atw.c revision 1.123
1/*	$NetBSD: atw.c,v 1.123 2006/11/13 03:35:59 dyoung Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.123 2006/11/13 03:35:59 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59#include <lib/libkern/libkern.h>
60
61#include <machine/endian.h>
62
63#include <uvm/uvm_extern.h>
64
65#include <net/if.h>
66#include <net/if_dl.h>
67#include <net/if_media.h>
68#include <net/if_ether.h>
69
70#include <net80211/ieee80211_netbsd.h>
71#include <net80211/ieee80211_var.h>
72#include <net80211/ieee80211_radiotap.h>
73
74#if NBPFILTER > 0
75#include <net/bpf.h>
76#endif
77
78#include <machine/bus.h>
79#include <machine/intr.h>
80
81#include <dev/ic/atwreg.h>
82#include <dev/ic/rf3000reg.h>
83#include <dev/ic/si4136reg.h>
84#include <dev/ic/atwvar.h>
85#include <dev/ic/smc93cx6var.h>
86
87/* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95/* device attachment
96 *
97 *    print TOFS[012]
98 *
99 * device initialization
100 *
101 *    clear ATW_FRCTL_MAXPSP to disable max power saving
102 *    set ATW_TXBR_ALCUPDATE to enable ALC
103 *    set TOFS[012]? (hope not)
104 *    disable rx/tx
105 *    set ATW_PAR_SWR (software reset)
106 *    wait for ATW_PAR_SWR clear
107 *    disable interrupts
108 *    ack status register
109 *    enable interrupts
110 *
111 * rx/tx initialization
112 *
113 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 *    allocate and init descriptor rings
115 *    write ATW_PAR_DSL (descriptor skip length)
116 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    write ATW_NAR_SQ for one/both transmit descriptor rings
119 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 *    stop DMA
124 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 *    flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 *    initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 *    set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
140
141#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
142#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
143int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145int atw_pseudo_milli = 1;
146int atw_magic_delay1 = 100 * 1000;
147int atw_magic_delay2 = 100 * 1000;
148/* more magic multi-millisecond delays (units: microseconds) */
149int atw_nar_delay = 20 * 1000;
150int atw_magic_delay4 = 10 * 1000;
151int atw_rf_delay1 = 10 * 1000;
152int atw_rf_delay2 = 5 * 1000;
153int atw_plcphd_delay = 2 * 1000;
154int atw_bbp_io_enable_delay = 20 * 1000;
155int atw_bbp_io_disable_delay = 2 * 1000;
156int atw_writewep_delay = 1000;
157int atw_beacon_len_adjust = 4;
158int atw_dwelltime = 200;
159int atw_xindiv2 = 0;
160
161#ifdef ATW_DEBUG
162int atw_debug = 0;
163
164#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
165#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
166#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
167#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
172static void	atw_print_regs(struct atw_softc *, const char *);
173
174/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175#	ifdef ATW_BBPDEBUG
176static void	atw_rf3000_print(struct atw_softc *);
177static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178#	endif /* ATW_BBPDEBUG */
179
180#	ifdef ATW_SYNDEBUG
181static void	atw_si4126_print(struct atw_softc *);
182static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
183#	endif /* ATW_SYNDEBUG */
184
185#else
186#define ATW_DPRINTF(x)
187#define ATW_DPRINTF2(x)
188#define ATW_DPRINTF3(x)
189#define	DPRINTF(sc, x)	/* nothing */
190#define	DPRINTF2(sc, x)	/* nothing */
191#define	DPRINTF3(sc, x)	/* nothing */
192#endif
193
194/* ifnet methods */
195int	atw_init(struct ifnet *);
196int	atw_ioctl(struct ifnet *, u_long, caddr_t);
197void	atw_start(struct ifnet *);
198void	atw_stop(struct ifnet *, int);
199void	atw_watchdog(struct ifnet *);
200
201/* Device attachment */
202void	atw_attach(struct atw_softc *);
203int	atw_detach(struct atw_softc *);
204
205/* Rx/Tx process */
206int	atw_add_rxbuf(struct atw_softc *, int);
207void	atw_idle(struct atw_softc *, u_int32_t);
208void	atw_rxdrain(struct atw_softc *);
209void	atw_txdrain(struct atw_softc *);
210
211/* Device (de)activation and power state */
212void	atw_disable(struct atw_softc *);
213int	atw_enable(struct atw_softc *);
214void	atw_power(int, void *);
215void	atw_reset(struct atw_softc *);
216void	atw_shutdown(void *);
217
218/* Interrupt handlers */
219void	atw_linkintr(struct atw_softc *, u_int32_t);
220void	atw_rxintr(struct atw_softc *);
221void	atw_txintr(struct atw_softc *);
222
223/* 802.11 state machine */
224static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225static void	atw_next_scan(void *);
226static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227		              struct ieee80211_node *, int, int, u_int32_t);
228static int	atw_tune(struct atw_softc *);
229
230/* Device initialization */
231static void	atw_bbp_io_init(struct atw_softc *);
232static void	atw_cfp_init(struct atw_softc *);
233static void	atw_cmdr_init(struct atw_softc *);
234static void	atw_ifs_init(struct atw_softc *);
235static void	atw_nar_init(struct atw_softc *);
236static void	atw_response_times_init(struct atw_softc *);
237static void	atw_rf_reset(struct atw_softc *);
238static void	atw_test1_init(struct atw_softc *);
239static void	atw_tofs0_init(struct atw_softc *);
240static void	atw_tofs2_init(struct atw_softc *);
241static void	atw_txlmt_init(struct atw_softc *);
242static void	atw_wcsr_init(struct atw_softc *);
243
244/* Key management */
245static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247	const u_int8_t[IEEE80211_ADDR_LEN]);
248static void atw_key_update_begin(struct ieee80211com *);
249static void atw_key_update_end(struct ieee80211com *);
250
251/* RAM/ROM utilities */
252static void	atw_clear_sram(struct atw_softc *);
253static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254static int	atw_read_srom(struct atw_softc *);
255
256/* BSS setup */
257static void	atw_predict_beacon(struct atw_softc *);
258static void	atw_start_beacon(struct atw_softc *, int);
259static void	atw_write_bssid(struct atw_softc *);
260static void	atw_write_ssid(struct atw_softc *);
261static void	atw_write_sup_rates(struct atw_softc *);
262static void	atw_write_wep(struct atw_softc *);
263
264/* Media */
265static int	atw_media_change(struct ifnet *);
266
267static void	atw_filter_setup(struct atw_softc *);
268
269/* 802.11 utilities */
270static uint64_t			atw_get_tsft(struct atw_softc *);
271static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
272				                   uint32_t);
273static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
274static void			atw_node_free(struct ieee80211_node *);
275
276/*
277 * Tuner/transceiver/modem
278 */
279static void	atw_bbp_io_enable(struct atw_softc *, int);
280
281/* RFMD RF3000 Baseband Processor */
282static int	atw_rf3000_init(struct atw_softc *);
283static int	atw_rf3000_tune(struct atw_softc *, u_int);
284static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286/* Silicon Laboratories Si4126 RF/IF Synthesizer */
287static void	atw_si4126_tune(struct atw_softc *, u_int);
288static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293const char *atw_tx_state[] = {
294	"STOPPED",
295	"RUNNING - read descriptor",
296	"RUNNING - transmitting",
297	"RUNNING - filling fifo",	/* XXX */
298	"SUSPENDED",
299	"RUNNING -- write descriptor",
300	"RUNNING -- write last descriptor",
301	"RUNNING - fifo full"
302};
303
304const char *atw_rx_state[] = {
305	"STOPPED",
306	"RUNNING - read descriptor",
307	"RUNNING - check this packet, pre-fetch next",
308	"RUNNING - wait for reception",
309	"SUSPENDED",
310	"RUNNING - write descriptor",
311	"RUNNING - flush fifo",
312	"RUNNING - fifo drain"
313};
314
315static inline int
316is_running(struct ifnet *ifp)
317{
318	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319}
320
321int
322atw_activate(struct device *self, enum devact act)
323{
324	struct atw_softc *sc = (struct atw_softc *)self;
325	int rv = 0, s;
326
327	s = splnet();
328	switch (act) {
329	case DVACT_ACTIVATE:
330		rv = EOPNOTSUPP;
331		break;
332
333	case DVACT_DEACTIVATE:
334		if_deactivate(&sc->sc_if);
335		break;
336	}
337	splx(s);
338	return rv;
339}
340
341/*
342 * atw_enable:
343 *
344 *	Enable the ADM8211 chip.
345 */
346int
347atw_enable(struct atw_softc *sc)
348{
349
350	if (ATW_IS_ENABLED(sc) == 0) {
351		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352			printf("%s: device enable failed\n",
353			    sc->sc_dev.dv_xname);
354			return (EIO);
355		}
356		sc->sc_flags |= ATWF_ENABLED;
357                /* Power may have been removed, and WEP keys thus
358                 * reset.
359		 */
360		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361	}
362	return (0);
363}
364
365/*
366 * atw_disable:
367 *
368 *	Disable the ADM8211 chip.
369 */
370void
371atw_disable(struct atw_softc *sc)
372{
373	if (!ATW_IS_ENABLED(sc))
374		return;
375	if (sc->sc_disable != NULL)
376		(*sc->sc_disable)(sc);
377	sc->sc_flags &= ~ATWF_ENABLED;
378}
379
380/* Returns -1 on failure. */
381static int
382atw_read_srom(struct atw_softc *sc)
383{
384	struct seeprom_descriptor sd;
385	uint32_t test0, fail_bits;
386
387	(void)memset(&sd, 0, sizeof(sd));
388
389	test0 = ATW_READ(sc, ATW_TEST0);
390
391	switch (sc->sc_rev) {
392	case ATW_REVISION_BA:
393	case ATW_REVISION_CA:
394		fail_bits = ATW_TEST0_EPNE;
395		break;
396	default:
397		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398		break;
399	}
400	if ((test0 & fail_bits) != 0) {
401		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402		return -1;
403	}
404
405	switch (test0 & ATW_TEST0_EPTYP_MASK) {
406	case ATW_TEST0_EPTYP_93c66:
407		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408		sc->sc_sromsz = 512;
409		sd.sd_chip = C56_66;
410		break;
411	case ATW_TEST0_EPTYP_93c46:
412		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413		sc->sc_sromsz = 128;
414		sd.sd_chip = C46;
415		break;
416	default:
417		printf("%s: unknown SROM type %" __PRIuBITS "\n",
418		    sc->sc_dev.dv_xname,
419		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
420		return -1;
421	}
422
423	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
424
425	if (sc->sc_srom == NULL) {
426		printf("%s: unable to allocate SROM buffer\n",
427		    sc->sc_dev.dv_xname);
428		return -1;
429	}
430
431	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
432
433	/* ADM8211 has a single 32-bit register for controlling the
434	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
435	 * "ready" bit. The ADM8211 input/output sense is the reverse
436	 * of read_seeprom's.
437	 */
438	sd.sd_tag = sc->sc_st;
439	sd.sd_bsh = sc->sc_sh;
440	sd.sd_regsize = 4;
441	sd.sd_control_offset = ATW_SPR;
442	sd.sd_status_offset = ATW_SPR;
443	sd.sd_dataout_offset = ATW_SPR;
444	sd.sd_CK = ATW_SPR_SCLK;
445	sd.sd_CS = ATW_SPR_SCS;
446	sd.sd_DI = ATW_SPR_SDO;
447	sd.sd_DO = ATW_SPR_SDI;
448	sd.sd_MS = ATW_SPR_SRS;
449	sd.sd_RDY = 0;
450
451	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
452		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
453		free(sc->sc_srom, M_DEVBUF);
454		return -1;
455	}
456#ifdef ATW_DEBUG
457	{
458		int i;
459		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
460		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
461			if (((i % 8) == 0) && (i != 0)) {
462				ATW_DPRINTF(("\n\t"));
463			}
464			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
465		}
466		ATW_DPRINTF(("\n"));
467	}
468#endif /* ATW_DEBUG */
469	return 0;
470}
471
472#ifdef ATW_DEBUG
473static void
474atw_print_regs(struct atw_softc *sc, const char *where)
475{
476#define PRINTREG(sc, reg) \
477	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
478	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
479
480	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
481
482	PRINTREG(sc, ATW_PAR);
483	PRINTREG(sc, ATW_FRCTL);
484	PRINTREG(sc, ATW_TDR);
485	PRINTREG(sc, ATW_WTDP);
486	PRINTREG(sc, ATW_RDR);
487	PRINTREG(sc, ATW_WRDP);
488	PRINTREG(sc, ATW_RDB);
489	PRINTREG(sc, ATW_CSR3A);
490	PRINTREG(sc, ATW_TDBD);
491	PRINTREG(sc, ATW_TDBP);
492	PRINTREG(sc, ATW_STSR);
493	PRINTREG(sc, ATW_CSR5A);
494	PRINTREG(sc, ATW_NAR);
495	PRINTREG(sc, ATW_CSR6A);
496	PRINTREG(sc, ATW_IER);
497	PRINTREG(sc, ATW_CSR7A);
498	PRINTREG(sc, ATW_LPC);
499	PRINTREG(sc, ATW_TEST1);
500	PRINTREG(sc, ATW_SPR);
501	PRINTREG(sc, ATW_TEST0);
502	PRINTREG(sc, ATW_WCSR);
503	PRINTREG(sc, ATW_WPDR);
504	PRINTREG(sc, ATW_GPTMR);
505	PRINTREG(sc, ATW_GPIO);
506	PRINTREG(sc, ATW_BBPCTL);
507	PRINTREG(sc, ATW_SYNCTL);
508	PRINTREG(sc, ATW_PLCPHD);
509	PRINTREG(sc, ATW_MMIWADDR);
510	PRINTREG(sc, ATW_MMIRADDR1);
511	PRINTREG(sc, ATW_MMIRADDR2);
512	PRINTREG(sc, ATW_TXBR);
513	PRINTREG(sc, ATW_CSR15A);
514	PRINTREG(sc, ATW_ALCSTAT);
515	PRINTREG(sc, ATW_TOFS2);
516	PRINTREG(sc, ATW_CMDR);
517	PRINTREG(sc, ATW_PCIC);
518	PRINTREG(sc, ATW_PMCSR);
519	PRINTREG(sc, ATW_PAR0);
520	PRINTREG(sc, ATW_PAR1);
521	PRINTREG(sc, ATW_MAR0);
522	PRINTREG(sc, ATW_MAR1);
523	PRINTREG(sc, ATW_ATIMDA0);
524	PRINTREG(sc, ATW_ABDA1);
525	PRINTREG(sc, ATW_BSSID0);
526	PRINTREG(sc, ATW_TXLMT);
527	PRINTREG(sc, ATW_MIBCNT);
528	PRINTREG(sc, ATW_BCNT);
529	PRINTREG(sc, ATW_TSFTH);
530	PRINTREG(sc, ATW_TSC);
531	PRINTREG(sc, ATW_SYNRF);
532	PRINTREG(sc, ATW_BPLI);
533	PRINTREG(sc, ATW_CAP0);
534	PRINTREG(sc, ATW_CAP1);
535	PRINTREG(sc, ATW_RMD);
536	PRINTREG(sc, ATW_CFPP);
537	PRINTREG(sc, ATW_TOFS0);
538	PRINTREG(sc, ATW_TOFS1);
539	PRINTREG(sc, ATW_IFST);
540	PRINTREG(sc, ATW_RSPT);
541	PRINTREG(sc, ATW_TSFTL);
542	PRINTREG(sc, ATW_WEPCTL);
543	PRINTREG(sc, ATW_WESK);
544	PRINTREG(sc, ATW_WEPCNT);
545	PRINTREG(sc, ATW_MACTEST);
546	PRINTREG(sc, ATW_FER);
547	PRINTREG(sc, ATW_FEMR);
548	PRINTREG(sc, ATW_FPSR);
549	PRINTREG(sc, ATW_FFER);
550#undef PRINTREG
551}
552#endif /* ATW_DEBUG */
553
554/*
555 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
556 */
557void
558atw_attach(struct atw_softc *sc)
559{
560	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
561		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
562	};
563	struct ieee80211com *ic = &sc->sc_ic;
564	struct ifnet *ifp = &sc->sc_if;
565	int country_code, error, i, nrate, srom_major;
566	u_int32_t reg;
567	static const char *type_strings[] = {"Intersil (not supported)",
568	    "RFMD", "Marvel (not supported)"};
569
570	sc->sc_txth = atw_txthresh_tab_lo;
571
572	SIMPLEQ_INIT(&sc->sc_txfreeq);
573	SIMPLEQ_INIT(&sc->sc_txdirtyq);
574
575#ifdef ATW_DEBUG
576	atw_print_regs(sc, "atw_attach");
577#endif /* ATW_DEBUG */
578
579	/*
580	 * Allocate the control data structures, and create and load the
581	 * DMA map for it.
582	 */
583	if ((error = bus_dmamem_alloc(sc->sc_dmat,
584	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
585	    1, &sc->sc_cdnseg, 0)) != 0) {
586		printf("%s: unable to allocate control data, error = %d\n",
587		    sc->sc_dev.dv_xname, error);
588		goto fail_0;
589	}
590
591	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
592	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
593	    BUS_DMA_COHERENT)) != 0) {
594		printf("%s: unable to map control data, error = %d\n",
595		    sc->sc_dev.dv_xname, error);
596		goto fail_1;
597	}
598
599	if ((error = bus_dmamap_create(sc->sc_dmat,
600	    sizeof(struct atw_control_data), 1,
601	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
602		printf("%s: unable to create control data DMA map, "
603		    "error = %d\n", sc->sc_dev.dv_xname, error);
604		goto fail_2;
605	}
606
607	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
608	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
609	    0)) != 0) {
610		printf("%s: unable to load control data DMA map, error = %d\n",
611		    sc->sc_dev.dv_xname, error);
612		goto fail_3;
613	}
614
615	/*
616	 * Create the transmit buffer DMA maps.
617	 */
618	sc->sc_ntxsegs = ATW_NTXSEGS;
619	for (i = 0; i < ATW_TXQUEUELEN; i++) {
620		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
621		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
622		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
623			printf("%s: unable to create tx DMA map %d, "
624			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
625			goto fail_4;
626		}
627	}
628
629	/*
630	 * Create the receive buffer DMA maps.
631	 */
632	for (i = 0; i < ATW_NRXDESC; i++) {
633		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
634		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
635			printf("%s: unable to create rx DMA map %d, "
636			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
637			goto fail_5;
638		}
639	}
640	for (i = 0; i < ATW_NRXDESC; i++) {
641		sc->sc_rxsoft[i].rxs_mbuf = NULL;
642	}
643
644	switch (sc->sc_rev) {
645	case ATW_REVISION_AB:
646	case ATW_REVISION_AF:
647		sc->sc_sramlen = ATW_SRAM_A_SIZE;
648		break;
649	case ATW_REVISION_BA:
650	case ATW_REVISION_CA:
651		sc->sc_sramlen = ATW_SRAM_B_SIZE;
652		break;
653	}
654
655	/* Reset the chip to a known state. */
656	atw_reset(sc);
657
658	if (atw_read_srom(sc) == -1)
659		return;
660
661	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
662	    ATW_SR_RFTYPE_MASK);
663
664	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
665	    ATW_SR_BBPTYPE_MASK);
666
667	if (sc->sc_rftype >= __arraycount(type_strings)) {
668		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
669		return;
670	}
671	if (sc->sc_bbptype >= __arraycount(type_strings)) {
672		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
673		return;
674	}
675
676	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
677	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
678
679	/* XXX There exists a Linux driver which seems to use RFType = 0 for
680	 * MARVEL. My bug, or theirs?
681	 */
682
683	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
684
685	switch (sc->sc_rftype) {
686	case ATW_RFTYPE_INTERSIL:
687		reg |= ATW_SYNCTL_CS1;
688		break;
689	case ATW_RFTYPE_RFMD:
690		reg |= ATW_SYNCTL_CS0;
691		break;
692	case ATW_RFTYPE_MARVEL:
693		break;
694	}
695
696	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
697	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
698
699	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
700
701	switch (sc->sc_bbptype) {
702	case ATW_BBPTYPE_INTERSIL:
703		reg |= ATW_BBPCTL_TWI;
704		break;
705	case ATW_BBPTYPE_RFMD:
706		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
707		    ATW_BBPCTL_CCA_ACTLO;
708		break;
709	case ATW_BBPTYPE_MARVEL:
710		break;
711	case ATW_C_BBPTYPE_RFMD:
712		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
713		    sc->sc_dev.dv_xname);
714		break;
715	}
716
717	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
718	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
719
720	/*
721	 * From this point forward, the attachment cannot fail.  A failure
722	 * before this point releases all resources that may have been
723	 * allocated.
724	 */
725	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
726
727	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
728	    htole16(sc->sc_srom[ATW_SR_MAC00]),
729	    htole16(sc->sc_srom[ATW_SR_MAC01]),
730	    htole16(sc->sc_srom[ATW_SR_MAC10])));
731
732	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
733	    ATW_SR_MAJOR_MASK);
734
735	if (srom_major < 2)
736		sc->sc_rf3000_options1 = 0;
737	else if (sc->sc_rev == ATW_REVISION_BA) {
738		sc->sc_rf3000_options1 =
739		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
740		    ATW_SR_CR28_MASK);
741	} else
742		sc->sc_rf3000_options1 = 0;
743
744	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
745	    ATW_SR_CR29_MASK);
746
747	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
748	    ATW_SR_CTRY_MASK);
749
750#define ADD_CHANNEL(_ic, _chan) do {					\
751	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
752	_ic->ic_channels[_chan].ic_freq =				\
753	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
754} while (0)
755
756	/* Find available channels */
757	switch (country_code) {
758	case COUNTRY_MMK2:	/* 1-14 */
759		ADD_CHANNEL(ic, 14);
760		/*FALLTHROUGH*/
761	case COUNTRY_ETSI:	/* 1-13 */
762		for (i = 1; i <= 13; i++)
763			ADD_CHANNEL(ic, i);
764		break;
765	case COUNTRY_FCC:	/* 1-11 */
766	case COUNTRY_IC:	/* 1-11 */
767		for (i = 1; i <= 11; i++)
768			ADD_CHANNEL(ic, i);
769		break;
770	case COUNTRY_MMK:	/* 14 */
771		ADD_CHANNEL(ic, 14);
772		break;
773	case COUNTRY_FRANCE:	/* 10-13 */
774		for (i = 10; i <= 13; i++)
775			ADD_CHANNEL(ic, i);
776		break;
777	default:	/* assume channels 10-11 */
778	case COUNTRY_SPAIN:	/* 10-11 */
779		for (i = 10; i <= 11; i++)
780			ADD_CHANNEL(ic, i);
781		break;
782	}
783
784	/* Read the MAC address. */
785	reg = ATW_READ(sc, ATW_PAR0);
786	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
787	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
788	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
789	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
790	reg = ATW_READ(sc, ATW_PAR1);
791	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
792	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
793
794	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
795		printf(" could not get mac address, attach failed\n");
796		return;
797	}
798
799	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
800
801	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
802	ifp->if_softc = sc;
803	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
804	    IFF_NOTRAILERS;
805	ifp->if_ioctl = atw_ioctl;
806	ifp->if_start = atw_start;
807	ifp->if_watchdog = atw_watchdog;
808	ifp->if_init = atw_init;
809	ifp->if_stop = atw_stop;
810	IFQ_SET_READY(&ifp->if_snd);
811
812	ic->ic_ifp = ifp;
813	ic->ic_phytype = IEEE80211_T_DS;
814	ic->ic_opmode = IEEE80211_M_STA;
815	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
816	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
817
818	nrate = 0;
819	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
820	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
821	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
822	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
823	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
824
825	/*
826	 * Call MI attach routines.
827	 */
828
829	if_attach(ifp);
830	ieee80211_ifattach(ic);
831
832	sc->sc_newstate = ic->ic_newstate;
833	ic->ic_newstate = atw_newstate;
834
835	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
836	ic->ic_recv_mgmt = atw_recv_mgmt;
837
838	sc->sc_node_free = ic->ic_node_free;
839	ic->ic_node_free = atw_node_free;
840
841	sc->sc_node_alloc = ic->ic_node_alloc;
842	ic->ic_node_alloc = atw_node_alloc;
843
844	ic->ic_crypto.cs_key_delete = atw_key_delete;
845	ic->ic_crypto.cs_key_set = atw_key_set;
846	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
847	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
848
849	/* possibly we should fill in our own sc_send_prresp, since
850	 * the ADM8211 is probably sending probe responses in ad hoc
851	 * mode.
852	 */
853
854	/* complete initialization */
855	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
856	callout_init(&sc->sc_scan_ch);
857
858#if NBPFILTER > 0
859	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
860	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
861#endif
862
863	/*
864	 * Make sure the interface is shutdown during reboot.
865	 */
866	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
867	if (sc->sc_sdhook == NULL)
868		printf("%s: WARNING: unable to establish shutdown hook\n",
869		    sc->sc_dev.dv_xname);
870
871	/*
872	 * Add a suspend hook to make sure we come back up after a
873	 * resume.
874	 */
875	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
876	    atw_power, sc);
877	if (sc->sc_powerhook == NULL)
878		printf("%s: WARNING: unable to establish power hook\n",
879		    sc->sc_dev.dv_xname);
880
881	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
882	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
883	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
884
885	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
886	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
887	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
888
889	ieee80211_announce(ic);
890	return;
891
892	/*
893	 * Free any resources we've allocated during the failed attach
894	 * attempt.  Do this in reverse order and fall through.
895	 */
896 fail_5:
897	for (i = 0; i < ATW_NRXDESC; i++) {
898		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
899			continue;
900		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
901	}
902 fail_4:
903	for (i = 0; i < ATW_TXQUEUELEN; i++) {
904		if (sc->sc_txsoft[i].txs_dmamap == NULL)
905			continue;
906		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
907	}
908	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
909 fail_3:
910	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
911 fail_2:
912	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
913	    sizeof(struct atw_control_data));
914 fail_1:
915	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
916 fail_0:
917	return;
918}
919
920static struct ieee80211_node *
921atw_node_alloc(struct ieee80211_node_table *nt)
922{
923	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
924	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
925
926	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
927	return ni;
928}
929
930static void
931atw_node_free(struct ieee80211_node *ni)
932{
933	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
934
935	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
936	    ether_sprintf(ni->ni_bssid)));
937	(*sc->sc_node_free)(ni);
938}
939
940
941static void
942atw_test1_reset(struct atw_softc *sc)
943{
944	switch (sc->sc_rev) {
945	case ATW_REVISION_BA:
946		if (1 /* XXX condition on transceiver type */) {
947			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
948		}
949		break;
950	case ATW_REVISION_CA:
951		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
952		break;
953	default:
954		break;
955	}
956}
957
958/*
959 * atw_reset:
960 *
961 *	Perform a soft reset on the ADM8211.
962 */
963void
964atw_reset(struct atw_softc *sc)
965{
966	int i;
967	uint32_t lpc;
968
969	ATW_WRITE(sc, ATW_NAR, 0x0);
970	DELAY(atw_nar_delay);
971
972	/* Reference driver has a cryptic remark indicating that this might
973	 * power-on the chip.  I know that it turns off power-saving....
974	 */
975	ATW_WRITE(sc, ATW_FRCTL, 0x0);
976
977	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
978
979	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
980		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
981			break;
982		DELAY(atw_pseudo_milli);
983	}
984
985	/* ... and then pause 100ms longer for good measure. */
986	DELAY(atw_magic_delay1);
987
988	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
989
990	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
991		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
992
993	/*
994	 * Initialize the PCI Access Register.
995	 */
996	sc->sc_busmode = ATW_PAR_PBL_8DW;
997
998	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
999	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1000	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1001
1002	atw_test1_reset(sc);
1003
1004	/* Turn off maximum power saving, etc. */
1005	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1006
1007	DELAY(atw_magic_delay2);
1008
1009	/* Recall EEPROM. */
1010	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1011
1012	DELAY(atw_magic_delay4);
1013
1014	lpc = ATW_READ(sc, ATW_LPC);
1015
1016	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1017
1018	/* A reset seems to affect the SRAM contents, so put them into
1019	 * a known state.
1020	 */
1021	atw_clear_sram(sc);
1022
1023	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1024}
1025
1026static void
1027atw_clear_sram(struct atw_softc *sc)
1028{
1029	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1030	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1031	/* XXX not for revision 0x20. */
1032	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1033}
1034
1035/* TBD atw_init
1036 *
1037 * set MAC based on ic->ic_bss->myaddr
1038 * write WEP keys
1039 * set TX rate
1040 */
1041
1042/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1043 * without receiving a beacon with the preferred BSSID & SSID.
1044 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1045 */
1046static void
1047atw_wcsr_init(struct atw_softc *sc)
1048{
1049	uint32_t wcsr;
1050
1051	wcsr = ATW_READ(sc, ATW_WCSR);
1052	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1053	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1054	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1055
1056	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1057	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1058}
1059
1060/* Turn off power management.  Set Rx store-and-forward mode. */
1061static void
1062atw_cmdr_init(struct atw_softc *sc)
1063{
1064	uint32_t cmdr;
1065	cmdr = ATW_READ(sc, ATW_CMDR);
1066	cmdr &= ~ATW_CMDR_APM;
1067	cmdr |= ATW_CMDR_RTE;
1068	cmdr &= ~ATW_CMDR_DRT_MASK;
1069	cmdr |= ATW_CMDR_DRT_SF;
1070
1071	ATW_WRITE(sc, ATW_CMDR, cmdr);
1072}
1073
1074static void
1075atw_tofs2_init(struct atw_softc *sc)
1076{
1077	uint32_t tofs2;
1078	/* XXX this magic can probably be figured out from the RFMD docs */
1079#ifndef ATW_REFSLAVE
1080	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1081	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1082	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1083	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1084	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1085	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1086	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1087	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1088#else
1089	/* XXX new magic from reference driver source */
1090	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1091	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1092	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1093	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1094	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1095	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1096	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1097	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1098#endif
1099	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1100}
1101
1102static void
1103atw_nar_init(struct atw_softc *sc)
1104{
1105	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1106}
1107
1108static void
1109atw_txlmt_init(struct atw_softc *sc)
1110{
1111	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1112	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1113}
1114
1115static void
1116atw_test1_init(struct atw_softc *sc)
1117{
1118	uint32_t test1;
1119
1120	test1 = ATW_READ(sc, ATW_TEST1);
1121	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1122	/* XXX magic 0x1 */
1123	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1124	ATW_WRITE(sc, ATW_TEST1, test1);
1125}
1126
1127static void
1128atw_rf_reset(struct atw_softc *sc)
1129{
1130	/* XXX this resets an Intersil RF front-end? */
1131	/* TBD condition on Intersil RFType? */
1132	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1133	DELAY(atw_rf_delay1);
1134	ATW_WRITE(sc, ATW_SYNRF, 0);
1135	DELAY(atw_rf_delay2);
1136}
1137
1138/* Set 16 TU max duration for the contention-free period (CFP). */
1139static void
1140atw_cfp_init(struct atw_softc *sc)
1141{
1142	uint32_t cfpp;
1143
1144	cfpp = ATW_READ(sc, ATW_CFPP);
1145	cfpp &= ~ATW_CFPP_CFPMD;
1146	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1147	ATW_WRITE(sc, ATW_CFPP, cfpp);
1148}
1149
1150static void
1151atw_tofs0_init(struct atw_softc *sc)
1152{
1153	/* XXX I guess that the Cardbus clock is 22 MHz?
1154	 * I am assuming that the role of ATW_TOFS0_USCNT is
1155	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1156	 * very clear on this point. It says in the datasheet that it is
1157	 * possible for the ADM8211 to accomodate bus speeds between 22 MHz
1158	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1159	 * these values. These values are also the power-on default.
1160	 */
1161	ATW_WRITE(sc, ATW_TOFS0,
1162	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1163	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1164}
1165
1166/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1167static void
1168atw_ifs_init(struct atw_softc *sc)
1169{
1170	uint32_t ifst;
1171	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1172	 * Go figure.
1173	 */
1174	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1175	      __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1176	             ATW_IFST_SIFS_MASK) |
1177	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1178	      __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1179
1180	ATW_WRITE(sc, ATW_IFST, ifst);
1181}
1182
1183static void
1184atw_response_times_init(struct atw_softc *sc)
1185{
1186	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1187	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1188	 * to pass after it transmits a frame that requires a response;
1189	 * it waits at most SIFS + MART microseconds for the response.
1190	 * Surely this is not the ACK timeout?
1191	 */
1192	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1193	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1194}
1195
1196/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1197 * engines read and write baseband registers after Rx and before
1198 * Tx, respectively.
1199 */
1200static void
1201atw_bbp_io_init(struct atw_softc *sc)
1202{
1203	uint32_t mmiraddr2;
1204
1205	/* XXX The reference driver does this, but is it *really*
1206	 * necessary?
1207	 */
1208	switch (sc->sc_rev) {
1209	case ATW_REVISION_AB:
1210	case ATW_REVISION_AF:
1211		mmiraddr2 = 0x0;
1212		break;
1213	default:
1214		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1215		mmiraddr2 &=
1216		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1217		break;
1218	}
1219
1220	switch (sc->sc_bbptype) {
1221	case ATW_BBPTYPE_INTERSIL:
1222		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1223		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1224		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1225		break;
1226	case ATW_BBPTYPE_MARVEL:
1227		/* TBD find out the Marvel settings. */
1228		break;
1229	case ATW_BBPTYPE_RFMD:
1230	default:
1231		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1232		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1233		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1234		break;
1235	}
1236	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1237	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1238}
1239
1240/*
1241 * atw_init:		[ ifnet interface function ]
1242 *
1243 *	Initialize the interface.  Must be called at splnet().
1244 */
1245int
1246atw_init(struct ifnet *ifp)
1247{
1248	struct atw_softc *sc = ifp->if_softc;
1249	struct ieee80211com *ic = &sc->sc_ic;
1250	struct atw_txsoft *txs;
1251	struct atw_rxsoft *rxs;
1252	int i, error = 0;
1253
1254	if ((error = atw_enable(sc)) != 0)
1255		goto out;
1256
1257	/*
1258	 * Cancel any pending I/O. This also resets.
1259	 */
1260	atw_stop(ifp, 0);
1261
1262	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1263	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1264	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1265
1266	atw_wcsr_init(sc);
1267
1268	atw_cmdr_init(sc);
1269
1270	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1271	 *
1272	 * XXX Set transmit power for ATIM, RTS, Beacon.
1273	 */
1274	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1275	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1276
1277	atw_tofs2_init(sc);
1278
1279	atw_nar_init(sc);
1280
1281	atw_txlmt_init(sc);
1282
1283	atw_test1_init(sc);
1284
1285	atw_rf_reset(sc);
1286
1287	atw_cfp_init(sc);
1288
1289	atw_tofs0_init(sc);
1290
1291	atw_ifs_init(sc);
1292
1293	/* XXX Fall asleep after one second of inactivity.
1294	 * XXX A frame may only dribble in for 65536us.
1295	 */
1296	ATW_WRITE(sc, ATW_RMD,
1297	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1298
1299	atw_response_times_init(sc);
1300
1301	atw_bbp_io_init(sc);
1302
1303	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1304
1305	if ((error = atw_rf3000_init(sc)) != 0)
1306		goto out;
1307
1308	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1309	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1310	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1311
1312	/*
1313	 * Initialize the transmit descriptor ring.
1314	 */
1315	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1316	for (i = 0; i < ATW_NTXDESC; i++) {
1317		sc->sc_txdescs[i].at_ctl = 0;
1318		/* no transmit chaining */
1319		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1320		sc->sc_txdescs[i].at_buf2 =
1321		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1322	}
1323	/* use ring mode */
1324	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1325	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1326	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1327	sc->sc_txfree = ATW_NTXDESC;
1328	sc->sc_txnext = 0;
1329
1330	/*
1331	 * Initialize the transmit job descriptors.
1332	 */
1333	SIMPLEQ_INIT(&sc->sc_txfreeq);
1334	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1335	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1336		txs = &sc->sc_txsoft[i];
1337		txs->txs_mbuf = NULL;
1338		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1339	}
1340
1341	/*
1342	 * Initialize the receive descriptor and receive job
1343	 * descriptor rings.
1344	 */
1345	for (i = 0; i < ATW_NRXDESC; i++) {
1346		rxs = &sc->sc_rxsoft[i];
1347		if (rxs->rxs_mbuf == NULL) {
1348			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1349				printf("%s: unable to allocate or map rx "
1350				    "buffer %d, error = %d\n",
1351				    sc->sc_dev.dv_xname, i, error);
1352				/*
1353				 * XXX Should attempt to run with fewer receive
1354				 * XXX buffers instead of just failing.
1355				 */
1356				atw_rxdrain(sc);
1357				goto out;
1358			}
1359		} else
1360			ATW_INIT_RXDESC(sc, i);
1361	}
1362	sc->sc_rxptr = 0;
1363
1364	/*
1365	 * Initialize the interrupt mask and enable interrupts.
1366	 */
1367	/* normal interrupts */
1368	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1369	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1370
1371	/* abnormal interrupts */
1372	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1373	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1374	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1375
1376	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1377	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1378	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1379	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1380	    ATW_INTR_TRT;
1381
1382	sc->sc_linkint_mask &= sc->sc_inten;
1383	sc->sc_rxint_mask &= sc->sc_inten;
1384	sc->sc_txint_mask &= sc->sc_inten;
1385
1386	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1387	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1388
1389	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1390	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1391
1392	/*
1393	 * Give the transmit and receive rings to the ADM8211.
1394	 */
1395	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1396	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1397
1398	sc->sc_txthresh = 0;
1399	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1400	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1401
1402	/* common 802.11 configuration */
1403	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1404	switch (ic->ic_opmode) {
1405	case IEEE80211_M_STA:
1406		break;
1407	case IEEE80211_M_AHDEMO: /* XXX */
1408	case IEEE80211_M_IBSS:
1409		ic->ic_flags |= IEEE80211_F_IBSSON;
1410		/*FALLTHROUGH*/
1411	case IEEE80211_M_HOSTAP: /* XXX */
1412		break;
1413	case IEEE80211_M_MONITOR: /* XXX */
1414		break;
1415	}
1416
1417	switch (ic->ic_opmode) {
1418	case IEEE80211_M_AHDEMO:
1419	case IEEE80211_M_HOSTAP:
1420#ifndef IEEE80211_NO_HOSTAP
1421		ic->ic_bss->ni_intval = ic->ic_lintval;
1422		ic->ic_bss->ni_rssi = 0;
1423		ic->ic_bss->ni_rstamp = 0;
1424#endif /* !IEEE80211_NO_HOSTAP */
1425		break;
1426	default:					/* XXX */
1427		break;
1428	}
1429
1430	sc->sc_wepctl = 0;
1431
1432	atw_write_ssid(sc);
1433	atw_write_sup_rates(sc);
1434	atw_write_wep(sc);
1435
1436	ic->ic_state = IEEE80211_S_INIT;
1437
1438	/*
1439	 * Set the receive filter.  This will start the transmit and
1440	 * receive processes.
1441	 */
1442	atw_filter_setup(sc);
1443
1444	/*
1445	 * Start the receive process.
1446	 */
1447	ATW_WRITE(sc, ATW_RDR, 0x1);
1448
1449	/*
1450	 * Note that the interface is now running.
1451	 */
1452	ifp->if_flags |= IFF_RUNNING;
1453	ifp->if_flags &= ~IFF_OACTIVE;
1454
1455	/* send no beacons, yet. */
1456	atw_start_beacon(sc, 0);
1457
1458	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1459		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1460	else
1461		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1462 out:
1463	if (error) {
1464		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1465		sc->sc_tx_timer = 0;
1466		ifp->if_timer = 0;
1467		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1468	}
1469#ifdef ATW_DEBUG
1470	atw_print_regs(sc, "end of init");
1471#endif /* ATW_DEBUG */
1472
1473	return (error);
1474}
1475
1476/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1477 *           0: MAC control of RF3000/Si4126.
1478 *
1479 * Applies power, or selects RF front-end? Sets reset condition.
1480 *
1481 * TBD support non-RFMD BBP, non-SiLabs synth.
1482 */
1483static void
1484atw_bbp_io_enable(struct atw_softc *sc, int enable)
1485{
1486	if (enable) {
1487		ATW_WRITE(sc, ATW_SYNRF,
1488		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1489		DELAY(atw_bbp_io_enable_delay);
1490	} else {
1491		ATW_WRITE(sc, ATW_SYNRF, 0);
1492		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1493	}
1494}
1495
1496static int
1497atw_tune(struct atw_softc *sc)
1498{
1499	int rc;
1500	u_int chan;
1501	struct ieee80211com *ic = &sc->sc_ic;
1502
1503	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1504	if (chan == IEEE80211_CHAN_ANY)
1505		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1506
1507	if (chan == sc->sc_cur_chan)
1508		return 0;
1509
1510	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1511	    sc->sc_cur_chan, chan));
1512
1513	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1514
1515	atw_si4126_tune(sc, chan);
1516	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1517		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1518		    chan);
1519
1520	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1521	DELAY(atw_nar_delay);
1522	ATW_WRITE(sc, ATW_RDR, 0x1);
1523
1524	if (rc == 0)
1525		sc->sc_cur_chan = chan;
1526
1527	return rc;
1528}
1529
1530#ifdef ATW_SYNDEBUG
1531static void
1532atw_si4126_print(struct atw_softc *sc)
1533{
1534	struct ifnet *ifp = &sc->sc_if;
1535	u_int addr, val;
1536
1537	val = 0;
1538
1539	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1540		return;
1541
1542	for (addr = 0; addr <= 8; addr++) {
1543		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1544		if (atw_si4126_read(sc, addr, &val) == 0) {
1545			printf("<unknown> (quitting print-out)\n");
1546			break;
1547		}
1548		printf("%05x\n", val);
1549	}
1550}
1551#endif /* ATW_SYNDEBUG */
1552
1553/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1554 *
1555 * The RF/IF synthesizer produces two reference frequencies for
1556 * the RF2948B transceiver.  The first frequency the RF2948B requires
1557 * is two times the so-called "intermediate frequency" (IF). Since
1558 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1559 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1560 * frequency required by the transceiver is the radio frequency
1561 * (RF). This is a superheterodyne transceiver; for f(chan) the
1562 * center frequency of the channel we are tuning, RF = f(chan) -
1563 * IF.
1564 *
1565 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1566 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1567 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1568 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1569 */
1570static void
1571atw_si4126_tune(struct atw_softc *sc, u_int chan)
1572{
1573	u_int mhz;
1574	u_int R;
1575	u_int32_t gpio;
1576	u_int16_t gain;
1577
1578#ifdef ATW_SYNDEBUG
1579	atw_si4126_print(sc);
1580#endif /* ATW_SYNDEBUG */
1581
1582	if (chan == 14)
1583		mhz = 2484;
1584	else
1585		mhz = 2412 + 5 * (chan - 1);
1586
1587	/* Tune IF to 748 MHz to suit the IF LO input of the
1588	 * RF2494B, which is 2 x IF. No need to set an IF divider
1589         * because an IF in 526 MHz - 952 MHz is allowed.
1590	 *
1591	 * XIN is 44.000 MHz, so divide it by two to get allowable
1592	 * range of 2-25 MHz. SiLabs tells me that this is not
1593	 * strictly necessary.
1594	 */
1595
1596	if (atw_xindiv2)
1597		R = 44;
1598	else
1599		R = 88;
1600
1601	/* Power-up RF, IF synthesizers. */
1602	atw_si4126_write(sc, SI4126_POWER,
1603	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1604
1605	/* set LPWR, too? */
1606	atw_si4126_write(sc, SI4126_MAIN,
1607	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1608
1609	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1610	 * set KP2 to 1.
1611	 *
1612	 * REFDIF This is different from the reference driver, which
1613	 * always sets SI4126_GAIN to 0.
1614	 */
1615	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1616
1617	atw_si4126_write(sc, SI4126_GAIN, gain);
1618
1619	/* XIN = 44 MHz.
1620	 *
1621	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1622	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1623	 *
1624	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1625	 * so that 1496/88 * 44 MHz = 748 MHz.
1626	 */
1627	atw_si4126_write(sc, SI4126_IFN, 1496);
1628
1629	atw_si4126_write(sc, SI4126_IFR, R);
1630
1631#ifndef ATW_REFSLAVE
1632	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1633	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1634	 * which has no RF1!
1635	 */
1636	atw_si4126_write(sc, SI4126_RF1R, R);
1637
1638	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1639#endif
1640
1641	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1642	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1643	 * Now let's multiply it to mhz. So mhz - IF = N.
1644	 */
1645	atw_si4126_write(sc, SI4126_RF2R, R);
1646
1647	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1648
1649	/* wait 100us from power-up for RF, IF to settle */
1650	DELAY(100);
1651
1652	gpio = ATW_READ(sc, ATW_GPIO);
1653	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1654	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1655
1656	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1657		/* Set a Prism RF front-end to a special mode for channel 14?
1658		 *
1659		 * Apparently the SMC2635W needs this, although I don't think
1660		 * it has a Prism RF.
1661		 */
1662		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1663	}
1664	ATW_WRITE(sc, ATW_GPIO, gpio);
1665
1666#ifdef ATW_SYNDEBUG
1667	atw_si4126_print(sc);
1668#endif /* ATW_SYNDEBUG */
1669}
1670
1671/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1672 * diversity.
1673 *
1674 * !!!
1675 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1676 * !!!
1677 */
1678static int
1679atw_rf3000_init(struct atw_softc *sc)
1680{
1681	int rc = 0;
1682
1683	atw_bbp_io_enable(sc, 1);
1684
1685	/* CCA is acquisition sensitive */
1686	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1687	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1688
1689	if (rc != 0)
1690		goto out;
1691
1692	/* enable diversity */
1693	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1694
1695	if (rc != 0)
1696		goto out;
1697
1698	/* sensible setting from a binary-only driver */
1699	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1700	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1701
1702	if (rc != 0)
1703		goto out;
1704
1705	/* magic from a binary-only driver */
1706	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1707	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1708
1709	if (rc != 0)
1710		goto out;
1711
1712	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1713
1714	if (rc != 0)
1715		goto out;
1716
1717	/* XXX Reference driver remarks that Abocom sets this to 50.
1718	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1719	 * in the "reserved" area of register RF3000_OPTIONS1.
1720	 */
1721	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1722
1723	if (rc != 0)
1724		goto out;
1725
1726	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1727
1728	if (rc != 0)
1729		goto out;
1730
1731out:
1732	atw_bbp_io_enable(sc, 0);
1733	return rc;
1734}
1735
1736#ifdef ATW_BBPDEBUG
1737static void
1738atw_rf3000_print(struct atw_softc *sc)
1739{
1740	struct ifnet *ifp = &sc->sc_if;
1741	u_int addr, val;
1742
1743	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1744		return;
1745
1746	for (addr = 0x01; addr <= 0x15; addr++) {
1747		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1748		if (atw_rf3000_read(sc, addr, &val) != 0) {
1749			printf("<unknown> (quitting print-out)\n");
1750			break;
1751		}
1752		printf("%08x\n", val);
1753	}
1754}
1755#endif /* ATW_BBPDEBUG */
1756
1757/* Set the power settings on the BBP for channel `chan'. */
1758static int
1759atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1760{
1761	int rc = 0;
1762	u_int32_t reg;
1763	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1764
1765	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1766	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1767	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1768
1769	/* odd channels: LSB, even channels: MSB */
1770	if (chan % 2 == 1) {
1771		txpower &= 0xFF;
1772		lpf_cutoff &= 0xFF;
1773		lna_gs_thresh &= 0xFF;
1774	} else {
1775		txpower >>= 8;
1776		lpf_cutoff >>= 8;
1777		lna_gs_thresh >>= 8;
1778	}
1779
1780#ifdef ATW_BBPDEBUG
1781	atw_rf3000_print(sc);
1782#endif /* ATW_BBPDEBUG */
1783
1784	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1785	    "lna_gs_thresh %02x\n",
1786	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1787
1788	atw_bbp_io_enable(sc, 1);
1789
1790	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1791	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1792		goto out;
1793
1794	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1795		goto out;
1796
1797	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1798		goto out;
1799
1800	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1801
1802	if (rc != 0)
1803		goto out;
1804
1805	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1806
1807	if (rc != 0)
1808		goto out;
1809
1810#ifdef ATW_BBPDEBUG
1811	atw_rf3000_print(sc);
1812#endif /* ATW_BBPDEBUG */
1813
1814out:
1815	atw_bbp_io_enable(sc, 0);
1816
1817	/* set beacon, rts, atim transmit power */
1818	reg = ATW_READ(sc, ATW_PLCPHD);
1819	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1820	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1821	    ATW_PLCPHD_SERVICE_MASK);
1822	ATW_WRITE(sc, ATW_PLCPHD, reg);
1823	DELAY(atw_plcphd_delay);
1824
1825	return rc;
1826}
1827
1828/* Write a register on the RF3000 baseband processor using the
1829 * registers provided by the ADM8211 for this purpose.
1830 *
1831 * Return 0 on success.
1832 */
1833static int
1834atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1835{
1836	u_int32_t reg;
1837	int i;
1838
1839	reg = sc->sc_bbpctl_wr |
1840	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1841	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1842
1843	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1844		ATW_WRITE(sc, ATW_BBPCTL, reg);
1845		DELAY(2 * atw_pseudo_milli);
1846		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1847			break;
1848	}
1849
1850	if (i < 0) {
1851		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1852		return ETIMEDOUT;
1853	}
1854	return 0;
1855}
1856
1857/* Read a register on the RF3000 baseband processor using the registers
1858 * the ADM8211 provides for this purpose.
1859 *
1860 * The 7-bit register address is addr.  Record the 8-bit data in the register
1861 * in *val.
1862 *
1863 * Return 0 on success.
1864 *
1865 * XXX This does not seem to work. The ADM8211 must require more or
1866 * different magic to read the chip than to write it. Possibly some
1867 * of the magic I have derived from a binary-only driver concerns
1868 * the "chip address" (see the RF3000 manual).
1869 */
1870#ifdef ATW_BBPDEBUG
1871static int
1872atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1873{
1874	u_int32_t reg;
1875	int i;
1876
1877	for (i = 1000; --i >= 0; ) {
1878		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1879			break;
1880		DELAY(100);
1881	}
1882
1883	if (i < 0) {
1884		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1885		    sc->sc_dev.dv_xname);
1886		return ETIMEDOUT;
1887	}
1888
1889	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1890
1891	ATW_WRITE(sc, ATW_BBPCTL, reg);
1892
1893	for (i = 1000; --i >= 0; ) {
1894		DELAY(100);
1895		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1896			break;
1897	}
1898
1899	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1900
1901	if (i < 0) {
1902		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1903		    sc->sc_dev.dv_xname, reg);
1904		return ETIMEDOUT;
1905	}
1906	if (val != NULL)
1907		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1908	return 0;
1909}
1910#endif /* ATW_BBPDEBUG */
1911
1912/* Write a register on the Si4126 RF/IF synthesizer using the registers
1913 * provided by the ADM8211 for that purpose.
1914 *
1915 * val is 18 bits of data, and val is the 4-bit address of the register.
1916 *
1917 * Return 0 on success.
1918 */
1919static void
1920atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1921{
1922	uint32_t bits, mask, reg;
1923	const int nbits = 22;
1924
1925	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1926	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1927
1928	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1929	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1930
1931	reg = ATW_SYNRF_SELSYN;
1932	/* reference driver: reset Si4126 serial bus to initial
1933	 * conditions?
1934	 */
1935	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1936	ATW_WRITE(sc, ATW_SYNRF, reg);
1937
1938	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1939		if ((bits & mask) != 0)
1940			reg |= ATW_SYNRF_SYNDATA;
1941		else
1942			reg &= ~ATW_SYNRF_SYNDATA;
1943		ATW_WRITE(sc, ATW_SYNRF, reg);
1944		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1945		ATW_WRITE(sc, ATW_SYNRF, reg);
1946	}
1947	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1948	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1949}
1950
1951/* Read 18-bit data from the 4-bit address addr in Si4126
1952 * RF synthesizer and write the data to *val. Return 0 on success.
1953 *
1954 * XXX This does not seem to work. The ADM8211 must require more or
1955 * different magic to read the chip than to write it.
1956 */
1957#ifdef ATW_SYNDEBUG
1958static int
1959atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1960{
1961	u_int32_t reg;
1962	int i;
1963
1964	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1965
1966	for (i = 1000; --i >= 0; ) {
1967		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1968			break;
1969		DELAY(100);
1970	}
1971
1972	if (i < 0) {
1973		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1974		    sc->sc_dev.dv_xname);
1975		return ETIMEDOUT;
1976	}
1977
1978	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1979
1980	ATW_WRITE(sc, ATW_SYNCTL, reg);
1981
1982	for (i = 1000; --i >= 0; ) {
1983		DELAY(100);
1984		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1985			break;
1986	}
1987
1988	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1989
1990	if (i < 0) {
1991		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1992		    sc->sc_dev.dv_xname, reg);
1993		return ETIMEDOUT;
1994	}
1995	if (val != NULL)
1996		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1997		                       ATW_SYNCTL_DATA_MASK);
1998	return 0;
1999}
2000#endif /* ATW_SYNDEBUG */
2001
2002/* XXX is the endianness correct? test. */
2003#define	atw_calchash(addr) \
2004	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2005
2006/*
2007 * atw_filter_setup:
2008 *
2009 *	Set the ADM8211's receive filter.
2010 */
2011static void
2012atw_filter_setup(struct atw_softc *sc)
2013{
2014	struct ieee80211com *ic = &sc->sc_ic;
2015	struct ethercom *ec = &sc->sc_ec;
2016	struct ifnet *ifp = &sc->sc_if;
2017	int hash;
2018	u_int32_t hashes[2];
2019	struct ether_multi *enm;
2020	struct ether_multistep step;
2021
2022	/* According to comments in tlp_al981_filter_setup
2023	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2024	 * multicast filter to be set while it is running.  Hopefully
2025	 * the ADM8211 is not the same!
2026	 */
2027	if ((ifp->if_flags & IFF_RUNNING) != 0)
2028		atw_idle(sc, ATW_NAR_SR);
2029
2030	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2031	ifp->if_flags &= ~IFF_ALLMULTI;
2032
2033	/* XXX in scan mode, do not filter packets.  Maybe this is
2034	 * unnecessary.
2035	 */
2036	if (ic->ic_state == IEEE80211_S_SCAN ||
2037	    (ifp->if_flags & IFF_PROMISC) != 0) {
2038		sc->sc_opmode |= ATW_NAR_PR;
2039		goto allmulti;
2040	}
2041
2042	hashes[0] = hashes[1] = 0x0;
2043
2044	/*
2045	 * Program the 64-bit multicast hash filter.
2046	 */
2047	ETHER_FIRST_MULTI(step, ec, enm);
2048	while (enm != NULL) {
2049		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2050		    ETHER_ADDR_LEN) != 0)
2051			goto allmulti;
2052
2053		hash = atw_calchash(enm->enm_addrlo);
2054		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2055		ETHER_NEXT_MULTI(step, enm);
2056		sc->sc_opmode |= ATW_NAR_MM;
2057	}
2058	ifp->if_flags &= ~IFF_ALLMULTI;
2059	goto setit;
2060
2061allmulti:
2062	sc->sc_opmode |= ATW_NAR_MM;
2063	ifp->if_flags |= IFF_ALLMULTI;
2064	hashes[0] = hashes[1] = 0xffffffff;
2065
2066setit:
2067	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2068	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2069	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2070	DELAY(atw_nar_delay);
2071	ATW_WRITE(sc, ATW_RDR, 0x1);
2072
2073	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2074	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2075}
2076
2077/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2078 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2079 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2080 * no beacon with the preferred BSSID and SSID in the number of
2081 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2082 */
2083static void
2084atw_write_bssid(struct atw_softc *sc)
2085{
2086	struct ieee80211com *ic = &sc->sc_ic;
2087	u_int8_t *bssid;
2088
2089	bssid = ic->ic_bss->ni_bssid;
2090
2091	ATW_WRITE(sc, ATW_BSSID0,
2092	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2093	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2094	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2095	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2096
2097	ATW_WRITE(sc, ATW_ABDA1,
2098	    (ATW_READ(sc, ATW_ABDA1) &
2099	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2100	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2101	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2102
2103	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2104	    ether_sprintf(sc->sc_bssid)));
2105	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2106
2107	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2108}
2109
2110/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2111 * 16-bit word.
2112 */
2113static void
2114atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2115{
2116	u_int i;
2117	u_int8_t *ptr;
2118
2119	memcpy(&sc->sc_sram[ofs], buf, buflen);
2120
2121	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2122
2123	KASSERT(buflen + ofs <= sc->sc_sramlen);
2124
2125	ptr = &sc->sc_sram[ofs];
2126
2127	for (i = 0; i < buflen; i += 2) {
2128		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2129		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2130		DELAY(atw_writewep_delay);
2131
2132		ATW_WRITE(sc, ATW_WESK,
2133		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2134		DELAY(atw_writewep_delay);
2135	}
2136	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2137
2138	if (sc->sc_if.if_flags & IFF_DEBUG) {
2139		int n_octets = 0;
2140		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2141		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2142		for (i = 0; i < buflen; i++) {
2143			printf(" %02x", ptr[i]);
2144			if (++n_octets % 24 == 0)
2145				printf("\n");
2146		}
2147		if (n_octets % 24 != 0)
2148			printf("\n");
2149	}
2150}
2151
2152static int
2153atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2154{
2155	struct atw_softc *sc = ic->ic_ifp->if_softc;
2156	u_int keyix = k->wk_keyix;
2157
2158	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2159
2160	if (keyix >= IEEE80211_WEP_NKID)
2161		return 0;
2162	if (k->wk_keylen != 0)
2163		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2164
2165	return 1;
2166}
2167
2168static int
2169atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2170	const u_int8_t mac[IEEE80211_ADDR_LEN] __unused)
2171{
2172	struct atw_softc *sc = ic->ic_ifp->if_softc;
2173
2174	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2175
2176	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2177		return 0;
2178
2179	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2180
2181	return 1;
2182}
2183
2184static void
2185atw_key_update_begin(struct ieee80211com *ic __unused)
2186{
2187#ifdef ATW_DEBUG
2188	struct ifnet *ifp = ic->ic_ifp;
2189	struct atw_softc *sc = ifp->if_softc;
2190#endif
2191
2192	DPRINTF(sc, ("%s:\n", __func__));
2193}
2194
2195static void
2196atw_key_update_end(struct ieee80211com *ic)
2197{
2198	struct ifnet *ifp = ic->ic_ifp;
2199	struct atw_softc *sc = ifp->if_softc;
2200
2201	DPRINTF(sc, ("%s:\n", __func__));
2202
2203	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2204		return;
2205	if (ATW_IS_ENABLED(sc) == 0)
2206		return;
2207	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2208	atw_write_wep(sc);
2209	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2210	DELAY(atw_nar_delay);
2211	ATW_WRITE(sc, ATW_RDR, 0x1);
2212}
2213
2214/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2215static void
2216atw_write_wep(struct atw_softc *sc)
2217{
2218#if 0
2219	struct ieee80211com *ic = &sc->sc_ic;
2220	u_int32_t reg;
2221	int i;
2222#endif
2223	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2224	u_int8_t buf[IEEE80211_WEP_NKID]
2225	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2226
2227	sc->sc_wepctl = 0;
2228	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2229
2230	memset(&buf[0][0], 0, sizeof(buf));
2231
2232#if 0
2233	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2234		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2235			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2236		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2237			buf[i][1] = ATW_WEP_ENABLED;
2238		} else {
2239			buf[i][1] = 0;
2240			continue;
2241		}
2242		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2243		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2244		    ic->ic_nw_keys[i].wk_keylen - 1);
2245	}
2246
2247	reg = ATW_READ(sc, ATW_MACTEST);
2248	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2249	reg &= ~ATW_MACTEST_KEYID_MASK;
2250	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2251	ATW_WRITE(sc, ATW_MACTEST, reg);
2252
2253	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2254		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2255
2256	switch (sc->sc_rev) {
2257	case ATW_REVISION_AB:
2258	case ATW_REVISION_AF:
2259		/* Bypass WEP on Rx. */
2260		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2261		break;
2262	default:
2263		break;
2264	}
2265#endif
2266
2267	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2268	    sizeof(buf));
2269
2270	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2271}
2272
2273static void
2274atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2275    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2276{
2277	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2278
2279	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2280	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2281		return;
2282
2283	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2284
2285	switch (subtype) {
2286	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2287	case IEEE80211_FC0_SUBTYPE_BEACON:
2288		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2289		    ic->ic_state == IEEE80211_S_RUN) {
2290			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2291				(void)ieee80211_ibss_merge(ni);
2292		}
2293		break;
2294	default:
2295		break;
2296	}
2297	return;
2298}
2299
2300/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2301 * In ad hoc mode, the SSID is written to the beacons sent by the
2302 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2303 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2304 * indications.
2305 */
2306static void
2307atw_write_ssid(struct atw_softc *sc)
2308{
2309	struct ieee80211com *ic = &sc->sc_ic;
2310	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2311	 * it only expects the element length, not its ID.
2312	 */
2313	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2314
2315	memset(buf, 0, sizeof(buf));
2316	buf[0] = ic->ic_bss->ni_esslen;
2317	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2318
2319	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2320	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2321}
2322
2323/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2324 * In ad hoc mode, the supported rates are written to beacons sent by the
2325 * ADM8211.
2326 */
2327static void
2328atw_write_sup_rates(struct atw_softc *sc)
2329{
2330	struct ieee80211com *ic = &sc->sc_ic;
2331	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2332	 * supported rates
2333	 */
2334	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2335
2336	memset(buf, 0, sizeof(buf));
2337
2338	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2339
2340	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2341	    ic->ic_bss->ni_rates.rs_nrates);
2342
2343	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2344}
2345
2346/* Start/stop sending beacons. */
2347void
2348atw_start_beacon(struct atw_softc *sc, int start)
2349{
2350	struct ieee80211com *ic = &sc->sc_ic;
2351	uint16_t chan;
2352	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2353	size_t len;
2354
2355	if (ATW_IS_ENABLED(sc) == 0)
2356		return;
2357
2358	/* start beacons */
2359	len = sizeof(struct ieee80211_frame) +
2360	    8 /* timestamp */ + 2 /* beacon interval */ +
2361	    2 /* capability info */ +
2362	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2363	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2364	    3 /* DS parameters */ +
2365	    IEEE80211_CRC_LEN;
2366
2367	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2368	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2369	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2370
2371	ATW_WRITE(sc, ATW_BCNT, bcnt);
2372	ATW_WRITE(sc, ATW_CAP1, cap1);
2373
2374	if (!start)
2375		return;
2376
2377	/* TBD use ni_capinfo */
2378
2379	capinfo = 0;
2380	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2381		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2382	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2383		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2384
2385	switch (ic->ic_opmode) {
2386	case IEEE80211_M_IBSS:
2387		len += 4; /* IBSS parameters */
2388		capinfo |= IEEE80211_CAPINFO_IBSS;
2389		break;
2390	case IEEE80211_M_HOSTAP:
2391		/* XXX 6-byte minimum TIM */
2392		len += atw_beacon_len_adjust;
2393		capinfo |= IEEE80211_CAPINFO_ESS;
2394		break;
2395	default:
2396		return;
2397	}
2398
2399	/* set listen interval
2400	 * XXX do software units agree w/ hardware?
2401	 */
2402	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2403	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2404
2405	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2406
2407	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2408	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2409	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2410
2411	ATW_WRITE(sc, ATW_BCNT, bcnt);
2412	ATW_WRITE(sc, ATW_BPLI, bpli);
2413	ATW_WRITE(sc, ATW_CAP0, cap0);
2414	ATW_WRITE(sc, ATW_CAP1, cap1);
2415
2416	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2417	    sc->sc_dev.dv_xname, bcnt));
2418
2419	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2420	    sc->sc_dev.dv_xname, cap1));
2421}
2422
2423/* Return the 32 lsb of the last TSFT divisible by ival. */
2424static inline uint32_t
2425atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2426{
2427	/* Following the reference driver's lead, I compute
2428	 *
2429	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2430	 *
2431	 * without using 64-bit arithmetic, using the following
2432	 * relationship:
2433	 *
2434	 *     (0x100000000 * H + L) % m
2435	 *   = ((0x100000000 % m) * H + L) % m
2436	 *   = (((0xffffffff + 1) % m) * H + L) % m
2437	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2438	 *   = ((0xffffffff % m + 1) * H + L) % m
2439	 */
2440	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2441}
2442
2443static uint64_t
2444atw_get_tsft(struct atw_softc *sc)
2445{
2446	int i;
2447	uint32_t tsfth, tsftl;
2448	for (i = 0; i < 2; i++) {
2449		tsfth = ATW_READ(sc, ATW_TSFTH);
2450		tsftl = ATW_READ(sc, ATW_TSFTL);
2451		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2452			break;
2453	}
2454	return ((uint64_t)tsfth << 32) | tsftl;
2455}
2456
2457/* If we've created an IBSS, write the TSF time in the ADM8211 to
2458 * the ieee80211com.
2459 *
2460 * Predict the next target beacon transmission time (TBTT) and
2461 * write it to the ADM8211.
2462 */
2463static void
2464atw_predict_beacon(struct atw_softc *sc)
2465{
2466#define TBTTOFS 20 /* TU */
2467
2468	struct ieee80211com *ic = &sc->sc_ic;
2469	uint64_t tsft;
2470	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2471	union {
2472		uint64_t	word;
2473		uint8_t		tstamp[8];
2474	} u;
2475
2476	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2477	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2478	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2479		tsft = atw_get_tsft(sc);
2480		u.word = htole64(tsft);
2481		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2482		    sizeof(ic->ic_bss->ni_tstamp));
2483	} else
2484		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2485
2486	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2487
2488	tsftl = tsft & 0xFFFFFFFF;
2489	tsfth = tsft >> 32;
2490
2491	/* We sent/received the last beacon `past' microseconds
2492	 * after the interval divided the TSF timer.
2493	 */
2494	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2495
2496	/* Skip ten beacons so that the TBTT cannot pass before
2497	 * we've programmed it.  Ten is an arbitrary number.
2498	 */
2499	tbtt = past_even + ival * 10;
2500
2501	ATW_WRITE(sc, ATW_TOFS1,
2502	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2503	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2504	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2505	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2506#undef TBTTOFS
2507}
2508
2509static void
2510atw_next_scan(void *arg)
2511{
2512	struct atw_softc *sc = arg;
2513	struct ieee80211com *ic = &sc->sc_ic;
2514	int s;
2515
2516	/* don't call atw_start w/o network interrupts blocked */
2517	s = splnet();
2518	if (ic->ic_state == IEEE80211_S_SCAN)
2519		ieee80211_next_scan(ic);
2520	splx(s);
2521}
2522
2523/* Synchronize the hardware state with the software state. */
2524static int
2525atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2526{
2527	struct ifnet *ifp = ic->ic_ifp;
2528	struct atw_softc *sc = ifp->if_softc;
2529	enum ieee80211_state ostate;
2530	int error = 0;
2531
2532	ostate = ic->ic_state;
2533	callout_stop(&sc->sc_scan_ch);
2534
2535	switch (nstate) {
2536	case IEEE80211_S_AUTH:
2537	case IEEE80211_S_ASSOC:
2538		atw_write_bssid(sc);
2539		error = atw_tune(sc);
2540		break;
2541	case IEEE80211_S_INIT:
2542		callout_stop(&sc->sc_scan_ch);
2543		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2544		atw_start_beacon(sc, 0);
2545		break;
2546	case IEEE80211_S_SCAN:
2547		error = atw_tune(sc);
2548		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2549		    atw_next_scan, sc);
2550		break;
2551	case IEEE80211_S_RUN:
2552		error = atw_tune(sc);
2553		atw_write_bssid(sc);
2554		atw_write_ssid(sc);
2555		atw_write_sup_rates(sc);
2556
2557		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2558		    ic->ic_opmode == IEEE80211_M_MONITOR)
2559			break;
2560
2561		/* set listen interval
2562		 * XXX do software units agree w/ hardware?
2563		 */
2564		ATW_WRITE(sc, ATW_BPLI,
2565		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2566		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2567			   ATW_BPLI_LI_MASK));
2568
2569		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2570		    ATW_READ(sc, ATW_BPLI)));
2571
2572		atw_predict_beacon(sc);
2573
2574		switch (ic->ic_opmode) {
2575		case IEEE80211_M_AHDEMO:
2576		case IEEE80211_M_HOSTAP:
2577		case IEEE80211_M_IBSS:
2578			atw_start_beacon(sc, 1);
2579			break;
2580		case IEEE80211_M_MONITOR:
2581		case IEEE80211_M_STA:
2582			break;
2583		}
2584
2585		break;
2586	}
2587	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2588}
2589
2590/*
2591 * atw_add_rxbuf:
2592 *
2593 *	Add a receive buffer to the indicated descriptor.
2594 */
2595int
2596atw_add_rxbuf(struct atw_softc *sc, int idx)
2597{
2598	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2599	struct mbuf *m;
2600	int error;
2601
2602	MGETHDR(m, M_DONTWAIT, MT_DATA);
2603	if (m == NULL)
2604		return (ENOBUFS);
2605
2606	MCLGET(m, M_DONTWAIT);
2607	if ((m->m_flags & M_EXT) == 0) {
2608		m_freem(m);
2609		return (ENOBUFS);
2610	}
2611
2612	if (rxs->rxs_mbuf != NULL)
2613		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2614
2615	rxs->rxs_mbuf = m;
2616
2617	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2618	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2619	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2620	if (error) {
2621		printf("%s: can't load rx DMA map %d, error = %d\n",
2622		    sc->sc_dev.dv_xname, idx, error);
2623		panic("atw_add_rxbuf");	/* XXX */
2624	}
2625
2626	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2627	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2628
2629	ATW_INIT_RXDESC(sc, idx);
2630
2631	return (0);
2632}
2633
2634/*
2635 * Release any queued transmit buffers.
2636 */
2637void
2638atw_txdrain(struct atw_softc *sc)
2639{
2640	struct atw_txsoft *txs;
2641
2642	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2643		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2644		if (txs->txs_mbuf != NULL) {
2645			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2646			m_freem(txs->txs_mbuf);
2647			txs->txs_mbuf = NULL;
2648		}
2649		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2650		sc->sc_txfree += txs->txs_ndescs;
2651	}
2652
2653	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2654	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2655		  sc->sc_txfree != ATW_NTXDESC));
2656	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2657	sc->sc_tx_timer = 0;
2658}
2659
2660/*
2661 * atw_stop:		[ ifnet interface function ]
2662 *
2663 *	Stop transmission on the interface.
2664 */
2665void
2666atw_stop(struct ifnet *ifp, int disable)
2667{
2668	struct atw_softc *sc = ifp->if_softc;
2669	struct ieee80211com *ic = &sc->sc_ic;
2670
2671	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2672
2673	/* Disable interrupts. */
2674	ATW_WRITE(sc, ATW_IER, 0);
2675
2676	/* Stop the transmit and receive processes. */
2677	sc->sc_opmode = 0;
2678	ATW_WRITE(sc, ATW_NAR, 0);
2679	DELAY(atw_nar_delay);
2680	ATW_WRITE(sc, ATW_TDBD, 0);
2681	ATW_WRITE(sc, ATW_TDBP, 0);
2682	ATW_WRITE(sc, ATW_RDB, 0);
2683
2684	atw_txdrain(sc);
2685
2686	if (disable) {
2687		atw_rxdrain(sc);
2688		atw_disable(sc);
2689	}
2690
2691	/*
2692	 * Mark the interface down and cancel the watchdog timer.
2693	 */
2694	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2695	sc->sc_tx_timer = 0;
2696	ifp->if_timer = 0;
2697
2698	if (!disable)
2699		atw_reset(sc);
2700}
2701
2702/*
2703 * atw_rxdrain:
2704 *
2705 *	Drain the receive queue.
2706 */
2707void
2708atw_rxdrain(struct atw_softc *sc)
2709{
2710	struct atw_rxsoft *rxs;
2711	int i;
2712
2713	for (i = 0; i < ATW_NRXDESC; i++) {
2714		rxs = &sc->sc_rxsoft[i];
2715		if (rxs->rxs_mbuf == NULL)
2716			continue;
2717		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2718		m_freem(rxs->rxs_mbuf);
2719		rxs->rxs_mbuf = NULL;
2720	}
2721}
2722
2723/*
2724 * atw_detach:
2725 *
2726 *	Detach an ADM8211 interface.
2727 */
2728int
2729atw_detach(struct atw_softc *sc)
2730{
2731	struct ifnet *ifp = &sc->sc_if;
2732	struct atw_rxsoft *rxs;
2733	struct atw_txsoft *txs;
2734	int i;
2735
2736	/*
2737	 * Succeed now if there isn't any work to do.
2738	 */
2739	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2740		return (0);
2741
2742	callout_stop(&sc->sc_scan_ch);
2743
2744	ieee80211_ifdetach(&sc->sc_ic);
2745	if_detach(ifp);
2746
2747	for (i = 0; i < ATW_NRXDESC; i++) {
2748		rxs = &sc->sc_rxsoft[i];
2749		if (rxs->rxs_mbuf != NULL) {
2750			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2751			m_freem(rxs->rxs_mbuf);
2752			rxs->rxs_mbuf = NULL;
2753		}
2754		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2755	}
2756	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2757		txs = &sc->sc_txsoft[i];
2758		if (txs->txs_mbuf != NULL) {
2759			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2760			m_freem(txs->txs_mbuf);
2761			txs->txs_mbuf = NULL;
2762		}
2763		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2764	}
2765	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2766	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2767	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2768	    sizeof(struct atw_control_data));
2769	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2770
2771	shutdownhook_disestablish(sc->sc_sdhook);
2772	powerhook_disestablish(sc->sc_powerhook);
2773
2774	if (sc->sc_srom)
2775		free(sc->sc_srom, M_DEVBUF);
2776
2777	return (0);
2778}
2779
2780/* atw_shutdown: make sure the interface is stopped at reboot time. */
2781void
2782atw_shutdown(void *arg)
2783{
2784	struct atw_softc *sc = arg;
2785
2786	atw_stop(&sc->sc_if, 1);
2787}
2788
2789int
2790atw_intr(void *arg)
2791{
2792	struct atw_softc *sc = arg;
2793	struct ifnet *ifp = &sc->sc_if;
2794	u_int32_t status, rxstatus, txstatus, linkstatus;
2795	int handled = 0, txthresh;
2796
2797#ifdef DEBUG
2798	if (ATW_IS_ENABLED(sc) == 0)
2799		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2800#endif
2801
2802	/*
2803	 * If the interface isn't running, the interrupt couldn't
2804	 * possibly have come from us.
2805	 */
2806	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2807	    !device_is_active(&sc->sc_dev))
2808		return (0);
2809
2810	for (;;) {
2811		status = ATW_READ(sc, ATW_STSR);
2812
2813		if (status)
2814			ATW_WRITE(sc, ATW_STSR, status);
2815
2816#ifdef ATW_DEBUG
2817#define PRINTINTR(flag) do { \
2818	if ((status & flag) != 0) { \
2819		printf("%s" #flag, delim); \
2820		delim = ","; \
2821	} \
2822} while (0)
2823
2824		if (atw_debug > 1 && status) {
2825			const char *delim = "<";
2826
2827			printf("%s: reg[STSR] = %x",
2828			    sc->sc_dev.dv_xname, status);
2829
2830			PRINTINTR(ATW_INTR_FBE);
2831			PRINTINTR(ATW_INTR_LINKOFF);
2832			PRINTINTR(ATW_INTR_LINKON);
2833			PRINTINTR(ATW_INTR_RCI);
2834			PRINTINTR(ATW_INTR_RDU);
2835			PRINTINTR(ATW_INTR_REIS);
2836			PRINTINTR(ATW_INTR_RPS);
2837			PRINTINTR(ATW_INTR_TCI);
2838			PRINTINTR(ATW_INTR_TDU);
2839			PRINTINTR(ATW_INTR_TLT);
2840			PRINTINTR(ATW_INTR_TPS);
2841			PRINTINTR(ATW_INTR_TRT);
2842			PRINTINTR(ATW_INTR_TUF);
2843			PRINTINTR(ATW_INTR_BCNTC);
2844			PRINTINTR(ATW_INTR_ATIME);
2845			PRINTINTR(ATW_INTR_TBTT);
2846			PRINTINTR(ATW_INTR_TSCZ);
2847			PRINTINTR(ATW_INTR_TSFTF);
2848			printf(">\n");
2849		}
2850#undef PRINTINTR
2851#endif /* ATW_DEBUG */
2852
2853		if ((status & sc->sc_inten) == 0)
2854			break;
2855
2856		handled = 1;
2857
2858		rxstatus = status & sc->sc_rxint_mask;
2859		txstatus = status & sc->sc_txint_mask;
2860		linkstatus = status & sc->sc_linkint_mask;
2861
2862		if (linkstatus) {
2863			atw_linkintr(sc, linkstatus);
2864		}
2865
2866		if (rxstatus) {
2867			/* Grab any new packets. */
2868			atw_rxintr(sc);
2869
2870			if (rxstatus & ATW_INTR_RDU) {
2871				printf("%s: receive ring overrun\n",
2872				    sc->sc_dev.dv_xname);
2873				/* Get the receive process going again. */
2874				ATW_WRITE(sc, ATW_RDR, 0x1);
2875				break;
2876			}
2877		}
2878
2879		if (txstatus) {
2880			/* Sweep up transmit descriptors. */
2881			atw_txintr(sc);
2882
2883			if (txstatus & ATW_INTR_TLT) {
2884				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2885				    sc->sc_dev.dv_xname));
2886			}
2887
2888			if (txstatus & ATW_INTR_TRT) {
2889				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2890				    sc->sc_dev.dv_xname));
2891			}
2892
2893			/* If Tx under-run, increase our transmit threshold
2894			 * if another is available.
2895			 */
2896			txthresh = sc->sc_txthresh + 1;
2897			if ((txstatus & ATW_INTR_TUF) &&
2898			    sc->sc_txth[txthresh].txth_name != NULL) {
2899				/* Idle the transmit process. */
2900				atw_idle(sc, ATW_NAR_ST);
2901
2902				sc->sc_txthresh = txthresh;
2903				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2904				sc->sc_opmode |=
2905				    sc->sc_txth[txthresh].txth_opmode;
2906				printf("%s: transmit underrun; new "
2907				    "threshold: %s\n", sc->sc_dev.dv_xname,
2908				    sc->sc_txth[txthresh].txth_name);
2909
2910				/* Set the new threshold and restart
2911				 * the transmit process.
2912				 */
2913				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2914				DELAY(atw_nar_delay);
2915				ATW_WRITE(sc, ATW_RDR, 0x1);
2916				/* XXX Log every Nth underrun from
2917				 * XXX now on?
2918				 */
2919			}
2920		}
2921
2922		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2923			if (status & ATW_INTR_TPS)
2924				printf("%s: transmit process stopped\n",
2925				    sc->sc_dev.dv_xname);
2926			if (status & ATW_INTR_RPS)
2927				printf("%s: receive process stopped\n",
2928				    sc->sc_dev.dv_xname);
2929			(void)atw_init(ifp);
2930			break;
2931		}
2932
2933		if (status & ATW_INTR_FBE) {
2934			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2935			(void)atw_init(ifp);
2936			break;
2937		}
2938
2939		/*
2940		 * Not handled:
2941		 *
2942		 *	Transmit buffer unavailable -- normal
2943		 *	condition, nothing to do, really.
2944		 *
2945		 *	Early receive interrupt -- not available on
2946		 *	all chips, we just use RI.  We also only
2947		 *	use single-segment receive DMA, so this
2948		 *	is mostly useless.
2949		 *
2950		 *      TBD others
2951		 */
2952	}
2953
2954	/* Try to get more packets going. */
2955	atw_start(ifp);
2956
2957	return (handled);
2958}
2959
2960/*
2961 * atw_idle:
2962 *
2963 *	Cause the transmit and/or receive processes to go idle.
2964 *
2965 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2966 *	process in STSR if I clear SR or ST after the process has already
2967 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2968 *      do not seem to be too reliable. Perhaps I have the sense of the
2969 *	Rx bits switched with the Tx bits?
2970 */
2971void
2972atw_idle(struct atw_softc *sc, u_int32_t bits)
2973{
2974	u_int32_t ackmask = 0, opmode, stsr, test0;
2975	int i, s;
2976
2977	s = splnet();
2978
2979	opmode = sc->sc_opmode & ~bits;
2980
2981	if (bits & ATW_NAR_SR)
2982		ackmask |= ATW_INTR_RPS;
2983
2984	if (bits & ATW_NAR_ST) {
2985		ackmask |= ATW_INTR_TPS;
2986		/* set ATW_NAR_HF to flush TX FIFO. */
2987		opmode |= ATW_NAR_HF;
2988	}
2989
2990	ATW_WRITE(sc, ATW_NAR, opmode);
2991	DELAY(atw_nar_delay);
2992
2993	for (i = 0; i < 1000; i++) {
2994		stsr = ATW_READ(sc, ATW_STSR);
2995		if ((stsr & ackmask) == ackmask)
2996			break;
2997		DELAY(10);
2998	}
2999
3000	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3001
3002	if ((stsr & ackmask) == ackmask)
3003		goto out;
3004
3005	test0 = ATW_READ(sc, ATW_TEST0);
3006
3007	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3008	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3009		printf("%s: transmit process not idle [%s]\n",
3010		    sc->sc_dev.dv_xname,
3011		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3012		printf("%s: bits %08x test0 %08x stsr %08x\n",
3013		    sc->sc_dev.dv_xname, bits, test0, stsr);
3014	}
3015
3016	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3017	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3018		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3019		    sc->sc_dev.dv_xname,
3020		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3021		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3022		    sc->sc_dev.dv_xname, bits, test0, stsr));
3023	}
3024out:
3025	if ((bits & ATW_NAR_ST) != 0)
3026		atw_txdrain(sc);
3027	splx(s);
3028	return;
3029}
3030
3031/*
3032 * atw_linkintr:
3033 *
3034 *	Helper; handle link-status interrupts.
3035 */
3036void
3037atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3038{
3039	struct ieee80211com *ic = &sc->sc_ic;
3040
3041	if (ic->ic_state != IEEE80211_S_RUN)
3042		return;
3043
3044	if (linkstatus & ATW_INTR_LINKON) {
3045		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3046		sc->sc_rescan_timer = 0;
3047	} else if (linkstatus & ATW_INTR_LINKOFF) {
3048		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3049		if (ic->ic_opmode != IEEE80211_M_STA)
3050			return;
3051		sc->sc_rescan_timer = 3;
3052		sc->sc_if.if_timer = 1;
3053	}
3054}
3055
3056static inline int
3057atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3058{
3059	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3060		return 0;
3061	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3062		return 0;
3063	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3064}
3065
3066/*
3067 * atw_rxintr:
3068 *
3069 *	Helper; handle receive interrupts.
3070 */
3071void
3072atw_rxintr(struct atw_softc *sc)
3073{
3074	static int rate_tbl[] = {2, 4, 11, 22, 44};
3075	struct ieee80211com *ic = &sc->sc_ic;
3076	struct ieee80211_node *ni;
3077	struct ieee80211_frame_min *wh;
3078	struct ifnet *ifp = &sc->sc_if;
3079	struct atw_rxsoft *rxs;
3080	struct mbuf *m;
3081	u_int32_t rxstat;
3082	int i, len, rate, rate0;
3083	u_int32_t rssi, rssi0;
3084
3085	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3086		rxs = &sc->sc_rxsoft[i];
3087
3088		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3089
3090		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3091		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3092		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3093
3094		if (rxstat & ATW_RXSTAT_OWN)
3095			break; /* We have processed all receive buffers. */
3096
3097		DPRINTF3(sc,
3098		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3099		    sc->sc_dev.dv_xname,
3100		    rxstat, rssi0,
3101		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3102		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3103
3104		/*
3105		 * Make sure the packet fits in one buffer.  This should
3106		 * always be the case.
3107		 */
3108		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3109		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3110			printf("%s: incoming packet spilled, resetting\n",
3111			    sc->sc_dev.dv_xname);
3112			(void)atw_init(ifp);
3113			return;
3114		}
3115
3116		/*
3117		 * If an error occurred, update stats, clear the status
3118		 * word, and leave the packet buffer in place.  It will
3119		 * simply be reused the next time the ring comes around.
3120	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3121		 * error.
3122		 */
3123
3124		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3125		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3126		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3127		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3128				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3129				ATW_RXSTAT_ICVE)) != 0)) {
3130#define	PRINTERR(bit, str)						\
3131			if (rxstat & (bit))				\
3132				printf("%s: receive error: %s\n",	\
3133				    sc->sc_dev.dv_xname, str)
3134			ifp->if_ierrors++;
3135			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3136			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3137			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3138			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3139			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3140			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3141			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3142#undef PRINTERR
3143			ATW_INIT_RXDESC(sc, i);
3144			continue;
3145		}
3146
3147		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3148		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3149
3150		/*
3151		 * No errors; receive the packet.  Note the ADM8211
3152		 * includes the CRC in promiscuous mode.
3153		 */
3154		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3155
3156		/*
3157		 * Allocate a new mbuf cluster.  If that fails, we are
3158		 * out of memory, and must drop the packet and recycle
3159		 * the buffer that's already attached to this descriptor.
3160		 */
3161		m = rxs->rxs_mbuf;
3162		if (atw_add_rxbuf(sc, i) != 0) {
3163			ifp->if_ierrors++;
3164			ATW_INIT_RXDESC(sc, i);
3165			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3166			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3167			continue;
3168		}
3169
3170		ifp->if_ipackets++;
3171		if (sc->sc_opmode & ATW_NAR_PR)
3172			len -= IEEE80211_CRC_LEN;
3173		m->m_pkthdr.rcvif = ifp;
3174		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3175
3176		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3177			rate = 0;
3178		else
3179			rate = rate_tbl[rate0];
3180
3181		/* The RSSI comes straight from a register in the
3182		 * baseband processor.  I know that for the RF3000,
3183		 * the RSSI register also contains the antenna-selection
3184		 * bits.  Mask those off.
3185		 *
3186		 * TBD Treat other basebands.
3187		 */
3188		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3189			rssi = rssi0 & RF3000_RSSI_MASK;
3190		else
3191			rssi = rssi0;
3192
3193 #if NBPFILTER > 0
3194		/* Pass this up to any BPF listeners. */
3195		if (sc->sc_radiobpf != NULL) {
3196			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3197
3198			tap->ar_rate = rate;
3199			tap->ar_chan_freq = htole16(ic->ic_curchan->ic_freq);
3200			tap->ar_chan_flags = htole16(ic->ic_curchan->ic_flags);
3201
3202			/* TBD verify units are dB */
3203			tap->ar_antsignal = (int)rssi;
3204			/* TBD tap->ar_flags */
3205
3206			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3207			    tap->ar_ihdr.it_len, m);
3208 		}
3209 #endif /* NPBFILTER > 0 */
3210
3211		wh = mtod(m, struct ieee80211_frame_min *);
3212		ni = ieee80211_find_rxnode(ic, wh);
3213#if 0
3214		if (atw_hw_decrypted(sc, wh)) {
3215			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3216			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3217		}
3218#endif
3219		ieee80211_input(ic, m, ni, (int)rssi, 0);
3220		ieee80211_free_node(ni);
3221	}
3222
3223	/* Update the receive pointer. */
3224	sc->sc_rxptr = i;
3225}
3226
3227/*
3228 * atw_txintr:
3229 *
3230 *	Helper; handle transmit interrupts.
3231 */
3232void
3233atw_txintr(struct atw_softc *sc)
3234{
3235#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3236    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3237#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3238    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3239
3240	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3241	struct ifnet *ifp = &sc->sc_if;
3242	struct atw_txsoft *txs;
3243	u_int32_t txstat;
3244
3245	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3246	    sc->sc_dev.dv_xname, sc->sc_flags));
3247
3248	/*
3249	 * Go through our Tx list and free mbufs for those
3250	 * frames that have been transmitted.
3251	 */
3252	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3253		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3254		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3255
3256#ifdef ATW_DEBUG
3257		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3258			int i;
3259			printf("    txsoft %p transmit chain:\n", txs);
3260			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3261			    txs->txs_ndescs - 1,
3262			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3263			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3264				printf("     descriptor %d:\n", i);
3265				printf("       at_status:   0x%08x\n",
3266				    le32toh(sc->sc_txdescs[i].at_stat));
3267				printf("       at_flags:      0x%08x\n",
3268				    le32toh(sc->sc_txdescs[i].at_flags));
3269				printf("       at_buf1: 0x%08x\n",
3270				    le32toh(sc->sc_txdescs[i].at_buf1));
3271				printf("       at_buf2: 0x%08x\n",
3272				    le32toh(sc->sc_txdescs[i].at_buf2));
3273				if (i == txs->txs_lastdesc)
3274					break;
3275			}
3276		}
3277#endif
3278
3279		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3280		if (txstat & ATW_TXSTAT_OWN)
3281			break;
3282
3283		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3284
3285		sc->sc_txfree += txs->txs_ndescs;
3286
3287		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3288		    0, txs->txs_dmamap->dm_mapsize,
3289		    BUS_DMASYNC_POSTWRITE);
3290		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3291		m_freem(txs->txs_mbuf);
3292		txs->txs_mbuf = NULL;
3293
3294		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3295
3296		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3297		        sc->sc_txfree == 0));
3298		ifp->if_flags &= ~IFF_OACTIVE;
3299
3300		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3301		    (txstat & TXSTAT_ERRMASK) != 0) {
3302			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3303			    txstat_buf, sizeof(txstat_buf));
3304			printf("%s: txstat %s %" __PRIuBITS "\n",
3305			    sc->sc_dev.dv_xname, txstat_buf,
3306			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3307		}
3308
3309		/*
3310		 * Check for errors and collisions.
3311		 */
3312		if (txstat & ATW_TXSTAT_TUF)
3313			sc->sc_stats.ts_tx_tuf++;
3314		if (txstat & ATW_TXSTAT_TLT)
3315			sc->sc_stats.ts_tx_tlt++;
3316		if (txstat & ATW_TXSTAT_TRT)
3317			sc->sc_stats.ts_tx_trt++;
3318		if (txstat & ATW_TXSTAT_TRO)
3319			sc->sc_stats.ts_tx_tro++;
3320		if (txstat & ATW_TXSTAT_SOFBR) {
3321			sc->sc_stats.ts_tx_sofbr++;
3322		}
3323
3324		if ((txstat & ATW_TXSTAT_ES) == 0)
3325			ifp->if_collisions +=
3326			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3327		else
3328			ifp->if_oerrors++;
3329
3330		ifp->if_opackets++;
3331	}
3332
3333	/*
3334	 * If there are no more pending transmissions, cancel the watchdog
3335	 * timer.
3336	 */
3337	if (txs == NULL) {
3338		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3339		sc->sc_tx_timer = 0;
3340	}
3341#undef TXSTAT_ERRMASK
3342#undef TXSTAT_FMT
3343}
3344
3345/*
3346 * atw_watchdog:	[ifnet interface function]
3347 *
3348 *	Watchdog timer handler.
3349 */
3350void
3351atw_watchdog(struct ifnet *ifp)
3352{
3353	struct atw_softc *sc = ifp->if_softc;
3354	struct ieee80211com *ic = &sc->sc_ic;
3355
3356	ifp->if_timer = 0;
3357	if (ATW_IS_ENABLED(sc) == 0)
3358		return;
3359
3360	if (sc->sc_rescan_timer) {
3361		if (--sc->sc_rescan_timer == 0)
3362			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3363	}
3364	if (sc->sc_tx_timer) {
3365		if (--sc->sc_tx_timer == 0 &&
3366		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3367			printf("%s: transmit timeout\n", ifp->if_xname);
3368			ifp->if_oerrors++;
3369			(void)atw_init(ifp);
3370			atw_start(ifp);
3371		}
3372	}
3373	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3374		ifp->if_timer = 1;
3375	ieee80211_watchdog(ic);
3376}
3377
3378#ifdef ATW_DEBUG
3379static void
3380atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3381{
3382	struct atw_softc *sc = ifp->if_softc;
3383	struct mbuf *m;
3384	int i, noctets = 0;
3385
3386	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3387	    m0->m_pkthdr.len);
3388
3389	for (m = m0; m; m = m->m_next) {
3390		if (m->m_len == 0)
3391			continue;
3392		for (i = 0; i < m->m_len; i++) {
3393			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3394			if (++noctets % 24 == 0)
3395				printf("\n");
3396		}
3397	}
3398	printf("%s%s: %d bytes emitted\n",
3399	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3400}
3401#endif /* ATW_DEBUG */
3402
3403/*
3404 * atw_start:		[ifnet interface function]
3405 *
3406 *	Start packet transmission on the interface.
3407 */
3408void
3409atw_start(struct ifnet *ifp)
3410{
3411	struct atw_softc *sc = ifp->if_softc;
3412	struct ieee80211_key *k;
3413	struct ieee80211com *ic = &sc->sc_ic;
3414	struct ieee80211_node *ni;
3415	struct ieee80211_frame_min *whm;
3416	struct ieee80211_frame *wh;
3417	struct atw_frame *hh;
3418	struct mbuf *m0, *m;
3419	struct atw_txsoft *txs, *last_txs;
3420	struct atw_txdesc *txd;
3421	int npkt, rate;
3422	bus_dmamap_t dmamap;
3423	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3424
3425	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3426	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3427
3428	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3429		return;
3430
3431	/*
3432	 * Remember the previous number of free descriptors and
3433	 * the first descriptor we'll use.
3434	 */
3435	ofree = sc->sc_txfree;
3436	firsttx = lasttx = sc->sc_txnext;
3437
3438	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3439	    sc->sc_dev.dv_xname, ofree, firsttx));
3440
3441	/*
3442	 * Loop through the send queue, setting up transmit descriptors
3443	 * until we drain the queue, or use up all available transmit
3444	 * descriptors.
3445	 */
3446	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3447	       sc->sc_txfree != 0) {
3448
3449		/*
3450		 * Grab a packet off the management queue, if it
3451		 * is not empty. Otherwise, from the data queue.
3452		 */
3453		IF_DEQUEUE(&ic->ic_mgtq, m0);
3454		if (m0 != NULL) {
3455			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3456			m0->m_pkthdr.rcvif = NULL;
3457		} else if (ic->ic_state != IEEE80211_S_RUN)
3458			break; /* send no data until associated */
3459		else {
3460			IFQ_DEQUEUE(&ifp->if_snd, m0);
3461			if (m0 == NULL)
3462				break;
3463#if NBPFILTER > 0
3464			if (ifp->if_bpf != NULL)
3465				bpf_mtap(ifp->if_bpf, m0);
3466#endif /* NBPFILTER > 0 */
3467			ni = ieee80211_find_txnode(ic,
3468			    mtod(m0, struct ether_header *)->ether_dhost);
3469			if (ni == NULL) {
3470				ifp->if_oerrors++;
3471				break;
3472			}
3473			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3474				ieee80211_free_node(ni);
3475				ifp->if_oerrors++;
3476				break;
3477			}
3478		}
3479
3480		rate = MAX(ieee80211_get_rate(ni), 2);
3481
3482		whm = mtod(m0, struct ieee80211_frame_min *);
3483
3484		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3485			k = NULL;
3486		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3487			m_freem(m0);
3488			ieee80211_free_node(ni);
3489			ifp->if_oerrors++;
3490			break;
3491		}
3492
3493		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3494		    ic->ic_flags, ic->ic_fragthreshold, rate,
3495		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3496			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3497			m_freem(m0);
3498			break;
3499		}
3500
3501		/* XXX Misleading if fragmentation is enabled.  Better
3502		 * to fragment in software?
3503		 */
3504		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3505
3506#if NBPFILTER > 0
3507		/*
3508		 * Pass the packet to any BPF listeners.
3509		 */
3510		if (ic->ic_rawbpf != NULL)
3511			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3512
3513		if (sc->sc_radiobpf != NULL) {
3514			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3515
3516			tap->at_rate = rate;
3517			tap->at_chan_freq = htole16(ic->ic_curchan->ic_freq);
3518			tap->at_chan_flags = htole16(ic->ic_curchan->ic_flags);
3519
3520			/* TBD tap->at_flags */
3521
3522			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3523			    tap->at_ihdr.it_len, m0);
3524		}
3525#endif /* NBPFILTER > 0 */
3526
3527		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3528
3529		if (ni != NULL)
3530			ieee80211_free_node(ni);
3531
3532		if (m0 == NULL) {
3533			ifp->if_oerrors++;
3534			break;
3535		}
3536
3537		/* just to make sure. */
3538		m0 = m_pullup(m0, sizeof(struct atw_frame));
3539
3540		if (m0 == NULL) {
3541			ifp->if_oerrors++;
3542			break;
3543		}
3544
3545		hh = mtod(m0, struct atw_frame *);
3546		wh = &hh->atw_ihdr;
3547
3548		/* Copy everything we need from the 802.11 header:
3549		 * Frame Control; address 1, address 3, or addresses
3550		 * 3 and 4. NIC fills in BSSID, SA.
3551		 */
3552		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3553			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3554				panic("%s: illegal WDS frame",
3555				    sc->sc_dev.dv_xname);
3556			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3557		} else
3558			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3559
3560		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3561
3562		/* initialize remaining Tx parameters */
3563		memset(&hh->u, 0, sizeof(hh->u));
3564
3565		hh->atw_rate = rate * 5;
3566		/* XXX this could be incorrect if M_FCS. _encap should
3567		 * probably strip FCS just in case it sticks around in
3568		 * bridged packets.
3569		 */
3570		hh->atw_service = 0x00; /* XXX guess */
3571		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3572		    sizeof(struct atw_frame));
3573
3574		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3575		hh->atw_rtylmt = 3;
3576		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3577#if 0
3578		if (do_encrypt) {
3579			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3580			hh->atw_keyid = ic->ic_def_txkey;
3581		}
3582#endif
3583
3584		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3585		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3586		if (txs->txs_d0.d_residue)
3587			hh->atw_head_plcplen |= htole16(0x8000);
3588		if (txs->txs_dn.d_residue)
3589			hh->atw_tail_plcplen |= htole16(0x8000);
3590		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3591		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3592
3593		/* never fragment multicast frames */
3594		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3595			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3596		} else if (sc->sc_flags & ATWF_RTSCTS) {
3597			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3598		}
3599
3600#ifdef ATW_DEBUG
3601		hh->atw_fragnum = 0;
3602
3603		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3604			printf("%s: dst = %s, rate = 0x%02x, "
3605			    "service = 0x%02x, paylen = 0x%04x\n",
3606			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3607			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3608
3609			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3610			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3611			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3612			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3613			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3614			    hh->atw_tail_dur, hh->atw_head_dur);
3615
3616			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3617			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3618			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3619			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3620
3621			printf("%s: keyid = %d\n",
3622			    sc->sc_dev.dv_xname, hh->atw_keyid);
3623
3624			atw_dump_pkt(ifp, m0);
3625		}
3626#endif /* ATW_DEBUG */
3627
3628		dmamap = txs->txs_dmamap;
3629
3630		/*
3631		 * Load the DMA map.  Copy and try (once) again if the packet
3632		 * didn't fit in the alloted number of segments.
3633		 */
3634		for (first = 1;
3635		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3636		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3637		     first = 0) {
3638			MGETHDR(m, M_DONTWAIT, MT_DATA);
3639			if (m == NULL) {
3640				printf("%s: unable to allocate Tx mbuf\n",
3641				    sc->sc_dev.dv_xname);
3642				break;
3643			}
3644			if (m0->m_pkthdr.len > MHLEN) {
3645				MCLGET(m, M_DONTWAIT);
3646				if ((m->m_flags & M_EXT) == 0) {
3647					printf("%s: unable to allocate Tx "
3648					    "cluster\n", sc->sc_dev.dv_xname);
3649					m_freem(m);
3650					break;
3651				}
3652			}
3653			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3654			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3655			m_freem(m0);
3656			m0 = m;
3657			m = NULL;
3658		}
3659		if (error != 0) {
3660			printf("%s: unable to load Tx buffer, "
3661			    "error = %d\n", sc->sc_dev.dv_xname, error);
3662			m_freem(m0);
3663			break;
3664		}
3665
3666		/*
3667		 * Ensure we have enough descriptors free to describe
3668		 * the packet.
3669		 */
3670		if (dmamap->dm_nsegs > sc->sc_txfree) {
3671			/*
3672			 * Not enough free descriptors to transmit
3673			 * this packet.  Unload the DMA map and
3674			 * drop the packet.  Notify the upper layer
3675			 * that there are no more slots left.
3676			 *
3677			 * XXX We could allocate an mbuf and copy, but
3678			 * XXX it is worth it?
3679			 */
3680			bus_dmamap_unload(sc->sc_dmat, dmamap);
3681			m_freem(m0);
3682			break;
3683		}
3684
3685		/*
3686		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3687		 */
3688
3689		/* Sync the DMA map. */
3690		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3691		    BUS_DMASYNC_PREWRITE);
3692
3693		/* XXX arbitrary retry limit; 8 because I have seen it in
3694		 * use already and maybe 0 means "no tries" !
3695		 */
3696		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3697
3698		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3699		    sc->sc_dev.dv_xname, rate * 5));
3700		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3701
3702		/*
3703		 * Initialize the transmit descriptors.
3704		 */
3705		for (nexttx = sc->sc_txnext, seg = 0;
3706		     seg < dmamap->dm_nsegs;
3707		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3708			/*
3709			 * If this is the first descriptor we're
3710			 * enqueueing, don't set the OWN bit just
3711			 * yet.  That could cause a race condition.
3712			 * We'll do it below.
3713			 */
3714			txd = &sc->sc_txdescs[nexttx];
3715			txd->at_ctl = ctl |
3716			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3717
3718			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3719			txd->at_flags =
3720			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3721			                   ATW_TXFLAG_TBS1_MASK)) |
3722			    ((nexttx == (ATW_NTXDESC - 1))
3723			        ? htole32(ATW_TXFLAG_TER) : 0);
3724			lasttx = nexttx;
3725		}
3726
3727		/* Set `first segment' and `last segment' appropriately. */
3728		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3729		    htole32(ATW_TXFLAG_FS);
3730		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3731
3732#ifdef ATW_DEBUG
3733		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3734			printf("     txsoft %p transmit chain:\n", txs);
3735			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3736				printf("     descriptor %d:\n", seg);
3737				printf("       at_ctl:   0x%08x\n",
3738				    le32toh(sc->sc_txdescs[seg].at_ctl));
3739				printf("       at_flags:      0x%08x\n",
3740				    le32toh(sc->sc_txdescs[seg].at_flags));
3741				printf("       at_buf1: 0x%08x\n",
3742				    le32toh(sc->sc_txdescs[seg].at_buf1));
3743				printf("       at_buf2: 0x%08x\n",
3744				    le32toh(sc->sc_txdescs[seg].at_buf2));
3745				if (seg == lasttx)
3746					break;
3747			}
3748		}
3749#endif
3750
3751		/* Sync the descriptors we're using. */
3752		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3753		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3754
3755		/*
3756		 * Store a pointer to the packet so we can free it later,
3757		 * and remember what txdirty will be once the packet is
3758		 * done.
3759		 */
3760		txs->txs_mbuf = m0;
3761		txs->txs_firstdesc = sc->sc_txnext;
3762		txs->txs_lastdesc = lasttx;
3763		txs->txs_ndescs = dmamap->dm_nsegs;
3764
3765		/* Advance the tx pointer. */
3766		sc->sc_txfree -= dmamap->dm_nsegs;
3767		sc->sc_txnext = nexttx;
3768
3769		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3770		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3771
3772		last_txs = txs;
3773	}
3774
3775	if (sc->sc_txfree != ofree) {
3776		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3777		    sc->sc_dev.dv_xname, lasttx, firsttx));
3778		/*
3779		 * Cause a transmit interrupt to happen on the
3780		 * last packet we enqueued.
3781		 */
3782		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3783		ATW_CDTXSYNC(sc, lasttx, 1,
3784		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3785
3786		/*
3787		 * The entire packet chain is set up.  Give the
3788		 * first descriptor to the chip now.
3789		 */
3790		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3791		ATW_CDTXSYNC(sc, firsttx, 1,
3792		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3793
3794		/* Wake up the transmitter. */
3795		ATW_WRITE(sc, ATW_TDR, 0x1);
3796
3797		if (txs == NULL || sc->sc_txfree == 0)
3798			ifp->if_flags |= IFF_OACTIVE;
3799
3800		/* Set a watchdog timer in case the chip flakes out. */
3801		sc->sc_tx_timer = 5;
3802		ifp->if_timer = 1;
3803	}
3804}
3805
3806/*
3807 * atw_power:
3808 *
3809 *	Power management (suspend/resume) hook.
3810 */
3811void
3812atw_power(int why, void *arg)
3813{
3814	struct atw_softc *sc = arg;
3815	struct ifnet *ifp = &sc->sc_if;
3816	int s;
3817
3818	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3819
3820	s = splnet();
3821	switch (why) {
3822	case PWR_STANDBY:
3823		/* XXX do nothing. */
3824		break;
3825	case PWR_SUSPEND:
3826		atw_stop(ifp, 0);
3827		if (sc->sc_power != NULL)
3828			(*sc->sc_power)(sc, why);
3829		break;
3830	case PWR_RESUME:
3831		if (ifp->if_flags & IFF_UP) {
3832			if (sc->sc_power != NULL)
3833				(*sc->sc_power)(sc, why);
3834			atw_init(ifp);
3835		}
3836		break;
3837	case PWR_SOFTSUSPEND:
3838	case PWR_SOFTSTANDBY:
3839	case PWR_SOFTRESUME:
3840		break;
3841	}
3842	splx(s);
3843}
3844
3845/*
3846 * atw_ioctl:		[ifnet interface function]
3847 *
3848 *	Handle control requests from the operator.
3849 */
3850int
3851atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3852{
3853	struct atw_softc *sc = ifp->if_softc;
3854	struct ifreq *ifr = (struct ifreq *)data;
3855	int s, error = 0;
3856
3857	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3858	if (!device_is_active(&sc->sc_dev))
3859		return ENXIO;
3860
3861	s = splnet();
3862
3863	switch (cmd) {
3864	case SIOCSIFFLAGS:
3865		if (ifp->if_flags & IFF_UP) {
3866			if (ATW_IS_ENABLED(sc)) {
3867				/*
3868				 * To avoid rescanning another access point,
3869				 * do not call atw_init() here.  Instead,
3870				 * only reflect media settings.
3871				 */
3872				atw_filter_setup(sc);
3873			} else
3874				error = atw_init(ifp);
3875		} else if (ATW_IS_ENABLED(sc))
3876			atw_stop(ifp, 1);
3877		break;
3878	case SIOCADDMULTI:
3879	case SIOCDELMULTI:
3880		error = (cmd == SIOCADDMULTI) ?
3881		    ether_addmulti(ifr, &sc->sc_ec) :
3882		    ether_delmulti(ifr, &sc->sc_ec);
3883		if (error == ENETRESET) {
3884			if (ifp->if_flags & IFF_RUNNING)
3885				atw_filter_setup(sc); /* do not rescan */
3886			error = 0;
3887		}
3888		break;
3889	default:
3890		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3891		if (error == ENETRESET || error == ERESTART) {
3892			if (is_running(ifp))
3893				error = atw_init(ifp);
3894			else
3895				error = 0;
3896		}
3897		break;
3898	}
3899
3900	/* Try to get more packets going. */
3901	if (ATW_IS_ENABLED(sc))
3902		atw_start(ifp);
3903
3904	splx(s);
3905	return (error);
3906}
3907
3908static int
3909atw_media_change(struct ifnet *ifp)
3910{
3911	int error;
3912
3913	error = ieee80211_media_change(ifp);
3914	if (error == ENETRESET) {
3915		if (is_running(ifp))
3916			error = atw_init(ifp);
3917		else
3918			error = 0;
3919	}
3920	return error;
3921}
3922