atw.c revision 1.147
1/*	$NetBSD: atw.c,v 1.147 2009/11/12 19:30:49 dyoung Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.147 2009/11/12 19:30:49 dyoung Exp $");
38
39#include "bpfilter.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/kernel.h>
47#include <sys/socket.h>
48#include <sys/ioctl.h>
49#include <sys/errno.h>
50#include <sys/device.h>
51#include <sys/kauth.h>
52#include <sys/time.h>
53#include <lib/libkern/libkern.h>
54
55#include <machine/endian.h>
56
57#include <uvm/uvm_extern.h>
58
59#include <net/if.h>
60#include <net/if_dl.h>
61#include <net/if_media.h>
62#include <net/if_ether.h>
63
64#include <net80211/ieee80211_netbsd.h>
65#include <net80211/ieee80211_var.h>
66#include <net80211/ieee80211_radiotap.h>
67
68#if NBPFILTER > 0
69#include <net/bpf.h>
70#endif
71
72#include <sys/bus.h>
73#include <sys/intr.h>
74
75#include <dev/ic/atwreg.h>
76#include <dev/ic/rf3000reg.h>
77#include <dev/ic/si4136reg.h>
78#include <dev/ic/atwvar.h>
79#include <dev/ic/smc93cx6var.h>
80
81/* XXX TBD open questions
82 *
83 *
84 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
85 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
86 * handle this for me?
87 *
88 */
89/* device attachment
90 *
91 *    print TOFS[012]
92 *
93 * device initialization
94 *
95 *    clear ATW_FRCTL_MAXPSP to disable max power saving
96 *    set ATW_TXBR_ALCUPDATE to enable ALC
97 *    set TOFS[012]? (hope not)
98 *    disable rx/tx
99 *    set ATW_PAR_SWR (software reset)
100 *    wait for ATW_PAR_SWR clear
101 *    disable interrupts
102 *    ack status register
103 *    enable interrupts
104 *
105 * rx/tx initialization
106 *
107 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
108 *    allocate and init descriptor rings
109 *    write ATW_PAR_DSL (descriptor skip length)
110 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
111 *    write ATW_NAR_SQ for one/both transmit descriptor rings
112 *    write ATW_NAR_SQ for one/both transmit descriptor rings
113 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 *
115 * rx/tx end
116 *
117 *    stop DMA
118 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *    flush tx w/ ATW_NAR_HF
120 *
121 * scan
122 *
123 *    initialize rx/tx
124 *
125 * BSS join: (re)association response
126 *
127 *    set ATW_FRCTL_AID
128 *
129 * optimizations ???
130 *
131 */
132
133#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
134
135int atw_pseudo_milli = 1;
136int atw_magic_delay1 = 100 * 1000;
137int atw_magic_delay2 = 100 * 1000;
138/* more magic multi-millisecond delays (units: microseconds) */
139int atw_nar_delay = 20 * 1000;
140int atw_magic_delay4 = 10 * 1000;
141int atw_rf_delay1 = 10 * 1000;
142int atw_rf_delay2 = 5 * 1000;
143int atw_plcphd_delay = 2 * 1000;
144int atw_bbp_io_enable_delay = 20 * 1000;
145int atw_bbp_io_disable_delay = 2 * 1000;
146int atw_writewep_delay = 1000;
147int atw_beacon_len_adjust = 4;
148int atw_dwelltime = 200;
149int atw_xindiv2 = 0;
150
151#ifdef ATW_DEBUG
152int atw_debug = 0;
153
154#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
155#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
156#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
157#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
158#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160
161static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
162static void	atw_print_regs(struct atw_softc *, const char *);
163
164/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165#	ifdef ATW_BBPDEBUG
166static void	atw_rf3000_print(struct atw_softc *);
167static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
168#	endif /* ATW_BBPDEBUG */
169
170#	ifdef ATW_SYNDEBUG
171static void	atw_si4126_print(struct atw_softc *);
172static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
173#	endif /* ATW_SYNDEBUG */
174
175#else
176#define ATW_DPRINTF(x)
177#define ATW_DPRINTF2(x)
178#define ATW_DPRINTF3(x)
179#define	DPRINTF(sc, x)	/* nothing */
180#define	DPRINTF2(sc, x)	/* nothing */
181#define	DPRINTF3(sc, x)	/* nothing */
182#endif
183
184/* ifnet methods */
185int	atw_init(struct ifnet *);
186int	atw_ioctl(struct ifnet *, u_long, void *);
187void	atw_start(struct ifnet *);
188void	atw_stop(struct ifnet *, int);
189void	atw_watchdog(struct ifnet *);
190
191/* Device attachment */
192void	atw_attach(struct atw_softc *);
193int	atw_detach(struct atw_softc *);
194static void atw_evcnt_attach(struct atw_softc *);
195static void atw_evcnt_detach(struct atw_softc *);
196
197/* Rx/Tx process */
198int	atw_add_rxbuf(struct atw_softc *, int);
199void	atw_idle(struct atw_softc *, u_int32_t);
200void	atw_rxdrain(struct atw_softc *);
201void	atw_txdrain(struct atw_softc *);
202
203/* Device (de)activation and power state */
204void	atw_reset(struct atw_softc *);
205
206/* Interrupt handlers */
207void	atw_linkintr(struct atw_softc *, u_int32_t);
208void	atw_rxintr(struct atw_softc *);
209void	atw_txintr(struct atw_softc *, uint32_t);
210
211/* 802.11 state machine */
212static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
213static void	atw_next_scan(void *);
214static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
215		              struct ieee80211_node *, int, int, u_int32_t);
216static int	atw_tune(struct atw_softc *);
217
218/* Device initialization */
219static void	atw_bbp_io_init(struct atw_softc *);
220static void	atw_cfp_init(struct atw_softc *);
221static void	atw_cmdr_init(struct atw_softc *);
222static void	atw_ifs_init(struct atw_softc *);
223static void	atw_nar_init(struct atw_softc *);
224static void	atw_response_times_init(struct atw_softc *);
225static void	atw_rf_reset(struct atw_softc *);
226static void	atw_test1_init(struct atw_softc *);
227static void	atw_tofs0_init(struct atw_softc *);
228static void	atw_tofs2_init(struct atw_softc *);
229static void	atw_txlmt_init(struct atw_softc *);
230static void	atw_wcsr_init(struct atw_softc *);
231
232/* Key management */
233static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
234static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
235	const u_int8_t[IEEE80211_ADDR_LEN]);
236static void atw_key_update_begin(struct ieee80211com *);
237static void atw_key_update_end(struct ieee80211com *);
238
239/* RAM/ROM utilities */
240static void	atw_clear_sram(struct atw_softc *);
241static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
242static int	atw_read_srom(struct atw_softc *);
243
244/* BSS setup */
245static void	atw_predict_beacon(struct atw_softc *);
246static void	atw_start_beacon(struct atw_softc *, int);
247static void	atw_write_bssid(struct atw_softc *);
248static void	atw_write_ssid(struct atw_softc *);
249static void	atw_write_sup_rates(struct atw_softc *);
250static void	atw_write_wep(struct atw_softc *);
251
252/* Media */
253static int	atw_media_change(struct ifnet *);
254
255static void	atw_filter_setup(struct atw_softc *);
256
257/* 802.11 utilities */
258static uint64_t			atw_get_tsft(struct atw_softc *);
259static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
260				                   uint32_t);
261static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
262static void			atw_node_free(struct ieee80211_node *);
263
264/*
265 * Tuner/transceiver/modem
266 */
267static void	atw_bbp_io_enable(struct atw_softc *, int);
268
269/* RFMD RF3000 Baseband Processor */
270static int	atw_rf3000_init(struct atw_softc *);
271static int	atw_rf3000_tune(struct atw_softc *, u_int);
272static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
273
274/* Silicon Laboratories Si4126 RF/IF Synthesizer */
275static void	atw_si4126_tune(struct atw_softc *, u_int);
276static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
277
278const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
279const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
280
281const char *atw_tx_state[] = {
282	"STOPPED",
283	"RUNNING - read descriptor",
284	"RUNNING - transmitting",
285	"RUNNING - filling fifo",	/* XXX */
286	"SUSPENDED",
287	"RUNNING -- write descriptor",
288	"RUNNING -- write last descriptor",
289	"RUNNING - fifo full"
290};
291
292const char *atw_rx_state[] = {
293	"STOPPED",
294	"RUNNING - read descriptor",
295	"RUNNING - check this packet, pre-fetch next",
296	"RUNNING - wait for reception",
297	"SUSPENDED",
298	"RUNNING - write descriptor",
299	"RUNNING - flush fifo",
300	"RUNNING - fifo drain"
301};
302
303static inline int
304is_running(struct ifnet *ifp)
305{
306	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
307}
308
309int
310atw_activate(device_t self, enum devact act)
311{
312	struct atw_softc *sc = device_private(self);
313
314	switch (act) {
315	case DVACT_DEACTIVATE:
316		if_deactivate(&sc->sc_if);
317		return 0;
318	default:
319		return EOPNOTSUPP;
320	}
321}
322
323bool
324atw_suspend(device_t self PMF_FN_ARGS)
325{
326	struct atw_softc *sc = device_private(self);
327
328	atw_rxdrain(sc);
329	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330
331	return true;
332}
333
334/* Returns -1 on failure. */
335static int
336atw_read_srom(struct atw_softc *sc)
337{
338	struct seeprom_descriptor sd;
339	uint32_t test0, fail_bits;
340
341	(void)memset(&sd, 0, sizeof(sd));
342
343	test0 = ATW_READ(sc, ATW_TEST0);
344
345	switch (sc->sc_rev) {
346	case ATW_REVISION_BA:
347	case ATW_REVISION_CA:
348		fail_bits = ATW_TEST0_EPNE;
349		break;
350	default:
351		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
352		break;
353	}
354	if ((test0 & fail_bits) != 0) {
355		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356		return -1;
357	}
358
359	switch (test0 & ATW_TEST0_EPTYP_MASK) {
360	case ATW_TEST0_EPTYP_93c66:
361		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362		sc->sc_sromsz = 512;
363		sd.sd_chip = C56_66;
364		break;
365	case ATW_TEST0_EPTYP_93c46:
366		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367		sc->sc_sromsz = 128;
368		sd.sd_chip = C46;
369		break;
370	default:
371		printf("%s: unknown SROM type %" __PRIuBITS "\n",
372		    device_xname(sc->sc_dev),
373		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374		return -1;
375	}
376
377	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
378
379	if (sc->sc_srom == NULL) {
380		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
381		return -1;
382	}
383
384	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
385
386	/* ADM8211 has a single 32-bit register for controlling the
387	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
388	 * "ready" bit. The ADM8211 input/output sense is the reverse
389	 * of read_seeprom's.
390	 */
391	sd.sd_tag = sc->sc_st;
392	sd.sd_bsh = sc->sc_sh;
393	sd.sd_regsize = 4;
394	sd.sd_control_offset = ATW_SPR;
395	sd.sd_status_offset = ATW_SPR;
396	sd.sd_dataout_offset = ATW_SPR;
397	sd.sd_CK = ATW_SPR_SCLK;
398	sd.sd_CS = ATW_SPR_SCS;
399	sd.sd_DI = ATW_SPR_SDO;
400	sd.sd_DO = ATW_SPR_SDI;
401	sd.sd_MS = ATW_SPR_SRS;
402	sd.sd_RDY = 0;
403
404	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
405		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
406		free(sc->sc_srom, M_DEVBUF);
407		return -1;
408	}
409#ifdef ATW_DEBUG
410	{
411		int i;
412		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
413		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
414			if (((i % 8) == 0) && (i != 0)) {
415				ATW_DPRINTF(("\n\t"));
416			}
417			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
418		}
419		ATW_DPRINTF(("\n"));
420	}
421#endif /* ATW_DEBUG */
422	return 0;
423}
424
425#ifdef ATW_DEBUG
426static void
427atw_print_regs(struct atw_softc *sc, const char *where)
428{
429#define PRINTREG(sc, reg) \
430	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
431	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
432
433	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
434
435	PRINTREG(sc, ATW_PAR);
436	PRINTREG(sc, ATW_FRCTL);
437	PRINTREG(sc, ATW_TDR);
438	PRINTREG(sc, ATW_WTDP);
439	PRINTREG(sc, ATW_RDR);
440	PRINTREG(sc, ATW_WRDP);
441	PRINTREG(sc, ATW_RDB);
442	PRINTREG(sc, ATW_CSR3A);
443	PRINTREG(sc, ATW_TDBD);
444	PRINTREG(sc, ATW_TDBP);
445	PRINTREG(sc, ATW_STSR);
446	PRINTREG(sc, ATW_CSR5A);
447	PRINTREG(sc, ATW_NAR);
448	PRINTREG(sc, ATW_CSR6A);
449	PRINTREG(sc, ATW_IER);
450	PRINTREG(sc, ATW_CSR7A);
451	PRINTREG(sc, ATW_LPC);
452	PRINTREG(sc, ATW_TEST1);
453	PRINTREG(sc, ATW_SPR);
454	PRINTREG(sc, ATW_TEST0);
455	PRINTREG(sc, ATW_WCSR);
456	PRINTREG(sc, ATW_WPDR);
457	PRINTREG(sc, ATW_GPTMR);
458	PRINTREG(sc, ATW_GPIO);
459	PRINTREG(sc, ATW_BBPCTL);
460	PRINTREG(sc, ATW_SYNCTL);
461	PRINTREG(sc, ATW_PLCPHD);
462	PRINTREG(sc, ATW_MMIWADDR);
463	PRINTREG(sc, ATW_MMIRADDR1);
464	PRINTREG(sc, ATW_MMIRADDR2);
465	PRINTREG(sc, ATW_TXBR);
466	PRINTREG(sc, ATW_CSR15A);
467	PRINTREG(sc, ATW_ALCSTAT);
468	PRINTREG(sc, ATW_TOFS2);
469	PRINTREG(sc, ATW_CMDR);
470	PRINTREG(sc, ATW_PCIC);
471	PRINTREG(sc, ATW_PMCSR);
472	PRINTREG(sc, ATW_PAR0);
473	PRINTREG(sc, ATW_PAR1);
474	PRINTREG(sc, ATW_MAR0);
475	PRINTREG(sc, ATW_MAR1);
476	PRINTREG(sc, ATW_ATIMDA0);
477	PRINTREG(sc, ATW_ABDA1);
478	PRINTREG(sc, ATW_BSSID0);
479	PRINTREG(sc, ATW_TXLMT);
480	PRINTREG(sc, ATW_MIBCNT);
481	PRINTREG(sc, ATW_BCNT);
482	PRINTREG(sc, ATW_TSFTH);
483	PRINTREG(sc, ATW_TSC);
484	PRINTREG(sc, ATW_SYNRF);
485	PRINTREG(sc, ATW_BPLI);
486	PRINTREG(sc, ATW_CAP0);
487	PRINTREG(sc, ATW_CAP1);
488	PRINTREG(sc, ATW_RMD);
489	PRINTREG(sc, ATW_CFPP);
490	PRINTREG(sc, ATW_TOFS0);
491	PRINTREG(sc, ATW_TOFS1);
492	PRINTREG(sc, ATW_IFST);
493	PRINTREG(sc, ATW_RSPT);
494	PRINTREG(sc, ATW_TSFTL);
495	PRINTREG(sc, ATW_WEPCTL);
496	PRINTREG(sc, ATW_WESK);
497	PRINTREG(sc, ATW_WEPCNT);
498	PRINTREG(sc, ATW_MACTEST);
499	PRINTREG(sc, ATW_FER);
500	PRINTREG(sc, ATW_FEMR);
501	PRINTREG(sc, ATW_FPSR);
502	PRINTREG(sc, ATW_FFER);
503#undef PRINTREG
504}
505#endif /* ATW_DEBUG */
506
507/*
508 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
509 */
510void
511atw_attach(struct atw_softc *sc)
512{
513	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
514		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
515	};
516	struct ieee80211com *ic = &sc->sc_ic;
517	struct ifnet *ifp = &sc->sc_if;
518	int country_code, error, i, nrate, srom_major;
519	u_int32_t reg;
520	static const char *type_strings[] = {"Intersil (not supported)",
521	    "RFMD", "Marvel (not supported)"};
522
523	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
524
525	sc->sc_txth = atw_txthresh_tab_lo;
526
527	SIMPLEQ_INIT(&sc->sc_txfreeq);
528	SIMPLEQ_INIT(&sc->sc_txdirtyq);
529
530#ifdef ATW_DEBUG
531	atw_print_regs(sc, "atw_attach");
532#endif /* ATW_DEBUG */
533
534	/*
535	 * Allocate the control data structures, and create and load the
536	 * DMA map for it.
537	 */
538	if ((error = bus_dmamem_alloc(sc->sc_dmat,
539	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
540	    1, &sc->sc_cdnseg, 0)) != 0) {
541		aprint_error_dev(sc->sc_dev,
542		    "unable to allocate control data, error = %d\n",
543		    error);
544		goto fail_0;
545	}
546
547	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
548	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
549	    BUS_DMA_COHERENT)) != 0) {
550		aprint_error_dev(sc->sc_dev,
551		    "unable to map control data, error = %d\n",
552		    error);
553		goto fail_1;
554	}
555
556	if ((error = bus_dmamap_create(sc->sc_dmat,
557	    sizeof(struct atw_control_data), 1,
558	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
559		aprint_error_dev(sc->sc_dev,
560		    "unable to create control data DMA map, error = %d\n",
561		    error);
562		goto fail_2;
563	}
564
565	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
566	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
567	    0)) != 0) {
568		aprint_error_dev(sc->sc_dev,
569		    "unable to load control data DMA map, error = %d\n", error);
570		goto fail_3;
571	}
572
573	/*
574	 * Create the transmit buffer DMA maps.
575	 */
576	sc->sc_ntxsegs = ATW_NTXSEGS;
577	for (i = 0; i < ATW_TXQUEUELEN; i++) {
578		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
579		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
580		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
581			aprint_error_dev(sc->sc_dev,
582			    "unable to create tx DMA map %d, error = %d\n", i,
583			    error);
584			goto fail_4;
585		}
586	}
587
588	/*
589	 * Create the receive buffer DMA maps.
590	 */
591	for (i = 0; i < ATW_NRXDESC; i++) {
592		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
593		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
594			aprint_error_dev(sc->sc_dev,
595			    "unable to create rx DMA map %d, error = %d\n", i,
596			    error);
597			goto fail_5;
598		}
599	}
600	for (i = 0; i < ATW_NRXDESC; i++) {
601		sc->sc_rxsoft[i].rxs_mbuf = NULL;
602	}
603
604	switch (sc->sc_rev) {
605	case ATW_REVISION_AB:
606	case ATW_REVISION_AF:
607		sc->sc_sramlen = ATW_SRAM_A_SIZE;
608		break;
609	case ATW_REVISION_BA:
610	case ATW_REVISION_CA:
611		sc->sc_sramlen = ATW_SRAM_B_SIZE;
612		break;
613	}
614
615	/* Reset the chip to a known state. */
616	atw_reset(sc);
617
618	if (atw_read_srom(sc) == -1)
619		return;
620
621	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
622	    ATW_SR_RFTYPE_MASK);
623
624	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
625	    ATW_SR_BBPTYPE_MASK);
626
627	if (sc->sc_rftype >= __arraycount(type_strings)) {
628		aprint_error_dev(sc->sc_dev, "unknown RF\n");
629		return;
630	}
631	if (sc->sc_bbptype >= __arraycount(type_strings)) {
632		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
633		return;
634	}
635
636	printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
637	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
638
639	/* XXX There exists a Linux driver which seems to use RFType = 0 for
640	 * MARVEL. My bug, or theirs?
641	 */
642
643	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
644
645	switch (sc->sc_rftype) {
646	case ATW_RFTYPE_INTERSIL:
647		reg |= ATW_SYNCTL_CS1;
648		break;
649	case ATW_RFTYPE_RFMD:
650		reg |= ATW_SYNCTL_CS0;
651		break;
652	case ATW_RFTYPE_MARVEL:
653		break;
654	}
655
656	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
657	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
658
659	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
660
661	switch (sc->sc_bbptype) {
662	case ATW_BBPTYPE_INTERSIL:
663		reg |= ATW_BBPCTL_TWI;
664		break;
665	case ATW_BBPTYPE_RFMD:
666		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
667		    ATW_BBPCTL_CCA_ACTLO;
668		break;
669	case ATW_BBPTYPE_MARVEL:
670		break;
671	case ATW_C_BBPTYPE_RFMD:
672		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
673		    device_xname(sc->sc_dev));
674		break;
675	}
676
677	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
678	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
679
680	/*
681	 * From this point forward, the attachment cannot fail.  A failure
682	 * before this point releases all resources that may have been
683	 * allocated.
684	 */
685	sc->sc_flags |= ATWF_ATTACHED;
686
687	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
688	    htole16(sc->sc_srom[ATW_SR_MAC00]),
689	    htole16(sc->sc_srom[ATW_SR_MAC01]),
690	    htole16(sc->sc_srom[ATW_SR_MAC10])));
691
692	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
693	    ATW_SR_MAJOR_MASK);
694
695	if (srom_major < 2)
696		sc->sc_rf3000_options1 = 0;
697	else if (sc->sc_rev == ATW_REVISION_BA) {
698		sc->sc_rf3000_options1 =
699		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
700		    ATW_SR_CR28_MASK);
701	} else
702		sc->sc_rf3000_options1 = 0;
703
704	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
705	    ATW_SR_CR29_MASK);
706
707	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
708	    ATW_SR_CTRY_MASK);
709
710#define ADD_CHANNEL(_ic, _chan) do {					\
711	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
712	_ic->ic_channels[_chan].ic_freq =				\
713	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
714} while (0)
715
716	/* Find available channels */
717	switch (country_code) {
718	case COUNTRY_MMK2:	/* 1-14 */
719		ADD_CHANNEL(ic, 14);
720		/*FALLTHROUGH*/
721	case COUNTRY_ETSI:	/* 1-13 */
722		for (i = 1; i <= 13; i++)
723			ADD_CHANNEL(ic, i);
724		break;
725	case COUNTRY_FCC:	/* 1-11 */
726	case COUNTRY_IC:	/* 1-11 */
727		for (i = 1; i <= 11; i++)
728			ADD_CHANNEL(ic, i);
729		break;
730	case COUNTRY_MMK:	/* 14 */
731		ADD_CHANNEL(ic, 14);
732		break;
733	case COUNTRY_FRANCE:	/* 10-13 */
734		for (i = 10; i <= 13; i++)
735			ADD_CHANNEL(ic, i);
736		break;
737	default:	/* assume channels 10-11 */
738	case COUNTRY_SPAIN:	/* 10-11 */
739		for (i = 10; i <= 11; i++)
740			ADD_CHANNEL(ic, i);
741		break;
742	}
743
744	/* Read the MAC address. */
745	reg = ATW_READ(sc, ATW_PAR0);
746	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
747	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
748	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
749	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
750	reg = ATW_READ(sc, ATW_PAR1);
751	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
752	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
753
754	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
755		printf(" could not get mac address, attach failed\n");
756		return;
757	}
758
759	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
760
761	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
762	ifp->if_softc = sc;
763	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
764	    IFF_NOTRAILERS;
765	ifp->if_ioctl = atw_ioctl;
766	ifp->if_start = atw_start;
767	ifp->if_watchdog = atw_watchdog;
768	ifp->if_init = atw_init;
769	ifp->if_stop = atw_stop;
770	IFQ_SET_READY(&ifp->if_snd);
771
772	ic->ic_ifp = ifp;
773	ic->ic_phytype = IEEE80211_T_DS;
774	ic->ic_opmode = IEEE80211_M_STA;
775	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
776	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
777
778	nrate = 0;
779	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
780	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
781	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
782	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
783	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
784
785	/*
786	 * Call MI attach routines.
787	 */
788
789	if_attach(ifp);
790	ieee80211_ifattach(ic);
791
792	atw_evcnt_attach(sc);
793
794	sc->sc_newstate = ic->ic_newstate;
795	ic->ic_newstate = atw_newstate;
796
797	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
798	ic->ic_recv_mgmt = atw_recv_mgmt;
799
800	sc->sc_node_free = ic->ic_node_free;
801	ic->ic_node_free = atw_node_free;
802
803	sc->sc_node_alloc = ic->ic_node_alloc;
804	ic->ic_node_alloc = atw_node_alloc;
805
806	ic->ic_crypto.cs_key_delete = atw_key_delete;
807	ic->ic_crypto.cs_key_set = atw_key_set;
808	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
809	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
810
811	/* possibly we should fill in our own sc_send_prresp, since
812	 * the ADM8211 is probably sending probe responses in ad hoc
813	 * mode.
814	 */
815
816	/* complete initialization */
817	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
818	callout_init(&sc->sc_scan_ch, 0);
819
820#if NBPFILTER > 0
821	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
822	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
823#endif
824
825	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
826	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
827	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
828
829	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
830	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
831	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
832
833	ieee80211_announce(ic);
834	return;
835
836	/*
837	 * Free any resources we've allocated during the failed attach
838	 * attempt.  Do this in reverse order and fall through.
839	 */
840 fail_5:
841	for (i = 0; i < ATW_NRXDESC; i++) {
842		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
843			continue;
844		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
845	}
846 fail_4:
847	for (i = 0; i < ATW_TXQUEUELEN; i++) {
848		if (sc->sc_txsoft[i].txs_dmamap == NULL)
849			continue;
850		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
851	}
852	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
853 fail_3:
854	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
855 fail_2:
856	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
857	    sizeof(struct atw_control_data));
858 fail_1:
859	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
860 fail_0:
861	return;
862}
863
864static struct ieee80211_node *
865atw_node_alloc(struct ieee80211_node_table *nt)
866{
867	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
868	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
869
870	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
871	return ni;
872}
873
874static void
875atw_node_free(struct ieee80211_node *ni)
876{
877	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
878
879	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
880	    ether_sprintf(ni->ni_bssid)));
881	(*sc->sc_node_free)(ni);
882}
883
884
885static void
886atw_test1_reset(struct atw_softc *sc)
887{
888	switch (sc->sc_rev) {
889	case ATW_REVISION_BA:
890		if (1 /* XXX condition on transceiver type */) {
891			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
892		}
893		break;
894	case ATW_REVISION_CA:
895		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
896		break;
897	default:
898		break;
899	}
900}
901
902/*
903 * atw_reset:
904 *
905 *	Perform a soft reset on the ADM8211.
906 */
907void
908atw_reset(struct atw_softc *sc)
909{
910	int i;
911	uint32_t lpc;
912
913	ATW_WRITE(sc, ATW_NAR, 0x0);
914	DELAY(atw_nar_delay);
915
916	/* Reference driver has a cryptic remark indicating that this might
917	 * power-on the chip.  I know that it turns off power-saving....
918	 */
919	ATW_WRITE(sc, ATW_FRCTL, 0x0);
920
921	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
922
923	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
924		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
925			break;
926		DELAY(atw_pseudo_milli);
927	}
928
929	/* ... and then pause 100ms longer for good measure. */
930	DELAY(atw_magic_delay1);
931
932	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
933
934	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
935		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
936
937	/*
938	 * Initialize the PCI Access Register.
939	 */
940	sc->sc_busmode = ATW_PAR_PBL_8DW;
941
942	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
943	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
944	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
945
946	atw_test1_reset(sc);
947
948	/* Turn off maximum power saving, etc. */
949	ATW_WRITE(sc, ATW_FRCTL, 0x0);
950
951	DELAY(atw_magic_delay2);
952
953	/* Recall EEPROM. */
954	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
955
956	DELAY(atw_magic_delay4);
957
958	lpc = ATW_READ(sc, ATW_LPC);
959
960	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
961
962	/* A reset seems to affect the SRAM contents, so put them into
963	 * a known state.
964	 */
965	atw_clear_sram(sc);
966
967	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
968}
969
970static void
971atw_clear_sram(struct atw_softc *sc)
972{
973	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
974	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
975	/* XXX not for revision 0x20. */
976	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
977}
978
979/* TBD atw_init
980 *
981 * set MAC based on ic->ic_bss->myaddr
982 * write WEP keys
983 * set TX rate
984 */
985
986/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
987 * without receiving a beacon with the preferred BSSID & SSID.
988 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
989 */
990static void
991atw_wcsr_init(struct atw_softc *sc)
992{
993	uint32_t wcsr;
994
995	wcsr = ATW_READ(sc, ATW_WCSR);
996	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
997	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
998	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
999
1000	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1001	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1002}
1003
1004/* Turn off power management.  Set Rx store-and-forward mode. */
1005static void
1006atw_cmdr_init(struct atw_softc *sc)
1007{
1008	uint32_t cmdr;
1009	cmdr = ATW_READ(sc, ATW_CMDR);
1010	cmdr &= ~ATW_CMDR_APM;
1011	cmdr |= ATW_CMDR_RTE;
1012	cmdr &= ~ATW_CMDR_DRT_MASK;
1013	cmdr |= ATW_CMDR_DRT_SF;
1014
1015	ATW_WRITE(sc, ATW_CMDR, cmdr);
1016}
1017
1018static void
1019atw_tofs2_init(struct atw_softc *sc)
1020{
1021	uint32_t tofs2;
1022	/* XXX this magic can probably be figured out from the RFMD docs */
1023#ifndef ATW_REFSLAVE
1024	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1025	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1026	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1027	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1028	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1029	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1030	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1031	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1032#else
1033	/* XXX new magic from reference driver source */
1034	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1035	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1036	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1037	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1038	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1039	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1040	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1041	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1042#endif
1043	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1044}
1045
1046static void
1047atw_nar_init(struct atw_softc *sc)
1048{
1049	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1050}
1051
1052static void
1053atw_txlmt_init(struct atw_softc *sc)
1054{
1055	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1056	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1057}
1058
1059static void
1060atw_test1_init(struct atw_softc *sc)
1061{
1062	uint32_t test1;
1063
1064	test1 = ATW_READ(sc, ATW_TEST1);
1065	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1066	/* XXX magic 0x1 */
1067	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1068	ATW_WRITE(sc, ATW_TEST1, test1);
1069}
1070
1071static void
1072atw_rf_reset(struct atw_softc *sc)
1073{
1074	/* XXX this resets an Intersil RF front-end? */
1075	/* TBD condition on Intersil RFType? */
1076	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1077	DELAY(atw_rf_delay1);
1078	ATW_WRITE(sc, ATW_SYNRF, 0);
1079	DELAY(atw_rf_delay2);
1080}
1081
1082/* Set 16 TU max duration for the contention-free period (CFP). */
1083static void
1084atw_cfp_init(struct atw_softc *sc)
1085{
1086	uint32_t cfpp;
1087
1088	cfpp = ATW_READ(sc, ATW_CFPP);
1089	cfpp &= ~ATW_CFPP_CFPMD;
1090	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1091	ATW_WRITE(sc, ATW_CFPP, cfpp);
1092}
1093
1094static void
1095atw_tofs0_init(struct atw_softc *sc)
1096{
1097	/* XXX I guess that the Cardbus clock is 22 MHz?
1098	 * I am assuming that the role of ATW_TOFS0_USCNT is
1099	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1100	 * very clear on this point. It says in the datasheet that it is
1101	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1102	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1103	 * these values. These values are also the power-on default.
1104	 */
1105	ATW_WRITE(sc, ATW_TOFS0,
1106	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1107	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1108}
1109
1110/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1111static void
1112atw_ifs_init(struct atw_softc *sc)
1113{
1114	uint32_t ifst;
1115	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1116	 * Go figure.
1117	 */
1118	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1119	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1120	             ATW_IFST_SIFS_MASK) |
1121	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1122	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1123
1124	ATW_WRITE(sc, ATW_IFST, ifst);
1125}
1126
1127static void
1128atw_response_times_init(struct atw_softc *sc)
1129{
1130	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1131	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1132	 * to pass after it transmits a frame that requires a response;
1133	 * it waits at most SIFS + MART microseconds for the response.
1134	 * Surely this is not the ACK timeout?
1135	 */
1136	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1137	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1138}
1139
1140/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1141 * engines read and write baseband registers after Rx and before
1142 * Tx, respectively.
1143 */
1144static void
1145atw_bbp_io_init(struct atw_softc *sc)
1146{
1147	uint32_t mmiraddr2;
1148
1149	/* XXX The reference driver does this, but is it *really*
1150	 * necessary?
1151	 */
1152	switch (sc->sc_rev) {
1153	case ATW_REVISION_AB:
1154	case ATW_REVISION_AF:
1155		mmiraddr2 = 0x0;
1156		break;
1157	default:
1158		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1159		mmiraddr2 &=
1160		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1161		break;
1162	}
1163
1164	switch (sc->sc_bbptype) {
1165	case ATW_BBPTYPE_INTERSIL:
1166		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1167		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1168		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1169		break;
1170	case ATW_BBPTYPE_MARVEL:
1171		/* TBD find out the Marvel settings. */
1172		break;
1173	case ATW_BBPTYPE_RFMD:
1174	default:
1175		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1176		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1177		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1178		break;
1179	}
1180	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1181	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1182}
1183
1184/*
1185 * atw_init:		[ ifnet interface function ]
1186 *
1187 *	Initialize the interface.  Must be called at splnet().
1188 */
1189int
1190atw_init(struct ifnet *ifp)
1191{
1192	struct atw_softc *sc = ifp->if_softc;
1193	struct ieee80211com *ic = &sc->sc_ic;
1194	struct atw_txsoft *txs;
1195	struct atw_rxsoft *rxs;
1196	int i, error = 0;
1197
1198	if (device_is_active(sc->sc_dev)) {
1199		/*
1200		 * Cancel any pending I/O.
1201		 */
1202		atw_stop(ifp, 0);
1203	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1204	           !device_is_active(sc->sc_dev))
1205		return 0;
1206
1207	/*
1208	 * Reset the chip to a known state.
1209	 */
1210	atw_reset(sc);
1211
1212	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1213	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1214	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1215
1216	atw_wcsr_init(sc);
1217
1218	atw_cmdr_init(sc);
1219
1220	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1221	 *
1222	 * XXX Set transmit power for ATIM, RTS, Beacon.
1223	 */
1224	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1225	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1226
1227	atw_tofs2_init(sc);
1228
1229	atw_nar_init(sc);
1230
1231	atw_txlmt_init(sc);
1232
1233	atw_test1_init(sc);
1234
1235	atw_rf_reset(sc);
1236
1237	atw_cfp_init(sc);
1238
1239	atw_tofs0_init(sc);
1240
1241	atw_ifs_init(sc);
1242
1243	/* XXX Fall asleep after one second of inactivity.
1244	 * XXX A frame may only dribble in for 65536us.
1245	 */
1246	ATW_WRITE(sc, ATW_RMD,
1247	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1248
1249	atw_response_times_init(sc);
1250
1251	atw_bbp_io_init(sc);
1252
1253	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1254
1255	if ((error = atw_rf3000_init(sc)) != 0)
1256		goto out;
1257
1258	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1259	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1260	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1261
1262	/*
1263	 * Initialize the transmit descriptor ring.
1264	 */
1265	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1266	for (i = 0; i < ATW_NTXDESC; i++) {
1267		sc->sc_txdescs[i].at_ctl = 0;
1268		/* no transmit chaining */
1269		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1270		sc->sc_txdescs[i].at_buf2 =
1271		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1272	}
1273	/* use ring mode */
1274	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1275	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1276	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1277	sc->sc_txfree = ATW_NTXDESC;
1278	sc->sc_txnext = 0;
1279
1280	/*
1281	 * Initialize the transmit job descriptors.
1282	 */
1283	SIMPLEQ_INIT(&sc->sc_txfreeq);
1284	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1285	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1286		txs = &sc->sc_txsoft[i];
1287		txs->txs_mbuf = NULL;
1288		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1289	}
1290
1291	/*
1292	 * Initialize the receive descriptor and receive job
1293	 * descriptor rings.
1294	 */
1295	for (i = 0; i < ATW_NRXDESC; i++) {
1296		rxs = &sc->sc_rxsoft[i];
1297		if (rxs->rxs_mbuf == NULL) {
1298			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1299				aprint_error_dev(sc->sc_dev,
1300				    "unable to allocate or map rx buffer %d, "
1301				    "error = %d\n", i, error);
1302				/*
1303				 * XXX Should attempt to run with fewer receive
1304				 * XXX buffers instead of just failing.
1305				 */
1306				atw_rxdrain(sc);
1307				goto out;
1308			}
1309		} else
1310			atw_init_rxdesc(sc, i);
1311	}
1312	sc->sc_rxptr = 0;
1313
1314	/*
1315	 * Initialize the interrupt mask and enable interrupts.
1316	 */
1317	/* normal interrupts */
1318	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1319	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1320
1321	/* abnormal interrupts */
1322	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1323	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1324	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1325
1326	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1327	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1328	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1329	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1330	    ATW_INTR_TRT;
1331
1332	sc->sc_linkint_mask &= sc->sc_inten;
1333	sc->sc_rxint_mask &= sc->sc_inten;
1334	sc->sc_txint_mask &= sc->sc_inten;
1335
1336	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1337	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1338
1339	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1340	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1341
1342	/*
1343	 * Give the transmit and receive rings to the ADM8211.
1344	 */
1345	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1346	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1347
1348	sc->sc_txthresh = 0;
1349	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1350	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1351
1352	/* common 802.11 configuration */
1353	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1354	switch (ic->ic_opmode) {
1355	case IEEE80211_M_STA:
1356		break;
1357	case IEEE80211_M_AHDEMO: /* XXX */
1358	case IEEE80211_M_IBSS:
1359		ic->ic_flags |= IEEE80211_F_IBSSON;
1360		/*FALLTHROUGH*/
1361	case IEEE80211_M_HOSTAP: /* XXX */
1362		break;
1363	case IEEE80211_M_MONITOR: /* XXX */
1364		break;
1365	}
1366
1367	switch (ic->ic_opmode) {
1368	case IEEE80211_M_AHDEMO:
1369	case IEEE80211_M_HOSTAP:
1370#ifndef IEEE80211_NO_HOSTAP
1371		ic->ic_bss->ni_intval = ic->ic_lintval;
1372		ic->ic_bss->ni_rssi = 0;
1373		ic->ic_bss->ni_rstamp = 0;
1374#endif /* !IEEE80211_NO_HOSTAP */
1375		break;
1376	default:					/* XXX */
1377		break;
1378	}
1379
1380	sc->sc_wepctl = 0;
1381
1382	atw_write_ssid(sc);
1383	atw_write_sup_rates(sc);
1384	atw_write_wep(sc);
1385
1386	ic->ic_state = IEEE80211_S_INIT;
1387
1388	/*
1389	 * Set the receive filter.  This will start the transmit and
1390	 * receive processes.
1391	 */
1392	atw_filter_setup(sc);
1393
1394	/*
1395	 * Start the receive process.
1396	 */
1397	ATW_WRITE(sc, ATW_RDR, 0x1);
1398
1399	/*
1400	 * Note that the interface is now running.
1401	 */
1402	ifp->if_flags |= IFF_RUNNING;
1403
1404	/* send no beacons, yet. */
1405	atw_start_beacon(sc, 0);
1406
1407	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1408		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1409	else
1410		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1411 out:
1412	if (error) {
1413		ifp->if_flags &= ~IFF_RUNNING;
1414		sc->sc_tx_timer = 0;
1415		ifp->if_timer = 0;
1416		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1417	}
1418#ifdef ATW_DEBUG
1419	atw_print_regs(sc, "end of init");
1420#endif /* ATW_DEBUG */
1421
1422	return (error);
1423}
1424
1425/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1426 *           0: MAC control of RF3000/Si4126.
1427 *
1428 * Applies power, or selects RF front-end? Sets reset condition.
1429 *
1430 * TBD support non-RFMD BBP, non-SiLabs synth.
1431 */
1432static void
1433atw_bbp_io_enable(struct atw_softc *sc, int enable)
1434{
1435	if (enable) {
1436		ATW_WRITE(sc, ATW_SYNRF,
1437		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1438		DELAY(atw_bbp_io_enable_delay);
1439	} else {
1440		ATW_WRITE(sc, ATW_SYNRF, 0);
1441		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1442	}
1443}
1444
1445static int
1446atw_tune(struct atw_softc *sc)
1447{
1448	int rc;
1449	u_int chan;
1450	struct ieee80211com *ic = &sc->sc_ic;
1451
1452	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1453	if (chan == IEEE80211_CHAN_ANY)
1454		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1455
1456	if (chan == sc->sc_cur_chan)
1457		return 0;
1458
1459	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1460	    sc->sc_cur_chan, chan));
1461
1462	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1463
1464	atw_si4126_tune(sc, chan);
1465	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1466		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1467		    chan);
1468
1469	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1470	DELAY(atw_nar_delay);
1471	ATW_WRITE(sc, ATW_RDR, 0x1);
1472
1473	if (rc == 0) {
1474		sc->sc_cur_chan = chan;
1475		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1476		    htole16(ic->ic_curchan->ic_freq);
1477		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1478		    htole16(ic->ic_curchan->ic_flags);
1479	}
1480
1481	return rc;
1482}
1483
1484#ifdef ATW_SYNDEBUG
1485static void
1486atw_si4126_print(struct atw_softc *sc)
1487{
1488	struct ifnet *ifp = &sc->sc_if;
1489	u_int addr, val;
1490
1491	val = 0;
1492
1493	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1494		return;
1495
1496	for (addr = 0; addr <= 8; addr++) {
1497		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1498		if (atw_si4126_read(sc, addr, &val) == 0) {
1499			printf("<unknown> (quitting print-out)\n");
1500			break;
1501		}
1502		printf("%05x\n", val);
1503	}
1504}
1505#endif /* ATW_SYNDEBUG */
1506
1507/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1508 *
1509 * The RF/IF synthesizer produces two reference frequencies for
1510 * the RF2948B transceiver.  The first frequency the RF2948B requires
1511 * is two times the so-called "intermediate frequency" (IF). Since
1512 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1513 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1514 * frequency required by the transceiver is the radio frequency
1515 * (RF). This is a superheterodyne transceiver; for f(chan) the
1516 * center frequency of the channel we are tuning, RF = f(chan) -
1517 * IF.
1518 *
1519 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1520 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1521 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1522 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1523 */
1524static void
1525atw_si4126_tune(struct atw_softc *sc, u_int chan)
1526{
1527	u_int mhz;
1528	u_int R;
1529	u_int32_t gpio;
1530	u_int16_t gain;
1531
1532#ifdef ATW_SYNDEBUG
1533	atw_si4126_print(sc);
1534#endif /* ATW_SYNDEBUG */
1535
1536	if (chan == 14)
1537		mhz = 2484;
1538	else
1539		mhz = 2412 + 5 * (chan - 1);
1540
1541	/* Tune IF to 748 MHz to suit the IF LO input of the
1542	 * RF2494B, which is 2 x IF. No need to set an IF divider
1543         * because an IF in 526 MHz - 952 MHz is allowed.
1544	 *
1545	 * XIN is 44.000 MHz, so divide it by two to get allowable
1546	 * range of 2-25 MHz. SiLabs tells me that this is not
1547	 * strictly necessary.
1548	 */
1549
1550	if (atw_xindiv2)
1551		R = 44;
1552	else
1553		R = 88;
1554
1555	/* Power-up RF, IF synthesizers. */
1556	atw_si4126_write(sc, SI4126_POWER,
1557	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1558
1559	/* set LPWR, too? */
1560	atw_si4126_write(sc, SI4126_MAIN,
1561	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1562
1563	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1564	 * set KP2 to 1.
1565	 *
1566	 * REFDIF This is different from the reference driver, which
1567	 * always sets SI4126_GAIN to 0.
1568	 */
1569	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1570
1571	atw_si4126_write(sc, SI4126_GAIN, gain);
1572
1573	/* XIN = 44 MHz.
1574	 *
1575	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1576	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1577	 *
1578	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1579	 * so that 1496/88 * 44 MHz = 748 MHz.
1580	 */
1581	atw_si4126_write(sc, SI4126_IFN, 1496);
1582
1583	atw_si4126_write(sc, SI4126_IFR, R);
1584
1585#ifndef ATW_REFSLAVE
1586	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1587	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1588	 * which has no RF1!
1589	 */
1590	atw_si4126_write(sc, SI4126_RF1R, R);
1591
1592	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1593#endif
1594
1595	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1596	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1597	 * Now let's multiply it to mhz. So mhz - IF = N.
1598	 */
1599	atw_si4126_write(sc, SI4126_RF2R, R);
1600
1601	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1602
1603	/* wait 100us from power-up for RF, IF to settle */
1604	DELAY(100);
1605
1606	gpio = ATW_READ(sc, ATW_GPIO);
1607	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1608	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1609
1610	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1611		/* Set a Prism RF front-end to a special mode for channel 14?
1612		 *
1613		 * Apparently the SMC2635W needs this, although I don't think
1614		 * it has a Prism RF.
1615		 */
1616		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1617	}
1618	ATW_WRITE(sc, ATW_GPIO, gpio);
1619
1620#ifdef ATW_SYNDEBUG
1621	atw_si4126_print(sc);
1622#endif /* ATW_SYNDEBUG */
1623}
1624
1625/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1626 * diversity.
1627 *
1628 * !!!
1629 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1630 * !!!
1631 */
1632static int
1633atw_rf3000_init(struct atw_softc *sc)
1634{
1635	int rc = 0;
1636
1637	atw_bbp_io_enable(sc, 1);
1638
1639	/* CCA is acquisition sensitive */
1640	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1641	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1642
1643	if (rc != 0)
1644		goto out;
1645
1646	/* enable diversity */
1647	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1648
1649	if (rc != 0)
1650		goto out;
1651
1652	/* sensible setting from a binary-only driver */
1653	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1654	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1655
1656	if (rc != 0)
1657		goto out;
1658
1659	/* magic from a binary-only driver */
1660	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1661	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1662
1663	if (rc != 0)
1664		goto out;
1665
1666	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1667
1668	if (rc != 0)
1669		goto out;
1670
1671	/* XXX Reference driver remarks that Abocom sets this to 50.
1672	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1673	 * in the "reserved" area of register RF3000_OPTIONS1.
1674	 */
1675	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1676
1677	if (rc != 0)
1678		goto out;
1679
1680	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1681
1682	if (rc != 0)
1683		goto out;
1684
1685out:
1686	atw_bbp_io_enable(sc, 0);
1687	return rc;
1688}
1689
1690#ifdef ATW_BBPDEBUG
1691static void
1692atw_rf3000_print(struct atw_softc *sc)
1693{
1694	struct ifnet *ifp = &sc->sc_if;
1695	u_int addr, val;
1696
1697	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1698		return;
1699
1700	for (addr = 0x01; addr <= 0x15; addr++) {
1701		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1702		if (atw_rf3000_read(sc, addr, &val) != 0) {
1703			printf("<unknown> (quitting print-out)\n");
1704			break;
1705		}
1706		printf("%08x\n", val);
1707	}
1708}
1709#endif /* ATW_BBPDEBUG */
1710
1711/* Set the power settings on the BBP for channel `chan'. */
1712static int
1713atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1714{
1715	int rc = 0;
1716	u_int32_t reg;
1717	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1718
1719	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1720	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1721	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1722
1723	/* odd channels: LSB, even channels: MSB */
1724	if (chan % 2 == 1) {
1725		txpower &= 0xFF;
1726		lpf_cutoff &= 0xFF;
1727		lna_gs_thresh &= 0xFF;
1728	} else {
1729		txpower >>= 8;
1730		lpf_cutoff >>= 8;
1731		lna_gs_thresh >>= 8;
1732	}
1733
1734#ifdef ATW_BBPDEBUG
1735	atw_rf3000_print(sc);
1736#endif /* ATW_BBPDEBUG */
1737
1738	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1739	    "lna_gs_thresh %02x\n",
1740	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1741
1742	atw_bbp_io_enable(sc, 1);
1743
1744	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1745	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1746		goto out;
1747
1748	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1749		goto out;
1750
1751	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1752		goto out;
1753
1754	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1755
1756	if (rc != 0)
1757		goto out;
1758
1759	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1760
1761	if (rc != 0)
1762		goto out;
1763
1764#ifdef ATW_BBPDEBUG
1765	atw_rf3000_print(sc);
1766#endif /* ATW_BBPDEBUG */
1767
1768out:
1769	atw_bbp_io_enable(sc, 0);
1770
1771	/* set beacon, rts, atim transmit power */
1772	reg = ATW_READ(sc, ATW_PLCPHD);
1773	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1774	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1775	    ATW_PLCPHD_SERVICE_MASK);
1776	ATW_WRITE(sc, ATW_PLCPHD, reg);
1777	DELAY(atw_plcphd_delay);
1778
1779	return rc;
1780}
1781
1782/* Write a register on the RF3000 baseband processor using the
1783 * registers provided by the ADM8211 for this purpose.
1784 *
1785 * Return 0 on success.
1786 */
1787static int
1788atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1789{
1790	u_int32_t reg;
1791	int i;
1792
1793	reg = sc->sc_bbpctl_wr |
1794	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1795	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1796
1797	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1798		ATW_WRITE(sc, ATW_BBPCTL, reg);
1799		DELAY(2 * atw_pseudo_milli);
1800		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1801			break;
1802	}
1803
1804	if (i < 0) {
1805		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1806		return ETIMEDOUT;
1807	}
1808	return 0;
1809}
1810
1811/* Read a register on the RF3000 baseband processor using the registers
1812 * the ADM8211 provides for this purpose.
1813 *
1814 * The 7-bit register address is addr.  Record the 8-bit data in the register
1815 * in *val.
1816 *
1817 * Return 0 on success.
1818 *
1819 * XXX This does not seem to work. The ADM8211 must require more or
1820 * different magic to read the chip than to write it. Possibly some
1821 * of the magic I have derived from a binary-only driver concerns
1822 * the "chip address" (see the RF3000 manual).
1823 */
1824#ifdef ATW_BBPDEBUG
1825static int
1826atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1827{
1828	u_int32_t reg;
1829	int i;
1830
1831	for (i = 1000; --i >= 0; ) {
1832		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1833			break;
1834		DELAY(100);
1835	}
1836
1837	if (i < 0) {
1838		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1839		    device_xname(sc->sc_dev));
1840		return ETIMEDOUT;
1841	}
1842
1843	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1844
1845	ATW_WRITE(sc, ATW_BBPCTL, reg);
1846
1847	for (i = 1000; --i >= 0; ) {
1848		DELAY(100);
1849		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1850			break;
1851	}
1852
1853	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1854
1855	if (i < 0) {
1856		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1857		    device_xname(sc->sc_dev), reg);
1858		return ETIMEDOUT;
1859	}
1860	if (val != NULL)
1861		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1862	return 0;
1863}
1864#endif /* ATW_BBPDEBUG */
1865
1866/* Write a register on the Si4126 RF/IF synthesizer using the registers
1867 * provided by the ADM8211 for that purpose.
1868 *
1869 * val is 18 bits of data, and val is the 4-bit address of the register.
1870 *
1871 * Return 0 on success.
1872 */
1873static void
1874atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1875{
1876	uint32_t bits, mask, reg;
1877	const int nbits = 22;
1878
1879	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1880	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1881
1882	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1883	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1884
1885	reg = ATW_SYNRF_SELSYN;
1886	/* reference driver: reset Si4126 serial bus to initial
1887	 * conditions?
1888	 */
1889	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1890	ATW_WRITE(sc, ATW_SYNRF, reg);
1891
1892	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1893		if ((bits & mask) != 0)
1894			reg |= ATW_SYNRF_SYNDATA;
1895		else
1896			reg &= ~ATW_SYNRF_SYNDATA;
1897		ATW_WRITE(sc, ATW_SYNRF, reg);
1898		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1899		ATW_WRITE(sc, ATW_SYNRF, reg);
1900	}
1901	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1902	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1903}
1904
1905/* Read 18-bit data from the 4-bit address addr in Si4126
1906 * RF synthesizer and write the data to *val. Return 0 on success.
1907 *
1908 * XXX This does not seem to work. The ADM8211 must require more or
1909 * different magic to read the chip than to write it.
1910 */
1911#ifdef ATW_SYNDEBUG
1912static int
1913atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1914{
1915	u_int32_t reg;
1916	int i;
1917
1918	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1919
1920	for (i = 1000; --i >= 0; ) {
1921		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1922			break;
1923		DELAY(100);
1924	}
1925
1926	if (i < 0) {
1927		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1928		    device_xname(sc->sc_dev));
1929		return ETIMEDOUT;
1930	}
1931
1932	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1933
1934	ATW_WRITE(sc, ATW_SYNCTL, reg);
1935
1936	for (i = 1000; --i >= 0; ) {
1937		DELAY(100);
1938		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1939			break;
1940	}
1941
1942	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1943
1944	if (i < 0) {
1945		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1946		    device_xname(sc->sc_dev), reg);
1947		return ETIMEDOUT;
1948	}
1949	if (val != NULL)
1950		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1951		                       ATW_SYNCTL_DATA_MASK);
1952	return 0;
1953}
1954#endif /* ATW_SYNDEBUG */
1955
1956/* XXX is the endianness correct? test. */
1957#define	atw_calchash(addr) \
1958	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1959
1960/*
1961 * atw_filter_setup:
1962 *
1963 *	Set the ADM8211's receive filter.
1964 */
1965static void
1966atw_filter_setup(struct atw_softc *sc)
1967{
1968	struct ieee80211com *ic = &sc->sc_ic;
1969	struct ethercom *ec = &sc->sc_ec;
1970	struct ifnet *ifp = &sc->sc_if;
1971	int hash;
1972	u_int32_t hashes[2];
1973	struct ether_multi *enm;
1974	struct ether_multistep step;
1975
1976	/* According to comments in tlp_al981_filter_setup
1977	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1978	 * multicast filter to be set while it is running.  Hopefully
1979	 * the ADM8211 is not the same!
1980	 */
1981	if ((ifp->if_flags & IFF_RUNNING) != 0)
1982		atw_idle(sc, ATW_NAR_SR);
1983
1984	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1985	ifp->if_flags &= ~IFF_ALLMULTI;
1986
1987	/* XXX in scan mode, do not filter packets.  Maybe this is
1988	 * unnecessary.
1989	 */
1990	if (ic->ic_state == IEEE80211_S_SCAN ||
1991	    (ifp->if_flags & IFF_PROMISC) != 0) {
1992		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1993		goto allmulti;
1994	}
1995
1996	hashes[0] = hashes[1] = 0x0;
1997
1998	/*
1999	 * Program the 64-bit multicast hash filter.
2000	 */
2001	ETHER_FIRST_MULTI(step, ec, enm);
2002	while (enm != NULL) {
2003		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2004		    ETHER_ADDR_LEN) != 0)
2005			goto allmulti;
2006
2007		hash = atw_calchash(enm->enm_addrlo);
2008		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2009		ETHER_NEXT_MULTI(step, enm);
2010		sc->sc_opmode |= ATW_NAR_MM;
2011	}
2012	ifp->if_flags &= ~IFF_ALLMULTI;
2013	goto setit;
2014
2015allmulti:
2016	sc->sc_opmode |= ATW_NAR_MM;
2017	ifp->if_flags |= IFF_ALLMULTI;
2018	hashes[0] = hashes[1] = 0xffffffff;
2019
2020setit:
2021	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2022	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2023	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2024	DELAY(atw_nar_delay);
2025	ATW_WRITE(sc, ATW_RDR, 0x1);
2026
2027	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2028	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2029}
2030
2031/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2032 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2033 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2034 * no beacon with the preferred BSSID and SSID in the number of
2035 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2036 */
2037static void
2038atw_write_bssid(struct atw_softc *sc)
2039{
2040	struct ieee80211com *ic = &sc->sc_ic;
2041	u_int8_t *bssid;
2042
2043	bssid = ic->ic_bss->ni_bssid;
2044
2045	ATW_WRITE(sc, ATW_BSSID0,
2046	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2047	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2048	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2049	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2050
2051	ATW_WRITE(sc, ATW_ABDA1,
2052	    (ATW_READ(sc, ATW_ABDA1) &
2053	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2054	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2055	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2056
2057	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2058	    ether_sprintf(sc->sc_bssid)));
2059	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2060
2061	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2062}
2063
2064/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2065 * 16-bit word.
2066 */
2067static void
2068atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2069{
2070	u_int i;
2071	u_int8_t *ptr;
2072
2073	memcpy(&sc->sc_sram[ofs], buf, buflen);
2074
2075	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2076
2077	KASSERT(buflen + ofs <= sc->sc_sramlen);
2078
2079	ptr = &sc->sc_sram[ofs];
2080
2081	for (i = 0; i < buflen; i += 2) {
2082		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2083		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2084		DELAY(atw_writewep_delay);
2085
2086		ATW_WRITE(sc, ATW_WESK,
2087		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2088		DELAY(atw_writewep_delay);
2089	}
2090	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2091
2092	if (sc->sc_if.if_flags & IFF_DEBUG) {
2093		int n_octets = 0;
2094		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2095		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2096		for (i = 0; i < buflen; i++) {
2097			printf(" %02x", ptr[i]);
2098			if (++n_octets % 24 == 0)
2099				printf("\n");
2100		}
2101		if (n_octets % 24 != 0)
2102			printf("\n");
2103	}
2104}
2105
2106static int
2107atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2108{
2109	struct atw_softc *sc = ic->ic_ifp->if_softc;
2110	u_int keyix = k->wk_keyix;
2111
2112	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2113
2114	if (keyix >= IEEE80211_WEP_NKID)
2115		return 0;
2116	if (k->wk_keylen != 0)
2117		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2118
2119	return 1;
2120}
2121
2122static int
2123atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2124	const u_int8_t mac[IEEE80211_ADDR_LEN])
2125{
2126	struct atw_softc *sc = ic->ic_ifp->if_softc;
2127
2128	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2129
2130	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2131		return 0;
2132
2133	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2134
2135	return 1;
2136}
2137
2138static void
2139atw_key_update_begin(struct ieee80211com *ic)
2140{
2141#ifdef ATW_DEBUG
2142	struct ifnet *ifp = ic->ic_ifp;
2143	struct atw_softc *sc = ifp->if_softc;
2144#endif
2145
2146	DPRINTF(sc, ("%s:\n", __func__));
2147}
2148
2149static void
2150atw_key_update_end(struct ieee80211com *ic)
2151{
2152	struct ifnet *ifp = ic->ic_ifp;
2153	struct atw_softc *sc = ifp->if_softc;
2154
2155	DPRINTF(sc, ("%s:\n", __func__));
2156
2157	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2158		return;
2159	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2160		return;
2161	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2162	atw_write_wep(sc);
2163	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2164	DELAY(atw_nar_delay);
2165	ATW_WRITE(sc, ATW_RDR, 0x1);
2166}
2167
2168/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2169static void
2170atw_write_wep(struct atw_softc *sc)
2171{
2172#if 0
2173	struct ieee80211com *ic = &sc->sc_ic;
2174	u_int32_t reg;
2175	int i;
2176#endif
2177	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2178	u_int8_t buf[IEEE80211_WEP_NKID]
2179	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2180
2181	sc->sc_wepctl = 0;
2182	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2183
2184	memset(&buf[0][0], 0, sizeof(buf));
2185
2186#if 0
2187	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2188		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2189			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2190		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2191			buf[i][1] = ATW_WEP_ENABLED;
2192		} else {
2193			buf[i][1] = 0;
2194			continue;
2195		}
2196		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2197		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2198		    ic->ic_nw_keys[i].wk_keylen - 1);
2199	}
2200
2201	reg = ATW_READ(sc, ATW_MACTEST);
2202	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2203	reg &= ~ATW_MACTEST_KEYID_MASK;
2204	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2205	ATW_WRITE(sc, ATW_MACTEST, reg);
2206
2207	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2208		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2209
2210	switch (sc->sc_rev) {
2211	case ATW_REVISION_AB:
2212	case ATW_REVISION_AF:
2213		/* Bypass WEP on Rx. */
2214		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2215		break;
2216	default:
2217		break;
2218	}
2219#endif
2220
2221	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2222	    sizeof(buf));
2223
2224	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2225}
2226
2227static void
2228atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2229    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2230{
2231	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2232
2233	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2234	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2235		return;
2236
2237	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2238
2239	switch (subtype) {
2240	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2241	case IEEE80211_FC0_SUBTYPE_BEACON:
2242		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2243		    ic->ic_state == IEEE80211_S_RUN) {
2244			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2245				(void)ieee80211_ibss_merge(ni);
2246		}
2247		break;
2248	default:
2249		break;
2250	}
2251	return;
2252}
2253
2254/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2255 * In ad hoc mode, the SSID is written to the beacons sent by the
2256 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2257 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2258 * indications.
2259 */
2260static void
2261atw_write_ssid(struct atw_softc *sc)
2262{
2263	struct ieee80211com *ic = &sc->sc_ic;
2264	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2265	 * it only expects the element length, not its ID.
2266	 */
2267	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2268
2269	memset(buf, 0, sizeof(buf));
2270	buf[0] = ic->ic_bss->ni_esslen;
2271	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2272
2273	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2274	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2275}
2276
2277/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2278 * In ad hoc mode, the supported rates are written to beacons sent by the
2279 * ADM8211.
2280 */
2281static void
2282atw_write_sup_rates(struct atw_softc *sc)
2283{
2284	struct ieee80211com *ic = &sc->sc_ic;
2285	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2286	 * supported rates
2287	 */
2288	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2289
2290	memset(buf, 0, sizeof(buf));
2291
2292	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2293
2294	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2295	    ic->ic_bss->ni_rates.rs_nrates);
2296
2297	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2298}
2299
2300/* Start/stop sending beacons. */
2301void
2302atw_start_beacon(struct atw_softc *sc, int start)
2303{
2304	struct ieee80211com *ic = &sc->sc_ic;
2305	uint16_t chan;
2306	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2307	size_t len;
2308
2309	if (!device_is_active(sc->sc_dev))
2310		return;
2311
2312	/* start beacons */
2313	len = sizeof(struct ieee80211_frame) +
2314	    8 /* timestamp */ + 2 /* beacon interval */ +
2315	    2 /* capability info */ +
2316	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2317	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2318	    3 /* DS parameters */ +
2319	    IEEE80211_CRC_LEN;
2320
2321	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2322	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2323	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2324
2325	ATW_WRITE(sc, ATW_BCNT, bcnt);
2326	ATW_WRITE(sc, ATW_CAP1, cap1);
2327
2328	if (!start)
2329		return;
2330
2331	/* TBD use ni_capinfo */
2332
2333	capinfo = 0;
2334	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2335		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2336	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2337		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2338
2339	switch (ic->ic_opmode) {
2340	case IEEE80211_M_IBSS:
2341		len += 4; /* IBSS parameters */
2342		capinfo |= IEEE80211_CAPINFO_IBSS;
2343		break;
2344	case IEEE80211_M_HOSTAP:
2345		/* XXX 6-byte minimum TIM */
2346		len += atw_beacon_len_adjust;
2347		capinfo |= IEEE80211_CAPINFO_ESS;
2348		break;
2349	default:
2350		return;
2351	}
2352
2353	/* set listen interval
2354	 * XXX do software units agree w/ hardware?
2355	 */
2356	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2357	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2358
2359	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2360
2361	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2362	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2363	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2364
2365	ATW_WRITE(sc, ATW_BCNT, bcnt);
2366	ATW_WRITE(sc, ATW_BPLI, bpli);
2367	ATW_WRITE(sc, ATW_CAP0, cap0);
2368	ATW_WRITE(sc, ATW_CAP1, cap1);
2369
2370	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2371	    device_xname(sc->sc_dev), bcnt));
2372
2373	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2374	    device_xname(sc->sc_dev), cap1));
2375}
2376
2377/* Return the 32 lsb of the last TSFT divisible by ival. */
2378static inline uint32_t
2379atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2380{
2381	/* Following the reference driver's lead, I compute
2382	 *
2383	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2384	 *
2385	 * without using 64-bit arithmetic, using the following
2386	 * relationship:
2387	 *
2388	 *     (0x100000000 * H + L) % m
2389	 *   = ((0x100000000 % m) * H + L) % m
2390	 *   = (((0xffffffff + 1) % m) * H + L) % m
2391	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2392	 *   = ((0xffffffff % m + 1) * H + L) % m
2393	 */
2394	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2395}
2396
2397static uint64_t
2398atw_get_tsft(struct atw_softc *sc)
2399{
2400	int i;
2401	uint32_t tsfth, tsftl;
2402	for (i = 0; i < 2; i++) {
2403		tsfth = ATW_READ(sc, ATW_TSFTH);
2404		tsftl = ATW_READ(sc, ATW_TSFTL);
2405		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2406			break;
2407	}
2408	return ((uint64_t)tsfth << 32) | tsftl;
2409}
2410
2411/* If we've created an IBSS, write the TSF time in the ADM8211 to
2412 * the ieee80211com.
2413 *
2414 * Predict the next target beacon transmission time (TBTT) and
2415 * write it to the ADM8211.
2416 */
2417static void
2418atw_predict_beacon(struct atw_softc *sc)
2419{
2420#define TBTTOFS 20 /* TU */
2421
2422	struct ieee80211com *ic = &sc->sc_ic;
2423	uint64_t tsft;
2424	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2425	union {
2426		uint64_t	word;
2427		uint8_t		tstamp[8];
2428	} u;
2429
2430	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2431	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2432	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2433		tsft = atw_get_tsft(sc);
2434		u.word = htole64(tsft);
2435		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2436		    sizeof(ic->ic_bss->ni_tstamp));
2437	} else
2438		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2439
2440	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2441
2442	tsftl = tsft & 0xFFFFFFFF;
2443	tsfth = tsft >> 32;
2444
2445	/* We sent/received the last beacon `past' microseconds
2446	 * after the interval divided the TSF timer.
2447	 */
2448	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2449
2450	/* Skip ten beacons so that the TBTT cannot pass before
2451	 * we've programmed it.  Ten is an arbitrary number.
2452	 */
2453	tbtt = past_even + ival * 10;
2454
2455	ATW_WRITE(sc, ATW_TOFS1,
2456	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2457	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2458	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2459	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2460#undef TBTTOFS
2461}
2462
2463static void
2464atw_next_scan(void *arg)
2465{
2466	struct atw_softc *sc = arg;
2467	struct ieee80211com *ic = &sc->sc_ic;
2468	int s;
2469
2470	/* don't call atw_start w/o network interrupts blocked */
2471	s = splnet();
2472	if (ic->ic_state == IEEE80211_S_SCAN)
2473		ieee80211_next_scan(ic);
2474	splx(s);
2475}
2476
2477/* Synchronize the hardware state with the software state. */
2478static int
2479atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2480{
2481	struct ifnet *ifp = ic->ic_ifp;
2482	struct atw_softc *sc = ifp->if_softc;
2483	enum ieee80211_state ostate;
2484	int error = 0;
2485
2486	ostate = ic->ic_state;
2487	callout_stop(&sc->sc_scan_ch);
2488
2489	switch (nstate) {
2490	case IEEE80211_S_AUTH:
2491	case IEEE80211_S_ASSOC:
2492		atw_write_bssid(sc);
2493		error = atw_tune(sc);
2494		break;
2495	case IEEE80211_S_INIT:
2496		callout_stop(&sc->sc_scan_ch);
2497		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2498		atw_start_beacon(sc, 0);
2499		break;
2500	case IEEE80211_S_SCAN:
2501		error = atw_tune(sc);
2502		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2503		    atw_next_scan, sc);
2504		break;
2505	case IEEE80211_S_RUN:
2506		error = atw_tune(sc);
2507		atw_write_bssid(sc);
2508		atw_write_ssid(sc);
2509		atw_write_sup_rates(sc);
2510
2511		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2512		    ic->ic_opmode == IEEE80211_M_MONITOR)
2513			break;
2514
2515		/* set listen interval
2516		 * XXX do software units agree w/ hardware?
2517		 */
2518		ATW_WRITE(sc, ATW_BPLI,
2519		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2520		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2521			   ATW_BPLI_LI_MASK));
2522
2523		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2524		    ATW_READ(sc, ATW_BPLI)));
2525
2526		atw_predict_beacon(sc);
2527
2528		switch (ic->ic_opmode) {
2529		case IEEE80211_M_AHDEMO:
2530		case IEEE80211_M_HOSTAP:
2531		case IEEE80211_M_IBSS:
2532			atw_start_beacon(sc, 1);
2533			break;
2534		case IEEE80211_M_MONITOR:
2535		case IEEE80211_M_STA:
2536			break;
2537		}
2538
2539		break;
2540	}
2541	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2542}
2543
2544/*
2545 * atw_add_rxbuf:
2546 *
2547 *	Add a receive buffer to the indicated descriptor.
2548 */
2549int
2550atw_add_rxbuf(struct atw_softc *sc, int idx)
2551{
2552	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2553	struct mbuf *m;
2554	int error;
2555
2556	MGETHDR(m, M_DONTWAIT, MT_DATA);
2557	if (m == NULL)
2558		return (ENOBUFS);
2559
2560	MCLGET(m, M_DONTWAIT);
2561	if ((m->m_flags & M_EXT) == 0) {
2562		m_freem(m);
2563		return (ENOBUFS);
2564	}
2565
2566	if (rxs->rxs_mbuf != NULL)
2567		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2568
2569	rxs->rxs_mbuf = m;
2570
2571	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2572	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2573	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2574	if (error) {
2575		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2576		    idx, error);
2577		panic("atw_add_rxbuf");	/* XXX */
2578	}
2579
2580	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2581	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2582
2583	atw_init_rxdesc(sc, idx);
2584
2585	return (0);
2586}
2587
2588/*
2589 * Release any queued transmit buffers.
2590 */
2591void
2592atw_txdrain(struct atw_softc *sc)
2593{
2594	struct atw_txsoft *txs;
2595
2596	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2597		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2598		if (txs->txs_mbuf != NULL) {
2599			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2600			m_freem(txs->txs_mbuf);
2601			txs->txs_mbuf = NULL;
2602		}
2603		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2604		sc->sc_txfree += txs->txs_ndescs;
2605	}
2606
2607	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2608	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2609		  sc->sc_txfree != ATW_NTXDESC));
2610	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2611	sc->sc_tx_timer = 0;
2612}
2613
2614/*
2615 * atw_stop:		[ ifnet interface function ]
2616 *
2617 *	Stop transmission on the interface.
2618 */
2619void
2620atw_stop(struct ifnet *ifp, int disable)
2621{
2622	struct atw_softc *sc = ifp->if_softc;
2623	struct ieee80211com *ic = &sc->sc_ic;
2624
2625	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2626
2627	if (device_is_active(sc->sc_dev)) {
2628		/* Disable interrupts. */
2629		ATW_WRITE(sc, ATW_IER, 0);
2630
2631		/* Stop the transmit and receive processes. */
2632		ATW_WRITE(sc, ATW_NAR, 0);
2633		DELAY(atw_nar_delay);
2634		ATW_WRITE(sc, ATW_TDBD, 0);
2635		ATW_WRITE(sc, ATW_TDBP, 0);
2636		ATW_WRITE(sc, ATW_RDB, 0);
2637	}
2638
2639	sc->sc_opmode = 0;
2640
2641	atw_txdrain(sc);
2642
2643	/*
2644	 * Mark the interface down and cancel the watchdog timer.
2645	 */
2646	ifp->if_flags &= ~IFF_RUNNING;
2647	ifp->if_timer = 0;
2648
2649	if (disable)
2650		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2651}
2652
2653/*
2654 * atw_rxdrain:
2655 *
2656 *	Drain the receive queue.
2657 */
2658void
2659atw_rxdrain(struct atw_softc *sc)
2660{
2661	struct atw_rxsoft *rxs;
2662	int i;
2663
2664	for (i = 0; i < ATW_NRXDESC; i++) {
2665		rxs = &sc->sc_rxsoft[i];
2666		if (rxs->rxs_mbuf == NULL)
2667			continue;
2668		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2669		m_freem(rxs->rxs_mbuf);
2670		rxs->rxs_mbuf = NULL;
2671	}
2672}
2673
2674/*
2675 * atw_detach:
2676 *
2677 *	Detach an ADM8211 interface.
2678 */
2679int
2680atw_detach(struct atw_softc *sc)
2681{
2682	struct ifnet *ifp = &sc->sc_if;
2683	struct atw_rxsoft *rxs;
2684	struct atw_txsoft *txs;
2685	int i;
2686
2687	/*
2688	 * Succeed now if there isn't any work to do.
2689	 */
2690	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2691		return (0);
2692
2693	pmf_device_deregister(sc->sc_dev);
2694
2695	callout_stop(&sc->sc_scan_ch);
2696
2697	ieee80211_ifdetach(&sc->sc_ic);
2698	if_detach(ifp);
2699
2700	for (i = 0; i < ATW_NRXDESC; i++) {
2701		rxs = &sc->sc_rxsoft[i];
2702		if (rxs->rxs_mbuf != NULL) {
2703			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2704			m_freem(rxs->rxs_mbuf);
2705			rxs->rxs_mbuf = NULL;
2706		}
2707		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2708	}
2709	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2710		txs = &sc->sc_txsoft[i];
2711		if (txs->txs_mbuf != NULL) {
2712			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2713			m_freem(txs->txs_mbuf);
2714			txs->txs_mbuf = NULL;
2715		}
2716		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2717	}
2718	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2719	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2720	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2721	    sizeof(struct atw_control_data));
2722	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2723
2724	if (sc->sc_srom)
2725		free(sc->sc_srom, M_DEVBUF);
2726
2727	atw_evcnt_detach(sc);
2728
2729	return (0);
2730}
2731
2732/* atw_shutdown: make sure the interface is stopped at reboot time. */
2733bool
2734atw_shutdown(device_t self, int flags)
2735{
2736	struct atw_softc *sc = device_private(self);
2737
2738	atw_stop(&sc->sc_if, 1);
2739	return true;
2740}
2741
2742#if 0
2743static void
2744atw_workaround1(struct atw_softc *sc)
2745{
2746	uint32_t test1;
2747
2748	test1 = ATW_READ(sc, ATW_TEST1);
2749
2750	sc->sc_misc_ev.ev_count++;
2751
2752	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2753		sc->sc_rxpkt1in_ev.ev_count++;
2754		return;
2755	}
2756	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2757	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2758		sc->sc_rxamatch_ev.ev_count++;
2759		return;
2760	}
2761	sc->sc_workaround1_ev.ev_count++;
2762	(void)atw_init(&sc->sc_if);
2763}
2764#endif
2765
2766int
2767atw_intr(void *arg)
2768{
2769	struct atw_softc *sc = arg;
2770	struct ifnet *ifp = &sc->sc_if;
2771	u_int32_t status, rxstatus, txstatus, linkstatus;
2772	int handled = 0, txthresh;
2773
2774#ifdef DEBUG
2775	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2776		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2777#endif
2778
2779	/*
2780	 * If the interface isn't running, the interrupt couldn't
2781	 * possibly have come from us.
2782	 */
2783	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2784	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2785		return (0);
2786
2787	for (;;) {
2788		status = ATW_READ(sc, ATW_STSR);
2789
2790		if (status)
2791			ATW_WRITE(sc, ATW_STSR, status);
2792
2793#ifdef ATW_DEBUG
2794#define PRINTINTR(flag) do { \
2795	if ((status & flag) != 0) { \
2796		printf("%s" #flag, delim); \
2797		delim = ","; \
2798	} \
2799} while (0)
2800
2801		if (atw_debug > 1 && status) {
2802			const char *delim = "<";
2803
2804			printf("%s: reg[STSR] = %x",
2805			    device_xname(sc->sc_dev), status);
2806
2807			PRINTINTR(ATW_INTR_FBE);
2808			PRINTINTR(ATW_INTR_LINKOFF);
2809			PRINTINTR(ATW_INTR_LINKON);
2810			PRINTINTR(ATW_INTR_RCI);
2811			PRINTINTR(ATW_INTR_RDU);
2812			PRINTINTR(ATW_INTR_REIS);
2813			PRINTINTR(ATW_INTR_RPS);
2814			PRINTINTR(ATW_INTR_TCI);
2815			PRINTINTR(ATW_INTR_TDU);
2816			PRINTINTR(ATW_INTR_TLT);
2817			PRINTINTR(ATW_INTR_TPS);
2818			PRINTINTR(ATW_INTR_TRT);
2819			PRINTINTR(ATW_INTR_TUF);
2820			PRINTINTR(ATW_INTR_BCNTC);
2821			PRINTINTR(ATW_INTR_ATIME);
2822			PRINTINTR(ATW_INTR_TBTT);
2823			PRINTINTR(ATW_INTR_TSCZ);
2824			PRINTINTR(ATW_INTR_TSFTF);
2825			printf(">\n");
2826		}
2827#undef PRINTINTR
2828#endif /* ATW_DEBUG */
2829
2830		if ((status & sc->sc_inten) == 0)
2831			break;
2832
2833		handled = 1;
2834
2835		rxstatus = status & sc->sc_rxint_mask;
2836		txstatus = status & sc->sc_txint_mask;
2837		linkstatus = status & sc->sc_linkint_mask;
2838
2839		if (linkstatus) {
2840			atw_linkintr(sc, linkstatus);
2841		}
2842
2843		if (rxstatus) {
2844			/* Grab any new packets. */
2845			atw_rxintr(sc);
2846
2847			if (rxstatus & ATW_INTR_RDU) {
2848				printf("%s: receive ring overrun\n",
2849				    device_xname(sc->sc_dev));
2850				/* Get the receive process going again. */
2851				ATW_WRITE(sc, ATW_RDR, 0x1);
2852			}
2853		}
2854
2855		if (txstatus) {
2856			/* Sweep up transmit descriptors. */
2857			atw_txintr(sc, txstatus);
2858
2859			if (txstatus & ATW_INTR_TLT) {
2860				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2861				    device_xname(sc->sc_dev)));
2862				(void)atw_init(&sc->sc_if);
2863			}
2864
2865			if (txstatus & ATW_INTR_TRT) {
2866				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2867				    device_xname(sc->sc_dev)));
2868			}
2869
2870			/* If Tx under-run, increase our transmit threshold
2871			 * if another is available.
2872			 */
2873			txthresh = sc->sc_txthresh + 1;
2874			if ((txstatus & ATW_INTR_TUF) &&
2875			    sc->sc_txth[txthresh].txth_name != NULL) {
2876				/* Idle the transmit process. */
2877				atw_idle(sc, ATW_NAR_ST);
2878
2879				sc->sc_txthresh = txthresh;
2880				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2881				sc->sc_opmode |=
2882				    sc->sc_txth[txthresh].txth_opmode;
2883				printf("%s: transmit underrun; new "
2884				    "threshold: %s\n", device_xname(sc->sc_dev),
2885				    sc->sc_txth[txthresh].txth_name);
2886
2887				/* Set the new threshold and restart
2888				 * the transmit process.
2889				 */
2890				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2891				DELAY(atw_nar_delay);
2892				ATW_WRITE(sc, ATW_TDR, 0x1);
2893				/* XXX Log every Nth underrun from
2894				 * XXX now on?
2895				 */
2896			}
2897		}
2898
2899		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2900			if (status & ATW_INTR_TPS)
2901				printf("%s: transmit process stopped\n",
2902				    device_xname(sc->sc_dev));
2903			if (status & ATW_INTR_RPS)
2904				printf("%s: receive process stopped\n",
2905				    device_xname(sc->sc_dev));
2906			(void)atw_init(ifp);
2907			break;
2908		}
2909
2910		if (status & ATW_INTR_FBE) {
2911			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2912			(void)atw_init(ifp);
2913			break;
2914		}
2915
2916		/*
2917		 * Not handled:
2918		 *
2919		 *	Transmit buffer unavailable -- normal
2920		 *	condition, nothing to do, really.
2921		 *
2922		 *	Early receive interrupt -- not available on
2923		 *	all chips, we just use RI.  We also only
2924		 *	use single-segment receive DMA, so this
2925		 *	is mostly useless.
2926		 *
2927		 *      TBD others
2928		 */
2929	}
2930
2931	/* Try to get more packets going. */
2932	atw_start(ifp);
2933
2934	return (handled);
2935}
2936
2937/*
2938 * atw_idle:
2939 *
2940 *	Cause the transmit and/or receive processes to go idle.
2941 *
2942 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2943 *	process in STSR if I clear SR or ST after the process has already
2944 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2945 *      do not seem to be too reliable. Perhaps I have the sense of the
2946 *	Rx bits switched with the Tx bits?
2947 */
2948void
2949atw_idle(struct atw_softc *sc, u_int32_t bits)
2950{
2951	u_int32_t ackmask = 0, opmode, stsr, test0;
2952	int i, s;
2953
2954	s = splnet();
2955
2956	opmode = sc->sc_opmode & ~bits;
2957
2958	if (bits & ATW_NAR_SR)
2959		ackmask |= ATW_INTR_RPS;
2960
2961	if (bits & ATW_NAR_ST) {
2962		ackmask |= ATW_INTR_TPS;
2963		/* set ATW_NAR_HF to flush TX FIFO. */
2964		opmode |= ATW_NAR_HF;
2965	}
2966
2967	ATW_WRITE(sc, ATW_NAR, opmode);
2968	DELAY(atw_nar_delay);
2969
2970	for (i = 0; i < 1000; i++) {
2971		stsr = ATW_READ(sc, ATW_STSR);
2972		if ((stsr & ackmask) == ackmask)
2973			break;
2974		DELAY(10);
2975	}
2976
2977	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2978
2979	if ((stsr & ackmask) == ackmask)
2980		goto out;
2981
2982	test0 = ATW_READ(sc, ATW_TEST0);
2983
2984	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2985	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2986		printf("%s: transmit process not idle [%s]\n",
2987		    device_xname(sc->sc_dev),
2988		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2989		printf("%s: bits %08x test0 %08x stsr %08x\n",
2990		    device_xname(sc->sc_dev), bits, test0, stsr);
2991	}
2992
2993	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2994	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2995		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2996		    device_xname(sc->sc_dev),
2997		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
2998		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2999		    device_xname(sc->sc_dev), bits, test0, stsr));
3000	}
3001out:
3002	if ((bits & ATW_NAR_ST) != 0)
3003		atw_txdrain(sc);
3004	splx(s);
3005	return;
3006}
3007
3008/*
3009 * atw_linkintr:
3010 *
3011 *	Helper; handle link-status interrupts.
3012 */
3013void
3014atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3015{
3016	struct ieee80211com *ic = &sc->sc_ic;
3017
3018	if (ic->ic_state != IEEE80211_S_RUN)
3019		return;
3020
3021	if (linkstatus & ATW_INTR_LINKON) {
3022		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3023		sc->sc_rescan_timer = 0;
3024	} else if (linkstatus & ATW_INTR_LINKOFF) {
3025		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3026		if (ic->ic_opmode != IEEE80211_M_STA)
3027			return;
3028		sc->sc_rescan_timer = 3;
3029		sc->sc_if.if_timer = 1;
3030	}
3031}
3032
3033static inline int
3034atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3035{
3036	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3037		return 0;
3038	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3039		return 0;
3040	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3041}
3042
3043/*
3044 * atw_rxintr:
3045 *
3046 *	Helper; handle receive interrupts.
3047 */
3048void
3049atw_rxintr(struct atw_softc *sc)
3050{
3051	static int rate_tbl[] = {2, 4, 11, 22, 44};
3052	struct ieee80211com *ic = &sc->sc_ic;
3053	struct ieee80211_node *ni;
3054	struct ieee80211_frame_min *wh;
3055	struct ifnet *ifp = &sc->sc_if;
3056	struct atw_rxsoft *rxs;
3057	struct mbuf *m;
3058	u_int32_t rxstat;
3059	int i, len, rate, rate0;
3060	u_int32_t rssi, ctlrssi;
3061
3062	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3063		rxs = &sc->sc_rxsoft[i];
3064
3065		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3066
3067		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3068		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3069		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3070
3071		if (rxstat & ATW_RXSTAT_OWN) {
3072			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3073			break;
3074		}
3075
3076		sc->sc_rxptr = ATW_NEXTRX(i);
3077
3078		DPRINTF3(sc,
3079		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3080		    device_xname(sc->sc_dev),
3081		    rxstat, ctlrssi,
3082		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3083		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3084
3085		/*
3086		 * Make sure the packet fits in one buffer.  This should
3087		 * always be the case.
3088		 */
3089		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3090		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3091			printf("%s: incoming packet spilled, resetting\n",
3092			    device_xname(sc->sc_dev));
3093			(void)atw_init(ifp);
3094			return;
3095		}
3096
3097		/*
3098		 * If an error occurred, update stats, clear the status
3099		 * word, and leave the packet buffer in place.  It will
3100		 * simply be reused the next time the ring comes around.
3101		 */
3102		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3103#define	PRINTERR(bit, str)						\
3104			if (rxstat & (bit))				\
3105				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3106				    str)
3107			ifp->if_ierrors++;
3108			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3109			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3110#if 0
3111			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3112			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3113			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3114			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3115#endif
3116#undef PRINTERR
3117			atw_init_rxdesc(sc, i);
3118			continue;
3119		}
3120
3121		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3122		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3123
3124		/*
3125		 * No errors; receive the packet.  Note the ADM8211
3126		 * includes the CRC in promiscuous mode.
3127		 */
3128		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3129
3130		/*
3131		 * Allocate a new mbuf cluster.  If that fails, we are
3132		 * out of memory, and must drop the packet and recycle
3133		 * the buffer that's already attached to this descriptor.
3134		 */
3135		m = rxs->rxs_mbuf;
3136		if (atw_add_rxbuf(sc, i) != 0) {
3137			ifp->if_ierrors++;
3138			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3139			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3140			atw_init_rxdesc(sc, i);
3141			continue;
3142		}
3143
3144		ifp->if_ipackets++;
3145		m->m_pkthdr.rcvif = ifp;
3146		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3147
3148		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3149
3150		/* The RSSI comes straight from a register in the
3151		 * baseband processor.  I know that for the RF3000,
3152		 * the RSSI register also contains the antenna-selection
3153		 * bits.  Mask those off.
3154		 *
3155		 * TBD Treat other basebands.
3156		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3157		 */
3158		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3159			rssi = ctlrssi & RF3000_RSSI_MASK;
3160		else
3161			rssi = ctlrssi;
3162
3163 #if NBPFILTER > 0
3164		/* Pass this up to any BPF listeners. */
3165		if (sc->sc_radiobpf != NULL) {
3166			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3167
3168			tap->ar_rate = rate;
3169
3170			/* TBD verify units are dB */
3171			tap->ar_antsignal = (int)rssi;
3172			if (sc->sc_opmode & ATW_NAR_PR)
3173				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3174			else
3175				tap->ar_flags = 0;
3176
3177			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3178				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3179
3180			bpf_mtap2(sc->sc_radiobpf, tap,
3181			    sizeof(sc->sc_rxtapu), m);
3182 		}
3183#endif /* NBPFILTER > 0 */
3184
3185		sc->sc_recv_ev.ev_count++;
3186
3187		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3188			if (rxstat & ATW_RXSTAT_CRC16E)
3189				sc->sc_crc16e_ev.ev_count++;
3190			if (rxstat & ATW_RXSTAT_CRC32E)
3191				sc->sc_crc32e_ev.ev_count++;
3192			if (rxstat & ATW_RXSTAT_ICVE)
3193				sc->sc_icve_ev.ev_count++;
3194			if (rxstat & ATW_RXSTAT_SFDE)
3195				sc->sc_sfde_ev.ev_count++;
3196			if (rxstat & ATW_RXSTAT_SIGE)
3197				sc->sc_sige_ev.ev_count++;
3198			ifp->if_ierrors++;
3199			m_freem(m);
3200			continue;
3201		}
3202
3203		if (sc->sc_opmode & ATW_NAR_PR)
3204			m_adj(m, -IEEE80211_CRC_LEN);
3205
3206		wh = mtod(m, struct ieee80211_frame_min *);
3207		ni = ieee80211_find_rxnode(ic, wh);
3208#if 0
3209		if (atw_hw_decrypted(sc, wh)) {
3210			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3211			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3212		}
3213#endif
3214		ieee80211_input(ic, m, ni, (int)rssi, 0);
3215		ieee80211_free_node(ni);
3216	}
3217}
3218
3219/*
3220 * atw_txintr:
3221 *
3222 *	Helper; handle transmit interrupts.
3223 */
3224void
3225atw_txintr(struct atw_softc *sc, uint32_t status)
3226{
3227	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3228	struct ifnet *ifp = &sc->sc_if;
3229	struct atw_txsoft *txs;
3230	u_int32_t txstat;
3231
3232	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3233	    device_xname(sc->sc_dev), sc->sc_flags));
3234
3235	/*
3236	 * Go through our Tx list and free mbufs for those
3237	 * frames that have been transmitted.
3238	 */
3239	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3240		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3241		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242
3243#ifdef ATW_DEBUG
3244		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3245			int i;
3246			printf("    txsoft %p transmit chain:\n", txs);
3247			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3248			    txs->txs_ndescs - 1,
3249			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3250			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3251				printf("     descriptor %d:\n", i);
3252				printf("       at_status:   0x%08x\n",
3253				    le32toh(sc->sc_txdescs[i].at_stat));
3254				printf("       at_flags:      0x%08x\n",
3255				    le32toh(sc->sc_txdescs[i].at_flags));
3256				printf("       at_buf1: 0x%08x\n",
3257				    le32toh(sc->sc_txdescs[i].at_buf1));
3258				printf("       at_buf2: 0x%08x\n",
3259				    le32toh(sc->sc_txdescs[i].at_buf2));
3260				if (i == txs->txs_lastdesc)
3261					break;
3262			}
3263			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3264			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3265		}
3266#endif
3267
3268		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3269		if (txstat & ATW_TXSTAT_OWN) {
3270			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3271			    BUS_DMASYNC_PREREAD);
3272			break;
3273		}
3274
3275		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3276
3277		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3278		    0, txs->txs_dmamap->dm_mapsize,
3279		    BUS_DMASYNC_POSTWRITE);
3280		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3281		m_freem(txs->txs_mbuf);
3282		txs->txs_mbuf = NULL;
3283
3284		sc->sc_txfree += txs->txs_ndescs;
3285		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3286
3287		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3288		sc->sc_tx_timer = 0;
3289		ifp->if_flags &= ~IFF_OACTIVE;
3290
3291		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3292		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3293			snprintb(txstat_buf, sizeof(txstat_buf),
3294			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3295			printf("%s: txstat %s %" __PRIuBITS "\n",
3296			    device_xname(sc->sc_dev), txstat_buf,
3297			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3298		}
3299
3300		sc->sc_xmit_ev.ev_count++;
3301
3302		/*
3303		 * Check for errors and collisions.
3304		 */
3305		if (txstat & ATW_TXSTAT_TUF)
3306			sc->sc_tuf_ev.ev_count++;
3307		if (txstat & ATW_TXSTAT_TLT)
3308			sc->sc_tlt_ev.ev_count++;
3309		if (txstat & ATW_TXSTAT_TRT)
3310			sc->sc_trt_ev.ev_count++;
3311		if (txstat & ATW_TXSTAT_TRO)
3312			sc->sc_tro_ev.ev_count++;
3313		if (txstat & ATW_TXSTAT_SOFBR)
3314			sc->sc_sofbr_ev.ev_count++;
3315
3316		if ((txstat & ATW_TXSTAT_ES) == 0)
3317			ifp->if_collisions +=
3318			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3319		else
3320			ifp->if_oerrors++;
3321
3322		ifp->if_opackets++;
3323	}
3324
3325	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3326}
3327
3328/*
3329 * atw_watchdog:	[ifnet interface function]
3330 *
3331 *	Watchdog timer handler.
3332 */
3333void
3334atw_watchdog(struct ifnet *ifp)
3335{
3336	struct atw_softc *sc = ifp->if_softc;
3337	struct ieee80211com *ic = &sc->sc_ic;
3338
3339	ifp->if_timer = 0;
3340	if (!device_is_active(sc->sc_dev))
3341		return;
3342
3343	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3344		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3345	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3346	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3347		printf("%s: transmit timeout\n", ifp->if_xname);
3348		ifp->if_oerrors++;
3349		(void)atw_init(ifp);
3350		atw_start(ifp);
3351	}
3352	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3353		ifp->if_timer = 1;
3354	ieee80211_watchdog(ic);
3355}
3356
3357static void
3358atw_evcnt_detach(struct atw_softc *sc)
3359{
3360	evcnt_detach(&sc->sc_sige_ev);
3361	evcnt_detach(&sc->sc_sfde_ev);
3362	evcnt_detach(&sc->sc_icve_ev);
3363	evcnt_detach(&sc->sc_crc32e_ev);
3364	evcnt_detach(&sc->sc_crc16e_ev);
3365	evcnt_detach(&sc->sc_recv_ev);
3366
3367	evcnt_detach(&sc->sc_tuf_ev);
3368	evcnt_detach(&sc->sc_tro_ev);
3369	evcnt_detach(&sc->sc_trt_ev);
3370	evcnt_detach(&sc->sc_tlt_ev);
3371	evcnt_detach(&sc->sc_sofbr_ev);
3372	evcnt_detach(&sc->sc_xmit_ev);
3373
3374	evcnt_detach(&sc->sc_rxpkt1in_ev);
3375	evcnt_detach(&sc->sc_rxamatch_ev);
3376	evcnt_detach(&sc->sc_workaround1_ev);
3377	evcnt_detach(&sc->sc_misc_ev);
3378}
3379
3380static void
3381atw_evcnt_attach(struct atw_softc *sc)
3382{
3383	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3384	    NULL, sc->sc_if.if_xname, "recv");
3385	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3386	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3387	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3388	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3389	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3390	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3391	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3392	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3393	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3394	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3395
3396	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3397	    NULL, sc->sc_if.if_xname, "xmit");
3398	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3399	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3400	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3401	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3402	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3403	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3404	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3405	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3406	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3407	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3408
3409	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3410	    NULL, sc->sc_if.if_xname, "misc");
3411	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3412	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3413	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3414	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3415	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3416	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3417}
3418
3419#ifdef ATW_DEBUG
3420static void
3421atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3422{
3423	struct atw_softc *sc = ifp->if_softc;
3424	struct mbuf *m;
3425	int i, noctets = 0;
3426
3427	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3428	    m0->m_pkthdr.len);
3429
3430	for (m = m0; m; m = m->m_next) {
3431		if (m->m_len == 0)
3432			continue;
3433		for (i = 0; i < m->m_len; i++) {
3434			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3435			if (++noctets % 24 == 0)
3436				printf("\n");
3437		}
3438	}
3439	printf("%s%s: %d bytes emitted\n",
3440	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3441}
3442#endif /* ATW_DEBUG */
3443
3444/*
3445 * atw_start:		[ifnet interface function]
3446 *
3447 *	Start packet transmission on the interface.
3448 */
3449void
3450atw_start(struct ifnet *ifp)
3451{
3452	struct atw_softc *sc = ifp->if_softc;
3453	struct ieee80211_key *k;
3454	struct ieee80211com *ic = &sc->sc_ic;
3455	struct ieee80211_node *ni;
3456	struct ieee80211_frame_min *whm;
3457	struct ieee80211_frame *wh;
3458	struct atw_frame *hh;
3459	uint16_t hdrctl;
3460	struct mbuf *m0, *m;
3461	struct atw_txsoft *txs, *last_txs;
3462	struct atw_txdesc *txd;
3463	int npkt, rate;
3464	bus_dmamap_t dmamap;
3465	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3466
3467	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3468	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3469
3470	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3471		return;
3472
3473	/*
3474	 * Remember the previous number of free descriptors and
3475	 * the first descriptor we'll use.
3476	 */
3477	ofree = sc->sc_txfree;
3478	firsttx = lasttx = sc->sc_txnext;
3479
3480	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3481	    device_xname(sc->sc_dev), ofree, firsttx));
3482
3483	/*
3484	 * Loop through the send queue, setting up transmit descriptors
3485	 * until we drain the queue, or use up all available transmit
3486	 * descriptors.
3487	 */
3488	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3489	       sc->sc_txfree != 0) {
3490
3491		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3492
3493		/*
3494		 * Grab a packet off the management queue, if it
3495		 * is not empty. Otherwise, from the data queue.
3496		 */
3497		IF_DEQUEUE(&ic->ic_mgtq, m0);
3498		if (m0 != NULL) {
3499			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3500			m0->m_pkthdr.rcvif = NULL;
3501		} else if (ic->ic_state != IEEE80211_S_RUN)
3502			break; /* send no data until associated */
3503		else {
3504			IFQ_DEQUEUE(&ifp->if_snd, m0);
3505			if (m0 == NULL)
3506				break;
3507#if NBPFILTER > 0
3508			if (ifp->if_bpf != NULL)
3509				bpf_mtap(ifp->if_bpf, m0);
3510#endif /* NBPFILTER > 0 */
3511			ni = ieee80211_find_txnode(ic,
3512			    mtod(m0, struct ether_header *)->ether_dhost);
3513			if (ni == NULL) {
3514				ifp->if_oerrors++;
3515				break;
3516			}
3517			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3518				ieee80211_free_node(ni);
3519				ifp->if_oerrors++;
3520				break;
3521			}
3522		}
3523
3524		rate = MAX(ieee80211_get_rate(ni), 2);
3525
3526		whm = mtod(m0, struct ieee80211_frame_min *);
3527
3528		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3529			k = NULL;
3530		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3531			m_freem(m0);
3532			ieee80211_free_node(ni);
3533			ifp->if_oerrors++;
3534			break;
3535		}
3536#if 0
3537		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3538		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3539			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3540#endif
3541
3542		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3543			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3544
3545		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3546		    ic->ic_flags, ic->ic_fragthreshold, rate,
3547		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3548			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3549			m_freem(m0);
3550			break;
3551		}
3552
3553		/* XXX Misleading if fragmentation is enabled.  Better
3554		 * to fragment in software?
3555		 */
3556		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3557
3558#if NBPFILTER > 0
3559		/*
3560		 * Pass the packet to any BPF listeners.
3561		 */
3562		if (ic->ic_rawbpf != NULL)
3563			bpf_mtap((void *)ic->ic_rawbpf, m0);
3564
3565		if (sc->sc_radiobpf != NULL) {
3566			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3567
3568			tap->at_rate = rate;
3569
3570			bpf_mtap2(sc->sc_radiobpf, tap,
3571			    sizeof(sc->sc_txtapu), m0);
3572		}
3573#endif /* NBPFILTER > 0 */
3574
3575		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3576
3577		if (ni != NULL)
3578			ieee80211_free_node(ni);
3579
3580		if (m0 == NULL) {
3581			ifp->if_oerrors++;
3582			break;
3583		}
3584
3585		/* just to make sure. */
3586		m0 = m_pullup(m0, sizeof(struct atw_frame));
3587
3588		if (m0 == NULL) {
3589			ifp->if_oerrors++;
3590			break;
3591		}
3592
3593		hh = mtod(m0, struct atw_frame *);
3594		wh = &hh->atw_ihdr;
3595
3596		/* Copy everything we need from the 802.11 header:
3597		 * Frame Control; address 1, address 3, or addresses
3598		 * 3 and 4. NIC fills in BSSID, SA.
3599		 */
3600		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3601			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3602				panic("%s: illegal WDS frame",
3603				    device_xname(sc->sc_dev));
3604			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3605		} else
3606			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3607
3608		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3609
3610		/* initialize remaining Tx parameters */
3611		memset(&hh->u, 0, sizeof(hh->u));
3612
3613		hh->atw_rate = rate * 5;
3614		/* XXX this could be incorrect if M_FCS. _encap should
3615		 * probably strip FCS just in case it sticks around in
3616		 * bridged packets.
3617		 */
3618		hh->atw_service = 0x00; /* XXX guess */
3619		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3620		    sizeof(struct atw_frame));
3621
3622		/* never fragment multicast frames */
3623		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3624			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3625		else {
3626			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3627			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3628				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3629			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3630		}
3631
3632		hh->atw_rtylmt = 3;
3633#if 0
3634		if (do_encrypt) {
3635			hdrctl |= htole16(ATW_HDRCTL_WEP);
3636			hh->atw_keyid = ic->ic_def_txkey;
3637		}
3638#endif
3639
3640		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3641		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3642		if (txs->txs_d0.d_residue)
3643			hh->atw_head_plcplen |= htole16(0x8000);
3644		if (txs->txs_dn.d_residue)
3645			hh->atw_tail_plcplen |= htole16(0x8000);
3646		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3647		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3648
3649		hh->atw_hdrctl = hdrctl;
3650		hh->atw_fragnum = npkt << 4;
3651#ifdef ATW_DEBUG
3652
3653		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3654			printf("%s: dst = %s, rate = 0x%02x, "
3655			    "service = 0x%02x, paylen = 0x%04x\n",
3656			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3657			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3658
3659			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3660			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3661			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3662			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3663			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3664			    hh->atw_tail_dur, hh->atw_head_dur);
3665
3666			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3667			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3668			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3669			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3670
3671			printf("%s: keyid = %d\n",
3672			    device_xname(sc->sc_dev), hh->atw_keyid);
3673
3674			atw_dump_pkt(ifp, m0);
3675		}
3676#endif /* ATW_DEBUG */
3677
3678		dmamap = txs->txs_dmamap;
3679
3680		/*
3681		 * Load the DMA map.  Copy and try (once) again if the packet
3682		 * didn't fit in the alloted number of segments.
3683		 */
3684		for (first = 1;
3685		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3686		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3687		     first = 0) {
3688			MGETHDR(m, M_DONTWAIT, MT_DATA);
3689			if (m == NULL) {
3690				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3691				break;
3692			}
3693			if (m0->m_pkthdr.len > MHLEN) {
3694				MCLGET(m, M_DONTWAIT);
3695				if ((m->m_flags & M_EXT) == 0) {
3696					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3697					    "cluster\n");
3698					m_freem(m);
3699					break;
3700				}
3701			}
3702			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3703			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3704			m_freem(m0);
3705			m0 = m;
3706			m = NULL;
3707		}
3708		if (error != 0) {
3709			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3710			    "error = %d\n", error);
3711			m_freem(m0);
3712			break;
3713		}
3714
3715		/*
3716		 * Ensure we have enough descriptors free to describe
3717		 * the packet.
3718		 */
3719		if (dmamap->dm_nsegs > sc->sc_txfree) {
3720			/*
3721			 * Not enough free descriptors to transmit
3722			 * this packet.  Unload the DMA map and
3723			 * drop the packet.  Notify the upper layer
3724			 * that there are no more slots left.
3725			 *
3726			 * XXX We could allocate an mbuf and copy, but
3727			 * XXX it is worth it?
3728			 */
3729			bus_dmamap_unload(sc->sc_dmat, dmamap);
3730			m_freem(m0);
3731			break;
3732		}
3733
3734		/*
3735		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3736		 */
3737
3738		/* Sync the DMA map. */
3739		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3740		    BUS_DMASYNC_PREWRITE);
3741
3742		/* XXX arbitrary retry limit; 8 because I have seen it in
3743		 * use already and maybe 0 means "no tries" !
3744		 */
3745		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3746
3747		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3748		    device_xname(sc->sc_dev), rate * 5));
3749		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3750
3751		/*
3752		 * Initialize the transmit descriptors.
3753		 */
3754		for (nexttx = sc->sc_txnext, seg = 0;
3755		     seg < dmamap->dm_nsegs;
3756		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3757			/*
3758			 * If this is the first descriptor we're
3759			 * enqueueing, don't set the OWN bit just
3760			 * yet.  That could cause a race condition.
3761			 * We'll do it below.
3762			 */
3763			txd = &sc->sc_txdescs[nexttx];
3764			txd->at_ctl = ctl |
3765			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3766
3767			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3768			txd->at_flags =
3769			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3770			                   ATW_TXFLAG_TBS1_MASK)) |
3771			    ((nexttx == (ATW_NTXDESC - 1))
3772			        ? htole32(ATW_TXFLAG_TER) : 0);
3773			lasttx = nexttx;
3774		}
3775
3776		/* Set `first segment' and `last segment' appropriately. */
3777		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3778		    htole32(ATW_TXFLAG_FS);
3779		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3780
3781#ifdef ATW_DEBUG
3782		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3783			printf("     txsoft %p transmit chain:\n", txs);
3784			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3785				printf("     descriptor %d:\n", seg);
3786				printf("       at_ctl:   0x%08x\n",
3787				    le32toh(sc->sc_txdescs[seg].at_ctl));
3788				printf("       at_flags:      0x%08x\n",
3789				    le32toh(sc->sc_txdescs[seg].at_flags));
3790				printf("       at_buf1: 0x%08x\n",
3791				    le32toh(sc->sc_txdescs[seg].at_buf1));
3792				printf("       at_buf2: 0x%08x\n",
3793				    le32toh(sc->sc_txdescs[seg].at_buf2));
3794				if (seg == lasttx)
3795					break;
3796			}
3797		}
3798#endif
3799
3800		/* Sync the descriptors we're using. */
3801		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3802		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3803
3804		/*
3805		 * Store a pointer to the packet so we can free it later,
3806		 * and remember what txdirty will be once the packet is
3807		 * done.
3808		 */
3809		txs->txs_mbuf = m0;
3810		txs->txs_firstdesc = sc->sc_txnext;
3811		txs->txs_lastdesc = lasttx;
3812		txs->txs_ndescs = dmamap->dm_nsegs;
3813
3814		/* Advance the tx pointer. */
3815		sc->sc_txfree -= dmamap->dm_nsegs;
3816		sc->sc_txnext = nexttx;
3817
3818		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3819		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3820
3821		last_txs = txs;
3822	}
3823
3824	if (sc->sc_txfree != ofree) {
3825		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3826		    device_xname(sc->sc_dev), lasttx, firsttx));
3827		/*
3828		 * Cause a transmit interrupt to happen on the
3829		 * last packet we enqueued.
3830		 */
3831		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3832		ATW_CDTXSYNC(sc, lasttx, 1,
3833		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3834
3835		/*
3836		 * The entire packet chain is set up.  Give the
3837		 * first descriptor to the chip now.
3838		 */
3839		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3840		ATW_CDTXSYNC(sc, firsttx, 1,
3841		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3842
3843		/* Wake up the transmitter. */
3844		ATW_WRITE(sc, ATW_TDR, 0x1);
3845
3846		if (txs == NULL || sc->sc_txfree == 0)
3847			ifp->if_flags |= IFF_OACTIVE;
3848
3849		/* Set a watchdog timer in case the chip flakes out. */
3850		sc->sc_tx_timer = 5;
3851		ifp->if_timer = 1;
3852	}
3853}
3854
3855/*
3856 * atw_ioctl:		[ifnet interface function]
3857 *
3858 *	Handle control requests from the operator.
3859 */
3860int
3861atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3862{
3863	struct atw_softc *sc = ifp->if_softc;
3864	struct ieee80211req *ireq;
3865	int s, error = 0;
3866
3867	s = splnet();
3868
3869	switch (cmd) {
3870	case SIOCSIFFLAGS:
3871		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3872			break;
3873		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3874		case IFF_UP|IFF_RUNNING:
3875			/*
3876			 * To avoid rescanning another access point,
3877			 * do not call atw_init() here.  Instead,
3878			 * only reflect media settings.
3879			 */
3880			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3881				atw_filter_setup(sc);
3882			break;
3883		case IFF_UP:
3884			error = atw_init(ifp);
3885			break;
3886		case IFF_RUNNING:
3887			atw_stop(ifp, 1);
3888			break;
3889		case 0:
3890			break;
3891		}
3892		break;
3893	case SIOCADDMULTI:
3894	case SIOCDELMULTI:
3895		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3896			if (ifp->if_flags & IFF_RUNNING)
3897				atw_filter_setup(sc); /* do not rescan */
3898			error = 0;
3899		}
3900		break;
3901	case SIOCS80211:
3902		ireq = data;
3903		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3904			if ((error = kauth_authorize_network(curlwp->l_cred,
3905			    KAUTH_NETWORK_INTERFACE,
3906			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3907			    (void *)cmd, NULL) != 0))
3908				break;
3909			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3910			      ireq->i_val <= IEEE80211_FRAG_MAX))
3911				error = EINVAL;
3912			else
3913				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3914			break;
3915		}
3916		/*FALLTHROUGH*/
3917	default:
3918		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3919		if (error == ENETRESET || error == ERESTART) {
3920			if (is_running(ifp))
3921				error = atw_init(ifp);
3922			else
3923				error = 0;
3924		}
3925		break;
3926	}
3927
3928	/* Try to get more packets going. */
3929	if (device_is_active(sc->sc_dev))
3930		atw_start(ifp);
3931
3932	splx(s);
3933	return (error);
3934}
3935
3936static int
3937atw_media_change(struct ifnet *ifp)
3938{
3939	int error;
3940
3941	error = ieee80211_media_change(ifp);
3942	if (error == ENETRESET) {
3943		if (is_running(ifp))
3944			error = atw_init(ifp);
3945		else
3946			error = 0;
3947	}
3948	return error;
3949}
3950