atw_write_bssid(struct atw_softc *);
247static void	atw_write_ssid(struct atw_softc *);
248static void	atw_write_sup_rates(struct atw_softc *);
249static void	atw_write_wep(struct atw_softc *);
250
251/* Media */
252static int	atw_media_change(struct ifnet *);
253
254static void	atw_filter_setup(struct atw_softc *);
255
256/* 802.11 utilities */
257static uint64_t			atw_get_tsft(struct atw_softc *);
258static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
259				                   uint32_t);
260static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
261static void			atw_node_free(struct ieee80211_node *);
262
263/*
264 * Tuner/transceiver/modem
265 */
266static void	atw_bbp_io_enable(struct atw_softc *, int);
267
268/* RFMD RF3000 Baseband Processor */
269static int	atw_rf3000_init(struct atw_softc *);
270static int	atw_rf3000_tune(struct atw_softc *, u_int);
271static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
272
273/* Silicon Laboratories Si4126 RF/IF Synthesizer */
274static void	atw_si4126_tune(struct atw_softc *, u_int);
275static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
276
277const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279
280const char *atw_tx_state[] = {
281	"STOPPED",
282	"RUNNING - read descriptor",
283	"RUNNING - transmitting",
284	"RUNNING - filling fifo",	/* XXX */
285	"SUSPENDED",
286	"RUNNING -- write descriptor",
287	"RUNNING -- write last descriptor",
288	"RUNNING - fifo full"
289};
290
291const char *atw_rx_state[] = {
292	"STOPPED",
293	"RUNNING - read descriptor",
294	"RUNNING - check this packet, pre-fetch next",
295	"RUNNING - wait for reception",
296	"SUSPENDED",
297	"RUNNING - write descriptor",
298	"RUNNING - flush fifo",
299	"RUNNING - fifo drain"
300};
301
302static inline int
303is_running(struct ifnet *ifp)
304{
305	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
306}
307
308int
309atw_activate(device_t self, enum devact act)
310{
311	struct atw_softc *sc = device_private(self);
312
313	switch (act) {
314	case DVACT_DEACTIVATE:
315		if_deactivate(&sc->sc_if);
316		return 0;
317	default:
318		return EOPNOTSUPP;
319	}
320}
321
322bool
323atw_suspend(device_t self, const pmf_qual_t *qual)
324{
325	struct atw_softc *sc = device_private(self);
326
327	atw_rxdrain(sc);
328	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
329
330	return true;
331}
332
333/* Returns -1 on failure. */
334static int
335atw_read_srom(struct atw_softc *sc)
336{
337	struct seeprom_descriptor sd;
338	uint32_t test0, fail_bits;
339
340	(void)memset(&sd, 0, sizeof(sd));
341
342	test0 = ATW_READ(sc, ATW_TEST0);
343
344	switch (sc->sc_rev) {
345	case ATW_REVISION_BA:
346	case ATW_REVISION_CA:
347		fail_bits = ATW_TEST0_EPNE;
348		break;
349	default:
350		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
351		break;
352	}
353	if ((test0 & fail_bits) != 0) {
354		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
355		return -1;
356	}
357
358	switch (test0 & ATW_TEST0_EPTYP_MASK) {
359	case ATW_TEST0_EPTYP_93c66:
360		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
361		sc->sc_sromsz = 512;
362		sd.sd_chip = C56_66;
363		break;
364	case ATW_TEST0_EPTYP_93c46:
365		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
366		sc->sc_sromsz = 128;
367		sd.sd_chip = C46;
368		break;
369	default:
370		printf("%s: unknown SROM type %" __PRIuBITS "\n",
371		    device_xname(sc->sc_dev),
372		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
373		return -1;
374	}
375
376	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
377
378	if (sc->sc_srom == NULL) {
379		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
380		return -1;
381	}
382
383	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
384
385	/* ADM8211 has a single 32-bit register for controlling the
386	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
387	 * "ready" bit. The ADM8211 input/output sense is the reverse
388	 * of read_seeprom's.
389	 */
390	sd.sd_tag = sc->sc_st;
391	sd.sd_bsh = sc->sc_sh;
392	sd.sd_regsize = 4;
393	sd.sd_control_offset = ATW_SPR;
394	sd.sd_status_offset = ATW_SPR;
395	sd.sd_dataout_offset = ATW_SPR;
396	sd.sd_CK = ATW_SPR_SCLK;
397	sd.sd_CS = ATW_SPR_SCS;
398	sd.sd_DI = ATW_SPR_SDO;
399	sd.sd_DO = ATW_SPR_SDI;
400	sd.sd_MS = ATW_SPR_SRS;
401	sd.sd_RDY = 0;
402
403	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
404		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
405		free(sc->sc_srom, M_DEVBUF);
406		return -1;
407	}
408#ifdef ATW_DEBUG
409	{
410		int i;
411		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
412		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
413			if (((i % 8) == 0) && (i != 0)) {
414				ATW_DPRINTF(("\n\t"));
415			}
416			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
417		}
418		ATW_DPRINTF(("\n"));
419	}
420#endif /* ATW_DEBUG */
421	return 0;
422}
423
424#ifdef ATW_DEBUG
425static void
426atw_print_regs(struct atw_softc *sc, const char *where)
427{
428#define PRINTREG(sc, reg) \
429	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
430	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
431
432	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
433
434	PRINTREG(sc, ATW_PAR);
435	PRINTREG(sc, ATW_FRCTL);
436	PRINTREG(sc, ATW_TDR);
437	PRINTREG(sc, ATW_WTDP);
438	PRINTREG(sc, ATW_RDR);
439	PRINTREG(sc, ATW_WRDP);
440	PRINTREG(sc, ATW_RDB);
441	PRINTREG(sc, ATW_CSR3A);
442	PRINTREG(sc, ATW_TDBD);
443	PRINTREG(sc, ATW_TDBP);
444	PRINTREG(sc, ATW_STSR);
445	PRINTREG(sc, ATW_CSR5A);
446	PRINTREG(sc, ATW_NAR);
447	PRINTREG(sc, ATW_CSR6A);
448	PRINTREG(sc, ATW_IER);
449	PRINTREG(sc, ATW_CSR7A);
450	PRINTREG(sc, ATW_LPC);
451	PRINTREG(sc, ATW_TEST1);
452	PRINTREG(sc, ATW_SPR);
453	PRINTREG(sc, ATW_TEST0);
454	PRINTREG(sc, ATW_WCSR);
455	PRINTREG(sc, ATW_WPDR);
456	PRINTREG(sc, ATW_GPTMR);
457	PRINTREG(sc, ATW_GPIO);
458	PRINTREG(sc, ATW_BBPCTL);
459	PRINTREG(sc, ATW_SYNCTL);
460	PRINTREG(sc, ATW_PLCPHD);
461	PRINTREG(sc, ATW_MMIWADDR);
462	PRINTREG(sc, ATW_MMIRADDR1);
463	PRINTREG(sc, ATW_MMIRADDR2);
464	PRINTREG(sc, ATW_TXBR);
465	PRINTREG(sc, ATW_CSR15A);
466	PRINTREG(sc, ATW_ALCSTAT);
467	PRINTREG(sc, ATW_TOFS2);
468	PRINTREG(sc, ATW_CMDR);
469	PRINTREG(sc, ATW_PCIC);
470	PRINTREG(sc, ATW_PMCSR);
471	PRINTREG(sc, ATW_PAR0);
472	PRINTREG(sc, ATW_PAR1);
473	PRINTREG(sc, ATW_MAR0);
474	PRINTREG(sc, ATW_MAR1);
475	PRINTREG(sc, ATW_ATIMDA0);
476	PRINTREG(sc, ATW_ABDA1);
477	PRINTREG(sc, ATW_BSSID0);
478	PRINTREG(sc, ATW_TXLMT);
479	PRINTREG(sc, ATW_MIBCNT);
480	PRINTREG(sc, ATW_BCNT);
481	PRINTREG(sc, ATW_TSFTH);
482	PRINTREG(sc, ATW_TSC);
483	PRINTREG(sc, ATW_SYNRF);
484	PRINTREG(sc, ATW_BPLI);
485	PRINTREG(sc, ATW_CAP0);
486	PRINTREG(sc, ATW_CAP1);
487	PRINTREG(sc, ATW_RMD);
488	PRINTREG(sc, ATW_CFPP);
489	PRINTREG(sc, ATW_TOFS0);
490	PRINTREG(sc, ATW_TOFS1);
491	PRINTREG(sc, ATW_IFST);
492	PRINTREG(sc, ATW_RSPT);
493	PRINTREG(sc, ATW_TSFTL);
494	PRINTREG(sc, ATW_WEPCTL);
495	PRINTREG(sc, ATW_WESK);
496	PRINTREG(sc, ATW_WEPCNT);
497	PRINTREG(sc, ATW_MACTEST);
498	PRINTREG(sc, ATW_FER);
499	PRINTREG(sc, ATW_FEMR);
500	PRINTREG(sc, ATW_FPSR);
501	PRINTREG(sc, ATW_FFER);
502#undef PRINTREG
503}
504#endif /* ATW_DEBUG */
505
506/*
507 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
508 */
509void
510atw_attach(struct atw_softc *sc)
511{
512	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
513		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
514	};
515	struct ieee80211com *ic = &sc->sc_ic;
516	struct ifnet *ifp = &sc->sc_if;
517	int country_code, error, i, srom_major;
518	u_int32_t reg;
519	static const char *type_strings[] = {"Intersil (not supported)",
520	    "RFMD", "Marvel (not supported)"};
521
522	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
523
524	sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
525	if (sc->sc_soft_ih == NULL) {
526		aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
527		goto fail_0;
528	}
529
530	sc->sc_txth = atw_txthresh_tab_lo;
531
532	SIMPLEQ_INIT(&sc->sc_txfreeq);
533	SIMPLEQ_INIT(&sc->sc_txdirtyq);
534
535#ifdef ATW_DEBUG
536	atw_print_regs(sc, "atw_attach");
537#endif /* ATW_DEBUG */
538
539	/*
540	 * Allocate the control data structures, and create and load the
541	 * DMA map for it.
542	 */
543	if ((error = bus_dmamem_alloc(sc->sc_dmat,
544	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
545	    1, &sc->sc_cdnseg, 0)) != 0) {
546		aprint_error_dev(sc->sc_dev,
547		    "unable to allocate control data, error = %d\n",
548		    error);
549		goto fail_0;
550	}
551
552	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
553	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
554	    BUS_DMA_COHERENT)) != 0) {
555		aprint_error_dev(sc->sc_dev,
556		    "unable to map control data, error = %d\n",
557		    error);
558		goto fail_1;
559	}
560
561	if ((error = bus_dmamap_create(sc->sc_dmat,
562	    sizeof(struct atw_control_data), 1,
563	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
564		aprint_error_dev(sc->sc_dev,
565		    "unable to create control data DMA map, error = %d\n",
566		    error);
567		goto fail_2;
568	}
569
570	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
571	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
572	    0)) != 0) {
573		aprint_error_dev(sc->sc_dev,
574		    "unable to load control data DMA map, error = %d\n", error);
575		goto fail_3;
576	}
577
578	/*
579	 * Create the transmit buffer DMA maps.
580	 */
581	sc->sc_ntxsegs = ATW_NTXSEGS;
582	for (i = 0; i < ATW_TXQUEUELEN; i++) {
583		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
584		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
585		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
586			aprint_error_dev(sc->sc_dev,
587			    "unable to create tx DMA map %d, error = %d\n", i,
588			    error);
589			goto fail_4;
590		}
591	}
592
593	/*
594	 * Create the receive buffer DMA maps.
595	 */
596	for (i = 0; i < ATW_NRXDESC; i++) {
597		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
598		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
599			aprint_error_dev(sc->sc_dev,
600			    "unable to create rx DMA map %d, error = %d\n", i,
601			    error);
602			goto fail_5;
603		}
604	}
605	for (i = 0; i < ATW_NRXDESC; i++) {
606		sc->sc_rxsoft[i].rxs_mbuf = NULL;
607	}
608
609	switch (sc->sc_rev) {
610	case ATW_REVISION_AB:
611	case ATW_REVISION_AF:
612		sc->sc_sramlen = ATW_SRAM_A_SIZE;
613		break;
614	case ATW_REVISION_BA:
615	case ATW_REVISION_CA:
616		sc->sc_sramlen = ATW_SRAM_B_SIZE;
617		break;
618	}
619
620	/* Reset the chip to a known state. */
621	atw_reset(sc);
622
623	if (atw_read_srom(sc) == -1)
624		goto fail_5;
625
626	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
627	    ATW_SR_RFTYPE_MASK);
628
629	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
630	    ATW_SR_BBPTYPE_MASK);
631
632	if (sc->sc_rftype >= __arraycount(type_strings)) {
633		aprint_error_dev(sc->sc_dev, "unknown RF\n");
634		goto fail_5;
635	}
636	if (sc->sc_bbptype >= __arraycount(type_strings)) {
637		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
638		goto fail_5;
639	}
640
641	aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
642	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
643
644	/* XXX There exists a Linux driver which seems to use RFType = 0 for
645	 * MARVEL. My bug, or theirs?
646	 */
647
648	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
649
650	switch (sc->sc_rftype) {
651	case ATW_RFTYPE_INTERSIL:
652		reg |= ATW_SYNCTL_CS1;
653		break;
654	case ATW_RFTYPE_RFMD:
655		reg |= ATW_SYNCTL_CS0;
656		break;
657	case ATW_RFTYPE_MARVEL:
658		break;
659	}
660
661	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
662	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
663
664	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
665
666	switch (sc->sc_bbptype) {
667	case ATW_BBPTYPE_INTERSIL:
668		reg |= ATW_BBPCTL_TWI;
669		break;
670	case ATW_BBPTYPE_RFMD:
671		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
672		    ATW_BBPCTL_CCA_ACTLO;
673		break;
674	case ATW_BBPTYPE_MARVEL:
675		break;
676	case ATW_C_BBPTYPE_RFMD:
677		aprint_error_dev(sc->sc_dev,
678		    "ADM8211C MAC/RFMD BBP not supported yet.\n");
679		break;
680	}
681
682	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
683	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
684
685	/*
686	 * From this point forward, the attachment cannot fail.  A failure
687	 * before this point releases all resources that may have been
688	 * allocated.
689	 */
690	sc->sc_flags |= ATWF_ATTACHED;
691
692	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
693	    htole16(sc->sc_srom[ATW_SR_MAC00]),
694	    htole16(sc->sc_srom[ATW_SR_MAC01]),
695	    htole16(sc->sc_srom[ATW_SR_MAC10])));
696
697	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
698	    ATW_SR_MAJOR_MASK);
699
700	if (srom_major < 2)
701		sc->sc_rf3000_options1 = 0;
702	else if (sc->sc_rev == ATW_REVISION_BA) {
703		sc->sc_rf3000_options1 =
704		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
705		    ATW_SR_CR28_MASK);
706	} else
707		sc->sc_rf3000_options1 = 0;
708
709	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
710	    ATW_SR_CR29_MASK);
711
712	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
713	    ATW_SR_CTRY_MASK);
714
715#define ADD_CHANNEL(_ic, _chan) do {					\
716	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
717	_ic->ic_channels[_chan].ic_freq =				\
718	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
719} while (0)
720
721	/* Find available channels */
722	switch (country_code) {
723	case COUNTRY_MMK2:	/* 1-14 */
724		ADD_CHANNEL(ic, 14);
725		/*FALLTHROUGH*/
726	case COUNTRY_ETSI:	/* 1-13 */
727		for (i = 1; i <= 13; i++)
728			ADD_CHANNEL(ic, i);
729		break;
730	case COUNTRY_FCC:	/* 1-11 */
731	case COUNTRY_IC:	/* 1-11 */
732		for (i = 1; i <= 11; i++)
733			ADD_CHANNEL(ic, i);
734		break;
735	case COUNTRY_MMK:	/* 14 */
736		ADD_CHANNEL(ic, 14);
737		break;
738	case COUNTRY_FRANCE:	/* 10-13 */
739		for (i = 10; i <= 13; i++)
740			ADD_CHANNEL(ic, i);
741		break;
742	default:	/* assume channels 10-11 */
743	case COUNTRY_SPAIN:	/* 10-11 */
744		for (i = 10; i <= 11; i++)
745			ADD_CHANNEL(ic, i);
746		break;
747	}
748
749	/* Read the MAC address. */
750	reg = ATW_READ(sc, ATW_PAR0);
751	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
752	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
753	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
754	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
755	reg = ATW_READ(sc, ATW_PAR1);
756	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
757	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
758
759	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
760		aprint_error_dev(sc->sc_dev,
761		    "could not get mac address, attach failed\n");
762		goto fail_5;
763	}
764
765	aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
766
767	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
768	ifp->if_softc = sc;
769	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
770	ifp->if_ioctl = atw_ioctl;
771	ifp->if_start = atw_start;
772	ifp->if_watchdog = atw_watchdog;
773	ifp->if_init = atw_init;
774	ifp->if_stop = atw_stop;
775	IFQ_SET_READY(&ifp->if_snd);
776
777	ic->ic_ifp = ifp;
778	ic->ic_phytype = IEEE80211_T_DS;
779	ic->ic_opmode = IEEE80211_M_STA;
780	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
781	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
782
783	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
784
785	/*
786	 * Call MI attach routines.
787	 */
788
789	error = if_initialize(ifp);
790	if (error != 0) {
791		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
792		    error);
793		goto fail_5;
794	}
795	ieee80211_ifattach(ic);
796	/* Use common softint-based if_input */
797	ifp->if_percpuq = if_percpuq_create(ifp);
798	if_register(ifp);
799
800	atw_evcnt_attach(sc);
801
802	sc->sc_newstate = ic->ic_newstate;
803	ic->ic_newstate = atw_newstate;
804
805	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
806	ic->ic_recv_mgmt = atw_recv_mgmt;
807
808	sc->sc_node_free = ic->ic_node_free;
809	ic->ic_node_free = atw_node_free;
810
811	sc->sc_node_alloc = ic->ic_node_alloc;
812	ic->ic_node_alloc = atw_node_alloc;
813
814	ic->ic_crypto.cs_key_delete = atw_key_delete;
815	ic->ic_crypto.cs_key_set = atw_key_set;
816	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
817	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
818
819	/* possibly we should fill in our own sc_send_prresp, since
820	 * the ADM8211 is probably sending probe responses in ad hoc
821	 * mode.
822	 */
823
824	/* complete initialization */
825	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
826	callout_init(&sc->sc_scan_ch, 0);
827
828	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
829	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
830
831	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
832	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
833	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
834
835	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
836	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
837	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
838
839	ieee80211_announce(ic);
840	return;
841
842	/*
843	 * Free any resources we've allocated during the failed attach
844	 * attempt.  Do this in reverse order and fall through.
845	 */
846 fail_5:
847	for (i = 0; i < ATW_NRXDESC; i++) {
848		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
849			continue;
850		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
851	}
852 fail_4:
853	for (i = 0; i < ATW_TXQUEUELEN; i++) {
854		if (sc->sc_txsoft[i].txs_dmamap == NULL)
855			continue;
856		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
857	}
858	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
859 fail_3:
860	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
861 fail_2:
862	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
863	    sizeof(struct atw_control_data));
864 fail_1:
865	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
866 fail_0:
867	if (sc->sc_soft_ih != NULL) {
868		softint_disestablish(sc->sc_soft_ih);
869		sc->sc_soft_ih = NULL;
870	}
871}
872
873static struct ieee80211_node *
874atw_node_alloc(struct ieee80211_node_table *nt)
875{
876	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
877	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
878
879	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
880	return ni;
881}
882
883static void
884atw_node_free(struct ieee80211_node *ni)
885{
886	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
887
888	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
889	    ether_sprintf(ni->ni_bssid)));
890	(*sc->sc_node_free)(ni);
891}
892
893
894static void
895atw_test1_reset(struct atw_softc *sc)
896{
897	switch (sc->sc_rev) {
898	case ATW_REVISION_BA:
899		if (1 /* XXX condition on transceiver type */) {
900			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
901		}
902		break;
903	case ATW_REVISION_CA:
904		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
905		break;
906	default:
907		break;
908	}
909}
910
911/*
912 * atw_reset:
913 *
914 *	Perform a soft reset on the ADM8211.
915 */
916void
917atw_reset(struct atw_softc *sc)
918{
919	int i;
920	uint32_t lpc __atwdebugused;
921
922	ATW_WRITE(sc, ATW_NAR, 0x0);
923	DELAY(atw_nar_delay);
924
925	/* Reference driver has a cryptic remark indicating that this might
926	 * power-on the chip.  I know that it turns off power-saving....
927	 */
928	ATW_WRITE(sc, ATW_FRCTL, 0x0);
929
930	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
931
932	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
933		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
934			break;
935		DELAY(atw_pseudo_milli);
936	}
937
938	/* ... and then pause 100ms longer for good measure. */
939	DELAY(atw_magic_delay1);
940
941	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
942
943	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
944		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
945
946	/*
947	 * Initialize the PCI Access Register.
948	 */
949	sc->sc_busmode = ATW_PAR_PBL_8DW;
950
951	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
952	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
953	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
954
955	atw_test1_reset(sc);
956
957	/* Turn off maximum power saving, etc. */
958	ATW_WRITE(sc, ATW_FRCTL, 0x0);
959
960	DELAY(atw_magic_delay2);
961
962	/* Recall EEPROM. */
963	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
964
965	DELAY(atw_magic_delay4);
966
967	lpc = ATW_READ(sc, ATW_LPC);
968
969	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
970
971	/* A reset seems to affect the SRAM contents, so put them into
972	 * a known state.
973	 */
974	atw_clear_sram(sc);
975
976	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
977}
978
979static void
980atw_clear_sram(struct atw_softc *sc)
981{
982	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
983	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
984	/* XXX not for revision 0x20. */
985	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
986}
987
988/* TBD atw_init
989 *
990 * set MAC based on ic->ic_bss->myaddr
991 * write WEP keys
992 * set TX rate
993 */
994
995/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
996 * without receiving a beacon with the preferred BSSID & SSID.
997 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
998 */
999static void
1000atw_wcsr_init(struct atw_softc *sc)
1001{
1002	uint32_t wcsr;
1003
1004	wcsr = ATW_READ(sc, ATW_WCSR);
1005	wcsr &= ~ATW_WCSR_BLN_MASK;
1006	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1007	/* We always want to wake up on link loss or TSFT out of range */
1008	wcsr |= ATW_WCSR_LSOE|ATW_WCSR_TSFTWE;
1009	ATW_WRITE(sc, ATW_WCSR, wcsr);
1010
1011	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1012	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1013}
1014
1015/* Turn off power management.  Set Rx store-and-forward mode. */
1016static void
1017atw_cmdr_init(struct atw_softc *sc)
1018{
1019	uint32_t cmdr;
1020	cmdr = ATW_READ(sc, ATW_CMDR);
1021	cmdr &= ~ATW_CMDR_APM;
1022	cmdr |= ATW_CMDR_RTE;
1023	cmdr &= ~ATW_CMDR_DRT_MASK;
1024	cmdr |= ATW_CMDR_DRT_SF;
1025
1026	ATW_WRITE(sc, ATW_CMDR, cmdr);
1027}
1028
1029static void
1030atw_tofs2_init(struct atw_softc *sc)
1031{
1032	uint32_t tofs2;
1033	/* XXX this magic can probably be figured out from the RFMD docs */
1034#ifndef ATW_REFSLAVE
1035	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1036	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1037	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1038	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1039	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1040	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1041	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1042	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1043#else
1044	/* XXX new magic from reference driver source */
1045	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1046	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1047	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1048	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1049	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1050	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1051	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1052	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1053#endif
1054	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1055}
1056
1057static void
1058atw_nar_init(struct atw_softc *sc)
1059{
1060	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1061}
1062
1063static void
1064atw_txlmt_init(struct atw_softc *sc)
1065{
1066	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1067	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1068}
1069
1070static void
1071atw_test1_init(struct atw_softc *sc)
1072{
1073	uint32_t test1;
1074
1075	test1 = ATW_READ(sc, ATW_TEST1);
1076	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1077	/* XXX magic 0x1 */
1078	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1079	ATW_WRITE(sc, ATW_TEST1, test1);
1080}
1081
1082static void
1083atw_rf_reset(struct atw_softc *sc)
1084{
1085	/* XXX this resets an Intersil RF front-end? */
1086	/* TBD condition on Intersil RFType? */
1087	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1088	DELAY(atw_rf_delay1);
1089	ATW_WRITE(sc, ATW_SYNRF, 0);
1090	DELAY(atw_rf_delay2);
1091}
1092
1093/* Set 16 TU max duration for the contention-free period (CFP). */
1094static void
1095atw_cfp_init(struct atw_softc *sc)
1096{
1097	uint32_t cfpp;
1098
1099	cfpp = ATW_READ(sc, ATW_CFPP);
1100	cfpp &= ~ATW_CFPP_CFPMD;
1101	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1102	ATW_WRITE(sc, ATW_CFPP, cfpp);
1103}
1104
1105static void
1106atw_tofs0_init(struct atw_softc *sc)
1107{
1108	/* XXX I guess that the Cardbus clock is 22 MHz?
1109	 * I am assuming that the role of ATW_TOFS0_USCNT is
1110	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1111	 * very clear on this point. It says in the datasheet that it is
1112	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1113	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1114	 * these values. These values are also the power-on default.
1115	 */
1116	ATW_WRITE(sc, ATW_TOFS0,
1117	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1118	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1119}
1120
1121/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1122static void
1123atw_ifs_init(struct atw_softc *sc)
1124{
1125	uint32_t ifst;
1126	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1127	 * Go figure.
1128	 */
1129	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1130	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1131	             ATW_IFST_SIFS_MASK) |
1132	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1133	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1134
1135	ATW_WRITE(sc, ATW_IFST, ifst);
1136}
1137
1138static void
1139atw_response_times_init(struct atw_softc *sc)
1140{
1141	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1142	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1143	 * to pass after it transmits a frame that requires a response;
1144	 * it waits at most SIFS + MART microseconds for the response.
1145	 * Surely this is not the ACK timeout?
1146	 */
1147	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1148	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1149}
1150
1151/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1152 * engines read and write baseband registers after Rx and before
1153 * Tx, respectively.
1154 */
1155static void
1156atw_bbp_io_init(struct atw_softc *sc)
1157{
1158	uint32_t mmiraddr2;
1159
1160	/* XXX The reference driver does this, but is it *really*
1161	 * necessary?
1162	 */
1163	switch (sc->sc_rev) {
1164	case ATW_REVISION_AB:
1165	case ATW_REVISION_AF:
1166		mmiraddr2 = 0x0;
1167		break;
1168	default:
1169		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1170		mmiraddr2 &=
1171		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1172		break;
1173	}
1174
1175	switch (sc->sc_bbptype) {
1176	case ATW_BBPTYPE_INTERSIL:
1177		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1178		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1179		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1180		break;
1181	case ATW_BBPTYPE_MARVEL:
1182		/* TBD find out the Marvel settings. */
1183		break;
1184	case ATW_BBPTYPE_RFMD:
1185	default:
1186		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1187		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1188		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1189		break;
1190	}
1191	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1192	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1193}
1194
1195/*
1196 * atw_init:		[ ifnet interface function ]
1197 *
1198 *	Initialize the interface.  Must be called at splnet().
1199 */
1200int
1201atw_init(struct ifnet *ifp)
1202{
1203	struct atw_softc *sc = ifp->if_softc;
1204	struct ieee80211com *ic = &sc->sc_ic;
1205	struct atw_txsoft *txs;
1206	struct atw_rxsoft *rxs;
1207	int i, error = 0;
1208
1209	if (device_is_active(sc->sc_dev)) {
1210		/*
1211		 * Cancel any pending I/O.
1212		 */
1213		atw_stop(ifp, 0);
1214	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1215	           !device_is_active(sc->sc_dev))
1216		return 0;
1217
1218	/*
1219	 * Reset the chip to a known state.
1220	 */
1221	atw_reset(sc);
1222
1223	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1224	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1225	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1226
1227	atw_wcsr_init(sc);
1228
1229	atw_cmdr_init(sc);
1230
1231	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1232	 *
1233	 * XXX Set transmit power for ATIM, RTS, Beacon.
1234	 */
1235	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1236	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1237
1238	atw_tofs2_init(sc);
1239
1240	atw_nar_init(sc);
1241
1242	atw_txlmt_init(sc);
1243
1244	atw_test1_init(sc);
1245
1246	atw_rf_reset(sc);
1247
1248	atw_cfp_init(sc);
1249
1250	atw_tofs0_init(sc);
1251
1252	atw_ifs_init(sc);
1253
1254	/* XXX Fall asleep after one second of inactivity.
1255	 * XXX A frame may only dribble in for 65536us.
1256	 */
1257	ATW_WRITE(sc, ATW_RMD,
1258	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1259
1260	atw_response_times_init(sc);
1261
1262	atw_bbp_io_init(sc);
1263
1264	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1265
1266	if ((error = atw_rf3000_init(sc)) != 0)
1267		goto out;
1268
1269	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1270	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1271	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1272
1273	/*
1274	 * Initialize the transmit descriptor ring.
1275	 */
1276	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1277	for (i = 0; i < ATW_NTXDESC; i++) {
1278		sc->sc_txdescs[i].at_ctl = 0;
1279		/* no transmit chaining */
1280		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1281		sc->sc_txdescs[i].at_buf2 =
1282		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1283	}
1284	/* use ring mode */
1285	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1286	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1287	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1288	sc->sc_txfree = ATW_NTXDESC;
1289	sc->sc_txnext = 0;
1290
1291	/*
1292	 * Initialize the transmit job descriptors.
1293	 */
1294	SIMPLEQ_INIT(&sc->sc_txfreeq);
1295	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1296	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1297		txs = &sc->sc_txsoft[i];
1298		txs->txs_mbuf = NULL;
1299		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1300	}
1301
1302	/*
1303	 * Initialize the receive descriptor and receive job
1304	 * descriptor rings.
1305	 */
1306	for (i = 0; i < ATW_NRXDESC; i++) {
1307		rxs = &sc->sc_rxsoft[i];
1308		if (rxs->rxs_mbuf == NULL) {
1309			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1310				aprint_error_dev(sc->sc_dev,
1311				    "unable to allocate or map rx buffer %d, "
1312				    "error = %d\n", i, error);
1313				/*
1314				 * XXX Should attempt to run with fewer receive
1315				 * XXX buffers instead of just failing.
1316				 */
1317				atw_rxdrain(sc);
1318				goto out;
1319			}
1320		} else
1321			atw_init_rxdesc(sc, i);
1322	}
1323	sc->sc_rxptr = 0;
1324
1325	/*
1326	 * Initialize the interrupt mask and enable interrupts.
1327	 */
1328	/* normal interrupts */
1329	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1330	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1331
1332	/* abnormal interrupts */
1333	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1334	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1335	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1336
1337	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1338	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1339	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1340	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1341	    ATW_INTR_TRT;
1342
1343	sc->sc_linkint_mask &= sc->sc_inten;
1344	sc->sc_rxint_mask &= sc->sc_inten;
1345	sc->sc_txint_mask &= sc->sc_inten;
1346
1347	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1348	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1349
1350	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1351	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1352
1353	/*
1354	 * Give the transmit and receive rings to the ADM8211.
1355	 */
1356	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1357	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1358
1359	sc->sc_txthresh = 0;
1360	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1361	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1362
1363	/* common 802.11 configuration */
1364	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1365	switch (ic->ic_opmode) {
1366	case IEEE80211_M_STA:
1367		break;
1368	case IEEE80211_M_AHDEMO: /* XXX */
1369	case IEEE80211_M_IBSS:
1370		ic->ic_flags |= IEEE80211_F_IBSSON;
1371		/*FALLTHROUGH*/
1372	case IEEE80211_M_HOSTAP: /* XXX */
1373		break;
1374	case IEEE80211_M_MONITOR: /* XXX */
1375		break;
1376	}
1377
1378	switch (ic->ic_opmode) {
1379	case IEEE80211_M_AHDEMO:
1380	case IEEE80211_M_HOSTAP:
1381#ifndef IEEE80211_NO_HOSTAP
1382		ic->ic_bss->ni_intval = ic->ic_lintval;
1383		ic->ic_bss->ni_rssi = 0;
1384		ic->ic_bss->ni_rstamp = 0;
1385#endif /* !IEEE80211_NO_HOSTAP */
1386		break;
1387	default:					/* XXX */
1388		break;
1389	}
1390
1391	sc->sc_wepctl = 0;
1392
1393	atw_write_ssid(sc);
1394	atw_write_sup_rates(sc);
1395	atw_write_wep(sc);
1396
1397	ic->ic_state = IEEE80211_S_INIT;
1398
1399	/*
1400	 * Set the receive filter.  This will start the transmit and
1401	 * receive processes.
1402	 */
1403	atw_filter_setup(sc);
1404
1405	/*
1406	 * Start the receive process.
1407	 */
1408	ATW_WRITE(sc, ATW_RDR, 0x1);
1409
1410	/*
1411	 * Note that the interface is now running.
1412	 */
1413	ifp->if_flags |= IFF_RUNNING;
1414
1415	/* send no beacons, yet. */
1416	atw_start_beacon(sc, 0);
1417
1418	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1419		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1420	else
1421		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1422 out:
1423	if (error) {
1424		ifp->if_flags &= ~IFF_RUNNING;
1425		sc->sc_tx_timer = 0;
1426		ifp->if_timer = 0;
1427		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1428	}
1429#ifdef ATW_DEBUG
1430	atw_print_regs(sc, "end of init");
1431#endif /* ATW_DEBUG */
1432
1433	return (error);
1434}
1435
1436/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1437 *           0: MAC control of RF3000/Si4126.
1438 *
1439 * Applies power, or selects RF front-end? Sets reset condition.
1440 *
1441 * TBD support non-RFMD BBP, non-SiLabs synth.
1442 */
1443static void
1444atw_bbp_io_enable(struct atw_softc *sc, int enable)
1445{
1446	if (enable) {
1447		ATW_WRITE(sc, ATW_SYNRF,
1448		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1449		DELAY(atw_bbp_io_enable_delay);
1450	} else {
1451		ATW_WRITE(sc, ATW_SYNRF, 0);
1452		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1453	}
1454}
1455
1456static int
1457atw_tune(struct atw_softc *sc)
1458{
1459	int rc;
1460	u_int chan;
1461	struct ieee80211com *ic = &sc->sc_ic;
1462
1463	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1464	if (chan == IEEE80211_CHAN_ANY)
1465		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1466
1467	if (chan == sc->sc_cur_chan)
1468		return 0;
1469
1470	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1471	    sc->sc_cur_chan, chan));
1472
1473	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1474
1475	atw_si4126_tune(sc, chan);
1476	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1477		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1478		    chan);
1479
1480	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1481	DELAY(atw_nar_delay);
1482	ATW_WRITE(sc, ATW_RDR, 0x1);
1483
1484	if (rc == 0) {
1485		sc->sc_cur_chan = chan;
1486		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1487		    htole16(ic->ic_curchan->ic_freq);
1488		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1489		    htole16(ic->ic_curchan->ic_flags);
1490	}
1491
1492	return rc;
1493}
1494
1495#ifdef ATW_SYNDEBUG
1496static void
1497atw_si4126_print(struct atw_softc *sc)
1498{
1499	struct ifnet *ifp = &sc->sc_if;
1500	u_int addr, val;
1501
1502	val = 0;
1503
1504	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1505		return;
1506
1507	for (addr = 0; addr <= 8; addr++) {
1508		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1509		if (atw_si4126_read(sc, addr, &val) == 0) {
1510			printf("<unknown> (quitting print-out)\n");
1511			break;
1512		}
1513		printf("%05x\n", val);
1514	}
1515}
1516#endif /* ATW_SYNDEBUG */
1517
1518/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1519 *
1520 * The RF/IF synthesizer produces two reference frequencies for
1521 * the RF2948B transceiver.  The first frequency the RF2948B requires
1522 * is two times the so-called "intermediate frequency" (IF). Since
1523 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1524 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1525 * frequency required by the transceiver is the radio frequency
1526 * (RF). This is a superheterodyne transceiver; for f(chan) the
1527 * center frequency of the channel we are tuning, RF = f(chan) -
1528 * IF.
1529 *
1530 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1531 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1532 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1533 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1534 */
1535static void
1536atw_si4126_tune(struct atw_softc *sc, u_int chan)
1537{
1538	u_int mhz;
1539	u_int R;
1540	u_int32_t gpio;
1541	u_int16_t gain;
1542
1543#ifdef ATW_SYNDEBUG
1544	atw_si4126_print(sc);
1545#endif /* ATW_SYNDEBUG */
1546
1547	if (chan == 14)
1548		mhz = 2484;
1549	else
1550		mhz = 2412 + 5 * (chan - 1);
1551
1552	/* Tune IF to 748 MHz to suit the IF LO input of the
1553	 * RF2494B, which is 2 x IF. No need to set an IF divider
1554         * because an IF in 526 MHz - 952 MHz is allowed.
1555	 *
1556	 * XIN is 44.000 MHz, so divide it by two to get allowable
1557	 * range of 2-25 MHz. SiLabs tells me that this is not
1558	 * strictly necessary.
1559	 */
1560
1561	if (atw_xindiv2)
1562		R = 44;
1563	else
1564		R = 88;
1565
1566	/* Power-up RF, IF synthesizers. */
1567	atw_si4126_write(sc, SI4126_POWER,
1568	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1569
1570	/* set LPWR, too? */
1571	atw_si4126_write(sc, SI4126_MAIN,
1572	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1573
1574	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1575	 * set KP2 to 1.
1576	 *
1577	 * REFDIF This is different from the reference driver, which
1578	 * always sets SI4126_GAIN to 0.
1579	 */
1580	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1581
1582	atw_si4126_write(sc, SI4126_GAIN, gain);
1583
1584	/* XIN = 44 MHz.
1585	 *
1586	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1587	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1588	 *
1589	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1590	 * so that 1496/88 * 44 MHz = 748 MHz.
1591	 */
1592	atw_si4126_write(sc, SI4126_IFN, 1496);
1593
1594	atw_si4126_write(sc, SI4126_IFR, R);
1595
1596#ifndef ATW_REFSLAVE
1597	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1598	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1599	 * which has no RF1!
1600	 */
1601	atw_si4126_write(sc, SI4126_RF1R, R);
1602
1603	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1604#endif
1605
1606	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1607	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1608	 * Now let's multiply it to mhz. So mhz - IF = N.
1609	 */
1610	atw_si4126_write(sc, SI4126_RF2R, R);
1611
1612	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1613
1614	/* wait 100us from power-up for RF, IF to settle */
1615	DELAY(100);
1616
1617	gpio = ATW_READ(sc, ATW_GPIO);
1618	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1619	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1620
1621	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1622		/* Set a Prism RF front-end to a special mode for channel 14?
1623		 *
1624		 * Apparently the SMC2635W needs this, although I don't think
1625		 * it has a Prism RF.
1626		 */
1627		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1628	}
1629	ATW_WRITE(sc, ATW_GPIO, gpio);
1630
1631#ifdef ATW_SYNDEBUG
1632	atw_si4126_print(sc);
1633#endif /* ATW_SYNDEBUG */
1634}
1635
1636/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1637 * diversity.
1638 *
1639 * !!!
1640 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1641 * !!!
1642 */
1643static int
1644atw_rf3000_init(struct atw_softc *sc)
1645{
1646	int rc = 0;
1647
1648	atw_bbp_io_enable(sc, 1);
1649
1650	/* CCA is acquisition sensitive */
1651	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1652	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1653
1654	if (rc != 0)
1655		goto out;
1656
1657	/* enable diversity */
1658	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1659
1660	if (rc != 0)
1661		goto out;
1662
1663	/* sensible setting from a binary-only driver */
1664	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1665	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1666
1667	if (rc != 0)
1668		goto out;
1669
1670	/* magic from a binary-only driver */
1671	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1672	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1673
1674	if (rc != 0)
1675		goto out;
1676
1677	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1678
1679	if (rc != 0)
1680		goto out;
1681
1682	/* XXX Reference driver remarks that Abocom sets this to 50.
1683	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1684	 * in the "reserved" area of register RF3000_OPTIONS1.
1685	 */
1686	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1687
1688	if (rc != 0)
1689		goto out;
1690
1691	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1692
1693	if (rc != 0)
1694		goto out;
1695
1696out:
1697	atw_bbp_io_enable(sc, 0);
1698	return rc;
1699}
1700
1701#ifdef ATW_BBPDEBUG
1702static void
1703atw_rf3000_print(struct atw_softc *sc)
1704{
1705	struct ifnet *ifp = &sc->sc_if;
1706	u_int addr, val;
1707
1708	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1709		return;
1710
1711	for (addr = 0x01; addr <= 0x15; addr++) {
1712		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1713		if (atw_rf3000_read(sc, addr, &val) != 0) {
1714			printf("<unknown> (quitting print-out)\n");
1715			break;
1716		}
1717		printf("%08x\n", val);
1718	}
1719}
1720#endif /* ATW_BBPDEBUG */
1721
1722/* Set the power settings on the BBP for channel `chan'. */
1723static int
1724atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1725{
1726	int rc = 0;
1727	u_int32_t reg;
1728	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1729
1730	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1731	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1732	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1733
1734	/* odd channels: LSB, even channels: MSB */
1735	if (chan % 2 == 1) {
1736		txpower &= 0xFF;
1737		lpf_cutoff &= 0xFF;
1738		lna_gs_thresh &= 0xFF;
1739	} else {
1740		txpower >>= 8;
1741		lpf_cutoff >>= 8;
1742		lna_gs_thresh >>= 8;
1743	}
1744
1745#ifdef ATW_BBPDEBUG
1746	atw_rf3000_print(sc);
1747#endif /* ATW_BBPDEBUG */
1748
1749	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1750	    "lna_gs_thresh %02x\n",
1751	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1752
1753	atw_bbp_io_enable(sc, 1);
1754
1755	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1756	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1757		goto out;
1758
1759	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1760		goto out;
1761
1762	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1763		goto out;
1764
1765	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1766
1767	if (rc != 0)
1768		goto out;
1769
1770	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1771
1772	if (rc != 0)
1773		goto out;
1774
1775#ifdef ATW_BBPDEBUG
1776	atw_rf3000_print(sc);
1777#endif /* ATW_BBPDEBUG */
1778
1779out:
1780	atw_bbp_io_enable(sc, 0);
1781
1782	/* set beacon, rts, atim transmit power */
1783	reg = ATW_READ(sc, ATW_PLCPHD);
1784	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1785	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1786	    ATW_PLCPHD_SERVICE_MASK);
1787	ATW_WRITE(sc, ATW_PLCPHD, reg);
1788	DELAY(atw_plcphd_delay);
1789
1790	return rc;
1791}
1792
1793/* Write a register on the RF3000 baseband processor using the
1794 * registers provided by the ADM8211 for this purpose.
1795 *
1796 * Return 0 on success.
1797 */
1798static int
1799atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1800{
1801	u_int32_t reg;
1802	int i;
1803
1804	reg = sc->sc_bbpctl_wr |
1805	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1806	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1807
1808	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1809		ATW_WRITE(sc, ATW_BBPCTL, reg);
1810		DELAY(2 * atw_pseudo_milli);
1811		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1812			break;
1813	}
1814
1815	if (i < 0) {
1816		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1817		return ETIMEDOUT;
1818	}
1819	return 0;
1820}
1821
1822/* Read a register on the RF3000 baseband processor using the registers
1823 * the ADM8211 provides for this purpose.
1824 *
1825 * The 7-bit register address is addr.  Record the 8-bit data in the register
1826 * in *val.
1827 *
1828 * Return 0 on success.
1829 *
1830 * XXX This does not seem to work. The ADM8211 must require more or
1831 * different magic to read the chip than to write it. Possibly some
1832 * of the magic I have derived from a binary-only driver concerns
1833 * the "chip address" (see the RF3000 manual).
1834 */
1835#ifdef ATW_BBPDEBUG
1836static int
1837atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1838{
1839	u_int32_t reg;
1840	int i;
1841
1842	for (i = 1000; --i >= 0; ) {
1843		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1844			break;
1845		DELAY(100);
1846	}
1847
1848	if (i < 0) {
1849		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1850		    device_xname(sc->sc_dev));
1851		return ETIMEDOUT;
1852	}
1853
1854	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1855
1856	ATW_WRITE(sc, ATW_BBPCTL, reg);
1857
1858	for (i = 1000; --i >= 0; ) {
1859		DELAY(100);
1860		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1861			break;
1862	}
1863
1864	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1865
1866	if (i < 0) {
1867		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1868		    device_xname(sc->sc_dev), reg);
1869		return ETIMEDOUT;
1870	}
1871	if (val != NULL)
1872		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1873	return 0;
1874}
1875#endif /* ATW_BBPDEBUG */
1876
1877/* Write a register on the Si4126 RF/IF synthesizer using the registers
1878 * provided by the ADM8211 for that purpose.
1879 *
1880 * val is 18 bits of data, and val is the 4-bit address of the register.
1881 *
1882 * Return 0 on success.
1883 */
1884static void
1885atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1886{
1887	uint32_t bits, mask, reg;
1888	const int nbits = 22;
1889
1890	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1891	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1892
1893	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1894	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1895
1896	reg = ATW_SYNRF_SELSYN;
1897	/* reference driver: reset Si4126 serial bus to initial
1898	 * conditions?
1899	 */
1900	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1901	ATW_WRITE(sc, ATW_SYNRF, reg);
1902
1903	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1904		if ((bits & mask) != 0)
1905			reg |= ATW_SYNRF_SYNDATA;
1906		else
1907			reg &= ~ATW_SYNRF_SYNDATA;
1908		ATW_WRITE(sc, ATW_SYNRF, reg);
1909		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1910		ATW_WRITE(sc, ATW_SYNRF, reg);
1911	}
1912	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1913	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1914}
1915
1916/* Read 18-bit data from the 4-bit address addr in Si4126
1917 * RF synthesizer and write the data to *val. Return 0 on success.
1918 *
1919 * XXX This does not seem to work. The ADM8211 must require more or
1920 * different magic to read the chip than to write it.
1921 */
1922#ifdef ATW_SYNDEBUG
1923static int
1924atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1925{
1926	u_int32_t reg;
1927	int i;
1928
1929	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1930
1931	for (i = 1000; --i >= 0; ) {
1932		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1933			break;
1934		DELAY(100);
1935	}
1936
1937	if (i < 0) {
1938		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1939		    device_xname(sc->sc_dev));
1940		return ETIMEDOUT;
1941	}
1942
1943	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1944
1945	ATW_WRITE(sc, ATW_SYNCTL, reg);
1946
1947	for (i = 1000; --i >= 0; ) {
1948		DELAY(100);
1949		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1950			break;
1951	}
1952
1953	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1954
1955	if (i < 0) {
1956		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1957		    device_xname(sc->sc_dev), reg);
1958		return ETIMEDOUT;
1959	}
1960	if (val != NULL)
1961		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1962		                       ATW_SYNCTL_DATA_MASK);
1963	return 0;
1964}
1965#endif /* ATW_SYNDEBUG */
1966
1967/* XXX is the endianness correct? test. */
1968#define	atw_calchash(addr) \
1969	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1970
1971/*
1972 * atw_filter_setup:
1973 *
1974 *	Set the ADM8211's receive filter.
1975 */
1976static void
1977atw_filter_setup(struct atw_softc *sc)
1978{
1979	struct ieee80211com *ic = &sc->sc_ic;
1980	struct ethercom *ec = &sc->sc_ec;
1981	struct ifnet *ifp = &sc->sc_if;
1982	int hash;
1983	u_int32_t hashes[2];
1984	struct ether_multi *enm;
1985	struct ether_multistep step;
1986
1987	/* According to comments in tlp_al981_filter_setup
1988	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1989	 * multicast filter to be set while it is running.  Hopefully
1990	 * the ADM8211 is not the same!
1991	 */
1992	if ((ifp->if_flags & IFF_RUNNING) != 0)
1993		atw_idle(sc, ATW_NAR_SR);
1994
1995	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1996	ifp->if_flags &= ~IFF_ALLMULTI;
1997
1998	/* XXX in scan mode, do not filter packets.  Maybe this is
1999	 * unnecessary.
2000	 */
2001	if (ic->ic_state == IEEE80211_S_SCAN ||
2002	    (ifp->if_flags & IFF_PROMISC) != 0) {
2003		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2004		goto allmulti;
2005	}
2006
2007	hashes[0] = hashes[1] = 0x0;
2008
2009	/*
2010	 * Program the 64-bit multicast hash filter.
2011	 */
2012	ETHER_FIRST_MULTI(step, ec, enm);
2013	while (enm != NULL) {
2014		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2015		    ETHER_ADDR_LEN) != 0)
2016			goto allmulti;
2017
2018		hash = atw_calchash(enm->enm_addrlo);
2019		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2020		ETHER_NEXT_MULTI(step, enm);
2021		sc->sc_opmode |= ATW_NAR_MM;
2022	}
2023	ifp->if_flags &= ~IFF_ALLMULTI;
2024	goto setit;
2025
2026allmulti:
2027	sc->sc_opmode |= ATW_NAR_MM;
2028	ifp->if_flags |= IFF_ALLMULTI;
2029	hashes[0] = hashes[1] = 0xffffffff;
2030
2031setit:
2032	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2033	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2034	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2035	DELAY(atw_nar_delay);
2036	ATW_WRITE(sc, ATW_RDR, 0x1);
2037
2038	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2039	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2040}
2041
2042/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2043 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2044 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2045 * no beacon with the preferred BSSID and SSID in the number of
2046 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2047 */
2048static void
2049atw_write_bssid(struct atw_softc *sc)
2050{
2051	struct ieee80211com *ic = &sc->sc_ic;
2052	u_int8_t *bssid;
2053
2054	bssid = ic->ic_bss->ni_bssid;
2055
2056	ATW_WRITE(sc, ATW_BSSID0,
2057	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2058	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2059	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2060	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2061
2062	ATW_WRITE(sc, ATW_ABDA1,
2063	    (ATW_READ(sc, ATW_ABDA1) &
2064	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2065	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2066	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2067
2068	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2069	    ether_sprintf(sc->sc_bssid)));
2070	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2071
2072	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2073}
2074
2075/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2076 * 16-bit word.
2077 */
2078static void
2079atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2080{
2081	u_int i;
2082	u_int8_t *ptr;
2083
2084	memcpy(&sc->sc_sram[ofs], buf, buflen);
2085
2086	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2087
2088	KASSERT(buflen + ofs <= sc->sc_sramlen);
2089
2090	ptr = &sc->sc_sram[ofs];
2091
2092	for (i = 0; i < buflen; i += 2) {
2093		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2094		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2095		DELAY(atw_writewep_delay);
2096
2097		ATW_WRITE(sc, ATW_WESK,
2098		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2099		DELAY(atw_writewep_delay);
2100	}
2101	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2102
2103	if (sc->sc_if.if_flags & IFF_DEBUG) {
2104		int n_octets = 0;
2105		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2106		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2107		for (i = 0; i < buflen; i++) {
2108			printf(" %02x", ptr[i]);
2109			if (++n_octets % 24 == 0)
2110				printf("\n");
2111		}
2112		if (n_octets % 24 != 0)
2113			printf("\n");
2114	}
2115}
2116
2117static int
2118atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2119{
2120	struct atw_softc *sc = ic->ic_ifp->if_softc;
2121	u_int keyix = k->wk_keyix;
2122
2123	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2124
2125	if (keyix >= IEEE80211_WEP_NKID)
2126		return 0;
2127	if (k->wk_keylen != 0)
2128		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2129
2130	return 1;
2131}
2132
2133static int
2134atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2135	const u_int8_t mac[IEEE80211_ADDR_LEN])
2136{
2137	struct atw_softc *sc = ic->ic_ifp->if_softc;
2138
2139	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2140
2141	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2142		return 0;
2143
2144	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2145
2146	return 1;
2147}
2148
2149static void
2150atw_key_update_begin(struct ieee80211com *ic)
2151{
2152#ifdef ATW_DEBUG
2153	struct ifnet *ifp = ic->ic_ifp;
2154	struct atw_softc *sc = ifp->if_softc;
2155#endif
2156
2157	DPRINTF(sc, ("%s:\n", __func__));
2158}
2159
2160static void
2161atw_key_update_end(struct ieee80211com *ic)
2162{
2163	struct ifnet *ifp = ic->ic_ifp;
2164	struct atw_softc *sc = ifp->if_softc;
2165
2166	DPRINTF(sc, ("%s:\n", __func__));
2167
2168	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2169		return;
2170	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2171		return;
2172	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2173	atw_write_wep(sc);
2174	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2175	DELAY(atw_nar_delay);
2176	ATW_WRITE(sc, ATW_RDR, 0x1);
2177}
2178
2179/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2180static void
2181atw_write_wep(struct atw_softc *sc)
2182{
2183#if 0
2184	struct ieee80211com *ic = &sc->sc_ic;
2185	u_int32_t reg;
2186	int i;
2187#endif
2188	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2189	u_int8_t buf[IEEE80211_WEP_NKID]
2190	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2191
2192	sc->sc_wepctl = 0;
2193	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2194
2195	memset(&buf[0][0], 0, sizeof(buf));
2196
2197#if 0
2198	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2199		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2200			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2201		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2202			buf[i][1] = ATW_WEP_ENABLED;
2203		} else {
2204			buf[i][1] = 0;
2205			continue;
2206		}
2207		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2208		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2209		    ic->ic_nw_keys[i].wk_keylen - 1);
2210	}
2211
2212	reg = ATW_READ(sc, ATW_MACTEST);
2213	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2214	reg &= ~ATW_MACTEST_KEYID_MASK;
2215	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2216	ATW_WRITE(sc, ATW_MACTEST, reg);
2217
2218	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2219		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2220
2221	switch (sc->sc_rev) {
2222	case ATW_REVISION_AB:
2223	case ATW_REVISION_AF:
2224		/* Bypass WEP on Rx. */
2225		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2226		break;
2227	default:
2228		break;
2229	}
2230#endif
2231
2232	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2233	    sizeof(buf));
2234
2235	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2236}
2237
2238static void
2239atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2240    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2241{
2242	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2243
2244	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2245	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2246		return;
2247
2248	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2249
2250	switch (subtype) {
2251	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2252	case IEEE80211_FC0_SUBTYPE_BEACON:
2253		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2254		    ic->ic_state == IEEE80211_S_RUN) {
2255			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2256				(void)ieee80211_ibss_merge(ni);
2257		}
2258		break;
2259	default:
2260		break;
2261	}
2262	return;
2263}
2264
2265/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2266 * In ad hoc mode, the SSID is written to the beacons sent by the
2267 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2268 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2269 * indications.
2270 */
2271static void
2272atw_write_ssid(struct atw_softc *sc)
2273{
2274	struct ieee80211com *ic = &sc->sc_ic;
2275	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2276	 * it only expects the element length, not its ID.
2277	 */
2278	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2279
2280	memset(buf, 0, sizeof(buf));
2281	buf[0] = ic->ic_bss->ni_esslen;
2282	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2283
2284	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2285	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2286}
2287
2288/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2289 * In ad hoc mode, the supported rates are written to beacons sent by the
2290 * ADM8211.
2291 */
2292static void
2293atw_write_sup_rates(struct atw_softc *sc)
2294{
2295	struct ieee80211com *ic = &sc->sc_ic;
2296	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2297	 * supported rates
2298	 */
2299	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2300
2301	memset(buf, 0, sizeof(buf));
2302
2303	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2304
2305	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2306	    ic->ic_bss->ni_rates.rs_nrates);
2307
2308	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2309}
2310
2311/* Start/stop sending beacons. */
2312void
2313atw_start_beacon(struct atw_softc *sc, int start)
2314{
2315	struct ieee80211com *ic = &sc->sc_ic;
2316	uint16_t chan;
2317	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2318	size_t len;
2319
2320	if (!device_is_active(sc->sc_dev))
2321		return;
2322
2323	/* start beacons */
2324	len = sizeof(struct ieee80211_frame) +
2325	    8 /* timestamp */ + 2 /* beacon interval */ +
2326	    2 /* capability info */ +
2327	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2328	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2329	    3 /* DS parameters */ +
2330	    IEEE80211_CRC_LEN;
2331
2332	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2333	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2334	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2335
2336	ATW_WRITE(sc, ATW_BCNT, bcnt);
2337	ATW_WRITE(sc, ATW_CAP1, cap1);
2338
2339	if (!start)
2340		return;
2341
2342	/* TBD use ni_capinfo */
2343
2344	capinfo = 0;
2345	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2346		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2347	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2348		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2349
2350	switch (ic->ic_opmode) {
2351	case IEEE80211_M_IBSS:
2352		len += 4; /* IBSS parameters */
2353		capinfo |= IEEE80211_CAPINFO_IBSS;
2354		break;
2355	case IEEE80211_M_HOSTAP:
2356		/* XXX 6-byte minimum TIM */
2357		len += atw_beacon_len_adjust;
2358		capinfo |= IEEE80211_CAPINFO_ESS;
2359		break;
2360	default:
2361		return;
2362	}
2363
2364	/* set listen interval
2365	 * XXX do software units agree w/ hardware?
2366	 */
2367	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2368	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2369
2370	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2371
2372	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2373	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2374	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2375
2376	ATW_WRITE(sc, ATW_BCNT, bcnt);
2377	ATW_WRITE(sc, ATW_BPLI, bpli);
2378	ATW_WRITE(sc, ATW_CAP0, cap0);
2379	ATW_WRITE(sc, ATW_CAP1, cap1);
2380
2381	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2382	    device_xname(sc->sc_dev), bcnt));
2383
2384	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2385	    device_xname(sc->sc_dev), cap1));
2386}
2387
2388/* Return the 32 lsb of the last TSFT divisible by ival. */
2389static inline uint32_t
2390atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2391{
2392	/* Following the reference driver's lead, I compute
2393	 *
2394	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2395	 *
2396	 * without using 64-bit arithmetic, using the following
2397	 * relationship:
2398	 *
2399	 *     (0x100000000 * H + L) % m
2400	 *   = ((0x100000000 % m) * H + L) % m
2401	 *   = (((0xffffffff + 1) % m) * H + L) % m
2402	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2403	 *   = ((0xffffffff % m + 1) * H + L) % m
2404	 */
2405	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2406}
2407
2408static uint64_t
2409atw_get_tsft(struct atw_softc *sc)
2410{
2411	int i;
2412	uint32_t tsfth, tsftl;
2413	for (i = 0; i < 2; i++) {
2414		tsfth = ATW_READ(sc, ATW_TSFTH);
2415		tsftl = ATW_READ(sc, ATW_TSFTL);
2416		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2417			break;
2418	}
2419	return ((uint64_t)tsfth << 32) | tsftl;
2420}
2421
2422/* If we've created an IBSS, write the TSF time in the ADM8211 to
2423 * the ieee80211com.
2424 *
2425 * Predict the next target beacon transmission time (TBTT) and
2426 * write it to the ADM8211.
2427 */
2428static void
2429atw_predict_beacon(struct atw_softc *sc)
2430{
2431#define TBTTOFS 20 /* TU */
2432
2433	struct ieee80211com *ic = &sc->sc_ic;
2434	uint64_t tsft;
2435	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2436	union {
2437		uint64_t	word;
2438		uint8_t		tstamp[8];
2439	} u;
2440
2441	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2442	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2443	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2444		tsft = atw_get_tsft(sc);
2445		u.word = htole64(tsft);
2446		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2447		    sizeof(ic->ic_bss->ni_tstamp));
2448	} else
2449		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2450
2451	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2452
2453	tsftl = tsft & 0xFFFFFFFF;
2454	tsfth = tsft >> 32;
2455
2456	/* We sent/received the last beacon `past' microseconds
2457	 * after the interval divided the TSF timer.
2458	 */
2459	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2460
2461	/* Skip ten beacons so that the TBTT cannot pass before
2462	 * we've programmed it.  Ten is an arbitrary number.
2463	 */
2464	tbtt = past_even + ival * 10;
2465
2466	ATW_WRITE(sc, ATW_TOFS1,
2467	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2468	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2469	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2470	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2471#undef TBTTOFS
2472}
2473
2474static void
2475atw_next_scan(void *arg)
2476{
2477	struct atw_softc *sc = arg;
2478	struct ieee80211com *ic = &sc->sc_ic;
2479	int s;
2480
2481	/* don't call atw_start w/o network interrupts blocked */
2482	s = splnet();
2483	if (ic->ic_state == IEEE80211_S_SCAN)
2484		ieee80211_next_scan(ic);
2485	splx(s);
2486}
2487
2488/* Synchronize the hardware state with the software state. */
2489static int
2490atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2491{
2492	struct ifnet *ifp = ic->ic_ifp;
2493	struct atw_softc *sc = ifp->if_softc;
2494	int error = 0;
2495
2496	callout_stop(&sc->sc_scan_ch);
2497
2498	switch (nstate) {
2499	case IEEE80211_S_AUTH:
2500	case IEEE80211_S_ASSOC:
2501		atw_write_bssid(sc);
2502		error = atw_tune(sc);
2503		break;
2504	case IEEE80211_S_INIT:
2505		callout_stop(&sc->sc_scan_ch);
2506		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2507		atw_start_beacon(sc, 0);
2508		break;
2509	case IEEE80211_S_SCAN:
2510		error = atw_tune(sc);
2511		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2512		    atw_next_scan, sc);
2513		break;
2514	case IEEE80211_S_RUN:
2515		error = atw_tune(sc);
2516		atw_write_bssid(sc);
2517		atw_write_ssid(sc);
2518		atw_write_sup_rates(sc);
2519
2520		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2521		    ic->ic_opmode == IEEE80211_M_MONITOR)
2522			break;
2523
2524		/* set listen interval
2525		 * XXX do software units agree w/ hardware?
2526		 */
2527		ATW_WRITE(sc, ATW_BPLI,
2528		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2529		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2530			   ATW_BPLI_LI_MASK));
2531
2532		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2533		    ATW_READ(sc, ATW_BPLI)));
2534
2535		atw_predict_beacon(sc);
2536
2537		switch (ic->ic_opmode) {
2538		case IEEE80211_M_AHDEMO:
2539		case IEEE80211_M_HOSTAP:
2540		case IEEE80211_M_IBSS:
2541			atw_start_beacon(sc, 1);
2542			break;
2543		case IEEE80211_M_MONITOR:
2544		case IEEE80211_M_STA:
2545			break;
2546		}
2547
2548		break;
2549	}
2550	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2551}
2552
2553/*
2554 * atw_add_rxbuf:
2555 *
2556 *	Add a receive buffer to the indicated descriptor.
2557 */
2558int
2559atw_add_rxbuf(struct atw_softc *sc, int idx)
2560{
2561	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562	struct mbuf *m;
2563	int error;
2564
2565	MGETHDR(m, M_DONTWAIT, MT_DATA);
2566	if (m == NULL)
2567		return (ENOBUFS);
2568
2569	MCLGET(m, M_DONTWAIT);
2570	if ((m->m_flags & M_EXT) == 0) {
2571		m_freem(m);
2572		return (ENOBUFS);
2573	}
2574
2575	if (rxs->rxs_mbuf != NULL)
2576		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2577
2578	rxs->rxs_mbuf = m;
2579
2580	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2581	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2582	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2583	if (error) {
2584		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2585		    idx, error);
2586		panic("atw_add_rxbuf");	/* XXX */
2587	}
2588
2589	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2590	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2591
2592	atw_init_rxdesc(sc, idx);
2593
2594	return (0);
2595}
2596
2597/*
2598 * Release any queued transmit buffers.
2599 */
2600void
2601atw_txdrain(struct atw_softc *sc)
2602{
2603	struct atw_txsoft *txs;
2604
2605	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2606		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2607		if (txs->txs_mbuf != NULL) {
2608			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2609			m_freem(txs->txs_mbuf);
2610			txs->txs_mbuf = NULL;
2611		}
2612		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2613		sc->sc_txfree += txs->txs_ndescs;
2614	}
2615
2616	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2617	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2618		  sc->sc_txfree != ATW_NTXDESC));
2619	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2620	sc->sc_tx_timer = 0;
2621}
2622
2623/*
2624 * atw_stop:		[ ifnet interface function ]
2625 *
2626 *	Stop transmission on the interface.
2627 */
2628void
2629atw_stop(struct ifnet *ifp, int disable)
2630{
2631	struct atw_softc *sc = ifp->if_softc;
2632	struct ieee80211com *ic = &sc->sc_ic;
2633
2634	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2635
2636	if (device_is_active(sc->sc_dev)) {
2637		/* Disable interrupts. */
2638		ATW_WRITE(sc, ATW_IER, 0);
2639
2640		/* Stop the transmit and receive processes. */
2641		ATW_WRITE(sc, ATW_NAR, 0);
2642		DELAY(atw_nar_delay);
2643		ATW_WRITE(sc, ATW_TDBD, 0);
2644		ATW_WRITE(sc, ATW_TDBP, 0);
2645		ATW_WRITE(sc, ATW_RDB, 0);
2646	}
2647
2648	sc->sc_opmode = 0;
2649
2650	atw_txdrain(sc);
2651
2652	/*
2653	 * Mark the interface down and cancel the watchdog timer.
2654	 */
2655	ifp->if_flags &= ~IFF_RUNNING;
2656	ifp->if_timer = 0;
2657
2658	if (disable)
2659		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2660}
2661
2662/*
2663 * atw_rxdrain:
2664 *
2665 *	Drain the receive queue.
2666 */
2667void
2668atw_rxdrain(struct atw_softc *sc)
2669{
2670	struct atw_rxsoft *rxs;
2671	int i;
2672
2673	for (i = 0; i < ATW_NRXDESC; i++) {
2674		rxs = &sc->sc_rxsoft[i];
2675		if (rxs->rxs_mbuf == NULL)
2676			continue;
2677		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2678		m_freem(rxs->rxs_mbuf);
2679		rxs->rxs_mbuf = NULL;
2680	}
2681}
2682
2683/*
2684 * atw_detach:
2685 *
2686 *	Detach an ADM8211 interface.
2687 */
2688int
2689atw_detach(struct atw_softc *sc)
2690{
2691	struct ifnet *ifp = &sc->sc_if;
2692	struct atw_rxsoft *rxs;
2693	struct atw_txsoft *txs;
2694	int i;
2695
2696	/*
2697	 * Succeed now if there isn't any work to do.
2698	 */
2699	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2700		return (0);
2701
2702	pmf_device_deregister(sc->sc_dev);
2703
2704	callout_stop(&sc->sc_scan_ch);
2705
2706	ieee80211_ifdetach(&sc->sc_ic);
2707	if_detach(ifp);
2708
2709	for (i = 0; i < ATW_NRXDESC; i++) {
2710		rxs = &sc->sc_rxsoft[i];
2711		if (rxs->rxs_mbuf != NULL) {
2712			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2713			m_freem(rxs->rxs_mbuf);
2714			rxs->rxs_mbuf = NULL;
2715		}
2716		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2717	}
2718	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2719		txs = &sc->sc_txsoft[i];
2720		if (txs->txs_mbuf != NULL) {
2721			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2722			m_freem(txs->txs_mbuf);
2723			txs->txs_mbuf = NULL;
2724		}
2725		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2726	}
2727	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2728	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2729	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2730	    sizeof(struct atw_control_data));
2731	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2732
2733	if (sc->sc_srom)
2734		free(sc->sc_srom, M_DEVBUF);
2735
2736	atw_evcnt_detach(sc);
2737
2738	if (sc->sc_soft_ih != NULL) {
2739		softint_disestablish(sc->sc_soft_ih);
2740		sc->sc_soft_ih = NULL;
2741	}
2742
2743	return (0);
2744}
2745
2746/* atw_shutdown: make sure the interface is stopped at reboot time. */
2747bool
2748atw_shutdown(device_t self, int flags)
2749{
2750	struct atw_softc *sc = device_private(self);
2751
2752	atw_stop(&sc->sc_if, 1);
2753	return true;
2754}
2755
2756#if 0
2757static void
2758atw_workaround1(struct atw_softc *sc)
2759{
2760	uint32_t test1;
2761
2762	test1 = ATW_READ(sc, ATW_TEST1);
2763
2764	sc->sc_misc_ev.ev_count++;
2765
2766	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2767		sc->sc_rxpkt1in_ev.ev_count++;
2768		return;
2769	}
2770	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2771	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2772		sc->sc_rxamatch_ev.ev_count++;
2773		return;
2774	}
2775	sc->sc_workaround1_ev.ev_count++;
2776	(void)atw_init(&sc->sc_if);
2777}
2778#endif
2779
2780int
2781atw_intr(void *arg)
2782{
2783	struct atw_softc *sc = arg;
2784	struct ifnet *ifp = &sc->sc_if;
2785	uint32_t status;
2786
2787#ifdef DEBUG
2788	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2789		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2790#endif
2791
2792	/*
2793	 * If the interface isn't running, the interrupt couldn't
2794	 * possibly have come from us.
2795	 */
2796	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2797	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2798		return (0);
2799
2800	status = ATW_READ(sc, ATW_STSR);
2801	if (status == 0)
2802		return 0;
2803
2804	if ((status & sc->sc_inten) == 0) {
2805		ATW_WRITE(sc, ATW_STSR, status);
2806		return 0;
2807	}
2808
2809	/* Disable interrupts */
2810	ATW_WRITE(sc, ATW_IER, 0);
2811
2812	softint_schedule(sc->sc_soft_ih);
2813	return 1;
2814}
2815
2816void
2817atw_softintr(void *arg)
2818{
2819	struct atw_softc *sc = arg;
2820	struct ifnet *ifp = &sc->sc_if;
2821	uint32_t status, rxstatus, txstatus, linkstatus;
2822	int txthresh, s;
2823
2824	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2825	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2826		return;
2827
2828	for (;;) {
2829		status = ATW_READ(sc, ATW_STSR);
2830
2831		if (status)
2832			ATW_WRITE(sc, ATW_STSR, status);
2833
2834#ifdef ATW_DEBUG
2835#define PRINTINTR(flag) do { \
2836	if ((status & flag) != 0) { \
2837		printf("%s" #flag, delim); \
2838		delim = ","; \
2839	} \
2840} while (0)
2841
2842		if (atw_debug > 1 && status) {
2843			const char *delim = "<";
2844
2845			printf("%s: reg[STSR] = %x",
2846			    device_xname(sc->sc_dev), status);
2847
2848			PRINTINTR(ATW_INTR_FBE);
2849			PRINTINTR(ATW_INTR_LINKOFF);
2850			PRINTINTR(ATW_INTR_LINKON);
2851			PRINTINTR(ATW_INTR_RCI);
2852			PRINTINTR(ATW_INTR_RDU);
2853			PRINTINTR(ATW_INTR_REIS);
2854			PRINTINTR(ATW_INTR_RPS);
2855			PRINTINTR(ATW_INTR_TCI);
2856			PRINTINTR(ATW_INTR_TDU);
2857			PRINTINTR(ATW_INTR_TLT);
2858			PRINTINTR(ATW_INTR_TPS);
2859			PRINTINTR(ATW_INTR_TRT);
2860			PRINTINTR(ATW_INTR_TUF);
2861			PRINTINTR(ATW_INTR_BCNTC);
2862			PRINTINTR(ATW_INTR_ATIME);
2863			PRINTINTR(ATW_INTR_TBTT);
2864			PRINTINTR(ATW_INTR_TSCZ);
2865			PRINTINTR(ATW_INTR_TSFTF);
2866			printf(">\n");
2867		}
2868#undef PRINTINTR
2869#endif /* ATW_DEBUG */
2870
2871		if ((status & sc->sc_inten) == 0)
2872			break;
2873
2874		rxstatus = status & sc->sc_rxint_mask;
2875		txstatus = status & sc->sc_txint_mask;
2876		linkstatus = status & sc->sc_linkint_mask;
2877
2878		if (linkstatus) {
2879			atw_linkintr(sc, linkstatus);
2880		}
2881
2882		if (rxstatus) {
2883			/* Grab any new packets. */
2884			atw_rxintr(sc);
2885
2886			if (rxstatus & ATW_INTR_RDU) {
2887				printf("%s: receive ring overrun\n",
2888				    device_xname(sc->sc_dev));
2889				/* Get the receive process going again. */
2890				ATW_WRITE(sc, ATW_RDR, 0x1);
2891			}
2892		}
2893
2894		if (txstatus) {
2895			/* Sweep up transmit descriptors. */
2896			atw_txintr(sc, txstatus);
2897
2898			if (txstatus & ATW_INTR_TLT) {
2899				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2900				    device_xname(sc->sc_dev)));
2901				(void)atw_init(&sc->sc_if);
2902			}
2903
2904			if (txstatus & ATW_INTR_TRT) {
2905				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2906				    device_xname(sc->sc_dev)));
2907			}
2908
2909			/* If Tx under-run, increase our transmit threshold
2910			 * if another is available.
2911			 */
2912			txthresh = sc->sc_txthresh + 1;
2913			if ((txstatus & ATW_INTR_TUF) &&
2914			    sc->sc_txth[txthresh].txth_name != NULL) {
2915				/* Idle the transmit process. */
2916				atw_idle(sc, ATW_NAR_ST);
2917
2918				sc->sc_txthresh = txthresh;
2919				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2920				sc->sc_opmode |=
2921				    sc->sc_txth[txthresh].txth_opmode;
2922				printf("%s: transmit underrun; new "
2923				    "threshold: %s\n", device_xname(sc->sc_dev),
2924				    sc->sc_txth[txthresh].txth_name);
2925
2926				/* Set the new threshold and restart
2927				 * the transmit process.
2928				 */
2929				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2930				DELAY(atw_nar_delay);
2931				ATW_WRITE(sc, ATW_TDR, 0x1);
2932				/* XXX Log every Nth underrun from
2933				 * XXX now on?
2934				 */
2935			}
2936		}
2937
2938		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2939			if (status & ATW_INTR_TPS)
2940				printf("%s: transmit process stopped\n",
2941				    device_xname(sc->sc_dev));
2942			if (status & ATW_INTR_RPS)
2943				printf("%s: receive process stopped\n",
2944				    device_xname(sc->sc_dev));
2945			s = splnet();
2946			(void)atw_init(ifp);
2947			splx(s);
2948			break;
2949		}
2950
2951		if (status & ATW_INTR_FBE) {
2952			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2953			s = splnet();
2954			(void)atw_init(ifp);
2955			splx(s);
2956			break;
2957		}
2958
2959		/*
2960		 * Not handled:
2961		 *
2962		 *	Transmit buffer unavailable -- normal
2963		 *	condition, nothing to do, really.
2964		 *
2965		 *	Early receive interrupt -- not available on
2966		 *	all chips, we just use RI.  We also only
2967		 *	use single-segment receive DMA, so this
2968		 *	is mostly useless.
2969		 *
2970		 *      TBD others
2971		 */
2972	}
2973
2974	/* Try to get more packets going. */
2975	s = splnet();
2976	atw_start(ifp);
2977	splx(s);
2978
2979	/* Enable interrupts */
2980	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2981}
2982
2983/*
2984 * atw_idle:
2985 *
2986 *	Cause the transmit and/or receive processes to go idle.
2987 *
2988 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2989 *	process in STSR if I clear SR or ST after the process has already
2990 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2991 *      do not seem to be too reliable. Perhaps I have the sense of the
2992 *	Rx bits switched with the Tx bits?
2993 */
2994void
2995atw_idle(struct atw_softc *sc, u_int32_t bits)
2996{
2997	u_int32_t ackmask = 0, opmode, stsr, test0;
2998	int i, s;
2999
3000	s = splnet();
3001
3002	opmode = sc->sc_opmode & ~bits;
3003
3004	if (bits & ATW_NAR_SR)
3005		ackmask |= ATW_INTR_RPS;
3006
3007	if (bits & ATW_NAR_ST) {
3008		ackmask |= ATW_INTR_TPS;
3009		/* set ATW_NAR_HF to flush TX FIFO. */
3010		opmode |= ATW_NAR_HF;
3011	}
3012
3013	ATW_WRITE(sc, ATW_NAR, opmode);
3014	DELAY(atw_nar_delay);
3015
3016	for (i = 0; i < 1000; i++) {
3017		stsr = ATW_READ(sc, ATW_STSR);
3018		if ((stsr & ackmask) == ackmask)
3019			break;
3020		DELAY(10);
3021	}
3022
3023	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3024
3025	if ((stsr & ackmask) == ackmask)
3026		goto out;
3027
3028	test0 = ATW_READ(sc, ATW_TEST0);
3029
3030	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3031	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3032		printf("%s: transmit process not idle [%s]\n",
3033		    device_xname(sc->sc_dev),
3034		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3035		printf("%s: bits %08x test0 %08x stsr %08x\n",
3036		    device_xname(sc->sc_dev), bits, test0, stsr);
3037	}
3038
3039	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3040	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3041		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3042		    device_xname(sc->sc_dev),
3043		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3044		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3045		    device_xname(sc->sc_dev), bits, test0, stsr));
3046	}
3047out:
3048	if ((bits & ATW_NAR_ST) != 0)
3049		atw_txdrain(sc);
3050	splx(s);
3051	return;
3052}
3053
3054/*
3055 * atw_linkintr:
3056 *
3057 *	Helper; handle link-status interrupts.
3058 */
3059void
3060atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3061{
3062	struct ieee80211com *ic = &sc->sc_ic;
3063
3064	if (ic->ic_state != IEEE80211_S_RUN)
3065		return;
3066
3067	if (linkstatus & ATW_INTR_LINKON) {
3068		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3069		sc->sc_rescan_timer = 0;
3070	} else if (linkstatus & ATW_INTR_LINKOFF) {
3071		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3072		if (ic->ic_opmode != IEEE80211_M_STA)
3073			return;
3074		sc->sc_rescan_timer = 3;
3075		sc->sc_if.if_timer = 1;
3076	}
3077}
3078
3079#if 0
3080static inline int
3081atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3082{
3083	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3084		return 0;
3085	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3086		return 0;
3087	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3088}
3089#endif
3090
3091/*
3092 * atw_rxintr:
3093 *
3094 *	Helper; handle receive interrupts.
3095 */
3096void
3097atw_rxintr(struct atw_softc *sc)
3098{
3099	static int rate_tbl[] = {2, 4, 11, 22, 44};
3100	struct ieee80211com *ic = &sc->sc_ic;
3101	struct ieee80211_node *ni;
3102	struct ieee80211_frame_min *wh;
3103	struct ifnet *ifp = &sc->sc_if;
3104	struct atw_rxsoft *rxs;
3105	struct mbuf *m;
3106	u_int32_t rxstat;
3107	int i, s, len, rate, rate0;
3108	u_int32_t rssi, ctlrssi;
3109
3110	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3111		rxs = &sc->sc_rxsoft[i];
3112
3113		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3114
3115		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3116		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3117		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3118
3119		if (rxstat & ATW_RXSTAT_OWN) {
3120			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3121			break;
3122		}
3123
3124		sc->sc_rxptr = ATW_NEXTRX(i);
3125
3126		DPRINTF3(sc,
3127		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3128		    device_xname(sc->sc_dev),
3129		    rxstat, ctlrssi,
3130		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3131		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3132
3133		/*
3134		 * Make sure the packet fits in one buffer.  This should
3135		 * always be the case.
3136		 */
3137		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3138		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3139			printf("%s: incoming packet spilled, resetting\n",
3140			    device_xname(sc->sc_dev));
3141			(void)atw_init(ifp);
3142			return;
3143		}
3144
3145		/*
3146		 * If an error occurred, update stats, clear the status
3147		 * word, and leave the packet buffer in place.  It will
3148		 * simply be reused the next time the ring comes around.
3149		 */
3150		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3151#define	PRINTERR(bit, str)						\
3152			if (rxstat & (bit))				\
3153				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3154				    str)
3155			ifp->if_ierrors++;
3156			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3157			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3158#if 0
3159			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3160			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3161			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3162			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3163#endif
3164#undef PRINTERR
3165			atw_init_rxdesc(sc, i);
3166			continue;
3167		}
3168
3169		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3170		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3171
3172		/*
3173		 * No errors; receive the packet.  Note the ADM8211
3174		 * includes the CRC in promiscuous mode.
3175		 */
3176		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3177
3178		/*
3179		 * Allocate a new mbuf cluster.  If that fails, we are
3180		 * out of memory, and must drop the packet and recycle
3181		 * the buffer that's already attached to this descriptor.
3182		 */
3183		m = rxs->rxs_mbuf;
3184		if (atw_add_rxbuf(sc, i) != 0) {
3185			ifp->if_ierrors++;
3186			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3187			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3188			atw_init_rxdesc(sc, i);
3189			continue;
3190		}
3191
3192		ifp->if_ipackets++;
3193		m_set_rcvif(m, ifp);
3194		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3195
3196		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3197
3198		/* The RSSI comes straight from a register in the
3199		 * baseband processor.  I know that for the RF3000,
3200		 * the RSSI register also contains the antenna-selection
3201		 * bits.  Mask those off.
3202		 *
3203		 * TBD Treat other basebands.
3204		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3205		 */
3206		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3207			rssi = ctlrssi & RF3000_RSSI_MASK;
3208		else
3209			rssi = ctlrssi;
3210
3211		s = splnet();
3212
3213		/* Pass this up to any BPF listeners. */
3214		if (sc->sc_radiobpf != NULL) {
3215			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3216
3217			tap->ar_rate = rate;
3218
3219			/* TBD verify units are dB */
3220			tap->ar_antsignal = (int)rssi;
3221			if (sc->sc_opmode & ATW_NAR_PR)
3222				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3223			else
3224				tap->ar_flags = 0;
3225
3226			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3227				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3228
3229			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3230			    m, BPF_D_IN);
3231 		}
3232
3233		sc->sc_recv_ev.ev_count++;
3234
3235		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3236			if (rxstat & ATW_RXSTAT_CRC16E)
3237				sc->sc_crc16e_ev.ev_count++;
3238			if (rxstat & ATW_RXSTAT_CRC32E)
3239				sc->sc_crc32e_ev.ev_count++;
3240			if (rxstat & ATW_RXSTAT_ICVE)
3241				sc->sc_icve_ev.ev_count++;
3242			if (rxstat & ATW_RXSTAT_SFDE)
3243				sc->sc_sfde_ev.ev_count++;
3244			if (rxstat & ATW_RXSTAT_SIGE)
3245				sc->sc_sige_ev.ev_count++;
3246			ifp->if_ierrors++;
3247			m_freem(m);
3248			splx(s);
3249			continue;
3250		}
3251
3252		if (sc->sc_opmode & ATW_NAR_PR)
3253			m_adj(m, -IEEE80211_CRC_LEN);
3254
3255		wh = mtod(m, struct ieee80211_frame_min *);
3256		ni = ieee80211_find_rxnode(ic, wh);
3257#if 0
3258		if (atw_hw_decrypted(sc, wh)) {
3259			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3260			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3261		}
3262#endif
3263		ieee80211_input(ic, m, ni, (int)rssi, 0);
3264		ieee80211_free_node(ni);
3265		splx(s);
3266	}
3267}
3268
3269/*
3270 * atw_txintr:
3271 *
3272 *	Helper; handle transmit interrupts.
3273 */
3274void
3275atw_txintr(struct atw_softc *sc, uint32_t status)
3276{
3277	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3278	struct ifnet *ifp = &sc->sc_if;
3279	struct atw_txsoft *txs;
3280	u_int32_t txstat;
3281	int s;
3282
3283	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3284	    device_xname(sc->sc_dev), sc->sc_flags));
3285
3286	s = splnet();
3287
3288	/*
3289	 * Go through our Tx list and free mbufs for those
3290	 * frames that have been transmitted.
3291	 */
3292	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3293		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3294		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3295
3296#ifdef ATW_DEBUG
3297		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3298			int i;
3299			printf("    txsoft %p transmit chain:\n", txs);
3300			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3301			    txs->txs_ndescs - 1,
3302			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3303			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3304				printf("     descriptor %d:\n", i);
3305				printf("       at_status:   0x%08x\n",
3306				    le32toh(sc->sc_txdescs[i].at_stat));
3307				printf("       at_flags:      0x%08x\n",
3308				    le32toh(sc->sc_txdescs[i].at_flags));
3309				printf("       at_buf1: 0x%08x\n",
3310				    le32toh(sc->sc_txdescs[i].at_buf1));
3311				printf("       at_buf2: 0x%08x\n",
3312				    le32toh(sc->sc_txdescs[i].at_buf2));
3313				if (i == txs->txs_lastdesc)
3314					break;
3315			}
3316			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3317			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3318		}
3319#endif
3320
3321		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3322		if (txstat & ATW_TXSTAT_OWN) {
3323			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3324			    BUS_DMASYNC_PREREAD);
3325			break;
3326		}
3327
3328		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3329
3330		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3331		    0, txs->txs_dmamap->dm_mapsize,
3332		    BUS_DMASYNC_POSTWRITE);
3333		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3334		m_freem(txs->txs_mbuf);
3335		txs->txs_mbuf = NULL;
3336
3337		sc->sc_txfree += txs->txs_ndescs;
3338		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3339
3340		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3341		sc->sc_tx_timer = 0;
3342		ifp->if_flags &= ~IFF_OACTIVE;
3343
3344		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3345		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3346			snprintb(txstat_buf, sizeof(txstat_buf),
3347			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3348			printf("%s: txstat %s %" __PRIuBITS "\n",
3349			    device_xname(sc->sc_dev), txstat_buf,
3350			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3351		}
3352
3353		sc->sc_xmit_ev.ev_count++;
3354
3355		/*
3356		 * Check for errors and collisions.
3357		 */
3358		if (txstat & ATW_TXSTAT_TUF)
3359			sc->sc_tuf_ev.ev_count++;
3360		if (txstat & ATW_TXSTAT_TLT)
3361			sc->sc_tlt_ev.ev_count++;
3362		if (txstat & ATW_TXSTAT_TRT)
3363			sc->sc_trt_ev.ev_count++;
3364		if (txstat & ATW_TXSTAT_TRO)
3365			sc->sc_tro_ev.ev_count++;
3366		if (txstat & ATW_TXSTAT_SOFBR)
3367			sc->sc_sofbr_ev.ev_count++;
3368
3369		if ((txstat & ATW_TXSTAT_ES) == 0)
3370			ifp->if_collisions +=
3371			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3372		else
3373			ifp->if_oerrors++;
3374
3375		ifp->if_opackets++;
3376	}
3377
3378	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3379
3380	splx(s);
3381}
3382
3383/*
3384 * atw_watchdog:	[ifnet interface function]
3385 *
3386 *	Watchdog timer handler.
3387 */
3388void
3389atw_watchdog(struct ifnet *ifp)
3390{
3391	struct atw_softc *sc = ifp->if_softc;
3392	struct ieee80211com *ic = &sc->sc_ic;
3393
3394	ifp->if_timer = 0;
3395	if (!device_is_active(sc->sc_dev))
3396		return;
3397
3398	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3399		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3400	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3401	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3402		printf("%s: transmit timeout\n", ifp->if_xname);
3403		ifp->if_oerrors++;
3404		(void)atw_init(ifp);
3405		atw_start(ifp);
3406	}
3407	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3408		ifp->if_timer = 1;
3409	ieee80211_watchdog(ic);
3410}
3411
3412static void
3413atw_evcnt_detach(struct atw_softc *sc)
3414{
3415	evcnt_detach(&sc->sc_sige_ev);
3416	evcnt_detach(&sc->sc_sfde_ev);
3417	evcnt_detach(&sc->sc_icve_ev);
3418	evcnt_detach(&sc->sc_crc32e_ev);
3419	evcnt_detach(&sc->sc_crc16e_ev);
3420	evcnt_detach(&sc->sc_recv_ev);
3421
3422	evcnt_detach(&sc->sc_tuf_ev);
3423	evcnt_detach(&sc->sc_tro_ev);
3424	evcnt_detach(&sc->sc_trt_ev);
3425	evcnt_detach(&sc->sc_tlt_ev);
3426	evcnt_detach(&sc->sc_sofbr_ev);
3427	evcnt_detach(&sc->sc_xmit_ev);
3428
3429	evcnt_detach(&sc->sc_rxpkt1in_ev);
3430	evcnt_detach(&sc->sc_rxamatch_ev);
3431	evcnt_detach(&sc->sc_workaround1_ev);
3432	evcnt_detach(&sc->sc_misc_ev);
3433}
3434
3435static void
3436atw_evcnt_attach(struct atw_softc *sc)
3437{
3438	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3439	    NULL, sc->sc_if.if_xname, "recv");
3440	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3441	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3442	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3443	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3444	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3445	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3446	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3447	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3448	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3449	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3450
3451	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3452	    NULL, sc->sc_if.if_xname, "xmit");
3453	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3454	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3455	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3456	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3457	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3458	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3459	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3460	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3461	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3462	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3463
3464	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3465	    NULL, sc->sc_if.if_xname, "misc");
3466	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3467	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3468	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3469	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3470	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3471	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3472}
3473
3474#ifdef ATW_DEBUG
3475static void
3476atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3477{
3478	struct atw_softc *sc = ifp->if_softc;
3479	struct mbuf *m;
3480	int i, noctets = 0;
3481
3482	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3483	    m0->m_pkthdr.len);
3484
3485	for (m = m0; m; m = m->m_next) {
3486		if (m->m_len == 0)
3487			continue;
3488		for (i = 0; i < m->m_len; i++) {
3489			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3490			if (++noctets % 24 == 0)
3491				printf("\n");
3492		}
3493	}
3494	printf("%s%s: %d bytes emitted\n",
3495	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3496}
3497#endif /* ATW_DEBUG */
3498
3499/*
3500 * atw_start:		[ifnet interface function]
3501 *
3502 *	Start packet transmission on the interface.
3503 */
3504void
3505atw_start(struct ifnet *ifp)
3506{
3507	struct atw_softc *sc = ifp->if_softc;
3508	struct ieee80211_key *k;
3509	struct ieee80211com *ic = &sc->sc_ic;
3510	struct ieee80211_node *ni;
3511	struct ieee80211_frame_min *whm;
3512	struct ieee80211_frame *wh;
3513	struct atw_frame *hh;
3514	uint16_t hdrctl;
3515	struct mbuf *m0, *m;
3516	struct atw_txsoft *txs;
3517	struct atw_txdesc *txd;
3518	int npkt, rate;
3519	bus_dmamap_t dmamap;
3520	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3521
3522	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3523	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3524
3525	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3526		return;
3527
3528	/*
3529	 * Remember the previous number of free descriptors and
3530	 * the first descriptor we'll use.
3531	 */
3532	ofree = sc->sc_txfree;
3533	firsttx = lasttx = sc->sc_txnext;
3534
3535	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3536	    device_xname(sc->sc_dev), ofree, firsttx));
3537
3538	/*
3539	 * Loop through the send queue, setting up transmit descriptors
3540	 * until we drain the queue, or use up all available transmit
3541	 * descriptors.
3542	 */
3543	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3544	       sc->sc_txfree != 0) {
3545
3546		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3547
3548		/*
3549		 * Grab a packet off the management queue, if it
3550		 * is not empty. Otherwise, from the data queue.
3551		 */
3552		IF_DEQUEUE(&ic->ic_mgtq, m0);
3553		if (m0 != NULL) {
3554			ni = M_GETCTX(m0, struct ieee80211_node *);
3555			M_CLEARCTX(m0);
3556		} else if (ic->ic_state != IEEE80211_S_RUN)
3557			break; /* send no data until associated */
3558		else {
3559			IFQ_DEQUEUE(&ifp->if_snd, m0);
3560			if (m0 == NULL)
3561				break;
3562			bpf_mtap(ifp, m0, BPF_D_OUT);
3563			ni = ieee80211_find_txnode(ic,
3564			    mtod(m0, struct ether_header *)->ether_dhost);
3565			if (ni == NULL) {
3566				ifp->if_oerrors++;
3567				break;
3568			}
3569			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3570				ieee80211_free_node(ni);
3571				ifp->if_oerrors++;
3572				break;
3573			}
3574		}
3575
3576		rate = MAX(ieee80211_get_rate(ni), 2);
3577
3578		whm = mtod(m0, struct ieee80211_frame_min *);
3579
3580		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3581			k = NULL;
3582		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3583			m_freem(m0);
3584			ieee80211_free_node(ni);
3585			ifp->if_oerrors++;
3586			break;
3587		}
3588#if 0
3589		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3590		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3591			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3592#endif
3593
3594		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3595			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3596
3597		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3598		    ic->ic_flags, ic->ic_fragthreshold, rate,
3599		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3600			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3601			m_freem(m0);
3602			break;
3603		}
3604
3605		/* XXX Misleading if fragmentation is enabled.  Better
3606		 * to fragment in software?
3607		 */
3608		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3609
3610		/*
3611		 * Pass the packet to any BPF listeners.
3612		 */
3613		bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3614
3615		if (sc->sc_radiobpf != NULL) {
3616			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3617
3618			tap->at_rate = rate;
3619
3620			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3621			    m0, BPF_D_OUT);
3622		}
3623
3624		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3625
3626		if (ni != NULL)
3627			ieee80211_free_node(ni);
3628
3629		if (m0 == NULL) {
3630			ifp->if_oerrors++;
3631			break;
3632		}
3633
3634		/* just to make sure. */
3635		m0 = m_pullup(m0, sizeof(struct atw_frame));
3636
3637		if (m0 == NULL) {
3638			ifp->if_oerrors++;
3639			break;
3640		}
3641
3642		hh = mtod(m0, struct atw_frame *);
3643		wh = &hh->atw_ihdr;
3644
3645		/* Copy everything we need from the 802.11 header:
3646		 * Frame Control; address 1, address 3, or addresses
3647		 * 3 and 4. NIC fills in BSSID, SA.
3648		 */
3649		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3650			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3651				panic("%s: illegal WDS frame",
3652				    device_xname(sc->sc_dev));
3653			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3654		} else
3655			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3656
3657		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3658
3659		/* initialize remaining Tx parameters */
3660		memset(&hh->u, 0, sizeof(hh->u));
3661
3662		hh->atw_rate = rate * 5;
3663		/* XXX this could be incorrect if M_FCS. _encap should
3664		 * probably strip FCS just in case it sticks around in
3665		 * bridged packets.
3666		 */
3667		hh->atw_service = 0x00; /* XXX guess */
3668		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3669		    sizeof(struct atw_frame));
3670
3671		/* never fragment multicast frames */
3672		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3673			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3674		else {
3675			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3676			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3677				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3678			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3679		}
3680
3681		hh->atw_rtylmt = 3;
3682#if 0
3683		if (do_encrypt) {
3684			hdrctl |= htole16(ATW_HDRCTL_WEP);
3685			hh->atw_keyid = ic->ic_def_txkey;
3686		}
3687#endif
3688
3689		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3690		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3691		if (txs->txs_d0.d_residue)
3692			hh->atw_head_plcplen |= htole16(0x8000);
3693		if (txs->txs_dn.d_residue)
3694			hh->atw_tail_plcplen |= htole16(0x8000);
3695		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3696		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3697
3698		hh->atw_hdrctl = hdrctl;
3699		hh->atw_fragnum = npkt << 4;
3700#ifdef ATW_DEBUG
3701
3702		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3703			printf("%s: dst = %s, rate = 0x%02x, "
3704			    "service = 0x%02x, paylen = 0x%04x\n",
3705			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3706			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3707
3708			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3709			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3710			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3711			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3712			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3713			    hh->atw_tail_dur, hh->atw_head_dur);
3714
3715			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3716			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3717			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3718			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3719
3720			printf("%s: keyid = %d\n",
3721			    device_xname(sc->sc_dev), hh->atw_keyid);
3722
3723			atw_dump_pkt(ifp, m0);
3724		}
3725#endif /* ATW_DEBUG */
3726
3727		dmamap = txs->txs_dmamap;
3728
3729		/*
3730		 * Load the DMA map.  Copy and try (once) again if the packet
3731		 * didn't fit in the alloted number of segments.
3732		 */
3733		for (first = 1;
3734		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3735		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3736		     first = 0) {
3737			MGETHDR(m, M_DONTWAIT, MT_DATA);
3738			if (m == NULL) {
3739				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3740				break;
3741			}
3742			if (m0->m_pkthdr.len > MHLEN) {
3743				MCLGET(m, M_DONTWAIT);
3744				if ((m->m_flags & M_EXT) == 0) {
3745					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3746					    "cluster\n");
3747					m_freem(m);
3748					break;
3749				}
3750			}
3751			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3752			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3753			m_freem(m0);
3754			m0 = m;
3755			m = NULL;
3756		}
3757		if (error != 0) {
3758			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3759			    "error = %d\n", error);
3760			m_freem(m0);
3761			break;
3762		}
3763
3764		/*
3765		 * Ensure we have enough descriptors free to describe
3766		 * the packet.
3767		 */
3768		if (dmamap->dm_nsegs > sc->sc_txfree) {
3769			/*
3770			 * Not enough free descriptors to transmit
3771			 * this packet.  Unload the DMA map and
3772			 * drop the packet.  Notify the upper layer
3773			 * that there are no more slots left.
3774			 *
3775			 * XXX We could allocate an mbuf and copy, but
3776			 * XXX it is worth it?
3777			 */
3778			bus_dmamap_unload(sc->sc_dmat, dmamap);
3779			m_freem(m0);
3780			break;
3781		}
3782
3783		/*
3784		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3785		 */
3786
3787		/* Sync the DMA map. */
3788		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3789		    BUS_DMASYNC_PREWRITE);
3790
3791		/* XXX arbitrary retry limit; 8 because I have seen it in
3792		 * use already and maybe 0 means "no tries" !
3793		 */
3794		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3795
3796		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3797		    device_xname(sc->sc_dev), rate * 5));
3798		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3799
3800		/*
3801		 * Initialize the transmit descriptors.
3802		 */
3803		for (nexttx = sc->sc_txnext, seg = 0;
3804		     seg < dmamap->dm_nsegs;
3805		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3806			/*
3807			 * If this is the first descriptor we're
3808			 * enqueueing, don't set the OWN bit just
3809			 * yet.  That could cause a race condition.
3810			 * We'll do it below.
3811			 */
3812			txd = &sc->sc_txdescs[nexttx];
3813			txd->at_ctl = ctl |
3814			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3815
3816			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3817			txd->at_flags =
3818			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3819			                   ATW_TXFLAG_TBS1_MASK)) |
3820			    ((nexttx == (ATW_NTXDESC - 1))
3821			        ? htole32(ATW_TXFLAG_TER) : 0);
3822			lasttx = nexttx;
3823		}
3824
3825		/* Set `first segment' and `last segment' appropriately. */
3826		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3827		    htole32(ATW_TXFLAG_FS);
3828		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3829
3830#ifdef ATW_DEBUG
3831		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3832			printf("     txsoft %p transmit chain:\n", txs);
3833			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3834				printf("     descriptor %d:\n", seg);
3835				printf("       at_ctl:   0x%08x\n",
3836				    le32toh(sc->sc_txdescs[seg].at_ctl));
3837				printf("       at_flags:      0x%08x\n",
3838				    le32toh(sc->sc_txdescs[seg].at_flags));
3839				printf("       at_buf1: 0x%08x\n",
3840				    le32toh(sc->sc_txdescs[seg].at_buf1));
3841				printf("       at_buf2: 0x%08x\n",
3842				    le32toh(sc->sc_txdescs[seg].at_buf2));
3843				if (seg == lasttx)
3844					break;
3845			}
3846		}
3847#endif
3848
3849		/* Sync the descriptors we're using. */
3850		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3851		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3852
3853		/*
3854		 * Store a pointer to the packet so we can free it later,
3855		 * and remember what txdirty will be once the packet is
3856		 * done.
3857		 */
3858		txs->txs_mbuf = m0;
3859		txs->txs_firstdesc = sc->sc_txnext;
3860		txs->txs_lastdesc = lasttx;
3861		txs->txs_ndescs = dmamap->dm_nsegs;
3862
3863		/* Advance the tx pointer. */
3864		sc->sc_txfree -= dmamap->dm_nsegs;
3865		sc->sc_txnext = nexttx;
3866
3867		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3868		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3869	}
3870
3871	if (sc->sc_txfree != ofree) {
3872		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3873		    device_xname(sc->sc_dev), lasttx, firsttx));
3874		/*
3875		 * Cause a transmit interrupt to happen on the
3876		 * last packet we enqueued.
3877		 */
3878		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3879		ATW_CDTXSYNC(sc, lasttx, 1,
3880		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3881
3882		/*
3883		 * The entire packet chain is set up.  Give the
3884		 * first descriptor to the chip now.
3885		 */
3886		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3887		ATW_CDTXSYNC(sc, firsttx, 1,
3888		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3889
3890		/* Wake up the transmitter. */
3891		ATW_WRITE(sc, ATW_TDR, 0x1);
3892
3893		if (txs == NULL || sc->sc_txfree == 0)
3894			ifp->if_flags |= IFF_OACTIVE;
3895
3896		/* Set a watchdog timer in case the chip flakes out. */
3897		sc->sc_tx_timer = 5;
3898		ifp->if_timer = 1;
3899	}
3900}
3901
3902/*
3903 * atw_ioctl:		[ifnet interface function]
3904 *
3905 *	Handle control requests from the operator.
3906 */
3907int
3908atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3909{
3910	struct atw_softc *sc = ifp->if_softc;
3911	struct ieee80211req *ireq;
3912	int s, error = 0;
3913
3914	s = splnet();
3915
3916	switch (cmd) {
3917	case SIOCSIFFLAGS:
3918		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3919			break;
3920		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3921		case IFF_UP|IFF_RUNNING:
3922			/*
3923			 * To avoid rescanning another access point,
3924			 * do not call atw_init() here.  Instead,
3925			 * only reflect media settings.
3926			 */
3927			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3928				atw_filter_setup(sc);
3929			break;
3930		case IFF_UP:
3931			error = atw_init(ifp);
3932			break;
3933		case IFF_RUNNING:
3934			atw_stop(ifp, 1);
3935			break;
3936		case 0:
3937			break;
3938		}
3939		break;
3940	case SIOCADDMULTI:
3941	case SIOCDELMULTI:
3942		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3943			if (ifp->if_flags & IFF_RUNNING)
3944				atw_filter_setup(sc); /* do not rescan */
3945			error = 0;
3946		}
3947		break;
3948	case SIOCS80211:
3949		ireq = data;
3950		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3951			if ((error = kauth_authorize_network(curlwp->l_cred,
3952			    KAUTH_NETWORK_INTERFACE,
3953			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3954			    (void *)cmd, NULL)) != 0)
3955				break;
3956			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3957			      ireq->i_val <= IEEE80211_FRAG_MAX))
3958				error = EINVAL;
3959			else
3960				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3961			break;
3962		}
3963		/*FALLTHROUGH*/
3964	default:
3965		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3966		if (error == ENETRESET || error == ERESTART) {
3967			if (is_running(ifp))
3968				error = atw_init(ifp);
3969			else
3970				error = 0;
3971		}
3972		break;
3973	}
3974
3975	/* Try to get more packets going. */
3976	if (device_is_active(sc->sc_dev))
3977		atw_start(ifp);
3978
3979	splx(s);
3980	return (error);
3981}
3982
3983static int
3984atw_media_change(struct ifnet *ifp)
3985{
3986	int error;
3987
3988	error = ieee80211_media_change(ifp);
3989	if (error == ENETRESET) {
3990		if (is_running(ifp))
3991			error = atw_init(ifp);
3992		else
3993			error = 0;
3994	}
3995	return error;
3996}
3997