atw.c revision 1.117
1/*	$NetBSD: atw.c,v 1.117 2006/04/06 06:08:26 dyoung Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.117 2006/04/06 06:08:26 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59#include <lib/libkern/libkern.h>
60
61#include <machine/endian.h>
62
63#include <uvm/uvm_extern.h>
64
65#include <net/if.h>
66#include <net/if_dl.h>
67#include <net/if_media.h>
68#include <net/if_ether.h>
69
70#include <net80211/ieee80211_netbsd.h>
71#include <net80211/ieee80211_var.h>
72#include <net80211/ieee80211_radiotap.h>
73
74#if NBPFILTER > 0
75#include <net/bpf.h>
76#endif
77
78#include <machine/bus.h>
79#include <machine/intr.h>
80
81#include <dev/ic/atwreg.h>
82#include <dev/ic/rf3000reg.h>
83#include <dev/ic/si4136reg.h>
84#include <dev/ic/atwvar.h>
85#include <dev/ic/smc93cx6var.h>
86
87/* XXX TBD open questions
88 *
89 *
90 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92 * handle this for me?
93 *
94 */
95/* device attachment
96 *
97 *    print TOFS[012]
98 *
99 * device initialization
100 *
101 *    clear ATW_FRCTL_MAXPSP to disable max power saving
102 *    set ATW_TXBR_ALCUPDATE to enable ALC
103 *    set TOFS[012]? (hope not)
104 *    disable rx/tx
105 *    set ATW_PAR_SWR (software reset)
106 *    wait for ATW_PAR_SWR clear
107 *    disable interrupts
108 *    ack status register
109 *    enable interrupts
110 *
111 * rx/tx initialization
112 *
113 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 *    allocate and init descriptor rings
115 *    write ATW_PAR_DSL (descriptor skip length)
116 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    write ATW_NAR_SQ for one/both transmit descriptor rings
119 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120 *
121 * rx/tx end
122 *
123 *    stop DMA
124 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125 *    flush tx w/ ATW_NAR_HF
126 *
127 * scan
128 *
129 *    initialize rx/tx
130 *
131 * BSS join: (re)association response
132 *
133 *    set ATW_FRCTL_AID
134 *
135 * optimizations ???
136 *
137 */
138
139#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
140
141#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
142#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
143int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144
145int atw_pseudo_milli = 1;
146int atw_magic_delay1 = 100 * 1000;
147int atw_magic_delay2 = 100 * 1000;
148/* more magic multi-millisecond delays (units: microseconds) */
149int atw_nar_delay = 20 * 1000;
150int atw_magic_delay4 = 10 * 1000;
151int atw_rf_delay1 = 10 * 1000;
152int atw_rf_delay2 = 5 * 1000;
153int atw_plcphd_delay = 2 * 1000;
154int atw_bbp_io_enable_delay = 20 * 1000;
155int atw_bbp_io_disable_delay = 2 * 1000;
156int atw_writewep_delay = 1000;
157int atw_beacon_len_adjust = 4;
158int atw_dwelltime = 200;
159int atw_xindiv2 = 0;
160
161#ifdef ATW_DEBUG
162int atw_debug = 0;
163
164#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
165#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
166#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
167#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170
171static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
172static void	atw_print_regs(struct atw_softc *, const char *);
173
174/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175#	ifdef ATW_BBPDEBUG
176static void	atw_rf3000_print(struct atw_softc *);
177static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178#	endif /* ATW_BBPDEBUG */
179
180#	ifdef ATW_SYNDEBUG
181static void	atw_si4126_print(struct atw_softc *);
182static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
183#	endif /* ATW_SYNDEBUG */
184
185#else
186#define ATW_DPRINTF(x)
187#define ATW_DPRINTF2(x)
188#define ATW_DPRINTF3(x)
189#define	DPRINTF(sc, x)	/* nothing */
190#define	DPRINTF2(sc, x)	/* nothing */
191#define	DPRINTF3(sc, x)	/* nothing */
192#endif
193
194/* ifnet methods */
195int	atw_init(struct ifnet *);
196int	atw_ioctl(struct ifnet *, u_long, caddr_t);
197void	atw_start(struct ifnet *);
198void	atw_stop(struct ifnet *, int);
199void	atw_watchdog(struct ifnet *);
200
201/* Device attachment */
202void	atw_attach(struct atw_softc *);
203int	atw_detach(struct atw_softc *);
204
205/* Rx/Tx process */
206int	atw_add_rxbuf(struct atw_softc *, int);
207void	atw_idle(struct atw_softc *, u_int32_t);
208void	atw_rxdrain(struct atw_softc *);
209void	atw_txdrain(struct atw_softc *);
210
211/* Device (de)activation and power state */
212void	atw_disable(struct atw_softc *);
213int	atw_enable(struct atw_softc *);
214void	atw_power(int, void *);
215void	atw_reset(struct atw_softc *);
216void	atw_shutdown(void *);
217
218/* Interrupt handlers */
219void	atw_linkintr(struct atw_softc *, u_int32_t);
220void	atw_rxintr(struct atw_softc *);
221void	atw_txintr(struct atw_softc *);
222
223/* 802.11 state machine */
224static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225static void	atw_next_scan(void *);
226static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227		              struct ieee80211_node *, int, int, u_int32_t);
228static int	atw_tune(struct atw_softc *);
229
230/* Device initialization */
231static void	atw_bbp_io_init(struct atw_softc *);
232static void	atw_cfp_init(struct atw_softc *);
233static void	atw_cmdr_init(struct atw_softc *);
234static void	atw_ifs_init(struct atw_softc *);
235static void	atw_nar_init(struct atw_softc *);
236static void	atw_response_times_init(struct atw_softc *);
237static void	atw_rf_reset(struct atw_softc *);
238static void	atw_test1_init(struct atw_softc *);
239static void	atw_tofs0_init(struct atw_softc *);
240static void	atw_tofs2_init(struct atw_softc *);
241static void	atw_txlmt_init(struct atw_softc *);
242static void	atw_wcsr_init(struct atw_softc *);
243
244/* Key management */
245static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247	const u_int8_t[IEEE80211_ADDR_LEN]);
248static void atw_key_update_begin(struct ieee80211com *);
249static void atw_key_update_end(struct ieee80211com *);
250
251/* RAM/ROM utilities */
252static void	atw_clear_sram(struct atw_softc *);
253static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254static int	atw_read_srom(struct atw_softc *);
255
256/* BSS setup */
257static void	atw_predict_beacon(struct atw_softc *);
258static void	atw_start_beacon(struct atw_softc *, int);
259static void	atw_write_bssid(struct atw_softc *);
260static void	atw_write_ssid(struct atw_softc *);
261static void	atw_write_sup_rates(struct atw_softc *);
262static void	atw_write_wep(struct atw_softc *);
263
264/* Media */
265static int	atw_media_change(struct ifnet *);
266
267static void	atw_filter_setup(struct atw_softc *);
268
269/* 802.11 utilities */
270static uint64_t			atw_get_tsft(struct atw_softc *);
271static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
272				                   uint32_t);
273static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
274static void			atw_node_free(struct ieee80211_node *);
275
276/*
277 * Tuner/transceiver/modem
278 */
279static void	atw_bbp_io_enable(struct atw_softc *, int);
280
281/* RFMD RF3000 Baseband Processor */
282static int	atw_rf3000_init(struct atw_softc *);
283static int	atw_rf3000_tune(struct atw_softc *, u_int);
284static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
285
286/* Silicon Laboratories Si4126 RF/IF Synthesizer */
287static void	atw_si4126_tune(struct atw_softc *, u_int);
288static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
289
290const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292
293const char *atw_tx_state[] = {
294	"STOPPED",
295	"RUNNING - read descriptor",
296	"RUNNING - transmitting",
297	"RUNNING - filling fifo",	/* XXX */
298	"SUSPENDED",
299	"RUNNING -- write descriptor",
300	"RUNNING -- write last descriptor",
301	"RUNNING - fifo full"
302};
303
304const char *atw_rx_state[] = {
305	"STOPPED",
306	"RUNNING - read descriptor",
307	"RUNNING - check this packet, pre-fetch next",
308	"RUNNING - wait for reception",
309	"SUSPENDED",
310	"RUNNING - write descriptor",
311	"RUNNING - flush fifo",
312	"RUNNING - fifo drain"
313};
314
315static inline int
316is_running(struct ifnet *ifp)
317{
318	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319}
320
321int
322atw_activate(struct device *self, enum devact act)
323{
324	struct atw_softc *sc = (struct atw_softc *)self;
325	int rv = 0, s;
326
327	s = splnet();
328	switch (act) {
329	case DVACT_ACTIVATE:
330		rv = EOPNOTSUPP;
331		break;
332
333	case DVACT_DEACTIVATE:
334		if_deactivate(&sc->sc_if);
335		break;
336	}
337	splx(s);
338	return rv;
339}
340
341/*
342 * atw_enable:
343 *
344 *	Enable the ADM8211 chip.
345 */
346int
347atw_enable(struct atw_softc *sc)
348{
349
350	if (ATW_IS_ENABLED(sc) == 0) {
351		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352			printf("%s: device enable failed\n",
353			    sc->sc_dev.dv_xname);
354			return (EIO);
355		}
356		sc->sc_flags |= ATWF_ENABLED;
357                /* Power may have been removed, and WEP keys thus
358                 * reset.
359		 */
360		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361	}
362	return (0);
363}
364
365/*
366 * atw_disable:
367 *
368 *	Disable the ADM8211 chip.
369 */
370void
371atw_disable(struct atw_softc *sc)
372{
373	if (!ATW_IS_ENABLED(sc))
374		return;
375	if (sc->sc_disable != NULL)
376		(*sc->sc_disable)(sc);
377	sc->sc_flags &= ~ATWF_ENABLED;
378}
379
380/* Returns -1 on failure. */
381static int
382atw_read_srom(struct atw_softc *sc)
383{
384	struct seeprom_descriptor sd;
385	uint32_t test0, fail_bits;
386
387	(void)memset(&sd, 0, sizeof(sd));
388
389	test0 = ATW_READ(sc, ATW_TEST0);
390
391	switch (sc->sc_rev) {
392	case ATW_REVISION_BA:
393	case ATW_REVISION_CA:
394		fail_bits = ATW_TEST0_EPNE;
395		break;
396	default:
397		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398		break;
399	}
400	if ((test0 & fail_bits) != 0) {
401		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402		return -1;
403	}
404
405	switch (test0 & ATW_TEST0_EPTYP_MASK) {
406	case ATW_TEST0_EPTYP_93c66:
407		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408		sc->sc_sromsz = 512;
409		sd.sd_chip = C56_66;
410		break;
411	case ATW_TEST0_EPTYP_93c46:
412		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413		sc->sc_sromsz = 128;
414		sd.sd_chip = C46;
415		break;
416	default:
417		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
418		    SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
419		return -1;
420	}
421
422	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
423
424	if (sc->sc_srom == NULL) {
425		printf("%s: unable to allocate SROM buffer\n",
426		    sc->sc_dev.dv_xname);
427		return -1;
428	}
429
430	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
431
432	/* ADM8211 has a single 32-bit register for controlling the
433	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
434	 * "ready" bit. The ADM8211 input/output sense is the reverse
435	 * of read_seeprom's.
436	 */
437	sd.sd_tag = sc->sc_st;
438	sd.sd_bsh = sc->sc_sh;
439	sd.sd_regsize = 4;
440	sd.sd_control_offset = ATW_SPR;
441	sd.sd_status_offset = ATW_SPR;
442	sd.sd_dataout_offset = ATW_SPR;
443	sd.sd_CK = ATW_SPR_SCLK;
444	sd.sd_CS = ATW_SPR_SCS;
445	sd.sd_DI = ATW_SPR_SDO;
446	sd.sd_DO = ATW_SPR_SDI;
447	sd.sd_MS = ATW_SPR_SRS;
448	sd.sd_RDY = 0;
449
450	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
451		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
452		free(sc->sc_srom, M_DEVBUF);
453		return -1;
454	}
455#ifdef ATW_DEBUG
456	{
457		int i;
458		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
459		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
460			if (((i % 8) == 0) && (i != 0)) {
461				ATW_DPRINTF(("\n\t"));
462			}
463			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
464		}
465		ATW_DPRINTF(("\n"));
466	}
467#endif /* ATW_DEBUG */
468	return 0;
469}
470
471#ifdef ATW_DEBUG
472static void
473atw_print_regs(struct atw_softc *sc, const char *where)
474{
475#define PRINTREG(sc, reg) \
476	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
477	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
478
479	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
480
481	PRINTREG(sc, ATW_PAR);
482	PRINTREG(sc, ATW_FRCTL);
483	PRINTREG(sc, ATW_TDR);
484	PRINTREG(sc, ATW_WTDP);
485	PRINTREG(sc, ATW_RDR);
486	PRINTREG(sc, ATW_WRDP);
487	PRINTREG(sc, ATW_RDB);
488	PRINTREG(sc, ATW_CSR3A);
489	PRINTREG(sc, ATW_TDBD);
490	PRINTREG(sc, ATW_TDBP);
491	PRINTREG(sc, ATW_STSR);
492	PRINTREG(sc, ATW_CSR5A);
493	PRINTREG(sc, ATW_NAR);
494	PRINTREG(sc, ATW_CSR6A);
495	PRINTREG(sc, ATW_IER);
496	PRINTREG(sc, ATW_CSR7A);
497	PRINTREG(sc, ATW_LPC);
498	PRINTREG(sc, ATW_TEST1);
499	PRINTREG(sc, ATW_SPR);
500	PRINTREG(sc, ATW_TEST0);
501	PRINTREG(sc, ATW_WCSR);
502	PRINTREG(sc, ATW_WPDR);
503	PRINTREG(sc, ATW_GPTMR);
504	PRINTREG(sc, ATW_GPIO);
505	PRINTREG(sc, ATW_BBPCTL);
506	PRINTREG(sc, ATW_SYNCTL);
507	PRINTREG(sc, ATW_PLCPHD);
508	PRINTREG(sc, ATW_MMIWADDR);
509	PRINTREG(sc, ATW_MMIRADDR1);
510	PRINTREG(sc, ATW_MMIRADDR2);
511	PRINTREG(sc, ATW_TXBR);
512	PRINTREG(sc, ATW_CSR15A);
513	PRINTREG(sc, ATW_ALCSTAT);
514	PRINTREG(sc, ATW_TOFS2);
515	PRINTREG(sc, ATW_CMDR);
516	PRINTREG(sc, ATW_PCIC);
517	PRINTREG(sc, ATW_PMCSR);
518	PRINTREG(sc, ATW_PAR0);
519	PRINTREG(sc, ATW_PAR1);
520	PRINTREG(sc, ATW_MAR0);
521	PRINTREG(sc, ATW_MAR1);
522	PRINTREG(sc, ATW_ATIMDA0);
523	PRINTREG(sc, ATW_ABDA1);
524	PRINTREG(sc, ATW_BSSID0);
525	PRINTREG(sc, ATW_TXLMT);
526	PRINTREG(sc, ATW_MIBCNT);
527	PRINTREG(sc, ATW_BCNT);
528	PRINTREG(sc, ATW_TSFTH);
529	PRINTREG(sc, ATW_TSC);
530	PRINTREG(sc, ATW_SYNRF);
531	PRINTREG(sc, ATW_BPLI);
532	PRINTREG(sc, ATW_CAP0);
533	PRINTREG(sc, ATW_CAP1);
534	PRINTREG(sc, ATW_RMD);
535	PRINTREG(sc, ATW_CFPP);
536	PRINTREG(sc, ATW_TOFS0);
537	PRINTREG(sc, ATW_TOFS1);
538	PRINTREG(sc, ATW_IFST);
539	PRINTREG(sc, ATW_RSPT);
540	PRINTREG(sc, ATW_TSFTL);
541	PRINTREG(sc, ATW_WEPCTL);
542	PRINTREG(sc, ATW_WESK);
543	PRINTREG(sc, ATW_WEPCNT);
544	PRINTREG(sc, ATW_MACTEST);
545	PRINTREG(sc, ATW_FER);
546	PRINTREG(sc, ATW_FEMR);
547	PRINTREG(sc, ATW_FPSR);
548	PRINTREG(sc, ATW_FFER);
549#undef PRINTREG
550}
551#endif /* ATW_DEBUG */
552
553/*
554 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
555 */
556void
557atw_attach(struct atw_softc *sc)
558{
559	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
560		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
561	};
562	struct ieee80211com *ic = &sc->sc_ic;
563	struct ifnet *ifp = &sc->sc_if;
564	int country_code, error, i, nrate, srom_major;
565	u_int32_t reg;
566	static const char *type_strings[] = {"Intersil (not supported)",
567	    "RFMD", "Marvel (not supported)"};
568
569	sc->sc_txth = atw_txthresh_tab_lo;
570
571	SIMPLEQ_INIT(&sc->sc_txfreeq);
572	SIMPLEQ_INIT(&sc->sc_txdirtyq);
573
574#ifdef ATW_DEBUG
575	atw_print_regs(sc, "atw_attach");
576#endif /* ATW_DEBUG */
577
578	/*
579	 * Allocate the control data structures, and create and load the
580	 * DMA map for it.
581	 */
582	if ((error = bus_dmamem_alloc(sc->sc_dmat,
583	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
584	    1, &sc->sc_cdnseg, 0)) != 0) {
585		printf("%s: unable to allocate control data, error = %d\n",
586		    sc->sc_dev.dv_xname, error);
587		goto fail_0;
588	}
589
590	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
591	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
592	    BUS_DMA_COHERENT)) != 0) {
593		printf("%s: unable to map control data, error = %d\n",
594		    sc->sc_dev.dv_xname, error);
595		goto fail_1;
596	}
597
598	if ((error = bus_dmamap_create(sc->sc_dmat,
599	    sizeof(struct atw_control_data), 1,
600	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
601		printf("%s: unable to create control data DMA map, "
602		    "error = %d\n", sc->sc_dev.dv_xname, error);
603		goto fail_2;
604	}
605
606	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
607	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
608	    0)) != 0) {
609		printf("%s: unable to load control data DMA map, error = %d\n",
610		    sc->sc_dev.dv_xname, error);
611		goto fail_3;
612	}
613
614	/*
615	 * Create the transmit buffer DMA maps.
616	 */
617	sc->sc_ntxsegs = ATW_NTXSEGS;
618	for (i = 0; i < ATW_TXQUEUELEN; i++) {
619		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
620		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
621		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
622			printf("%s: unable to create tx DMA map %d, "
623			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
624			goto fail_4;
625		}
626	}
627
628	/*
629	 * Create the receive buffer DMA maps.
630	 */
631	for (i = 0; i < ATW_NRXDESC; i++) {
632		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
633		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
634			printf("%s: unable to create rx DMA map %d, "
635			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
636			goto fail_5;
637		}
638	}
639	for (i = 0; i < ATW_NRXDESC; i++) {
640		sc->sc_rxsoft[i].rxs_mbuf = NULL;
641	}
642
643	switch (sc->sc_rev) {
644	case ATW_REVISION_AB:
645	case ATW_REVISION_AF:
646		sc->sc_sramlen = ATW_SRAM_A_SIZE;
647		break;
648	case ATW_REVISION_BA:
649	case ATW_REVISION_CA:
650		sc->sc_sramlen = ATW_SRAM_B_SIZE;
651		break;
652	}
653
654	/* Reset the chip to a known state. */
655	atw_reset(sc);
656
657	if (atw_read_srom(sc) == -1)
658		return;
659
660	sc->sc_rftype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
661	    ATW_SR_RFTYPE_MASK);
662
663	sc->sc_bbptype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
664	    ATW_SR_BBPTYPE_MASK);
665
666	if (sc->sc_rftype >= __arraycount(type_strings)) {
667		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
668		return;
669	}
670	if (sc->sc_bbptype >= __arraycount(type_strings)) {
671		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
672		return;
673	}
674
675	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
676	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
677
678	/* XXX There exists a Linux driver which seems to use RFType = 0 for
679	 * MARVEL. My bug, or theirs?
680	 */
681
682	reg = SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
683
684	switch (sc->sc_rftype) {
685	case ATW_RFTYPE_INTERSIL:
686		reg |= ATW_SYNCTL_CS1;
687		break;
688	case ATW_RFTYPE_RFMD:
689		reg |= ATW_SYNCTL_CS0;
690		break;
691	case ATW_RFTYPE_MARVEL:
692		break;
693	}
694
695	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
696	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
697
698	reg = SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
699
700	switch (sc->sc_bbptype) {
701	case ATW_BBPTYPE_INTERSIL:
702		reg |= ATW_BBPCTL_TWI;
703		break;
704	case ATW_BBPTYPE_RFMD:
705		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
706		    ATW_BBPCTL_CCA_ACTLO;
707		break;
708	case ATW_BBPTYPE_MARVEL:
709		break;
710	case ATW_C_BBPTYPE_RFMD:
711		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
712		    sc->sc_dev.dv_xname);
713		break;
714	}
715
716	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
717	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
718
719	/*
720	 * From this point forward, the attachment cannot fail.  A failure
721	 * before this point releases all resources that may have been
722	 * allocated.
723	 */
724	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
725
726	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
727	    htole16(sc->sc_srom[ATW_SR_MAC00]),
728	    htole16(sc->sc_srom[ATW_SR_MAC01]),
729	    htole16(sc->sc_srom[ATW_SR_MAC10])));
730
731	srom_major = SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
732	    ATW_SR_MAJOR_MASK);
733
734	if (srom_major < 2)
735		sc->sc_rf3000_options1 = 0;
736	else if (sc->sc_rev == ATW_REVISION_BA) {
737		sc->sc_rf3000_options1 =
738		    SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
739		    ATW_SR_CR28_MASK);
740	} else
741		sc->sc_rf3000_options1 = 0;
742
743	sc->sc_rf3000_options2 = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
744	    ATW_SR_CR29_MASK);
745
746	country_code = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
747	    ATW_SR_CTRY_MASK);
748
749#define ADD_CHANNEL(_ic, _chan) do {					\
750	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
751	_ic->ic_channels[_chan].ic_freq =				\
752	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
753} while (0)
754
755	/* Find available channels */
756	switch (country_code) {
757	case COUNTRY_MMK2:	/* 1-14 */
758		ADD_CHANNEL(ic, 14);
759		/*FALLTHROUGH*/
760	case COUNTRY_ETSI:	/* 1-13 */
761		for (i = 1; i <= 13; i++)
762			ADD_CHANNEL(ic, i);
763		break;
764	case COUNTRY_FCC:	/* 1-11 */
765	case COUNTRY_IC:	/* 1-11 */
766		for (i = 1; i <= 11; i++)
767			ADD_CHANNEL(ic, i);
768		break;
769	case COUNTRY_MMK:	/* 14 */
770		ADD_CHANNEL(ic, 14);
771		break;
772	case COUNTRY_FRANCE:	/* 10-13 */
773		for (i = 10; i <= 13; i++)
774			ADD_CHANNEL(ic, i);
775		break;
776	default:	/* assume channels 10-11 */
777	case COUNTRY_SPAIN:	/* 10-11 */
778		for (i = 10; i <= 11; i++)
779			ADD_CHANNEL(ic, i);
780		break;
781	}
782
783	/* Read the MAC address. */
784	reg = ATW_READ(sc, ATW_PAR0);
785	ic->ic_myaddr[0] = SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
786	ic->ic_myaddr[1] = SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
787	ic->ic_myaddr[2] = SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
788	ic->ic_myaddr[3] = SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
789	reg = ATW_READ(sc, ATW_PAR1);
790	ic->ic_myaddr[4] = SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
791	ic->ic_myaddr[5] = SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
792
793	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
794		printf(" could not get mac address, attach failed\n");
795		return;
796	}
797
798	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
799
800	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
801	ifp->if_softc = sc;
802	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
803	    IFF_NOTRAILERS;
804	ifp->if_ioctl = atw_ioctl;
805	ifp->if_start = atw_start;
806	ifp->if_watchdog = atw_watchdog;
807	ifp->if_init = atw_init;
808	ifp->if_stop = atw_stop;
809	IFQ_SET_READY(&ifp->if_snd);
810
811	ic->ic_ifp = ifp;
812	ic->ic_phytype = IEEE80211_T_DS;
813	ic->ic_opmode = IEEE80211_M_STA;
814	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
815	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
816
817	nrate = 0;
818	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
819	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
820	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
821	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
822	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
823
824	/*
825	 * Call MI attach routines.
826	 */
827
828	if_attach(ifp);
829	ieee80211_ifattach(ic);
830
831	sc->sc_newstate = ic->ic_newstate;
832	ic->ic_newstate = atw_newstate;
833
834	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
835	ic->ic_recv_mgmt = atw_recv_mgmt;
836
837	sc->sc_node_free = ic->ic_node_free;
838	ic->ic_node_free = atw_node_free;
839
840	sc->sc_node_alloc = ic->ic_node_alloc;
841	ic->ic_node_alloc = atw_node_alloc;
842
843	ic->ic_crypto.cs_key_delete = atw_key_delete;
844	ic->ic_crypto.cs_key_set = atw_key_set;
845	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
846	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
847
848	/* possibly we should fill in our own sc_send_prresp, since
849	 * the ADM8211 is probably sending probe responses in ad hoc
850	 * mode.
851	 */
852
853	/* complete initialization */
854	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
855	callout_init(&sc->sc_scan_ch);
856
857#if NBPFILTER > 0
858	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
859	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
860#endif
861
862	/*
863	 * Make sure the interface is shutdown during reboot.
864	 */
865	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
866	if (sc->sc_sdhook == NULL)
867		printf("%s: WARNING: unable to establish shutdown hook\n",
868		    sc->sc_dev.dv_xname);
869
870	/*
871	 * Add a suspend hook to make sure we come back up after a
872	 * resume.
873	 */
874	sc->sc_powerhook = powerhook_establish(atw_power, sc);
875	if (sc->sc_powerhook == NULL)
876		printf("%s: WARNING: unable to establish power hook\n",
877		    sc->sc_dev.dv_xname);
878
879	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
880	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
881	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
882
883	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
884	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
885	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
886
887	ieee80211_announce(ic);
888	return;
889
890	/*
891	 * Free any resources we've allocated during the failed attach
892	 * attempt.  Do this in reverse order and fall through.
893	 */
894 fail_5:
895	for (i = 0; i < ATW_NRXDESC; i++) {
896		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
897			continue;
898		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
899	}
900 fail_4:
901	for (i = 0; i < ATW_TXQUEUELEN; i++) {
902		if (sc->sc_txsoft[i].txs_dmamap == NULL)
903			continue;
904		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
905	}
906	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
907 fail_3:
908	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
909 fail_2:
910	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
911	    sizeof(struct atw_control_data));
912 fail_1:
913	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
914 fail_0:
915	return;
916}
917
918static struct ieee80211_node *
919atw_node_alloc(struct ieee80211_node_table *nt)
920{
921	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
922	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
923
924	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
925	return ni;
926}
927
928static void
929atw_node_free(struct ieee80211_node *ni)
930{
931	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
932
933	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
934	    ether_sprintf(ni->ni_bssid)));
935	(*sc->sc_node_free)(ni);
936}
937
938
939static void
940atw_test1_reset(struct atw_softc *sc)
941{
942	switch (sc->sc_rev) {
943	case ATW_REVISION_BA:
944		if (1 /* XXX condition on transceiver type */) {
945			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
946		}
947		break;
948	case ATW_REVISION_CA:
949		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
950		break;
951	default:
952		break;
953	}
954}
955
956/*
957 * atw_reset:
958 *
959 *	Perform a soft reset on the ADM8211.
960 */
961void
962atw_reset(struct atw_softc *sc)
963{
964	int i;
965	uint32_t lpc;
966
967	ATW_WRITE(sc, ATW_NAR, 0x0);
968	DELAY(atw_nar_delay);
969
970	/* Reference driver has a cryptic remark indicating that this might
971	 * power-on the chip.  I know that it turns off power-saving....
972	 */
973	ATW_WRITE(sc, ATW_FRCTL, 0x0);
974
975	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
976
977	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
978		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
979			break;
980		DELAY(atw_pseudo_milli);
981	}
982
983	/* ... and then pause 100ms longer for good measure. */
984	DELAY(atw_magic_delay1);
985
986	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
987
988	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
989		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
990
991	/*
992	 * Initialize the PCI Access Register.
993	 */
994	sc->sc_busmode = ATW_PAR_PBL_8DW;
995
996	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
997	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
998	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
999
1000	atw_test1_reset(sc);
1001
1002	/* Turn off maximum power saving, etc. */
1003	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1004
1005	DELAY(atw_magic_delay2);
1006
1007	/* Recall EEPROM. */
1008	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1009
1010	DELAY(atw_magic_delay4);
1011
1012	lpc = ATW_READ(sc, ATW_LPC);
1013
1014	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1015
1016	/* A reset seems to affect the SRAM contents, so put them into
1017	 * a known state.
1018	 */
1019	atw_clear_sram(sc);
1020
1021	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1022}
1023
1024static void
1025atw_clear_sram(struct atw_softc *sc)
1026{
1027	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1028	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1029	/* XXX not for revision 0x20. */
1030	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1031}
1032
1033/* TBD atw_init
1034 *
1035 * set MAC based on ic->ic_bss->myaddr
1036 * write WEP keys
1037 * set TX rate
1038 */
1039
1040/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1041 * without receiving a beacon with the preferred BSSID & SSID.
1042 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1043 */
1044static void
1045atw_wcsr_init(struct atw_softc *sc)
1046{
1047	uint32_t wcsr;
1048
1049	wcsr = ATW_READ(sc, ATW_WCSR);
1050	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1051	wcsr |= SHIFTIN(7, ATW_WCSR_BLN_MASK);
1052	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1053
1054	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1055	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1056}
1057
1058/* Turn off power management.  Set Rx store-and-forward mode. */
1059static void
1060atw_cmdr_init(struct atw_softc *sc)
1061{
1062	uint32_t cmdr;
1063	cmdr = ATW_READ(sc, ATW_CMDR);
1064	cmdr &= ~ATW_CMDR_APM;
1065	cmdr |= ATW_CMDR_RTE;
1066	cmdr &= ~ATW_CMDR_DRT_MASK;
1067	cmdr |= ATW_CMDR_DRT_SF;
1068
1069	ATW_WRITE(sc, ATW_CMDR, cmdr);
1070}
1071
1072static void
1073atw_tofs2_init(struct atw_softc *sc)
1074{
1075	uint32_t tofs2;
1076	/* XXX this magic can probably be figured out from the RFMD docs */
1077#ifndef ATW_REFSLAVE
1078	tofs2 = SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1079	      SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1080	      SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1081	      SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1082	      SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1083	      SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1084	      SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1085	      SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1086#else
1087	/* XXX new magic from reference driver source */
1088	tofs2 = SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1089	      SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1090	      SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1091	      SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1092	      SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1093	      SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1094	      SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1095	      SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1096#endif
1097	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1098}
1099
1100static void
1101atw_nar_init(struct atw_softc *sc)
1102{
1103	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1104}
1105
1106static void
1107atw_txlmt_init(struct atw_softc *sc)
1108{
1109	ATW_WRITE(sc, ATW_TXLMT, SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1110	                         SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1111}
1112
1113static void
1114atw_test1_init(struct atw_softc *sc)
1115{
1116	uint32_t test1;
1117
1118	test1 = ATW_READ(sc, ATW_TEST1);
1119	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1120	/* XXX magic 0x1 */
1121	test1 |= SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1122	ATW_WRITE(sc, ATW_TEST1, test1);
1123}
1124
1125static void
1126atw_rf_reset(struct atw_softc *sc)
1127{
1128	/* XXX this resets an Intersil RF front-end? */
1129	/* TBD condition on Intersil RFType? */
1130	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1131	DELAY(atw_rf_delay1);
1132	ATW_WRITE(sc, ATW_SYNRF, 0);
1133	DELAY(atw_rf_delay2);
1134}
1135
1136/* Set 16 TU max duration for the contention-free period (CFP). */
1137static void
1138atw_cfp_init(struct atw_softc *sc)
1139{
1140	uint32_t cfpp;
1141
1142	cfpp = ATW_READ(sc, ATW_CFPP);
1143	cfpp &= ~ATW_CFPP_CFPMD;
1144	cfpp |= SHIFTIN(16, ATW_CFPP_CFPMD);
1145	ATW_WRITE(sc, ATW_CFPP, cfpp);
1146}
1147
1148static void
1149atw_tofs0_init(struct atw_softc *sc)
1150{
1151	/* XXX I guess that the Cardbus clock is 22 MHz?
1152	 * I am assuming that the role of ATW_TOFS0_USCNT is
1153	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1154	 * very clear on this point. It says in the datasheet that it is
1155	 * possible for the ADM8211 to accomodate bus speeds between 22 MHz
1156	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1157	 * these values. These values are also the power-on default.
1158	 */
1159	ATW_WRITE(sc, ATW_TOFS0,
1160	    SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1161	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1162}
1163
1164/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1165static void
1166atw_ifs_init(struct atw_softc *sc)
1167{
1168	uint32_t ifst;
1169	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1170	 * Go figure.
1171	 */
1172	ifst = SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1173	      SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1174	             ATW_IFST_SIFS_MASK) |
1175	      SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1176	      SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1177
1178	ATW_WRITE(sc, ATW_IFST, ifst);
1179}
1180
1181static void
1182atw_response_times_init(struct atw_softc *sc)
1183{
1184	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1185	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1186	 * to pass after it transmits a frame that requires a response;
1187	 * it waits at most SIFS + MART microseconds for the response.
1188	 * Surely this is not the ACK timeout?
1189	 */
1190	ATW_WRITE(sc, ATW_RSPT, SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1191	    SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1192}
1193
1194/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1195 * engines read and write baseband registers after Rx and before
1196 * Tx, respectively.
1197 */
1198static void
1199atw_bbp_io_init(struct atw_softc *sc)
1200{
1201	uint32_t mmiraddr2;
1202
1203	/* XXX The reference driver does this, but is it *really*
1204	 * necessary?
1205	 */
1206	switch (sc->sc_rev) {
1207	case ATW_REVISION_AB:
1208	case ATW_REVISION_AF:
1209		mmiraddr2 = 0x0;
1210		break;
1211	default:
1212		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1213		mmiraddr2 &=
1214		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1215		break;
1216	}
1217
1218	switch (sc->sc_bbptype) {
1219	case ATW_BBPTYPE_INTERSIL:
1220		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1221		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1222		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1223		break;
1224	case ATW_BBPTYPE_MARVEL:
1225		/* TBD find out the Marvel settings. */
1226		break;
1227	case ATW_BBPTYPE_RFMD:
1228	default:
1229		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1230		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1231		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1232		break;
1233	}
1234	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1235	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1236}
1237
1238/*
1239 * atw_init:		[ ifnet interface function ]
1240 *
1241 *	Initialize the interface.  Must be called at splnet().
1242 */
1243int
1244atw_init(struct ifnet *ifp)
1245{
1246	struct atw_softc *sc = ifp->if_softc;
1247	struct ieee80211com *ic = &sc->sc_ic;
1248	struct atw_txsoft *txs;
1249	struct atw_rxsoft *rxs;
1250	int i, error = 0;
1251
1252	if ((error = atw_enable(sc)) != 0)
1253		goto out;
1254
1255	/*
1256	 * Cancel any pending I/O. This also resets.
1257	 */
1258	atw_stop(ifp, 0);
1259
1260	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1261	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1262	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1263
1264	atw_wcsr_init(sc);
1265
1266	atw_cmdr_init(sc);
1267
1268	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1269	 *
1270	 * XXX Set transmit power for ATIM, RTS, Beacon.
1271	 */
1272	ATW_WRITE(sc, ATW_PLCPHD, SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1273	    SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1274
1275	atw_tofs2_init(sc);
1276
1277	atw_nar_init(sc);
1278
1279	atw_txlmt_init(sc);
1280
1281	atw_test1_init(sc);
1282
1283	atw_rf_reset(sc);
1284
1285	atw_cfp_init(sc);
1286
1287	atw_tofs0_init(sc);
1288
1289	atw_ifs_init(sc);
1290
1291	/* XXX Fall asleep after one second of inactivity.
1292	 * XXX A frame may only dribble in for 65536us.
1293	 */
1294	ATW_WRITE(sc, ATW_RMD,
1295	    SHIFTIN(1, ATW_RMD_PCNT) | SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1296
1297	atw_response_times_init(sc);
1298
1299	atw_bbp_io_init(sc);
1300
1301	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1302
1303	if ((error = atw_rf3000_init(sc)) != 0)
1304		goto out;
1305
1306	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1307	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1308	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1309
1310	/*
1311	 * Initialize the transmit descriptor ring.
1312	 */
1313	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1314	for (i = 0; i < ATW_NTXDESC; i++) {
1315		sc->sc_txdescs[i].at_ctl = 0;
1316		/* no transmit chaining */
1317		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1318		sc->sc_txdescs[i].at_buf2 =
1319		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1320	}
1321	/* use ring mode */
1322	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1323	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1324	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1325	sc->sc_txfree = ATW_NTXDESC;
1326	sc->sc_txnext = 0;
1327
1328	/*
1329	 * Initialize the transmit job descriptors.
1330	 */
1331	SIMPLEQ_INIT(&sc->sc_txfreeq);
1332	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1333	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1334		txs = &sc->sc_txsoft[i];
1335		txs->txs_mbuf = NULL;
1336		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1337	}
1338
1339	/*
1340	 * Initialize the receive descriptor and receive job
1341	 * descriptor rings.
1342	 */
1343	for (i = 0; i < ATW_NRXDESC; i++) {
1344		rxs = &sc->sc_rxsoft[i];
1345		if (rxs->rxs_mbuf == NULL) {
1346			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1347				printf("%s: unable to allocate or map rx "
1348				    "buffer %d, error = %d\n",
1349				    sc->sc_dev.dv_xname, i, error);
1350				/*
1351				 * XXX Should attempt to run with fewer receive
1352				 * XXX buffers instead of just failing.
1353				 */
1354				atw_rxdrain(sc);
1355				goto out;
1356			}
1357		} else
1358			ATW_INIT_RXDESC(sc, i);
1359	}
1360	sc->sc_rxptr = 0;
1361
1362	/*
1363	 * Initialize the interrupt mask and enable interrupts.
1364	 */
1365	/* normal interrupts */
1366	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1367	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1368
1369	/* abnormal interrupts */
1370	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1371	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1372	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1373
1374	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1375	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1376	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1377	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1378	    ATW_INTR_TRT;
1379
1380	sc->sc_linkint_mask &= sc->sc_inten;
1381	sc->sc_rxint_mask &= sc->sc_inten;
1382	sc->sc_txint_mask &= sc->sc_inten;
1383
1384	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1385	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1386
1387	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1388	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1389
1390	/*
1391	 * Give the transmit and receive rings to the ADM8211.
1392	 */
1393	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1394	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1395
1396	sc->sc_txthresh = 0;
1397	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1398	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1399
1400	/* common 802.11 configuration */
1401	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1402	switch (ic->ic_opmode) {
1403	case IEEE80211_M_STA:
1404		break;
1405	case IEEE80211_M_AHDEMO: /* XXX */
1406	case IEEE80211_M_IBSS:
1407		ic->ic_flags |= IEEE80211_F_IBSSON;
1408		/*FALLTHROUGH*/
1409	case IEEE80211_M_HOSTAP: /* XXX */
1410		break;
1411	case IEEE80211_M_MONITOR: /* XXX */
1412		break;
1413	}
1414
1415	switch (ic->ic_opmode) {
1416	case IEEE80211_M_AHDEMO:
1417	case IEEE80211_M_HOSTAP:
1418#ifndef IEEE80211_NO_HOSTAP
1419		ic->ic_bss->ni_intval = ic->ic_lintval;
1420		ic->ic_bss->ni_rssi = 0;
1421		ic->ic_bss->ni_rstamp = 0;
1422#endif /* !IEEE80211_NO_HOSTAP */
1423		break;
1424	default:					/* XXX */
1425		break;
1426	}
1427
1428	sc->sc_wepctl = 0;
1429
1430	atw_write_ssid(sc);
1431	atw_write_sup_rates(sc);
1432	atw_write_wep(sc);
1433
1434	ic->ic_state = IEEE80211_S_INIT;
1435
1436	/*
1437	 * Set the receive filter.  This will start the transmit and
1438	 * receive processes.
1439	 */
1440	atw_filter_setup(sc);
1441
1442	/*
1443	 * Start the receive process.
1444	 */
1445	ATW_WRITE(sc, ATW_RDR, 0x1);
1446
1447	/*
1448	 * Note that the interface is now running.
1449	 */
1450	ifp->if_flags |= IFF_RUNNING;
1451	ifp->if_flags &= ~IFF_OACTIVE;
1452
1453	/* send no beacons, yet. */
1454	atw_start_beacon(sc, 0);
1455
1456	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1457		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1458	else
1459		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1460 out:
1461	if (error) {
1462		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1463		sc->sc_tx_timer = 0;
1464		ifp->if_timer = 0;
1465		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1466	}
1467#ifdef ATW_DEBUG
1468	atw_print_regs(sc, "end of init");
1469#endif /* ATW_DEBUG */
1470
1471	return (error);
1472}
1473
1474/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1475 *           0: MAC control of RF3000/Si4126.
1476 *
1477 * Applies power, or selects RF front-end? Sets reset condition.
1478 *
1479 * TBD support non-RFMD BBP, non-SiLabs synth.
1480 */
1481static void
1482atw_bbp_io_enable(struct atw_softc *sc, int enable)
1483{
1484	if (enable) {
1485		ATW_WRITE(sc, ATW_SYNRF,
1486		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1487		DELAY(atw_bbp_io_enable_delay);
1488	} else {
1489		ATW_WRITE(sc, ATW_SYNRF, 0);
1490		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1491	}
1492}
1493
1494static int
1495atw_tune(struct atw_softc *sc)
1496{
1497	int rc;
1498	u_int chan;
1499	struct ieee80211com *ic = &sc->sc_ic;
1500
1501	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1502	if (chan == IEEE80211_CHAN_ANY)
1503		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1504
1505	if (chan == sc->sc_cur_chan)
1506		return 0;
1507
1508	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1509	    sc->sc_cur_chan, chan));
1510
1511	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1512
1513	atw_si4126_tune(sc, chan);
1514	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1515		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1516		    chan);
1517
1518	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1519	DELAY(atw_nar_delay);
1520	ATW_WRITE(sc, ATW_RDR, 0x1);
1521
1522	if (rc == 0)
1523		sc->sc_cur_chan = chan;
1524
1525	return rc;
1526}
1527
1528#ifdef ATW_SYNDEBUG
1529static void
1530atw_si4126_print(struct atw_softc *sc)
1531{
1532	struct ifnet *ifp = &sc->sc_if;
1533	u_int addr, val;
1534
1535	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1536		return;
1537
1538	for (addr = 0; addr <= 8; addr++) {
1539		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1540		if (atw_si4126_read(sc, addr, &val) == 0) {
1541			printf("<unknown> (quitting print-out)\n");
1542			break;
1543		}
1544		printf("%05x\n", val);
1545	}
1546}
1547#endif /* ATW_SYNDEBUG */
1548
1549/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1550 *
1551 * The RF/IF synthesizer produces two reference frequencies for
1552 * the RF2948B transceiver.  The first frequency the RF2948B requires
1553 * is two times the so-called "intermediate frequency" (IF). Since
1554 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1555 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1556 * frequency required by the transceiver is the radio frequency
1557 * (RF). This is a superheterodyne transceiver; for f(chan) the
1558 * center frequency of the channel we are tuning, RF = f(chan) -
1559 * IF.
1560 *
1561 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1562 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1563 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1564 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1565 */
1566static void
1567atw_si4126_tune(struct atw_softc *sc, u_int chan)
1568{
1569	u_int mhz;
1570	u_int R;
1571	u_int32_t gpio;
1572	u_int16_t gain;
1573
1574#ifdef ATW_SYNDEBUG
1575	atw_si4126_print(sc);
1576#endif /* ATW_SYNDEBUG */
1577
1578	if (chan == 14)
1579		mhz = 2484;
1580	else
1581		mhz = 2412 + 5 * (chan - 1);
1582
1583	/* Tune IF to 748 MHz to suit the IF LO input of the
1584	 * RF2494B, which is 2 x IF. No need to set an IF divider
1585         * because an IF in 526 MHz - 952 MHz is allowed.
1586	 *
1587	 * XIN is 44.000 MHz, so divide it by two to get allowable
1588	 * range of 2-25 MHz. SiLabs tells me that this is not
1589	 * strictly necessary.
1590	 */
1591
1592	if (atw_xindiv2)
1593		R = 44;
1594	else
1595		R = 88;
1596
1597	/* Power-up RF, IF synthesizers. */
1598	atw_si4126_write(sc, SI4126_POWER,
1599	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1600
1601	/* set LPWR, too? */
1602	atw_si4126_write(sc, SI4126_MAIN,
1603	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1604
1605	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1606	 * set KP2 to 1.
1607	 *
1608	 * REFDIF This is different from the reference driver, which
1609	 * always sets SI4126_GAIN to 0.
1610	 */
1611	gain = SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1612
1613	atw_si4126_write(sc, SI4126_GAIN, gain);
1614
1615	/* XIN = 44 MHz.
1616	 *
1617	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1618	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1619	 *
1620	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1621	 * so that 1496/88 * 44 MHz = 748 MHz.
1622	 */
1623	atw_si4126_write(sc, SI4126_IFN, 1496);
1624
1625	atw_si4126_write(sc, SI4126_IFR, R);
1626
1627#ifndef ATW_REFSLAVE
1628	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1629	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1630	 * which has no RF1!
1631	 */
1632	atw_si4126_write(sc, SI4126_RF1R, R);
1633
1634	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1635#endif
1636
1637	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1638	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1639	 * Now let's multiply it to mhz. So mhz - IF = N.
1640	 */
1641	atw_si4126_write(sc, SI4126_RF2R, R);
1642
1643	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1644
1645	/* wait 100us from power-up for RF, IF to settle */
1646	DELAY(100);
1647
1648	gpio = ATW_READ(sc, ATW_GPIO);
1649	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1650	gpio |= SHIFTIN(1, ATW_GPIO_EN_MASK);
1651
1652	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1653		/* Set a Prism RF front-end to a special mode for channel 14?
1654		 *
1655		 * Apparently the SMC2635W needs this, although I don't think
1656		 * it has a Prism RF.
1657		 */
1658		gpio |= SHIFTIN(1, ATW_GPIO_O_MASK);
1659	}
1660	ATW_WRITE(sc, ATW_GPIO, gpio);
1661
1662#ifdef ATW_SYNDEBUG
1663	atw_si4126_print(sc);
1664#endif /* ATW_SYNDEBUG */
1665}
1666
1667/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1668 * diversity.
1669 *
1670 * !!!
1671 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1672 * !!!
1673 */
1674static int
1675atw_rf3000_init(struct atw_softc *sc)
1676{
1677	int rc = 0;
1678
1679	atw_bbp_io_enable(sc, 1);
1680
1681	/* CCA is acquisition sensitive */
1682	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1683	    SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1684
1685	if (rc != 0)
1686		goto out;
1687
1688	/* enable diversity */
1689	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1690
1691	if (rc != 0)
1692		goto out;
1693
1694	/* sensible setting from a binary-only driver */
1695	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1696	    SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1697
1698	if (rc != 0)
1699		goto out;
1700
1701	/* magic from a binary-only driver */
1702	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1703	    SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1704
1705	if (rc != 0)
1706		goto out;
1707
1708	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1709
1710	if (rc != 0)
1711		goto out;
1712
1713	/* XXX Reference driver remarks that Abocom sets this to 50.
1714	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1715	 * in the "reserved" area of register RF3000_OPTIONS1.
1716	 */
1717	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1718
1719	if (rc != 0)
1720		goto out;
1721
1722	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1723
1724	if (rc != 0)
1725		goto out;
1726
1727out:
1728	atw_bbp_io_enable(sc, 0);
1729	return rc;
1730}
1731
1732#ifdef ATW_BBPDEBUG
1733static void
1734atw_rf3000_print(struct atw_softc *sc)
1735{
1736	struct ifnet *ifp = &sc->sc_if;
1737	u_int addr, val;
1738
1739	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1740		return;
1741
1742	for (addr = 0x01; addr <= 0x15; addr++) {
1743		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1744		if (atw_rf3000_read(sc, addr, &val) != 0) {
1745			printf("<unknown> (quitting print-out)\n");
1746			break;
1747		}
1748		printf("%08x\n", val);
1749	}
1750}
1751#endif /* ATW_BBPDEBUG */
1752
1753/* Set the power settings on the BBP for channel `chan'. */
1754static int
1755atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1756{
1757	int rc = 0;
1758	u_int32_t reg;
1759	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1760
1761	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1762	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1763	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1764
1765	/* odd channels: LSB, even channels: MSB */
1766	if (chan % 2 == 1) {
1767		txpower &= 0xFF;
1768		lpf_cutoff &= 0xFF;
1769		lna_gs_thresh &= 0xFF;
1770	} else {
1771		txpower >>= 8;
1772		lpf_cutoff >>= 8;
1773		lna_gs_thresh >>= 8;
1774	}
1775
1776#ifdef ATW_BBPDEBUG
1777	atw_rf3000_print(sc);
1778#endif /* ATW_BBPDEBUG */
1779
1780	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1781	    "lna_gs_thresh %02x\n",
1782	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1783
1784	atw_bbp_io_enable(sc, 1);
1785
1786	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1787	    SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1788		goto out;
1789
1790	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1791		goto out;
1792
1793	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1794		goto out;
1795
1796	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1797
1798	if (rc != 0)
1799		goto out;
1800
1801	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1802
1803	if (rc != 0)
1804		goto out;
1805
1806#ifdef ATW_BBPDEBUG
1807	atw_rf3000_print(sc);
1808#endif /* ATW_BBPDEBUG */
1809
1810out:
1811	atw_bbp_io_enable(sc, 0);
1812
1813	/* set beacon, rts, atim transmit power */
1814	reg = ATW_READ(sc, ATW_PLCPHD);
1815	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1816	reg |= SHIFTIN(SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1817	    ATW_PLCPHD_SERVICE_MASK);
1818	ATW_WRITE(sc, ATW_PLCPHD, reg);
1819	DELAY(atw_plcphd_delay);
1820
1821	return rc;
1822}
1823
1824/* Write a register on the RF3000 baseband processor using the
1825 * registers provided by the ADM8211 for this purpose.
1826 *
1827 * Return 0 on success.
1828 */
1829static int
1830atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1831{
1832	u_int32_t reg;
1833	int i;
1834
1835	reg = sc->sc_bbpctl_wr |
1836	     SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1837	     SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1838
1839	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1840		ATW_WRITE(sc, ATW_BBPCTL, reg);
1841		DELAY(2 * atw_pseudo_milli);
1842		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1843			break;
1844	}
1845
1846	if (i < 0) {
1847		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1848		return ETIMEDOUT;
1849	}
1850	return 0;
1851}
1852
1853/* Read a register on the RF3000 baseband processor using the registers
1854 * the ADM8211 provides for this purpose.
1855 *
1856 * The 7-bit register address is addr.  Record the 8-bit data in the register
1857 * in *val.
1858 *
1859 * Return 0 on success.
1860 *
1861 * XXX This does not seem to work. The ADM8211 must require more or
1862 * different magic to read the chip than to write it. Possibly some
1863 * of the magic I have derived from a binary-only driver concerns
1864 * the "chip address" (see the RF3000 manual).
1865 */
1866#ifdef ATW_BBPDEBUG
1867static int
1868atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1869{
1870	u_int32_t reg;
1871	int i;
1872
1873	for (i = 1000; --i >= 0; ) {
1874		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1875			break;
1876		DELAY(100);
1877	}
1878
1879	if (i < 0) {
1880		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1881		    sc->sc_dev.dv_xname);
1882		return ETIMEDOUT;
1883	}
1884
1885	reg = sc->sc_bbpctl_rd | SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1886
1887	ATW_WRITE(sc, ATW_BBPCTL, reg);
1888
1889	for (i = 1000; --i >= 0; ) {
1890		DELAY(100);
1891		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1892			break;
1893	}
1894
1895	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1896
1897	if (i < 0) {
1898		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1899		    sc->sc_dev.dv_xname, reg);
1900		return ETIMEDOUT;
1901	}
1902	if (val != NULL)
1903		*val = SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1904	return 0;
1905}
1906#endif /* ATW_BBPDEBUG */
1907
1908/* Write a register on the Si4126 RF/IF synthesizer using the registers
1909 * provided by the ADM8211 for that purpose.
1910 *
1911 * val is 18 bits of data, and val is the 4-bit address of the register.
1912 *
1913 * Return 0 on success.
1914 */
1915static void
1916atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1917{
1918	uint32_t bits, mask, reg;
1919	const int nbits = 22;
1920
1921	KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1922	KASSERT((val & ~SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1923
1924	bits = SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1925	       SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1926
1927	reg = ATW_SYNRF_SELSYN;
1928	/* reference driver: reset Si4126 serial bus to initial
1929	 * conditions?
1930	 */
1931	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1932	ATW_WRITE(sc, ATW_SYNRF, reg);
1933
1934	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1935		if ((bits & mask) != 0)
1936			reg |= ATW_SYNRF_SYNDATA;
1937		else
1938			reg &= ~ATW_SYNRF_SYNDATA;
1939		ATW_WRITE(sc, ATW_SYNRF, reg);
1940		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1941		ATW_WRITE(sc, ATW_SYNRF, reg);
1942	}
1943	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1944	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1945}
1946
1947/* Read 18-bit data from the 4-bit address addr in Si4126
1948 * RF synthesizer and write the data to *val. Return 0 on success.
1949 *
1950 * XXX This does not seem to work. The ADM8211 must require more or
1951 * different magic to read the chip than to write it.
1952 */
1953#ifdef ATW_SYNDEBUG
1954static int
1955atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1956{
1957	u_int32_t reg;
1958	int i;
1959
1960	KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1961
1962	for (i = 1000; --i >= 0; ) {
1963		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1964			break;
1965		DELAY(100);
1966	}
1967
1968	if (i < 0) {
1969		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1970		    sc->sc_dev.dv_xname);
1971		return ETIMEDOUT;
1972	}
1973
1974	reg = sc->sc_synctl_rd | SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1975
1976	ATW_WRITE(sc, ATW_SYNCTL, reg);
1977
1978	for (i = 1000; --i >= 0; ) {
1979		DELAY(100);
1980		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1981			break;
1982	}
1983
1984	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1985
1986	if (i < 0) {
1987		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1988		    sc->sc_dev.dv_xname, reg);
1989		return ETIMEDOUT;
1990	}
1991	if (val != NULL)
1992		*val = SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1993		                       ATW_SYNCTL_DATA_MASK);
1994	return 0;
1995}
1996#endif /* ATW_SYNDEBUG */
1997
1998/* XXX is the endianness correct? test. */
1999#define	atw_calchash(addr) \
2000	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2001
2002/*
2003 * atw_filter_setup:
2004 *
2005 *	Set the ADM8211's receive filter.
2006 */
2007static void
2008atw_filter_setup(struct atw_softc *sc)
2009{
2010	struct ieee80211com *ic = &sc->sc_ic;
2011	struct ethercom *ec = &sc->sc_ec;
2012	struct ifnet *ifp = &sc->sc_if;
2013	int hash;
2014	u_int32_t hashes[2];
2015	struct ether_multi *enm;
2016	struct ether_multistep step;
2017
2018	/* According to comments in tlp_al981_filter_setup
2019	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2020	 * multicast filter to be set while it is running.  Hopefully
2021	 * the ADM8211 is not the same!
2022	 */
2023	if ((ifp->if_flags & IFF_RUNNING) != 0)
2024		atw_idle(sc, ATW_NAR_SR);
2025
2026	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2027	ifp->if_flags &= ~IFF_ALLMULTI;
2028
2029	/* XXX in scan mode, do not filter packets.  Maybe this is
2030	 * unnecessary.
2031	 */
2032	if (ic->ic_state == IEEE80211_S_SCAN ||
2033	    (ifp->if_flags & IFF_PROMISC) != 0) {
2034		sc->sc_opmode |= ATW_NAR_PR;
2035		goto allmulti;
2036	}
2037
2038	hashes[0] = hashes[1] = 0x0;
2039
2040	/*
2041	 * Program the 64-bit multicast hash filter.
2042	 */
2043	ETHER_FIRST_MULTI(step, ec, enm);
2044	while (enm != NULL) {
2045		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2046		    ETHER_ADDR_LEN) != 0)
2047			goto allmulti;
2048
2049		hash = atw_calchash(enm->enm_addrlo);
2050		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2051		ETHER_NEXT_MULTI(step, enm);
2052		sc->sc_opmode |= ATW_NAR_MM;
2053	}
2054	ifp->if_flags &= ~IFF_ALLMULTI;
2055	goto setit;
2056
2057allmulti:
2058	sc->sc_opmode |= ATW_NAR_MM;
2059	ifp->if_flags |= IFF_ALLMULTI;
2060	hashes[0] = hashes[1] = 0xffffffff;
2061
2062setit:
2063	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2064	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2065	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2066	DELAY(atw_nar_delay);
2067	ATW_WRITE(sc, ATW_RDR, 0x1);
2068
2069	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2070	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2071}
2072
2073/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2074 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2075 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2076 * no beacon with the preferred BSSID and SSID in the number of
2077 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2078 */
2079static void
2080atw_write_bssid(struct atw_softc *sc)
2081{
2082	struct ieee80211com *ic = &sc->sc_ic;
2083	u_int8_t *bssid;
2084
2085	bssid = ic->ic_bss->ni_bssid;
2086
2087	ATW_WRITE(sc, ATW_BSSID0,
2088	    SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2089	    SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2090	    SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2091	    SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2092
2093	ATW_WRITE(sc, ATW_ABDA1,
2094	    (ATW_READ(sc, ATW_ABDA1) &
2095	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2096	    SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2097	    SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2098
2099	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2100	    ether_sprintf(sc->sc_bssid)));
2101	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2102
2103	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2104}
2105
2106/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2107 * 16-bit word.
2108 */
2109static void
2110atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2111{
2112	u_int i;
2113	u_int8_t *ptr;
2114
2115	memcpy(&sc->sc_sram[ofs], buf, buflen);
2116
2117	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2118
2119	KASSERT(buflen + ofs <= sc->sc_sramlen);
2120
2121	ptr = &sc->sc_sram[ofs];
2122
2123	for (i = 0; i < buflen; i += 2) {
2124		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2125		    SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2126		DELAY(atw_writewep_delay);
2127
2128		ATW_WRITE(sc, ATW_WESK,
2129		    SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2130		DELAY(atw_writewep_delay);
2131	}
2132	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2133
2134	if (sc->sc_if.if_flags & IFF_DEBUG) {
2135		int n_octets = 0;
2136		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2137		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2138		for (i = 0; i < buflen; i++) {
2139			printf(" %02x", ptr[i]);
2140			if (++n_octets % 24 == 0)
2141				printf("\n");
2142		}
2143		if (n_octets % 24 != 0)
2144			printf("\n");
2145	}
2146}
2147
2148static int
2149atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2150{
2151	struct atw_softc *sc = ic->ic_ifp->if_softc;
2152	u_int keyix = k->wk_keyix;
2153
2154	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2155
2156	if (keyix >= IEEE80211_WEP_NKID)
2157		return 0;
2158	if (k->wk_keylen != 0)
2159		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2160
2161	return 1;
2162}
2163
2164static int
2165atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2166	const u_int8_t mac[IEEE80211_ADDR_LEN])
2167{
2168	struct atw_softc *sc = ic->ic_ifp->if_softc;
2169
2170	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2171
2172	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2173		return 0;
2174
2175	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2176
2177	return 1;
2178}
2179
2180static void
2181atw_key_update_begin(struct ieee80211com *ic)
2182{
2183#ifdef ATW_DEBUG
2184	struct ifnet *ifp = ic->ic_ifp;
2185	struct atw_softc *sc = ifp->if_softc;
2186#endif
2187
2188	DPRINTF(sc, ("%s:\n", __func__));
2189}
2190
2191static void
2192atw_key_update_end(struct ieee80211com *ic)
2193{
2194	struct ifnet *ifp = ic->ic_ifp;
2195	struct atw_softc *sc = ifp->if_softc;
2196
2197	DPRINTF(sc, ("%s:\n", __func__));
2198
2199	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2200		return;
2201	if (ATW_IS_ENABLED(sc) == 0)
2202		return;
2203	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2204	atw_write_wep(sc);
2205	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2206	DELAY(atw_nar_delay);
2207	ATW_WRITE(sc, ATW_RDR, 0x1);
2208}
2209
2210/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2211static void
2212atw_write_wep(struct atw_softc *sc)
2213{
2214#if 0
2215	struct ieee80211com *ic = &sc->sc_ic;
2216	u_int32_t reg;
2217	int i;
2218#endif
2219	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2220	u_int8_t buf[IEEE80211_WEP_NKID]
2221	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2222
2223	sc->sc_wepctl = 0;
2224	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2225
2226	memset(&buf[0][0], 0, sizeof(buf));
2227
2228#if 0
2229	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2230		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2231			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2232		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2233			buf[i][1] = ATW_WEP_ENABLED;
2234		} else {
2235			buf[i][1] = 0;
2236			continue;
2237		}
2238		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2239		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2240		    ic->ic_nw_keys[i].wk_keylen - 1);
2241	}
2242
2243	reg = ATW_READ(sc, ATW_MACTEST);
2244	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2245	reg &= ~ATW_MACTEST_KEYID_MASK;
2246	reg |= SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2247	ATW_WRITE(sc, ATW_MACTEST, reg);
2248
2249	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2250		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2251
2252	switch (sc->sc_rev) {
2253	case ATW_REVISION_AB:
2254	case ATW_REVISION_AF:
2255		/* Bypass WEP on Rx. */
2256		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2257		break;
2258	default:
2259		break;
2260	}
2261#endif
2262
2263	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2264	    sizeof(buf));
2265
2266	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2267}
2268
2269static void
2270atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2271    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2272{
2273	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2274
2275	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2276	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2277		return;
2278
2279	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2280
2281	switch (subtype) {
2282	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2283	case IEEE80211_FC0_SUBTYPE_BEACON:
2284		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2285		    ic->ic_state == IEEE80211_S_RUN) {
2286			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2287				(void)ieee80211_ibss_merge(ni);
2288		}
2289		break;
2290	default:
2291		break;
2292	}
2293	return;
2294}
2295
2296/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2297 * In ad hoc mode, the SSID is written to the beacons sent by the
2298 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2299 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2300 * indications.
2301 */
2302static void
2303atw_write_ssid(struct atw_softc *sc)
2304{
2305	struct ieee80211com *ic = &sc->sc_ic;
2306	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2307	 * it only expects the element length, not its ID.
2308	 */
2309	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2310
2311	memset(buf, 0, sizeof(buf));
2312	buf[0] = ic->ic_bss->ni_esslen;
2313	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2314
2315	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2316	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2317}
2318
2319/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2320 * In ad hoc mode, the supported rates are written to beacons sent by the
2321 * ADM8211.
2322 */
2323static void
2324atw_write_sup_rates(struct atw_softc *sc)
2325{
2326	struct ieee80211com *ic = &sc->sc_ic;
2327	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2328	 * supported rates
2329	 */
2330	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2331
2332	memset(buf, 0, sizeof(buf));
2333
2334	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2335
2336	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2337	    ic->ic_bss->ni_rates.rs_nrates);
2338
2339	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2340}
2341
2342/* Start/stop sending beacons. */
2343void
2344atw_start_beacon(struct atw_softc *sc, int start)
2345{
2346	struct ieee80211com *ic = &sc->sc_ic;
2347	uint16_t chan;
2348	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2349	size_t len;
2350
2351	if (ATW_IS_ENABLED(sc) == 0)
2352		return;
2353
2354	/* start beacons */
2355	len = sizeof(struct ieee80211_frame) +
2356	    8 /* timestamp */ + 2 /* beacon interval */ +
2357	    2 /* capability info */ +
2358	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2359	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2360	    3 /* DS parameters */ +
2361	    IEEE80211_CRC_LEN;
2362
2363	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2364	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2365	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2366
2367	ATW_WRITE(sc, ATW_BCNT, bcnt);
2368	ATW_WRITE(sc, ATW_CAP1, cap1);
2369
2370	if (!start)
2371		return;
2372
2373	/* TBD use ni_capinfo */
2374
2375	capinfo = 0;
2376	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2377		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2378	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2379		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2380
2381	switch (ic->ic_opmode) {
2382	case IEEE80211_M_IBSS:
2383		len += 4; /* IBSS parameters */
2384		capinfo |= IEEE80211_CAPINFO_IBSS;
2385		break;
2386	case IEEE80211_M_HOSTAP:
2387		/* XXX 6-byte minimum TIM */
2388		len += atw_beacon_len_adjust;
2389		capinfo |= IEEE80211_CAPINFO_ESS;
2390		break;
2391	default:
2392		return;
2393	}
2394
2395	/* set listen interval
2396	 * XXX do software units agree w/ hardware?
2397	 */
2398	bpli = SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2399	    SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2400
2401	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2402
2403	bcnt |= SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2404	cap0 |= SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2405	cap1 |= SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2406
2407	ATW_WRITE(sc, ATW_BCNT, bcnt);
2408	ATW_WRITE(sc, ATW_BPLI, bpli);
2409	ATW_WRITE(sc, ATW_CAP0, cap0);
2410	ATW_WRITE(sc, ATW_CAP1, cap1);
2411
2412	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2413	    sc->sc_dev.dv_xname, bcnt));
2414
2415	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2416	    sc->sc_dev.dv_xname, cap1));
2417}
2418
2419/* Return the 32 lsb of the last TSFT divisible by ival. */
2420static inline uint32_t
2421atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2422{
2423	/* Following the reference driver's lead, I compute
2424	 *
2425	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2426	 *
2427	 * without using 64-bit arithmetic, using the following
2428	 * relationship:
2429	 *
2430	 *     (0x100000000 * H + L) % m
2431	 *   = ((0x100000000 % m) * H + L) % m
2432	 *   = (((0xffffffff + 1) % m) * H + L) % m
2433	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2434	 *   = ((0xffffffff % m + 1) * H + L) % m
2435	 */
2436	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2437}
2438
2439static uint64_t
2440atw_get_tsft(struct atw_softc *sc)
2441{
2442	int i;
2443	uint32_t tsfth, tsftl;
2444	for (i = 0; i < 2; i++) {
2445		tsfth = ATW_READ(sc, ATW_TSFTH);
2446		tsftl = ATW_READ(sc, ATW_TSFTL);
2447		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2448			break;
2449	}
2450	return ((uint64_t)tsfth << 32) | tsftl;
2451}
2452
2453/* If we've created an IBSS, write the TSF time in the ADM8211 to
2454 * the ieee80211com.
2455 *
2456 * Predict the next target beacon transmission time (TBTT) and
2457 * write it to the ADM8211.
2458 */
2459static void
2460atw_predict_beacon(struct atw_softc *sc)
2461{
2462#define TBTTOFS 20 /* TU */
2463
2464	struct ieee80211com *ic = &sc->sc_ic;
2465	uint64_t tsft;
2466	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2467	union {
2468		uint64_t	word;
2469		uint8_t		tstamp[8];
2470	} u;
2471
2472	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2473	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2474	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2475		tsft = atw_get_tsft(sc);
2476		u.word = htole64(tsft);
2477		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2478		    sizeof(ic->ic_bss->ni_tstamp));
2479	} else
2480		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2481
2482	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2483
2484	tsftl = tsft & 0xFFFFFFFF;
2485	tsfth = tsft >> 32;
2486
2487	/* We sent/received the last beacon `past' microseconds
2488	 * after the interval divided the TSF timer.
2489	 */
2490	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2491
2492	/* Skip ten beacons so that the TBTT cannot pass before
2493	 * we've programmed it.  Ten is an arbitrary number.
2494	 */
2495	tbtt = past_even + ival * 10;
2496
2497	ATW_WRITE(sc, ATW_TOFS1,
2498	    SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2499	    SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2500	    SHIFTIN(SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2501	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2502#undef TBTTOFS
2503}
2504
2505static void
2506atw_next_scan(void *arg)
2507{
2508	struct atw_softc *sc = arg;
2509	struct ieee80211com *ic = &sc->sc_ic;
2510	int s;
2511
2512	/* don't call atw_start w/o network interrupts blocked */
2513	s = splnet();
2514	if (ic->ic_state == IEEE80211_S_SCAN)
2515		ieee80211_next_scan(ic);
2516	splx(s);
2517}
2518
2519/* Synchronize the hardware state with the software state. */
2520static int
2521atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2522{
2523	struct ifnet *ifp = ic->ic_ifp;
2524	struct atw_softc *sc = ifp->if_softc;
2525	enum ieee80211_state ostate;
2526	int error = 0;
2527
2528	ostate = ic->ic_state;
2529	callout_stop(&sc->sc_scan_ch);
2530
2531	switch (nstate) {
2532	case IEEE80211_S_AUTH:
2533	case IEEE80211_S_ASSOC:
2534		atw_write_bssid(sc);
2535		error = atw_tune(sc);
2536		break;
2537	case IEEE80211_S_INIT:
2538		callout_stop(&sc->sc_scan_ch);
2539		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2540		atw_start_beacon(sc, 0);
2541		break;
2542	case IEEE80211_S_SCAN:
2543		error = atw_tune(sc);
2544		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2545		    atw_next_scan, sc);
2546		break;
2547	case IEEE80211_S_RUN:
2548		error = atw_tune(sc);
2549		atw_write_bssid(sc);
2550		atw_write_ssid(sc);
2551		atw_write_sup_rates(sc);
2552
2553		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2554		    ic->ic_opmode == IEEE80211_M_MONITOR)
2555			break;
2556
2557		/* set listen interval
2558		 * XXX do software units agree w/ hardware?
2559		 */
2560		ATW_WRITE(sc, ATW_BPLI,
2561		    SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2562		    SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2563			   ATW_BPLI_LI_MASK));
2564
2565		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2566		    ATW_READ(sc, ATW_BPLI)));
2567
2568		atw_predict_beacon(sc);
2569
2570		switch (ic->ic_opmode) {
2571		case IEEE80211_M_AHDEMO:
2572		case IEEE80211_M_HOSTAP:
2573		case IEEE80211_M_IBSS:
2574			atw_start_beacon(sc, 1);
2575			break;
2576		case IEEE80211_M_MONITOR:
2577		case IEEE80211_M_STA:
2578			break;
2579		}
2580
2581		break;
2582	}
2583	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2584}
2585
2586/*
2587 * atw_add_rxbuf:
2588 *
2589 *	Add a receive buffer to the indicated descriptor.
2590 */
2591int
2592atw_add_rxbuf(struct atw_softc *sc, int idx)
2593{
2594	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2595	struct mbuf *m;
2596	int error;
2597
2598	MGETHDR(m, M_DONTWAIT, MT_DATA);
2599	if (m == NULL)
2600		return (ENOBUFS);
2601
2602	MCLGET(m, M_DONTWAIT);
2603	if ((m->m_flags & M_EXT) == 0) {
2604		m_freem(m);
2605		return (ENOBUFS);
2606	}
2607
2608	if (rxs->rxs_mbuf != NULL)
2609		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2610
2611	rxs->rxs_mbuf = m;
2612
2613	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2614	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2615	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2616	if (error) {
2617		printf("%s: can't load rx DMA map %d, error = %d\n",
2618		    sc->sc_dev.dv_xname, idx, error);
2619		panic("atw_add_rxbuf");	/* XXX */
2620	}
2621
2622	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2623	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2624
2625	ATW_INIT_RXDESC(sc, idx);
2626
2627	return (0);
2628}
2629
2630/*
2631 * Release any queued transmit buffers.
2632 */
2633void
2634atw_txdrain(struct atw_softc *sc)
2635{
2636	struct atw_txsoft *txs;
2637
2638	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2639		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2640		if (txs->txs_mbuf != NULL) {
2641			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2642			m_freem(txs->txs_mbuf);
2643			txs->txs_mbuf = NULL;
2644		}
2645		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2646		sc->sc_txfree += txs->txs_ndescs;
2647	}
2648
2649	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2650	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2651		  sc->sc_txfree != ATW_NTXDESC));
2652	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2653	sc->sc_tx_timer = 0;
2654}
2655
2656/*
2657 * atw_stop:		[ ifnet interface function ]
2658 *
2659 *	Stop transmission on the interface.
2660 */
2661void
2662atw_stop(struct ifnet *ifp, int disable)
2663{
2664	struct atw_softc *sc = ifp->if_softc;
2665	struct ieee80211com *ic = &sc->sc_ic;
2666
2667	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2668
2669	/* Disable interrupts. */
2670	ATW_WRITE(sc, ATW_IER, 0);
2671
2672	/* Stop the transmit and receive processes. */
2673	sc->sc_opmode = 0;
2674	ATW_WRITE(sc, ATW_NAR, 0);
2675	DELAY(atw_nar_delay);
2676	ATW_WRITE(sc, ATW_TDBD, 0);
2677	ATW_WRITE(sc, ATW_TDBP, 0);
2678	ATW_WRITE(sc, ATW_RDB, 0);
2679
2680	atw_txdrain(sc);
2681
2682	if (disable) {
2683		atw_rxdrain(sc);
2684		atw_disable(sc);
2685	}
2686
2687	/*
2688	 * Mark the interface down and cancel the watchdog timer.
2689	 */
2690	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2691	sc->sc_tx_timer = 0;
2692	ifp->if_timer = 0;
2693
2694	if (!disable)
2695		atw_reset(sc);
2696}
2697
2698/*
2699 * atw_rxdrain:
2700 *
2701 *	Drain the receive queue.
2702 */
2703void
2704atw_rxdrain(struct atw_softc *sc)
2705{
2706	struct atw_rxsoft *rxs;
2707	int i;
2708
2709	for (i = 0; i < ATW_NRXDESC; i++) {
2710		rxs = &sc->sc_rxsoft[i];
2711		if (rxs->rxs_mbuf == NULL)
2712			continue;
2713		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2714		m_freem(rxs->rxs_mbuf);
2715		rxs->rxs_mbuf = NULL;
2716	}
2717}
2718
2719/*
2720 * atw_detach:
2721 *
2722 *	Detach an ADM8211 interface.
2723 */
2724int
2725atw_detach(struct atw_softc *sc)
2726{
2727	struct ifnet *ifp = &sc->sc_if;
2728	struct atw_rxsoft *rxs;
2729	struct atw_txsoft *txs;
2730	int i;
2731
2732	/*
2733	 * Succeed now if there isn't any work to do.
2734	 */
2735	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2736		return (0);
2737
2738	callout_stop(&sc->sc_scan_ch);
2739
2740	ieee80211_ifdetach(&sc->sc_ic);
2741	if_detach(ifp);
2742
2743	for (i = 0; i < ATW_NRXDESC; i++) {
2744		rxs = &sc->sc_rxsoft[i];
2745		if (rxs->rxs_mbuf != NULL) {
2746			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2747			m_freem(rxs->rxs_mbuf);
2748			rxs->rxs_mbuf = NULL;
2749		}
2750		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2751	}
2752	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2753		txs = &sc->sc_txsoft[i];
2754		if (txs->txs_mbuf != NULL) {
2755			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2756			m_freem(txs->txs_mbuf);
2757			txs->txs_mbuf = NULL;
2758		}
2759		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2760	}
2761	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2762	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2763	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2764	    sizeof(struct atw_control_data));
2765	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2766
2767	shutdownhook_disestablish(sc->sc_sdhook);
2768	powerhook_disestablish(sc->sc_powerhook);
2769
2770	if (sc->sc_srom)
2771		free(sc->sc_srom, M_DEVBUF);
2772
2773	return (0);
2774}
2775
2776/* atw_shutdown: make sure the interface is stopped at reboot time. */
2777void
2778atw_shutdown(void *arg)
2779{
2780	struct atw_softc *sc = arg;
2781
2782	atw_stop(&sc->sc_if, 1);
2783}
2784
2785int
2786atw_intr(void *arg)
2787{
2788	struct atw_softc *sc = arg;
2789	struct ifnet *ifp = &sc->sc_if;
2790	u_int32_t status, rxstatus, txstatus, linkstatus;
2791	int handled = 0, txthresh;
2792
2793#ifdef DEBUG
2794	if (ATW_IS_ENABLED(sc) == 0)
2795		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2796#endif
2797
2798	/*
2799	 * If the interface isn't running, the interrupt couldn't
2800	 * possibly have come from us.
2801	 */
2802	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2803	    !device_is_active(&sc->sc_dev))
2804		return (0);
2805
2806	for (;;) {
2807		status = ATW_READ(sc, ATW_STSR);
2808
2809		if (status)
2810			ATW_WRITE(sc, ATW_STSR, status);
2811
2812#ifdef ATW_DEBUG
2813#define PRINTINTR(flag) do { \
2814	if ((status & flag) != 0) { \
2815		printf("%s" #flag, delim); \
2816		delim = ","; \
2817	} \
2818} while (0)
2819
2820		if (atw_debug > 1 && status) {
2821			const char *delim = "<";
2822
2823			printf("%s: reg[STSR] = %x",
2824			    sc->sc_dev.dv_xname, status);
2825
2826			PRINTINTR(ATW_INTR_FBE);
2827			PRINTINTR(ATW_INTR_LINKOFF);
2828			PRINTINTR(ATW_INTR_LINKON);
2829			PRINTINTR(ATW_INTR_RCI);
2830			PRINTINTR(ATW_INTR_RDU);
2831			PRINTINTR(ATW_INTR_REIS);
2832			PRINTINTR(ATW_INTR_RPS);
2833			PRINTINTR(ATW_INTR_TCI);
2834			PRINTINTR(ATW_INTR_TDU);
2835			PRINTINTR(ATW_INTR_TLT);
2836			PRINTINTR(ATW_INTR_TPS);
2837			PRINTINTR(ATW_INTR_TRT);
2838			PRINTINTR(ATW_INTR_TUF);
2839			PRINTINTR(ATW_INTR_BCNTC);
2840			PRINTINTR(ATW_INTR_ATIME);
2841			PRINTINTR(ATW_INTR_TBTT);
2842			PRINTINTR(ATW_INTR_TSCZ);
2843			PRINTINTR(ATW_INTR_TSFTF);
2844			printf(">\n");
2845		}
2846#undef PRINTINTR
2847#endif /* ATW_DEBUG */
2848
2849		if ((status & sc->sc_inten) == 0)
2850			break;
2851
2852		handled = 1;
2853
2854		rxstatus = status & sc->sc_rxint_mask;
2855		txstatus = status & sc->sc_txint_mask;
2856		linkstatus = status & sc->sc_linkint_mask;
2857
2858		if (linkstatus) {
2859			atw_linkintr(sc, linkstatus);
2860		}
2861
2862		if (rxstatus) {
2863			/* Grab any new packets. */
2864			atw_rxintr(sc);
2865
2866			if (rxstatus & ATW_INTR_RDU) {
2867				printf("%s: receive ring overrun\n",
2868				    sc->sc_dev.dv_xname);
2869				/* Get the receive process going again. */
2870				ATW_WRITE(sc, ATW_RDR, 0x1);
2871				break;
2872			}
2873		}
2874
2875		if (txstatus) {
2876			/* Sweep up transmit descriptors. */
2877			atw_txintr(sc);
2878
2879			if (txstatus & ATW_INTR_TLT)
2880				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2881				    sc->sc_dev.dv_xname));
2882
2883			if (txstatus & ATW_INTR_TRT)
2884				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2885				    sc->sc_dev.dv_xname));
2886
2887			/* If Tx under-run, increase our transmit threshold
2888			 * if another is available.
2889			 */
2890			txthresh = sc->sc_txthresh + 1;
2891			if ((txstatus & ATW_INTR_TUF) &&
2892			    sc->sc_txth[txthresh].txth_name != NULL) {
2893				/* Idle the transmit process. */
2894				atw_idle(sc, ATW_NAR_ST);
2895
2896				sc->sc_txthresh = txthresh;
2897				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2898				sc->sc_opmode |=
2899				    sc->sc_txth[txthresh].txth_opmode;
2900				printf("%s: transmit underrun; new "
2901				    "threshold: %s\n", sc->sc_dev.dv_xname,
2902				    sc->sc_txth[txthresh].txth_name);
2903
2904				/* Set the new threshold and restart
2905				 * the transmit process.
2906				 */
2907				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2908				DELAY(atw_nar_delay);
2909				ATW_WRITE(sc, ATW_RDR, 0x1);
2910				/* XXX Log every Nth underrun from
2911				 * XXX now on?
2912				 */
2913			}
2914		}
2915
2916		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2917			if (status & ATW_INTR_TPS)
2918				printf("%s: transmit process stopped\n",
2919				    sc->sc_dev.dv_xname);
2920			if (status & ATW_INTR_RPS)
2921				printf("%s: receive process stopped\n",
2922				    sc->sc_dev.dv_xname);
2923			(void)atw_init(ifp);
2924			break;
2925		}
2926
2927		if (status & ATW_INTR_FBE) {
2928			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2929			(void)atw_init(ifp);
2930			break;
2931		}
2932
2933		/*
2934		 * Not handled:
2935		 *
2936		 *	Transmit buffer unavailable -- normal
2937		 *	condition, nothing to do, really.
2938		 *
2939		 *	Early receive interrupt -- not available on
2940		 *	all chips, we just use RI.  We also only
2941		 *	use single-segment receive DMA, so this
2942		 *	is mostly useless.
2943		 *
2944		 *      TBD others
2945		 */
2946	}
2947
2948	/* Try to get more packets going. */
2949	atw_start(ifp);
2950
2951	return (handled);
2952}
2953
2954/*
2955 * atw_idle:
2956 *
2957 *	Cause the transmit and/or receive processes to go idle.
2958 *
2959 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2960 *	process in STSR if I clear SR or ST after the process has already
2961 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2962 *      do not seem to be too reliable. Perhaps I have the sense of the
2963 *	Rx bits switched with the Tx bits?
2964 */
2965void
2966atw_idle(struct atw_softc *sc, u_int32_t bits)
2967{
2968	u_int32_t ackmask = 0, opmode, stsr, test0;
2969	int i, s;
2970
2971	s = splnet();
2972
2973	opmode = sc->sc_opmode & ~bits;
2974
2975	if (bits & ATW_NAR_SR)
2976		ackmask |= ATW_INTR_RPS;
2977
2978	if (bits & ATW_NAR_ST) {
2979		ackmask |= ATW_INTR_TPS;
2980		/* set ATW_NAR_HF to flush TX FIFO. */
2981		opmode |= ATW_NAR_HF;
2982	}
2983
2984	ATW_WRITE(sc, ATW_NAR, opmode);
2985	DELAY(atw_nar_delay);
2986
2987	for (i = 0; i < 1000; i++) {
2988		stsr = ATW_READ(sc, ATW_STSR);
2989		if ((stsr & ackmask) == ackmask)
2990			break;
2991		DELAY(10);
2992	}
2993
2994	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2995
2996	if ((stsr & ackmask) == ackmask)
2997		goto out;
2998
2999	test0 = ATW_READ(sc, ATW_TEST0);
3000
3001	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3002	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3003		printf("%s: transmit process not idle [%s]\n",
3004		    sc->sc_dev.dv_xname,
3005		    atw_tx_state[SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3006		printf("%s: bits %08x test0 %08x stsr %08x\n",
3007		    sc->sc_dev.dv_xname, bits, test0, stsr);
3008	}
3009
3010	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3011	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3012		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3013		    sc->sc_dev.dv_xname,
3014		    atw_rx_state[SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3015		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3016		    sc->sc_dev.dv_xname, bits, test0, stsr));
3017	}
3018out:
3019	if ((bits & ATW_NAR_ST) != 0)
3020		atw_txdrain(sc);
3021	splx(s);
3022	return;
3023}
3024
3025/*
3026 * atw_linkintr:
3027 *
3028 *	Helper; handle link-status interrupts.
3029 */
3030void
3031atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3032{
3033	struct ieee80211com *ic = &sc->sc_ic;
3034
3035	if (ic->ic_state != IEEE80211_S_RUN)
3036		return;
3037
3038	if (linkstatus & ATW_INTR_LINKON) {
3039		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3040		sc->sc_rescan_timer = 0;
3041	} else if (linkstatus & ATW_INTR_LINKOFF) {
3042		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3043		if (ic->ic_opmode != IEEE80211_M_STA)
3044			return;
3045		sc->sc_rescan_timer = 3;
3046		sc->sc_if.if_timer = 1;
3047	}
3048}
3049
3050static inline int
3051atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3052{
3053	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3054		return 0;
3055	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3056		return 0;
3057	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3058}
3059
3060/*
3061 * atw_rxintr:
3062 *
3063 *	Helper; handle receive interrupts.
3064 */
3065void
3066atw_rxintr(struct atw_softc *sc)
3067{
3068	static int rate_tbl[] = {2, 4, 11, 22, 44};
3069	struct ieee80211com *ic = &sc->sc_ic;
3070	struct ieee80211_node *ni;
3071	struct ieee80211_frame_min *wh;
3072	struct ifnet *ifp = &sc->sc_if;
3073	struct atw_rxsoft *rxs;
3074	struct mbuf *m;
3075	u_int32_t rxstat;
3076	int i, len, rate, rate0;
3077	u_int32_t rssi, rssi0;
3078
3079	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3080		rxs = &sc->sc_rxsoft[i];
3081
3082		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3083
3084		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3085		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3086		rate0 = SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3087
3088		if (rxstat & ATW_RXSTAT_OWN)
3089			break; /* We have processed all receive buffers. */
3090
3091		DPRINTF3(sc,
3092		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3093		    sc->sc_dev.dv_xname,
3094		    rxstat, rssi0,
3095		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3096		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3097
3098		/*
3099		 * Make sure the packet fits in one buffer.  This should
3100		 * always be the case.
3101		 */
3102		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3103		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3104			printf("%s: incoming packet spilled, resetting\n",
3105			    sc->sc_dev.dv_xname);
3106			(void)atw_init(ifp);
3107			return;
3108		}
3109
3110		/*
3111		 * If an error occurred, update stats, clear the status
3112		 * word, and leave the packet buffer in place.  It will
3113		 * simply be reused the next time the ring comes around.
3114	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3115		 * error.
3116		 */
3117
3118		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3119		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3120		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3121		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3122				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3123				ATW_RXSTAT_ICVE)) != 0)) {
3124#define	PRINTERR(bit, str)						\
3125			if (rxstat & (bit))				\
3126				printf("%s: receive error: %s\n",	\
3127				    sc->sc_dev.dv_xname, str)
3128			ifp->if_ierrors++;
3129			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3130			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3131			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3132			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3133			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3134			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3135			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3136#undef PRINTERR
3137			ATW_INIT_RXDESC(sc, i);
3138			continue;
3139		}
3140
3141		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3142		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3143
3144		/*
3145		 * No errors; receive the packet.  Note the ADM8211
3146		 * includes the CRC in promiscuous mode.
3147		 */
3148		len = SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3149
3150		/*
3151		 * Allocate a new mbuf cluster.  If that fails, we are
3152		 * out of memory, and must drop the packet and recycle
3153		 * the buffer that's already attached to this descriptor.
3154		 */
3155		m = rxs->rxs_mbuf;
3156		if (atw_add_rxbuf(sc, i) != 0) {
3157			ifp->if_ierrors++;
3158			ATW_INIT_RXDESC(sc, i);
3159			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3160			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3161			continue;
3162		}
3163
3164		ifp->if_ipackets++;
3165		if (sc->sc_opmode & ATW_NAR_PR)
3166			len -= IEEE80211_CRC_LEN;
3167		m->m_pkthdr.rcvif = ifp;
3168		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3169
3170		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3171			rate = 0;
3172		else
3173			rate = rate_tbl[rate0];
3174
3175		/* The RSSI comes straight from a register in the
3176		 * baseband processor.  I know that for the RF3000,
3177		 * the RSSI register also contains the antenna-selection
3178		 * bits.  Mask those off.
3179		 *
3180		 * TBD Treat other basebands.
3181		 */
3182		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3183			rssi = rssi0 & RF3000_RSSI_MASK;
3184		else
3185			rssi = rssi0;
3186
3187 #if NBPFILTER > 0
3188		/* Pass this up to any BPF listeners. */
3189		if (sc->sc_radiobpf != NULL) {
3190			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3191
3192			tap->ar_rate = rate;
3193			tap->ar_chan_freq = htole16(ic->ic_curchan->ic_freq);
3194			tap->ar_chan_flags = htole16(ic->ic_curchan->ic_flags);
3195
3196			/* TBD verify units are dB */
3197			tap->ar_antsignal = (int)rssi;
3198			/* TBD tap->ar_flags */
3199
3200			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3201			    tap->ar_ihdr.it_len, m);
3202 		}
3203 #endif /* NPBFILTER > 0 */
3204
3205		wh = mtod(m, struct ieee80211_frame_min *);
3206		ni = ieee80211_find_rxnode(ic, wh);
3207#if 0
3208		if (atw_hw_decrypted(sc, wh)) {
3209			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3210			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3211		}
3212#endif
3213		ieee80211_input(ic, m, ni, (int)rssi, 0);
3214		ieee80211_free_node(ni);
3215	}
3216
3217	/* Update the receive pointer. */
3218	sc->sc_rxptr = i;
3219}
3220
3221/*
3222 * atw_txintr:
3223 *
3224 *	Helper; handle transmit interrupts.
3225 */
3226void
3227atw_txintr(struct atw_softc *sc)
3228{
3229#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3230    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3231#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3232    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3233
3234	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3235	struct ifnet *ifp = &sc->sc_if;
3236	struct atw_txsoft *txs;
3237	u_int32_t txstat;
3238
3239	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3240	    sc->sc_dev.dv_xname, sc->sc_flags));
3241
3242	/*
3243	 * Go through our Tx list and free mbufs for those
3244	 * frames that have been transmitted.
3245	 */
3246	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3247		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3248		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3249
3250#ifdef ATW_DEBUG
3251		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3252			int i;
3253			printf("    txsoft %p transmit chain:\n", txs);
3254			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3255			    txs->txs_ndescs - 1,
3256			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3257			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3258				printf("     descriptor %d:\n", i);
3259				printf("       at_status:   0x%08x\n",
3260				    le32toh(sc->sc_txdescs[i].at_stat));
3261				printf("       at_flags:      0x%08x\n",
3262				    le32toh(sc->sc_txdescs[i].at_flags));
3263				printf("       at_buf1: 0x%08x\n",
3264				    le32toh(sc->sc_txdescs[i].at_buf1));
3265				printf("       at_buf2: 0x%08x\n",
3266				    le32toh(sc->sc_txdescs[i].at_buf2));
3267				if (i == txs->txs_lastdesc)
3268					break;
3269			}
3270		}
3271#endif
3272
3273		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3274		if (txstat & ATW_TXSTAT_OWN)
3275			break;
3276
3277		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3278
3279		sc->sc_txfree += txs->txs_ndescs;
3280
3281		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3282		    0, txs->txs_dmamap->dm_mapsize,
3283		    BUS_DMASYNC_POSTWRITE);
3284		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3285		m_freem(txs->txs_mbuf);
3286		txs->txs_mbuf = NULL;
3287
3288		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3289
3290		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3291		        sc->sc_txfree == 0));
3292		ifp->if_flags &= ~IFF_OACTIVE;
3293
3294		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3295		    (txstat & TXSTAT_ERRMASK) != 0) {
3296			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3297			    txstat_buf, sizeof(txstat_buf));
3298			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3299			    txstat_buf,
3300			    SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3301		}
3302
3303		/*
3304		 * Check for errors and collisions.
3305		 */
3306		if (txstat & ATW_TXSTAT_TUF)
3307			sc->sc_stats.ts_tx_tuf++;
3308		if (txstat & ATW_TXSTAT_TLT)
3309			sc->sc_stats.ts_tx_tlt++;
3310		if (txstat & ATW_TXSTAT_TRT)
3311			sc->sc_stats.ts_tx_trt++;
3312		if (txstat & ATW_TXSTAT_TRO)
3313			sc->sc_stats.ts_tx_tro++;
3314		if (txstat & ATW_TXSTAT_SOFBR) {
3315			sc->sc_stats.ts_tx_sofbr++;
3316		}
3317
3318		if ((txstat & ATW_TXSTAT_ES) == 0)
3319			ifp->if_collisions +=
3320			    SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3321		else
3322			ifp->if_oerrors++;
3323
3324		ifp->if_opackets++;
3325	}
3326
3327	/*
3328	 * If there are no more pending transmissions, cancel the watchdog
3329	 * timer.
3330	 */
3331	if (txs == NULL) {
3332		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3333		sc->sc_tx_timer = 0;
3334	}
3335#undef TXSTAT_ERRMASK
3336#undef TXSTAT_FMT
3337}
3338
3339/*
3340 * atw_watchdog:	[ifnet interface function]
3341 *
3342 *	Watchdog timer handler.
3343 */
3344void
3345atw_watchdog(struct ifnet *ifp)
3346{
3347	struct atw_softc *sc = ifp->if_softc;
3348	struct ieee80211com *ic = &sc->sc_ic;
3349
3350	ifp->if_timer = 0;
3351	if (ATW_IS_ENABLED(sc) == 0)
3352		return;
3353
3354	if (sc->sc_rescan_timer) {
3355		if (--sc->sc_rescan_timer == 0)
3356			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3357	}
3358	if (sc->sc_tx_timer) {
3359		if (--sc->sc_tx_timer == 0 &&
3360		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3361			printf("%s: transmit timeout\n", ifp->if_xname);
3362			ifp->if_oerrors++;
3363			(void)atw_init(ifp);
3364			atw_start(ifp);
3365		}
3366	}
3367	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3368		ifp->if_timer = 1;
3369	ieee80211_watchdog(ic);
3370}
3371
3372#ifdef ATW_DEBUG
3373static void
3374atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3375{
3376	struct atw_softc *sc = ifp->if_softc;
3377	struct mbuf *m;
3378	int i, noctets = 0;
3379
3380	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3381	    m0->m_pkthdr.len);
3382
3383	for (m = m0; m; m = m->m_next) {
3384		if (m->m_len == 0)
3385			continue;
3386		for (i = 0; i < m->m_len; i++) {
3387			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3388			if (++noctets % 24 == 0)
3389				printf("\n");
3390		}
3391	}
3392	printf("%s%s: %d bytes emitted\n",
3393	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3394}
3395#endif /* ATW_DEBUG */
3396
3397/*
3398 * atw_start:		[ifnet interface function]
3399 *
3400 *	Start packet transmission on the interface.
3401 */
3402void
3403atw_start(struct ifnet *ifp)
3404{
3405	struct atw_softc *sc = ifp->if_softc;
3406	struct ieee80211_key *k;
3407	struct ieee80211com *ic = &sc->sc_ic;
3408	struct ieee80211_node *ni;
3409	struct ieee80211_frame_min *whm;
3410	struct ieee80211_frame *wh;
3411	struct atw_frame *hh;
3412	struct mbuf *m0, *m;
3413	struct atw_txsoft *txs, *last_txs;
3414	struct atw_txdesc *txd;
3415	int npkt, rate;
3416	bus_dmamap_t dmamap;
3417	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3418
3419	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3420	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3421
3422	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3423		return;
3424
3425	/*
3426	 * Remember the previous number of free descriptors and
3427	 * the first descriptor we'll use.
3428	 */
3429	ofree = sc->sc_txfree;
3430	firsttx = lasttx = sc->sc_txnext;
3431
3432	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3433	    sc->sc_dev.dv_xname, ofree, firsttx));
3434
3435	/*
3436	 * Loop through the send queue, setting up transmit descriptors
3437	 * until we drain the queue, or use up all available transmit
3438	 * descriptors.
3439	 */
3440	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3441	       sc->sc_txfree != 0) {
3442
3443		/*
3444		 * Grab a packet off the management queue, if it
3445		 * is not empty. Otherwise, from the data queue.
3446		 */
3447		IF_DEQUEUE(&ic->ic_mgtq, m0);
3448		if (m0 != NULL) {
3449			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3450			m0->m_pkthdr.rcvif = NULL;
3451		} else if (ic->ic_state != IEEE80211_S_RUN)
3452			break; /* send no data until associated */
3453		else {
3454			IFQ_DEQUEUE(&ifp->if_snd, m0);
3455			if (m0 == NULL)
3456				break;
3457#if NBPFILTER > 0
3458			if (ifp->if_bpf != NULL)
3459				bpf_mtap(ifp->if_bpf, m0);
3460#endif /* NBPFILTER > 0 */
3461			ni = ieee80211_find_txnode(ic,
3462			    mtod(m0, struct ether_header *)->ether_dhost);
3463			if (ni == NULL) {
3464				ifp->if_oerrors++;
3465				break;
3466			}
3467			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3468				ieee80211_free_node(ni);
3469				ifp->if_oerrors++;
3470				break;
3471			}
3472		}
3473
3474		rate = MAX(ieee80211_get_rate(ni), 2);
3475
3476		whm = mtod(m0, struct ieee80211_frame_min *);
3477
3478		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3479			k = NULL;
3480		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3481			m_freem(m0);
3482			ieee80211_free_node(ni);
3483			ifp->if_oerrors++;
3484			break;
3485		}
3486
3487		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3488		    ic->ic_flags, ic->ic_fragthreshold, rate,
3489		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3490			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3491			m_freem(m0);
3492			break;
3493		}
3494
3495		/* XXX Misleading if fragmentation is enabled.  Better
3496		 * to fragment in software?
3497		 */
3498		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3499
3500#if NBPFILTER > 0
3501		/*
3502		 * Pass the packet to any BPF listeners.
3503		 */
3504		if (ic->ic_rawbpf != NULL)
3505			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3506
3507		if (sc->sc_radiobpf != NULL) {
3508			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3509
3510			tap->at_rate = rate;
3511			tap->at_chan_freq = htole16(ic->ic_curchan->ic_freq);
3512			tap->at_chan_flags = htole16(ic->ic_curchan->ic_flags);
3513
3514			/* TBD tap->at_flags */
3515
3516			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3517			    tap->at_ihdr.it_len, m0);
3518		}
3519#endif /* NBPFILTER > 0 */
3520
3521		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3522
3523		if (ni != NULL)
3524			ieee80211_free_node(ni);
3525
3526		if (m0 == NULL) {
3527			ifp->if_oerrors++;
3528			break;
3529		}
3530
3531		/* just to make sure. */
3532		m0 = m_pullup(m0, sizeof(struct atw_frame));
3533
3534		if (m0 == NULL) {
3535			ifp->if_oerrors++;
3536			break;
3537		}
3538
3539		hh = mtod(m0, struct atw_frame *);
3540		wh = &hh->atw_ihdr;
3541
3542		/* Copy everything we need from the 802.11 header:
3543		 * Frame Control; address 1, address 3, or addresses
3544		 * 3 and 4. NIC fills in BSSID, SA.
3545		 */
3546		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3547			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3548				panic("%s: illegal WDS frame",
3549				    sc->sc_dev.dv_xname);
3550			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3551		} else
3552			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3553
3554		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3555
3556		/* initialize remaining Tx parameters */
3557		memset(&hh->u, 0, sizeof(hh->u));
3558
3559		hh->atw_rate = rate * 5;
3560		/* XXX this could be incorrect if M_FCS. _encap should
3561		 * probably strip FCS just in case it sticks around in
3562		 * bridged packets.
3563		 */
3564		hh->atw_service = 0x00; /* XXX guess */
3565		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3566		    sizeof(struct atw_frame));
3567
3568		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3569		hh->atw_rtylmt = 3;
3570		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3571#if 0
3572		if (do_encrypt) {
3573			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3574			hh->atw_keyid = ic->ic_def_txkey;
3575		}
3576#endif
3577
3578		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3579		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3580		if (txs->txs_d0.d_residue)
3581			hh->atw_head_plcplen |= htole16(0x8000);
3582		if (txs->txs_dn.d_residue)
3583			hh->atw_tail_plcplen |= htole16(0x8000);
3584		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3585		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3586
3587		/* never fragment multicast frames */
3588		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3589			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3590		} else if (sc->sc_flags & ATWF_RTSCTS) {
3591			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3592		}
3593
3594#ifdef ATW_DEBUG
3595		hh->atw_fragnum = 0;
3596
3597		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3598			printf("%s: dst = %s, rate = 0x%02x, "
3599			    "service = 0x%02x, paylen = 0x%04x\n",
3600			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3601			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3602
3603			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3604			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3605			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3606			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3607			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3608			    hh->atw_tail_dur, hh->atw_head_dur);
3609
3610			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3611			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3612			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3613			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3614
3615			printf("%s: keyid = %d\n",
3616			    sc->sc_dev.dv_xname, hh->atw_keyid);
3617
3618			atw_dump_pkt(ifp, m0);
3619		}
3620#endif /* ATW_DEBUG */
3621
3622		dmamap = txs->txs_dmamap;
3623
3624		/*
3625		 * Load the DMA map.  Copy and try (once) again if the packet
3626		 * didn't fit in the alloted number of segments.
3627		 */
3628		for (first = 1;
3629		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3630		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3631		     first = 0) {
3632			MGETHDR(m, M_DONTWAIT, MT_DATA);
3633			if (m == NULL) {
3634				printf("%s: unable to allocate Tx mbuf\n",
3635				    sc->sc_dev.dv_xname);
3636				break;
3637			}
3638			if (m0->m_pkthdr.len > MHLEN) {
3639				MCLGET(m, M_DONTWAIT);
3640				if ((m->m_flags & M_EXT) == 0) {
3641					printf("%s: unable to allocate Tx "
3642					    "cluster\n", sc->sc_dev.dv_xname);
3643					m_freem(m);
3644					break;
3645				}
3646			}
3647			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3648			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3649			m_freem(m0);
3650			m0 = m;
3651			m = NULL;
3652		}
3653		if (error != 0) {
3654			printf("%s: unable to load Tx buffer, "
3655			    "error = %d\n", sc->sc_dev.dv_xname, error);
3656			m_freem(m0);
3657			break;
3658		}
3659
3660		/*
3661		 * Ensure we have enough descriptors free to describe
3662		 * the packet.
3663		 */
3664		if (dmamap->dm_nsegs > sc->sc_txfree) {
3665			/*
3666			 * Not enough free descriptors to transmit
3667			 * this packet.  Unload the DMA map and
3668			 * drop the packet.  Notify the upper layer
3669			 * that there are no more slots left.
3670			 *
3671			 * XXX We could allocate an mbuf and copy, but
3672			 * XXX it is worth it?
3673			 */
3674			bus_dmamap_unload(sc->sc_dmat, dmamap);
3675			m_freem(m0);
3676			break;
3677		}
3678
3679		/*
3680		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3681		 */
3682
3683		/* Sync the DMA map. */
3684		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3685		    BUS_DMASYNC_PREWRITE);
3686
3687		/* XXX arbitrary retry limit; 8 because I have seen it in
3688		 * use already and maybe 0 means "no tries" !
3689		 */
3690		ctl = htole32(SHIFTIN(8, ATW_TXCTL_TL_MASK));
3691
3692		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3693		    sc->sc_dev.dv_xname, rate * 5));
3694		ctl |= htole32(SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3695
3696		/*
3697		 * Initialize the transmit descriptors.
3698		 */
3699		for (nexttx = sc->sc_txnext, seg = 0;
3700		     seg < dmamap->dm_nsegs;
3701		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3702			/*
3703			 * If this is the first descriptor we're
3704			 * enqueueing, don't set the OWN bit just
3705			 * yet.  That could cause a race condition.
3706			 * We'll do it below.
3707			 */
3708			txd = &sc->sc_txdescs[nexttx];
3709			txd->at_ctl = ctl |
3710			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3711
3712			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3713			txd->at_flags =
3714			    htole32(SHIFTIN(dmamap->dm_segs[seg].ds_len,
3715			                   ATW_TXFLAG_TBS1_MASK)) |
3716			    ((nexttx == (ATW_NTXDESC - 1))
3717			        ? htole32(ATW_TXFLAG_TER) : 0);
3718			lasttx = nexttx;
3719		}
3720
3721		/* Set `first segment' and `last segment' appropriately. */
3722		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3723		    htole32(ATW_TXFLAG_FS);
3724		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3725
3726#ifdef ATW_DEBUG
3727		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3728			printf("     txsoft %p transmit chain:\n", txs);
3729			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3730				printf("     descriptor %d:\n", seg);
3731				printf("       at_ctl:   0x%08x\n",
3732				    le32toh(sc->sc_txdescs[seg].at_ctl));
3733				printf("       at_flags:      0x%08x\n",
3734				    le32toh(sc->sc_txdescs[seg].at_flags));
3735				printf("       at_buf1: 0x%08x\n",
3736				    le32toh(sc->sc_txdescs[seg].at_buf1));
3737				printf("       at_buf2: 0x%08x\n",
3738				    le32toh(sc->sc_txdescs[seg].at_buf2));
3739				if (seg == lasttx)
3740					break;
3741			}
3742		}
3743#endif
3744
3745		/* Sync the descriptors we're using. */
3746		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3747		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3748
3749		/*
3750		 * Store a pointer to the packet so we can free it later,
3751		 * and remember what txdirty will be once the packet is
3752		 * done.
3753		 */
3754		txs->txs_mbuf = m0;
3755		txs->txs_firstdesc = sc->sc_txnext;
3756		txs->txs_lastdesc = lasttx;
3757		txs->txs_ndescs = dmamap->dm_nsegs;
3758
3759		/* Advance the tx pointer. */
3760		sc->sc_txfree -= dmamap->dm_nsegs;
3761		sc->sc_txnext = nexttx;
3762
3763		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3764		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3765
3766		last_txs = txs;
3767	}
3768
3769	if (sc->sc_txfree != ofree) {
3770		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3771		    sc->sc_dev.dv_xname, lasttx, firsttx));
3772		/*
3773		 * Cause a transmit interrupt to happen on the
3774		 * last packet we enqueued.
3775		 */
3776		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3777		ATW_CDTXSYNC(sc, lasttx, 1,
3778		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3779
3780		/*
3781		 * The entire packet chain is set up.  Give the
3782		 * first descriptor to the chip now.
3783		 */
3784		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3785		ATW_CDTXSYNC(sc, firsttx, 1,
3786		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3787
3788		/* Wake up the transmitter. */
3789		ATW_WRITE(sc, ATW_TDR, 0x1);
3790
3791		if (txs == NULL || sc->sc_txfree == 0)
3792			ifp->if_flags |= IFF_OACTIVE;
3793
3794		/* Set a watchdog timer in case the chip flakes out. */
3795		sc->sc_tx_timer = 5;
3796		ifp->if_timer = 1;
3797	}
3798}
3799
3800/*
3801 * atw_power:
3802 *
3803 *	Power management (suspend/resume) hook.
3804 */
3805void
3806atw_power(int why, void *arg)
3807{
3808	struct atw_softc *sc = arg;
3809	struct ifnet *ifp = &sc->sc_if;
3810	int s;
3811
3812	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3813
3814	s = splnet();
3815	switch (why) {
3816	case PWR_STANDBY:
3817		/* XXX do nothing. */
3818		break;
3819	case PWR_SUSPEND:
3820		atw_stop(ifp, 0);
3821		if (sc->sc_power != NULL)
3822			(*sc->sc_power)(sc, why);
3823		break;
3824	case PWR_RESUME:
3825		if (ifp->if_flags & IFF_UP) {
3826			if (sc->sc_power != NULL)
3827				(*sc->sc_power)(sc, why);
3828			atw_init(ifp);
3829		}
3830		break;
3831	case PWR_SOFTSUSPEND:
3832	case PWR_SOFTSTANDBY:
3833	case PWR_SOFTRESUME:
3834		break;
3835	}
3836	splx(s);
3837}
3838
3839/*
3840 * atw_ioctl:		[ifnet interface function]
3841 *
3842 *	Handle control requests from the operator.
3843 */
3844int
3845atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3846{
3847	struct atw_softc *sc = ifp->if_softc;
3848	struct ifreq *ifr = (struct ifreq *)data;
3849	int s, error = 0;
3850
3851	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3852	if (!device_is_active(&sc->sc_dev))
3853		return ENXIO;
3854
3855	s = splnet();
3856
3857	switch (cmd) {
3858	case SIOCSIFFLAGS:
3859		if (ifp->if_flags & IFF_UP) {
3860			if (ATW_IS_ENABLED(sc)) {
3861				/*
3862				 * To avoid rescanning another access point,
3863				 * do not call atw_init() here.  Instead,
3864				 * only reflect media settings.
3865				 */
3866				atw_filter_setup(sc);
3867			} else
3868				error = atw_init(ifp);
3869		} else if (ATW_IS_ENABLED(sc))
3870			atw_stop(ifp, 1);
3871		break;
3872	case SIOCADDMULTI:
3873	case SIOCDELMULTI:
3874		error = (cmd == SIOCADDMULTI) ?
3875		    ether_addmulti(ifr, &sc->sc_ec) :
3876		    ether_delmulti(ifr, &sc->sc_ec);
3877		if (error == ENETRESET) {
3878			if (ifp->if_flags & IFF_RUNNING)
3879				atw_filter_setup(sc); /* do not rescan */
3880			error = 0;
3881		}
3882		break;
3883	default:
3884		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3885		if (error == ENETRESET || error == ERESTART) {
3886			if (is_running(ifp))
3887				error = atw_init(ifp);
3888			else
3889				error = 0;
3890		}
3891		break;
3892	}
3893
3894	/* Try to get more packets going. */
3895	if (ATW_IS_ENABLED(sc))
3896		atw_start(ifp);
3897
3898	splx(s);
3899	return (error);
3900}
3901
3902static int
3903atw_media_change(struct ifnet *ifp)
3904{
3905	int error;
3906
3907	error = ieee80211_media_change(ifp);
3908	if (error == ENETRESET) {
3909		if (is_running(ifp))
3910			error = atw_init(ifp);
3911		else
3912			error = 0;
3913	}
3914	return error;
3915}
3916