atw.c revision 1.112
1/*	$NetBSD: atw.c,v 1.112 2006/03/08 08:26:50 dyoung Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.112 2006/03/08 08:26:50 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68
69#include <net80211/ieee80211_netbsd.h>
70#include <net80211/ieee80211_var.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#if NBPFILTER > 0
74#include <net/bpf.h>
75#endif
76
77#include <machine/bus.h>
78#include <machine/intr.h>
79
80#include <dev/ic/atwreg.h>
81#include <dev/ic/rf3000reg.h>
82#include <dev/ic/si4136reg.h>
83#include <dev/ic/atwvar.h>
84#include <dev/ic/smc93cx6var.h>
85
86/* XXX TBD open questions
87 *
88 *
89 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91 * handle this for me?
92 *
93 */
94/* device attachment
95 *
96 *    print TOFS[012]
97 *
98 * device initialization
99 *
100 *    clear ATW_FRCTL_MAXPSP to disable max power saving
101 *    set ATW_TXBR_ALCUPDATE to enable ALC
102 *    set TOFS[012]? (hope not)
103 *    disable rx/tx
104 *    set ATW_PAR_SWR (software reset)
105 *    wait for ATW_PAR_SWR clear
106 *    disable interrupts
107 *    ack status register
108 *    enable interrupts
109 *
110 * rx/tx initialization
111 *
112 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113 *    allocate and init descriptor rings
114 *    write ATW_PAR_DSL (descriptor skip length)
115 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116 *    write ATW_NAR_SQ for one/both transmit descriptor rings
117 *    write ATW_NAR_SQ for one/both transmit descriptor rings
118 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *
120 * rx/tx end
121 *
122 *    stop DMA
123 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124 *    flush tx w/ ATW_NAR_HF
125 *
126 * scan
127 *
128 *    initialize rx/tx
129 *
130 * BSS join: (re)association response
131 *
132 *    set ATW_FRCTL_AID
133 *
134 * optimizations ???
135 *
136 */
137
138#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
139
140#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143
144int atw_pseudo_milli = 1;
145int atw_magic_delay1 = 100 * 1000;
146int atw_magic_delay2 = 100 * 1000;
147/* more magic multi-millisecond delays (units: microseconds) */
148int atw_nar_delay = 20 * 1000;
149int atw_magic_delay4 = 10 * 1000;
150int atw_rf_delay1 = 10 * 1000;
151int atw_rf_delay2 = 5 * 1000;
152int atw_plcphd_delay = 2 * 1000;
153int atw_bbp_io_enable_delay = 20 * 1000;
154int atw_bbp_io_disable_delay = 2 * 1000;
155int atw_writewep_delay = 1000;
156int atw_beacon_len_adjust = 4;
157int atw_dwelltime = 200;
158int atw_xindiv2 = 0;
159
160#ifdef ATW_DEBUG
161int atw_debug = 0;
162
163#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
164#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
165#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
166#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169
170static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
171static void	atw_print_regs(struct atw_softc *, const char *);
172
173/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174#	ifdef ATW_BBPDEBUG
175static void	atw_rf3000_print(struct atw_softc *);
176static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177#	endif /* ATW_BBPDEBUG */
178
179#	ifdef ATW_SYNDEBUG
180static void	atw_si4126_print(struct atw_softc *);
181static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
182#	endif /* ATW_SYNDEBUG */
183
184#else
185#define ATW_DPRINTF(x)
186#define ATW_DPRINTF2(x)
187#define ATW_DPRINTF3(x)
188#define	DPRINTF(sc, x)	/* nothing */
189#define	DPRINTF2(sc, x)	/* nothing */
190#define	DPRINTF3(sc, x)	/* nothing */
191#endif
192
193/* ifnet methods */
194int	atw_init(struct ifnet *);
195int	atw_ioctl(struct ifnet *, u_long, caddr_t);
196void	atw_start(struct ifnet *);
197void	atw_stop(struct ifnet *, int);
198void	atw_watchdog(struct ifnet *);
199
200/* Device attachment */
201void	atw_attach(struct atw_softc *);
202int	atw_detach(struct atw_softc *);
203
204/* Rx/Tx process */
205int	atw_add_rxbuf(struct atw_softc *, int);
206void	atw_idle(struct atw_softc *, u_int32_t);
207void	atw_rxdrain(struct atw_softc *);
208void	atw_txdrain(struct atw_softc *);
209
210/* Device (de)activation and power state */
211void	atw_disable(struct atw_softc *);
212int	atw_enable(struct atw_softc *);
213void	atw_power(int, void *);
214void	atw_reset(struct atw_softc *);
215void	atw_shutdown(void *);
216
217/* Interrupt handlers */
218void	atw_linkintr(struct atw_softc *, u_int32_t);
219void	atw_rxintr(struct atw_softc *);
220void	atw_txintr(struct atw_softc *);
221
222/* 802.11 state machine */
223static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224static void	atw_next_scan(void *);
225static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226		              struct ieee80211_node *, int, int, u_int32_t);
227static int	atw_tune(struct atw_softc *);
228
229/* Device initialization */
230static void	atw_bbp_io_init(struct atw_softc *);
231static void	atw_cfp_init(struct atw_softc *);
232static void	atw_cmdr_init(struct atw_softc *);
233static void	atw_ifs_init(struct atw_softc *);
234static void	atw_nar_init(struct atw_softc *);
235static void	atw_response_times_init(struct atw_softc *);
236static void	atw_rf_reset(struct atw_softc *);
237static void	atw_test1_init(struct atw_softc *);
238static void	atw_tofs0_init(struct atw_softc *);
239static void	atw_tofs2_init(struct atw_softc *);
240static void	atw_txlmt_init(struct atw_softc *);
241static void	atw_wcsr_init(struct atw_softc *);
242
243/* Key management */
244static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246	const u_int8_t[IEEE80211_ADDR_LEN]);
247static void atw_key_update_begin(struct ieee80211com *);
248static void atw_key_update_end(struct ieee80211com *);
249
250/* RAM/ROM utilities */
251static void	atw_clear_sram(struct atw_softc *);
252static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253static int	atw_read_srom(struct atw_softc *);
254
255/* BSS setup */
256static void	atw_predict_beacon(struct atw_softc *);
257static void	atw_start_beacon(struct atw_softc *, int);
258static void	atw_write_bssid(struct atw_softc *);
259static void	atw_write_ssid(struct atw_softc *);
260static void	atw_write_sup_rates(struct atw_softc *);
261static void	atw_write_wep(struct atw_softc *);
262
263/* Media */
264static int	atw_media_change(struct ifnet *);
265
266static void	atw_filter_setup(struct atw_softc *);
267
268/* 802.11 utilities */
269static uint64_t			atw_get_tsft(struct atw_softc *);
270static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
271				                   uint32_t);
272static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
273static void			atw_node_free(struct ieee80211_node *);
274
275/*
276 * Tuner/transceiver/modem
277 */
278static void	atw_bbp_io_enable(struct atw_softc *, int);
279
280/* RFMD RF3000 Baseband Processor */
281static int	atw_rf3000_init(struct atw_softc *);
282static int	atw_rf3000_tune(struct atw_softc *, u_int);
283static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
284
285/* Silicon Laboratories Si4126 RF/IF Synthesizer */
286static void	atw_si4126_tune(struct atw_softc *, u_int);
287static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
288
289const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
290const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
291
292const char *atw_tx_state[] = {
293	"STOPPED",
294	"RUNNING - read descriptor",
295	"RUNNING - transmitting",
296	"RUNNING - filling fifo",	/* XXX */
297	"SUSPENDED",
298	"RUNNING -- write descriptor",
299	"RUNNING -- write last descriptor",
300	"RUNNING - fifo full"
301};
302
303const char *atw_rx_state[] = {
304	"STOPPED",
305	"RUNNING - read descriptor",
306	"RUNNING - check this packet, pre-fetch next",
307	"RUNNING - wait for reception",
308	"SUSPENDED",
309	"RUNNING - write descriptor",
310	"RUNNING - flush fifo",
311	"RUNNING - fifo drain"
312};
313
314static inline int
315is_running(struct ifnet *ifp)
316{
317	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
318}
319
320int
321atw_activate(struct device *self, enum devact act)
322{
323	struct atw_softc *sc = (struct atw_softc *)self;
324	int rv = 0, s;
325
326	s = splnet();
327	switch (act) {
328	case DVACT_ACTIVATE:
329		rv = EOPNOTSUPP;
330		break;
331
332	case DVACT_DEACTIVATE:
333		if_deactivate(&sc->sc_if);
334		break;
335	}
336	splx(s);
337	return rv;
338}
339
340/*
341 * atw_enable:
342 *
343 *	Enable the ADM8211 chip.
344 */
345int
346atw_enable(struct atw_softc *sc)
347{
348
349	if (ATW_IS_ENABLED(sc) == 0) {
350		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
351			printf("%s: device enable failed\n",
352			    sc->sc_dev.dv_xname);
353			return (EIO);
354		}
355		sc->sc_flags |= ATWF_ENABLED;
356                /* Power may have been removed, and WEP keys thus
357                 * reset.
358		 */
359		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
360	}
361	return (0);
362}
363
364/*
365 * atw_disable:
366 *
367 *	Disable the ADM8211 chip.
368 */
369void
370atw_disable(struct atw_softc *sc)
371{
372	if (!ATW_IS_ENABLED(sc))
373		return;
374	if (sc->sc_disable != NULL)
375		(*sc->sc_disable)(sc);
376	sc->sc_flags &= ~ATWF_ENABLED;
377}
378
379/* Returns -1 on failure. */
380static int
381atw_read_srom(struct atw_softc *sc)
382{
383	struct seeprom_descriptor sd;
384	uint32_t test0, fail_bits;
385
386	(void)memset(&sd, 0, sizeof(sd));
387
388	test0 = ATW_READ(sc, ATW_TEST0);
389
390	switch (sc->sc_rev) {
391	case ATW_REVISION_BA:
392	case ATW_REVISION_CA:
393		fail_bits = ATW_TEST0_EPNE;
394		break;
395	default:
396		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
397		break;
398	}
399	if ((test0 & fail_bits) != 0) {
400		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
401		return -1;
402	}
403
404	switch (test0 & ATW_TEST0_EPTYP_MASK) {
405	case ATW_TEST0_EPTYP_93c66:
406		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
407		sc->sc_sromsz = 512;
408		sd.sd_chip = C56_66;
409		break;
410	case ATW_TEST0_EPTYP_93c46:
411		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
412		sc->sc_sromsz = 128;
413		sd.sd_chip = C46;
414		break;
415	default:
416		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
417		    SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
418		return -1;
419	}
420
421	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
422
423	if (sc->sc_srom == NULL) {
424		printf("%s: unable to allocate SROM buffer\n",
425		    sc->sc_dev.dv_xname);
426		return -1;
427	}
428
429	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
430
431	/* ADM8211 has a single 32-bit register for controlling the
432	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
433	 * "ready" bit. The ADM8211 input/output sense is the reverse
434	 * of read_seeprom's.
435	 */
436	sd.sd_tag = sc->sc_st;
437	sd.sd_bsh = sc->sc_sh;
438	sd.sd_regsize = 4;
439	sd.sd_control_offset = ATW_SPR;
440	sd.sd_status_offset = ATW_SPR;
441	sd.sd_dataout_offset = ATW_SPR;
442	sd.sd_CK = ATW_SPR_SCLK;
443	sd.sd_CS = ATW_SPR_SCS;
444	sd.sd_DI = ATW_SPR_SDO;
445	sd.sd_DO = ATW_SPR_SDI;
446	sd.sd_MS = ATW_SPR_SRS;
447	sd.sd_RDY = 0;
448
449	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
450		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
451		free(sc->sc_srom, M_DEVBUF);
452		return -1;
453	}
454#ifdef ATW_DEBUG
455	{
456		int i;
457		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
458		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
459			if (((i % 8) == 0) && (i != 0)) {
460				ATW_DPRINTF(("\n\t"));
461			}
462			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
463		}
464		ATW_DPRINTF(("\n"));
465	}
466#endif /* ATW_DEBUG */
467	return 0;
468}
469
470#ifdef ATW_DEBUG
471static void
472atw_print_regs(struct atw_softc *sc, const char *where)
473{
474#define PRINTREG(sc, reg) \
475	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
476	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
477
478	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
479
480	PRINTREG(sc, ATW_PAR);
481	PRINTREG(sc, ATW_FRCTL);
482	PRINTREG(sc, ATW_TDR);
483	PRINTREG(sc, ATW_WTDP);
484	PRINTREG(sc, ATW_RDR);
485	PRINTREG(sc, ATW_WRDP);
486	PRINTREG(sc, ATW_RDB);
487	PRINTREG(sc, ATW_CSR3A);
488	PRINTREG(sc, ATW_TDBD);
489	PRINTREG(sc, ATW_TDBP);
490	PRINTREG(sc, ATW_STSR);
491	PRINTREG(sc, ATW_CSR5A);
492	PRINTREG(sc, ATW_NAR);
493	PRINTREG(sc, ATW_CSR6A);
494	PRINTREG(sc, ATW_IER);
495	PRINTREG(sc, ATW_CSR7A);
496	PRINTREG(sc, ATW_LPC);
497	PRINTREG(sc, ATW_TEST1);
498	PRINTREG(sc, ATW_SPR);
499	PRINTREG(sc, ATW_TEST0);
500	PRINTREG(sc, ATW_WCSR);
501	PRINTREG(sc, ATW_WPDR);
502	PRINTREG(sc, ATW_GPTMR);
503	PRINTREG(sc, ATW_GPIO);
504	PRINTREG(sc, ATW_BBPCTL);
505	PRINTREG(sc, ATW_SYNCTL);
506	PRINTREG(sc, ATW_PLCPHD);
507	PRINTREG(sc, ATW_MMIWADDR);
508	PRINTREG(sc, ATW_MMIRADDR1);
509	PRINTREG(sc, ATW_MMIRADDR2);
510	PRINTREG(sc, ATW_TXBR);
511	PRINTREG(sc, ATW_CSR15A);
512	PRINTREG(sc, ATW_ALCSTAT);
513	PRINTREG(sc, ATW_TOFS2);
514	PRINTREG(sc, ATW_CMDR);
515	PRINTREG(sc, ATW_PCIC);
516	PRINTREG(sc, ATW_PMCSR);
517	PRINTREG(sc, ATW_PAR0);
518	PRINTREG(sc, ATW_PAR1);
519	PRINTREG(sc, ATW_MAR0);
520	PRINTREG(sc, ATW_MAR1);
521	PRINTREG(sc, ATW_ATIMDA0);
522	PRINTREG(sc, ATW_ABDA1);
523	PRINTREG(sc, ATW_BSSID0);
524	PRINTREG(sc, ATW_TXLMT);
525	PRINTREG(sc, ATW_MIBCNT);
526	PRINTREG(sc, ATW_BCNT);
527	PRINTREG(sc, ATW_TSFTH);
528	PRINTREG(sc, ATW_TSC);
529	PRINTREG(sc, ATW_SYNRF);
530	PRINTREG(sc, ATW_BPLI);
531	PRINTREG(sc, ATW_CAP0);
532	PRINTREG(sc, ATW_CAP1);
533	PRINTREG(sc, ATW_RMD);
534	PRINTREG(sc, ATW_CFPP);
535	PRINTREG(sc, ATW_TOFS0);
536	PRINTREG(sc, ATW_TOFS1);
537	PRINTREG(sc, ATW_IFST);
538	PRINTREG(sc, ATW_RSPT);
539	PRINTREG(sc, ATW_TSFTL);
540	PRINTREG(sc, ATW_WEPCTL);
541	PRINTREG(sc, ATW_WESK);
542	PRINTREG(sc, ATW_WEPCNT);
543	PRINTREG(sc, ATW_MACTEST);
544	PRINTREG(sc, ATW_FER);
545	PRINTREG(sc, ATW_FEMR);
546	PRINTREG(sc, ATW_FPSR);
547	PRINTREG(sc, ATW_FFER);
548#undef PRINTREG
549}
550#endif /* ATW_DEBUG */
551
552/*
553 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
554 */
555void
556atw_attach(struct atw_softc *sc)
557{
558	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
559		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
560	};
561	struct ieee80211com *ic = &sc->sc_ic;
562	struct ifnet *ifp = &sc->sc_if;
563	int country_code, error, i, nrate, srom_major;
564	u_int32_t reg;
565	static const char *type_strings[] = {"Intersil (not supported)",
566	    "RFMD", "Marvel (not supported)"};
567
568	sc->sc_txth = atw_txthresh_tab_lo;
569
570	SIMPLEQ_INIT(&sc->sc_txfreeq);
571	SIMPLEQ_INIT(&sc->sc_txdirtyq);
572
573#ifdef ATW_DEBUG
574	atw_print_regs(sc, "atw_attach");
575#endif /* ATW_DEBUG */
576
577	/*
578	 * Allocate the control data structures, and create and load the
579	 * DMA map for it.
580	 */
581	if ((error = bus_dmamem_alloc(sc->sc_dmat,
582	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
583	    1, &sc->sc_cdnseg, 0)) != 0) {
584		printf("%s: unable to allocate control data, error = %d\n",
585		    sc->sc_dev.dv_xname, error);
586		goto fail_0;
587	}
588
589	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
590	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
591	    BUS_DMA_COHERENT)) != 0) {
592		printf("%s: unable to map control data, error = %d\n",
593		    sc->sc_dev.dv_xname, error);
594		goto fail_1;
595	}
596
597	if ((error = bus_dmamap_create(sc->sc_dmat,
598	    sizeof(struct atw_control_data), 1,
599	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
600		printf("%s: unable to create control data DMA map, "
601		    "error = %d\n", sc->sc_dev.dv_xname, error);
602		goto fail_2;
603	}
604
605	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
606	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
607	    0)) != 0) {
608		printf("%s: unable to load control data DMA map, error = %d\n",
609		    sc->sc_dev.dv_xname, error);
610		goto fail_3;
611	}
612
613	/*
614	 * Create the transmit buffer DMA maps.
615	 */
616	sc->sc_ntxsegs = ATW_NTXSEGS;
617	for (i = 0; i < ATW_TXQUEUELEN; i++) {
618		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
619		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
620		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
621			printf("%s: unable to create tx DMA map %d, "
622			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
623			goto fail_4;
624		}
625	}
626
627	/*
628	 * Create the receive buffer DMA maps.
629	 */
630	for (i = 0; i < ATW_NRXDESC; i++) {
631		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
632		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
633			printf("%s: unable to create rx DMA map %d, "
634			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
635			goto fail_5;
636		}
637	}
638	for (i = 0; i < ATW_NRXDESC; i++) {
639		sc->sc_rxsoft[i].rxs_mbuf = NULL;
640	}
641
642	switch (sc->sc_rev) {
643	case ATW_REVISION_AB:
644	case ATW_REVISION_AF:
645		sc->sc_sramlen = ATW_SRAM_A_SIZE;
646		break;
647	case ATW_REVISION_BA:
648	case ATW_REVISION_CA:
649		sc->sc_sramlen = ATW_SRAM_B_SIZE;
650		break;
651	}
652
653	/* Reset the chip to a known state. */
654	atw_reset(sc);
655
656	if (atw_read_srom(sc) == -1)
657		return;
658
659	sc->sc_rftype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
660	    ATW_SR_RFTYPE_MASK);
661
662	sc->sc_bbptype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
663	    ATW_SR_BBPTYPE_MASK);
664
665	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
666		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
667		return;
668	}
669	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
670		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
671		return;
672	}
673
674	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
675	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
676
677	/* XXX There exists a Linux driver which seems to use RFType = 0 for
678	 * MARVEL. My bug, or theirs?
679	 */
680
681	reg = SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
682
683	switch (sc->sc_rftype) {
684	case ATW_RFTYPE_INTERSIL:
685		reg |= ATW_SYNCTL_CS1;
686		break;
687	case ATW_RFTYPE_RFMD:
688		reg |= ATW_SYNCTL_CS0;
689		break;
690	case ATW_RFTYPE_MARVEL:
691		break;
692	}
693
694	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
695	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
696
697	reg = SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
698
699	switch (sc->sc_bbptype) {
700	case ATW_BBPTYPE_INTERSIL:
701		reg |= ATW_BBPCTL_TWI;
702		break;
703	case ATW_BBPTYPE_RFMD:
704		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
705		    ATW_BBPCTL_CCA_ACTLO;
706		break;
707	case ATW_BBPTYPE_MARVEL:
708		break;
709	case ATW_C_BBPTYPE_RFMD:
710		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
711		    sc->sc_dev.dv_xname);
712		break;
713	}
714
715	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
716	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
717
718	/*
719	 * From this point forward, the attachment cannot fail.  A failure
720	 * before this point releases all resources that may have been
721	 * allocated.
722	 */
723	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
724
725	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
726	    htole16(sc->sc_srom[ATW_SR_MAC00]),
727	    htole16(sc->sc_srom[ATW_SR_MAC01]),
728	    htole16(sc->sc_srom[ATW_SR_MAC10])));
729
730	srom_major = SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
731	    ATW_SR_MAJOR_MASK);
732
733	if (srom_major < 2)
734		sc->sc_rf3000_options1 = 0;
735	else if (sc->sc_rev == ATW_REVISION_BA) {
736		sc->sc_rf3000_options1 =
737		    SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
738		    ATW_SR_CR28_MASK);
739	} else
740		sc->sc_rf3000_options1 = 0;
741
742	sc->sc_rf3000_options2 = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
743	    ATW_SR_CR29_MASK);
744
745	country_code = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
746	    ATW_SR_CTRY_MASK);
747
748#define ADD_CHANNEL(_ic, _chan) do {					\
749	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
750	_ic->ic_channels[_chan].ic_freq =				\
751	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
752} while (0)
753
754	/* Find available channels */
755	switch (country_code) {
756	case COUNTRY_MMK2:	/* 1-14 */
757		ADD_CHANNEL(ic, 14);
758		/*FALLTHROUGH*/
759	case COUNTRY_ETSI:	/* 1-13 */
760		for (i = 1; i <= 13; i++)
761			ADD_CHANNEL(ic, i);
762		break;
763	case COUNTRY_FCC:	/* 1-11 */
764	case COUNTRY_IC:	/* 1-11 */
765		for (i = 1; i <= 11; i++)
766			ADD_CHANNEL(ic, i);
767		break;
768	case COUNTRY_MMK:	/* 14 */
769		ADD_CHANNEL(ic, 14);
770		break;
771	case COUNTRY_FRANCE:	/* 10-13 */
772		for (i = 10; i <= 13; i++)
773			ADD_CHANNEL(ic, i);
774		break;
775	default:	/* assume channels 10-11 */
776	case COUNTRY_SPAIN:	/* 10-11 */
777		for (i = 10; i <= 11; i++)
778			ADD_CHANNEL(ic, i);
779		break;
780	}
781
782	/* Read the MAC address. */
783	reg = ATW_READ(sc, ATW_PAR0);
784	ic->ic_myaddr[0] = SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
785	ic->ic_myaddr[1] = SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
786	ic->ic_myaddr[2] = SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
787	ic->ic_myaddr[3] = SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
788	reg = ATW_READ(sc, ATW_PAR1);
789	ic->ic_myaddr[4] = SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
790	ic->ic_myaddr[5] = SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
791
792	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
793		printf(" could not get mac address, attach failed\n");
794		return;
795	}
796
797	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
798
799	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
800	ifp->if_softc = sc;
801	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
802	    IFF_NOTRAILERS;
803	ifp->if_ioctl = atw_ioctl;
804	ifp->if_start = atw_start;
805	ifp->if_watchdog = atw_watchdog;
806	ifp->if_init = atw_init;
807	ifp->if_stop = atw_stop;
808	IFQ_SET_READY(&ifp->if_snd);
809
810	ic->ic_ifp = ifp;
811	ic->ic_phytype = IEEE80211_T_DS;
812	ic->ic_opmode = IEEE80211_M_STA;
813	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
814	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
815
816	nrate = 0;
817	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
818	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
819	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
820	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
821	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
822
823	/*
824	 * Call MI attach routines.
825	 */
826
827	if_attach(ifp);
828	ieee80211_ifattach(ic);
829
830	sc->sc_newstate = ic->ic_newstate;
831	ic->ic_newstate = atw_newstate;
832
833	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
834	ic->ic_recv_mgmt = atw_recv_mgmt;
835
836	sc->sc_node_free = ic->ic_node_free;
837	ic->ic_node_free = atw_node_free;
838
839	sc->sc_node_alloc = ic->ic_node_alloc;
840	ic->ic_node_alloc = atw_node_alloc;
841
842	ic->ic_crypto.cs_key_delete = atw_key_delete;
843	ic->ic_crypto.cs_key_set = atw_key_set;
844	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
845	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
846
847	/* possibly we should fill in our own sc_send_prresp, since
848	 * the ADM8211 is probably sending probe responses in ad hoc
849	 * mode.
850	 */
851
852	/* complete initialization */
853	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
854	callout_init(&sc->sc_scan_ch);
855
856#if NBPFILTER > 0
857	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
858	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
859#endif
860
861	/*
862	 * Make sure the interface is shutdown during reboot.
863	 */
864	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
865	if (sc->sc_sdhook == NULL)
866		printf("%s: WARNING: unable to establish shutdown hook\n",
867		    sc->sc_dev.dv_xname);
868
869	/*
870	 * Add a suspend hook to make sure we come back up after a
871	 * resume.
872	 */
873	sc->sc_powerhook = powerhook_establish(atw_power, sc);
874	if (sc->sc_powerhook == NULL)
875		printf("%s: WARNING: unable to establish power hook\n",
876		    sc->sc_dev.dv_xname);
877
878	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
879	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
880	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
881
882	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
883	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
884	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
885
886	ieee80211_announce(ic);
887	return;
888
889	/*
890	 * Free any resources we've allocated during the failed attach
891	 * attempt.  Do this in reverse order and fall through.
892	 */
893 fail_5:
894	for (i = 0; i < ATW_NRXDESC; i++) {
895		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
896			continue;
897		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
898	}
899 fail_4:
900	for (i = 0; i < ATW_TXQUEUELEN; i++) {
901		if (sc->sc_txsoft[i].txs_dmamap == NULL)
902			continue;
903		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
904	}
905	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
906 fail_3:
907	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
908 fail_2:
909	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
910	    sizeof(struct atw_control_data));
911 fail_1:
912	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
913 fail_0:
914	return;
915}
916
917static struct ieee80211_node *
918atw_node_alloc(struct ieee80211_node_table *nt)
919{
920	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
921	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
922
923	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
924	return ni;
925}
926
927static void
928atw_node_free(struct ieee80211_node *ni)
929{
930	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
931
932	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
933	    ether_sprintf(ni->ni_bssid)));
934	(*sc->sc_node_free)(ni);
935}
936
937
938static void
939atw_test1_reset(struct atw_softc *sc)
940{
941	switch (sc->sc_rev) {
942	case ATW_REVISION_BA:
943		if (1 /* XXX condition on transceiver type */) {
944			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
945		}
946		break;
947	case ATW_REVISION_CA:
948		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
949		break;
950	default:
951		break;
952	}
953}
954
955/*
956 * atw_reset:
957 *
958 *	Perform a soft reset on the ADM8211.
959 */
960void
961atw_reset(struct atw_softc *sc)
962{
963	int i;
964	uint32_t lpc;
965
966	ATW_WRITE(sc, ATW_NAR, 0x0);
967	DELAY(atw_nar_delay);
968
969	/* Reference driver has a cryptic remark indicating that this might
970	 * power-on the chip.  I know that it turns off power-saving....
971	 */
972	ATW_WRITE(sc, ATW_FRCTL, 0x0);
973
974	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
975
976	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
977		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
978			break;
979		DELAY(atw_pseudo_milli);
980	}
981
982	/* ... and then pause 100ms longer for good measure. */
983	DELAY(atw_magic_delay1);
984
985	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
986
987	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
988		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
989
990	/*
991	 * Initialize the PCI Access Register.
992	 */
993	sc->sc_busmode = ATW_PAR_PBL_8DW;
994
995	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
996	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
997	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
998
999	atw_test1_reset(sc);
1000
1001	/* Turn off maximum power saving, etc. */
1002	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1003
1004	DELAY(atw_magic_delay2);
1005
1006	/* Recall EEPROM. */
1007	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1008
1009	DELAY(atw_magic_delay4);
1010
1011	lpc = ATW_READ(sc, ATW_LPC);
1012
1013	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1014
1015	/* A reset seems to affect the SRAM contents, so put them into
1016	 * a known state.
1017	 */
1018	atw_clear_sram(sc);
1019
1020	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1021}
1022
1023static void
1024atw_clear_sram(struct atw_softc *sc)
1025{
1026	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1027	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1028	/* XXX not for revision 0x20. */
1029	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1030}
1031
1032/* TBD atw_init
1033 *
1034 * set MAC based on ic->ic_bss->myaddr
1035 * write WEP keys
1036 * set TX rate
1037 */
1038
1039/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1040 * without receiving a beacon with the preferred BSSID & SSID.
1041 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1042 */
1043static void
1044atw_wcsr_init(struct atw_softc *sc)
1045{
1046	uint32_t wcsr;
1047
1048	wcsr = ATW_READ(sc, ATW_WCSR);
1049	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1050	wcsr |= SHIFTIN(7, ATW_WCSR_BLN_MASK);
1051	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1052
1053	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1054	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1055}
1056
1057/* Turn off power management.  Set Rx store-and-forward mode. */
1058static void
1059atw_cmdr_init(struct atw_softc *sc)
1060{
1061	uint32_t cmdr;
1062	cmdr = ATW_READ(sc, ATW_CMDR);
1063	cmdr &= ~ATW_CMDR_APM;
1064	cmdr |= ATW_CMDR_RTE;
1065	cmdr &= ~ATW_CMDR_DRT_MASK;
1066	cmdr |= ATW_CMDR_DRT_SF;
1067
1068	ATW_WRITE(sc, ATW_CMDR, cmdr);
1069}
1070
1071static void
1072atw_tofs2_init(struct atw_softc *sc)
1073{
1074	uint32_t tofs2;
1075	/* XXX this magic can probably be figured out from the RFMD docs */
1076#ifndef ATW_REFSLAVE
1077	tofs2 = SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1078	      SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1079	      SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1080	      SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1081	      SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1082	      SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1083	      SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1084	      SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1085#else
1086	/* XXX new magic from reference driver source */
1087	tofs2 = SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1088	      SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1089	      SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1090	      SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1091	      SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1092	      SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1093	      SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1094	      SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1095#endif
1096	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1097}
1098
1099static void
1100atw_nar_init(struct atw_softc *sc)
1101{
1102	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1103}
1104
1105static void
1106atw_txlmt_init(struct atw_softc *sc)
1107{
1108	ATW_WRITE(sc, ATW_TXLMT, SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1109	                         SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1110}
1111
1112static void
1113atw_test1_init(struct atw_softc *sc)
1114{
1115	uint32_t test1;
1116
1117	test1 = ATW_READ(sc, ATW_TEST1);
1118	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1119	/* XXX magic 0x1 */
1120	test1 |= SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1121	ATW_WRITE(sc, ATW_TEST1, test1);
1122}
1123
1124static void
1125atw_rf_reset(struct atw_softc *sc)
1126{
1127	/* XXX this resets an Intersil RF front-end? */
1128	/* TBD condition on Intersil RFType? */
1129	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1130	DELAY(atw_rf_delay1);
1131	ATW_WRITE(sc, ATW_SYNRF, 0);
1132	DELAY(atw_rf_delay2);
1133}
1134
1135/* Set 16 TU max duration for the contention-free period (CFP). */
1136static void
1137atw_cfp_init(struct atw_softc *sc)
1138{
1139	uint32_t cfpp;
1140
1141	cfpp = ATW_READ(sc, ATW_CFPP);
1142	cfpp &= ~ATW_CFPP_CFPMD;
1143	cfpp |= SHIFTIN(16, ATW_CFPP_CFPMD);
1144	ATW_WRITE(sc, ATW_CFPP, cfpp);
1145}
1146
1147static void
1148atw_tofs0_init(struct atw_softc *sc)
1149{
1150	/* XXX I guess that the Cardbus clock is 22MHz?
1151	 * I am assuming that the role of ATW_TOFS0_USCNT is
1152	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1153	 * very clear on this point. It says in the datasheet that it is
1154	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1155	 * and 33MHz; maybe this is the way? I see a binary-only driver write
1156	 * these values. These values are also the power-on default.
1157	 */
1158	ATW_WRITE(sc, ATW_TOFS0,
1159	    SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1160	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1161}
1162
1163/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1164static void
1165atw_ifs_init(struct atw_softc *sc)
1166{
1167	uint32_t ifst;
1168	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1169	 * Go figure.
1170	 */
1171	ifst = SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1172	      SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1173	             ATW_IFST_SIFS_MASK) |
1174	      SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1175	      SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1176
1177	ATW_WRITE(sc, ATW_IFST, ifst);
1178}
1179
1180static void
1181atw_response_times_init(struct atw_softc *sc)
1182{
1183	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1184	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1185	 * to pass after it transmits a frame that requires a response;
1186	 * it waits at most SIFS + MART microseconds for the response.
1187	 * Surely this is not the ACK timeout?
1188	 */
1189	ATW_WRITE(sc, ATW_RSPT, SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1190	    SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1191}
1192
1193/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1194 * engines read and write baseband registers after Rx and before
1195 * Tx, respectively.
1196 */
1197static void
1198atw_bbp_io_init(struct atw_softc *sc)
1199{
1200	uint32_t mmiraddr2;
1201
1202	/* XXX The reference driver does this, but is it *really*
1203	 * necessary?
1204	 */
1205	switch (sc->sc_rev) {
1206	case ATW_REVISION_AB:
1207	case ATW_REVISION_AF:
1208		mmiraddr2 = 0x0;
1209		break;
1210	default:
1211		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1212		mmiraddr2 &=
1213		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1214		break;
1215	}
1216
1217	switch (sc->sc_bbptype) {
1218	case ATW_BBPTYPE_INTERSIL:
1219		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1220		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1221		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1222		break;
1223	case ATW_BBPTYPE_MARVEL:
1224		/* TBD find out the Marvel settings. */
1225		break;
1226	case ATW_BBPTYPE_RFMD:
1227	default:
1228		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1229		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1230		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1231		break;
1232	}
1233	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1234	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1235}
1236
1237/*
1238 * atw_init:		[ ifnet interface function ]
1239 *
1240 *	Initialize the interface.  Must be called at splnet().
1241 */
1242int
1243atw_init(struct ifnet *ifp)
1244{
1245	struct atw_softc *sc = ifp->if_softc;
1246	struct ieee80211com *ic = &sc->sc_ic;
1247	struct atw_txsoft *txs;
1248	struct atw_rxsoft *rxs;
1249	int i, error = 0;
1250
1251	if ((error = atw_enable(sc)) != 0)
1252		goto out;
1253
1254	/*
1255	 * Cancel any pending I/O. This also resets.
1256	 */
1257	atw_stop(ifp, 0);
1258
1259	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1260	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1261	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1262
1263	atw_wcsr_init(sc);
1264
1265	atw_cmdr_init(sc);
1266
1267	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1268	 *
1269	 * XXX Set transmit power for ATIM, RTS, Beacon.
1270	 */
1271	ATW_WRITE(sc, ATW_PLCPHD, SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1272	    SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1273
1274	atw_tofs2_init(sc);
1275
1276	atw_nar_init(sc);
1277
1278	atw_txlmt_init(sc);
1279
1280	atw_test1_init(sc);
1281
1282	atw_rf_reset(sc);
1283
1284	atw_cfp_init(sc);
1285
1286	atw_tofs0_init(sc);
1287
1288	atw_ifs_init(sc);
1289
1290	/* XXX Fall asleep after one second of inactivity.
1291	 * XXX A frame may only dribble in for 65536us.
1292	 */
1293	ATW_WRITE(sc, ATW_RMD,
1294	    SHIFTIN(1, ATW_RMD_PCNT) | SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1295
1296	atw_response_times_init(sc);
1297
1298	atw_bbp_io_init(sc);
1299
1300	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1301
1302	if ((error = atw_rf3000_init(sc)) != 0)
1303		goto out;
1304
1305	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1306	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1307	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1308
1309	/*
1310	 * Initialize the transmit descriptor ring.
1311	 */
1312	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1313	for (i = 0; i < ATW_NTXDESC; i++) {
1314		sc->sc_txdescs[i].at_ctl = 0;
1315		/* no transmit chaining */
1316		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1317		sc->sc_txdescs[i].at_buf2 =
1318		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1319	}
1320	/* use ring mode */
1321	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1322	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1323	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1324	sc->sc_txfree = ATW_NTXDESC;
1325	sc->sc_txnext = 0;
1326
1327	/*
1328	 * Initialize the transmit job descriptors.
1329	 */
1330	SIMPLEQ_INIT(&sc->sc_txfreeq);
1331	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1332	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1333		txs = &sc->sc_txsoft[i];
1334		txs->txs_mbuf = NULL;
1335		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1336	}
1337
1338	/*
1339	 * Initialize the receive descriptor and receive job
1340	 * descriptor rings.
1341	 */
1342	for (i = 0; i < ATW_NRXDESC; i++) {
1343		rxs = &sc->sc_rxsoft[i];
1344		if (rxs->rxs_mbuf == NULL) {
1345			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1346				printf("%s: unable to allocate or map rx "
1347				    "buffer %d, error = %d\n",
1348				    sc->sc_dev.dv_xname, i, error);
1349				/*
1350				 * XXX Should attempt to run with fewer receive
1351				 * XXX buffers instead of just failing.
1352				 */
1353				atw_rxdrain(sc);
1354				goto out;
1355			}
1356		} else
1357			ATW_INIT_RXDESC(sc, i);
1358	}
1359	sc->sc_rxptr = 0;
1360
1361	/*
1362	 * Initialize the interrupt mask and enable interrupts.
1363	 */
1364	/* normal interrupts */
1365	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1366	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1367
1368	/* abnormal interrupts */
1369	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1370	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1371	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1372
1373	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1374	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1375	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1376	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1377	    ATW_INTR_TRT;
1378
1379	sc->sc_linkint_mask &= sc->sc_inten;
1380	sc->sc_rxint_mask &= sc->sc_inten;
1381	sc->sc_txint_mask &= sc->sc_inten;
1382
1383	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1384	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1385
1386	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1387	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1388
1389	/*
1390	 * Give the transmit and receive rings to the ADM8211.
1391	 */
1392	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1393	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1394
1395	sc->sc_txthresh = 0;
1396	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1397	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1398
1399	/* common 802.11 configuration */
1400	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1401	switch (ic->ic_opmode) {
1402	case IEEE80211_M_STA:
1403		break;
1404	case IEEE80211_M_AHDEMO: /* XXX */
1405	case IEEE80211_M_IBSS:
1406		ic->ic_flags |= IEEE80211_F_IBSSON;
1407		/*FALLTHROUGH*/
1408	case IEEE80211_M_HOSTAP: /* XXX */
1409		break;
1410	case IEEE80211_M_MONITOR: /* XXX */
1411		break;
1412	}
1413
1414	switch (ic->ic_opmode) {
1415	case IEEE80211_M_AHDEMO:
1416	case IEEE80211_M_HOSTAP:
1417#ifndef IEEE80211_NO_HOSTAP
1418		ic->ic_bss->ni_intval = ic->ic_lintval;
1419		ic->ic_bss->ni_rssi = 0;
1420		ic->ic_bss->ni_rstamp = 0;
1421#endif /* !IEEE80211_NO_HOSTAP */
1422		break;
1423	default:					/* XXX */
1424		break;
1425	}
1426
1427	sc->sc_wepctl = 0;
1428
1429	atw_write_ssid(sc);
1430	atw_write_sup_rates(sc);
1431	atw_write_wep(sc);
1432
1433	ic->ic_state = IEEE80211_S_INIT;
1434
1435	/*
1436	 * Set the receive filter.  This will start the transmit and
1437	 * receive processes.
1438	 */
1439	atw_filter_setup(sc);
1440
1441	/*
1442	 * Start the receive process.
1443	 */
1444	ATW_WRITE(sc, ATW_RDR, 0x1);
1445
1446	/*
1447	 * Note that the interface is now running.
1448	 */
1449	ifp->if_flags |= IFF_RUNNING;
1450	ifp->if_flags &= ~IFF_OACTIVE;
1451
1452	/* send no beacons, yet. */
1453	atw_start_beacon(sc, 0);
1454
1455	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1456		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1457	else
1458		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1459 out:
1460	if (error) {
1461		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462		sc->sc_tx_timer = 0;
1463		ifp->if_timer = 0;
1464		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1465	}
1466#ifdef ATW_DEBUG
1467	atw_print_regs(sc, "end of init");
1468#endif /* ATW_DEBUG */
1469
1470	return (error);
1471}
1472
1473/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1474 *           0: MAC control of RF3000/Si4126.
1475 *
1476 * Applies power, or selects RF front-end? Sets reset condition.
1477 *
1478 * TBD support non-RFMD BBP, non-SiLabs synth.
1479 */
1480static void
1481atw_bbp_io_enable(struct atw_softc *sc, int enable)
1482{
1483	if (enable) {
1484		ATW_WRITE(sc, ATW_SYNRF,
1485		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1486		DELAY(atw_bbp_io_enable_delay);
1487	} else {
1488		ATW_WRITE(sc, ATW_SYNRF, 0);
1489		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1490	}
1491}
1492
1493static int
1494atw_tune(struct atw_softc *sc)
1495{
1496	int rc;
1497	u_int chan;
1498	struct ieee80211com *ic = &sc->sc_ic;
1499
1500	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1501	if (chan == IEEE80211_CHAN_ANY)
1502		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1503
1504	if (chan == sc->sc_cur_chan)
1505		return 0;
1506
1507	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1508	    sc->sc_cur_chan, chan));
1509
1510	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1511
1512	atw_si4126_tune(sc, chan);
1513	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1514		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1515		    chan);
1516
1517	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1518	DELAY(atw_nar_delay);
1519	ATW_WRITE(sc, ATW_RDR, 0x1);
1520
1521	if (rc == 0)
1522		sc->sc_cur_chan = chan;
1523
1524	return rc;
1525}
1526
1527#ifdef ATW_SYNDEBUG
1528static void
1529atw_si4126_print(struct atw_softc *sc)
1530{
1531	struct ifnet *ifp = &sc->sc_if;
1532	u_int addr, val;
1533
1534	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1535		return;
1536
1537	for (addr = 0; addr <= 8; addr++) {
1538		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1539		if (atw_si4126_read(sc, addr, &val) == 0) {
1540			printf("<unknown> (quitting print-out)\n");
1541			break;
1542		}
1543		printf("%05x\n", val);
1544	}
1545}
1546#endif /* ATW_SYNDEBUG */
1547
1548/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1549 *
1550 * The RF/IF synthesizer produces two reference frequencies for
1551 * the RF2948B transceiver.  The first frequency the RF2948B requires
1552 * is two times the so-called "intermediate frequency" (IF). Since
1553 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1554 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1555 * frequency required by the transceiver is the radio frequency
1556 * (RF). This is a superheterodyne transceiver; for f(chan) the
1557 * center frequency of the channel we are tuning, RF = f(chan) -
1558 * IF.
1559 *
1560 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1561 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1562 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1563 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1564 */
1565static void
1566atw_si4126_tune(struct atw_softc *sc, u_int chan)
1567{
1568	u_int mhz;
1569	u_int R;
1570	u_int32_t gpio;
1571	u_int16_t gain;
1572
1573#ifdef ATW_SYNDEBUG
1574	atw_si4126_print(sc);
1575#endif /* ATW_SYNDEBUG */
1576
1577	if (chan == 14)
1578		mhz = 2484;
1579	else
1580		mhz = 2412 + 5 * (chan - 1);
1581
1582	/* Tune IF to 748MHz to suit the IF LO input of the
1583	 * RF2494B, which is 2 x IF. No need to set an IF divider
1584         * because an IF in 526MHz - 952MHz is allowed.
1585	 *
1586	 * XIN is 44.000MHz, so divide it by two to get allowable
1587	 * range of 2-25MHz. SiLabs tells me that this is not
1588	 * strictly necessary.
1589	 */
1590
1591	if (atw_xindiv2)
1592		R = 44;
1593	else
1594		R = 88;
1595
1596	/* Power-up RF, IF synthesizers. */
1597	atw_si4126_write(sc, SI4126_POWER,
1598	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1599
1600	/* set LPWR, too? */
1601	atw_si4126_write(sc, SI4126_MAIN,
1602	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1603
1604	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1605	 * set KP2 to 1.
1606	 *
1607	 * REFDIF This is different from the reference driver, which
1608	 * always sets SI4126_GAIN to 0.
1609	 */
1610	gain = SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1611
1612	atw_si4126_write(sc, SI4126_GAIN, gain);
1613
1614	/* XIN = 44MHz.
1615	 *
1616	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1617	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1618	 *
1619	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1620	 * so that 1496/88 * 44MHz = 748MHz.
1621	 */
1622	atw_si4126_write(sc, SI4126_IFN, 1496);
1623
1624	atw_si4126_write(sc, SI4126_IFR, R);
1625
1626#ifndef ATW_REFSLAVE
1627	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1628	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1629	 * which has no RF1!
1630	 */
1631	atw_si4126_write(sc, SI4126_RF1R, R);
1632
1633	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1634#endif
1635
1636	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1637	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1638	 * Now let's multiply it to mhz. So mhz - IF = N.
1639	 */
1640	atw_si4126_write(sc, SI4126_RF2R, R);
1641
1642	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1643
1644	/* wait 100us from power-up for RF, IF to settle */
1645	DELAY(100);
1646
1647	gpio = ATW_READ(sc, ATW_GPIO);
1648	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1649	gpio |= SHIFTIN(1, ATW_GPIO_EN_MASK);
1650
1651	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1652		/* Set a Prism RF front-end to a special mode for channel 14?
1653		 *
1654		 * Apparently the SMC2635W needs this, although I don't think
1655		 * it has a Prism RF.
1656		 */
1657		gpio |= SHIFTIN(1, ATW_GPIO_O_MASK);
1658	}
1659	ATW_WRITE(sc, ATW_GPIO, gpio);
1660
1661#ifdef ATW_SYNDEBUG
1662	atw_si4126_print(sc);
1663#endif /* ATW_SYNDEBUG */
1664}
1665
1666/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1667 * diversity.
1668 *
1669 * !!!
1670 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1671 * !!!
1672 */
1673static int
1674atw_rf3000_init(struct atw_softc *sc)
1675{
1676	int rc = 0;
1677
1678	atw_bbp_io_enable(sc, 1);
1679
1680	/* CCA is acquisition sensitive */
1681	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1682	    SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1683
1684	if (rc != 0)
1685		goto out;
1686
1687	/* enable diversity */
1688	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1689
1690	if (rc != 0)
1691		goto out;
1692
1693	/* sensible setting from a binary-only driver */
1694	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1695	    SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1696
1697	if (rc != 0)
1698		goto out;
1699
1700	/* magic from a binary-only driver */
1701	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1702	    SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1703
1704	if (rc != 0)
1705		goto out;
1706
1707	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1708
1709	if (rc != 0)
1710		goto out;
1711
1712	/* XXX Reference driver remarks that Abocom sets this to 50.
1713	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1714	 * in the "reserved" area of register RF3000_OPTIONS1.
1715	 */
1716	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1717
1718	if (rc != 0)
1719		goto out;
1720
1721	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1722
1723	if (rc != 0)
1724		goto out;
1725
1726out:
1727	atw_bbp_io_enable(sc, 0);
1728	return rc;
1729}
1730
1731#ifdef ATW_BBPDEBUG
1732static void
1733atw_rf3000_print(struct atw_softc *sc)
1734{
1735	struct ifnet *ifp = &sc->sc_if;
1736	u_int addr, val;
1737
1738	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1739		return;
1740
1741	for (addr = 0x01; addr <= 0x15; addr++) {
1742		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1743		if (atw_rf3000_read(sc, addr, &val) != 0) {
1744			printf("<unknown> (quitting print-out)\n");
1745			break;
1746		}
1747		printf("%08x\n", val);
1748	}
1749}
1750#endif /* ATW_BBPDEBUG */
1751
1752/* Set the power settings on the BBP for channel `chan'. */
1753static int
1754atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1755{
1756	int rc = 0;
1757	u_int32_t reg;
1758	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1759
1760	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1761	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1762	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1763
1764	/* odd channels: LSB, even channels: MSB */
1765	if (chan % 2 == 1) {
1766		txpower &= 0xFF;
1767		lpf_cutoff &= 0xFF;
1768		lna_gs_thresh &= 0xFF;
1769	} else {
1770		txpower >>= 8;
1771		lpf_cutoff >>= 8;
1772		lna_gs_thresh >>= 8;
1773	}
1774
1775#ifdef ATW_BBPDEBUG
1776	atw_rf3000_print(sc);
1777#endif /* ATW_BBPDEBUG */
1778
1779	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1780	    "lna_gs_thresh %02x\n",
1781	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1782
1783	atw_bbp_io_enable(sc, 1);
1784
1785	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1786	    SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1787		goto out;
1788
1789	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1790		goto out;
1791
1792	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1793		goto out;
1794
1795	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1796
1797	if (rc != 0)
1798		goto out;
1799
1800	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1801
1802	if (rc != 0)
1803		goto out;
1804
1805#ifdef ATW_BBPDEBUG
1806	atw_rf3000_print(sc);
1807#endif /* ATW_BBPDEBUG */
1808
1809out:
1810	atw_bbp_io_enable(sc, 0);
1811
1812	/* set beacon, rts, atim transmit power */
1813	reg = ATW_READ(sc, ATW_PLCPHD);
1814	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1815	reg |= SHIFTIN(SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1816	    ATW_PLCPHD_SERVICE_MASK);
1817	ATW_WRITE(sc, ATW_PLCPHD, reg);
1818	DELAY(atw_plcphd_delay);
1819
1820	return rc;
1821}
1822
1823/* Write a register on the RF3000 baseband processor using the
1824 * registers provided by the ADM8211 for this purpose.
1825 *
1826 * Return 0 on success.
1827 */
1828static int
1829atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1830{
1831	u_int32_t reg;
1832	int i;
1833
1834	reg = sc->sc_bbpctl_wr |
1835	     SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1836	     SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1837
1838	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1839		ATW_WRITE(sc, ATW_BBPCTL, reg);
1840		DELAY(2 * atw_pseudo_milli);
1841		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1842			break;
1843	}
1844
1845	if (i < 0) {
1846		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1847		return ETIMEDOUT;
1848	}
1849	return 0;
1850}
1851
1852/* Read a register on the RF3000 baseband processor using the registers
1853 * the ADM8211 provides for this purpose.
1854 *
1855 * The 7-bit register address is addr.  Record the 8-bit data in the register
1856 * in *val.
1857 *
1858 * Return 0 on success.
1859 *
1860 * XXX This does not seem to work. The ADM8211 must require more or
1861 * different magic to read the chip than to write it. Possibly some
1862 * of the magic I have derived from a binary-only driver concerns
1863 * the "chip address" (see the RF3000 manual).
1864 */
1865#ifdef ATW_BBPDEBUG
1866static int
1867atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1868{
1869	u_int32_t reg;
1870	int i;
1871
1872	for (i = 1000; --i >= 0; ) {
1873		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1874			break;
1875		DELAY(100);
1876	}
1877
1878	if (i < 0) {
1879		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1880		    sc->sc_dev.dv_xname);
1881		return ETIMEDOUT;
1882	}
1883
1884	reg = sc->sc_bbpctl_rd | SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1885
1886	ATW_WRITE(sc, ATW_BBPCTL, reg);
1887
1888	for (i = 1000; --i >= 0; ) {
1889		DELAY(100);
1890		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1891			break;
1892	}
1893
1894	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1895
1896	if (i < 0) {
1897		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1898		    sc->sc_dev.dv_xname, reg);
1899		return ETIMEDOUT;
1900	}
1901	if (val != NULL)
1902		*val = SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1903	return 0;
1904}
1905#endif /* ATW_BBPDEBUG */
1906
1907/* Write a register on the Si4126 RF/IF synthesizer using the registers
1908 * provided by the ADM8211 for that purpose.
1909 *
1910 * val is 18 bits of data, and val is the 4-bit address of the register.
1911 *
1912 * Return 0 on success.
1913 */
1914static void
1915atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1916{
1917	uint32_t bits, mask, reg;
1918	const int nbits = 22;
1919
1920	KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1921	KASSERT((val & ~SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1922
1923	bits = SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1924	       SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1925
1926	reg = ATW_SYNRF_SELSYN;
1927	/* reference driver: reset Si4126 serial bus to initial
1928	 * conditions?
1929	 */
1930	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1931	ATW_WRITE(sc, ATW_SYNRF, reg);
1932
1933	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1934		if ((bits & mask) != 0)
1935			reg |= ATW_SYNRF_SYNDATA;
1936		else
1937			reg &= ~ATW_SYNRF_SYNDATA;
1938		ATW_WRITE(sc, ATW_SYNRF, reg);
1939		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1940		ATW_WRITE(sc, ATW_SYNRF, reg);
1941	}
1942	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1943	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1944}
1945
1946/* Read 18-bit data from the 4-bit address addr in Si4126
1947 * RF synthesizer and write the data to *val. Return 0 on success.
1948 *
1949 * XXX This does not seem to work. The ADM8211 must require more or
1950 * different magic to read the chip than to write it.
1951 */
1952#ifdef ATW_SYNDEBUG
1953static int
1954atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1955{
1956	u_int32_t reg;
1957	int i;
1958
1959	KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1960
1961	for (i = 1000; --i >= 0; ) {
1962		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1963			break;
1964		DELAY(100);
1965	}
1966
1967	if (i < 0) {
1968		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1969		    sc->sc_dev.dv_xname);
1970		return ETIMEDOUT;
1971	}
1972
1973	reg = sc->sc_synctl_rd | SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1974
1975	ATW_WRITE(sc, ATW_SYNCTL, reg);
1976
1977	for (i = 1000; --i >= 0; ) {
1978		DELAY(100);
1979		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1980			break;
1981	}
1982
1983	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1984
1985	if (i < 0) {
1986		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1987		    sc->sc_dev.dv_xname, reg);
1988		return ETIMEDOUT;
1989	}
1990	if (val != NULL)
1991		*val = SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1992		                       ATW_SYNCTL_DATA_MASK);
1993	return 0;
1994}
1995#endif /* ATW_SYNDEBUG */
1996
1997/* XXX is the endianness correct? test. */
1998#define	atw_calchash(addr) \
1999	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2000
2001/*
2002 * atw_filter_setup:
2003 *
2004 *	Set the ADM8211's receive filter.
2005 */
2006static void
2007atw_filter_setup(struct atw_softc *sc)
2008{
2009	struct ieee80211com *ic = &sc->sc_ic;
2010	struct ethercom *ec = &sc->sc_ec;
2011	struct ifnet *ifp = &sc->sc_if;
2012	int hash;
2013	u_int32_t hashes[2];
2014	struct ether_multi *enm;
2015	struct ether_multistep step;
2016
2017	/* According to comments in tlp_al981_filter_setup
2018	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2019	 * multicast filter to be set while it is running.  Hopefully
2020	 * the ADM8211 is not the same!
2021	 */
2022	if ((ifp->if_flags & IFF_RUNNING) != 0)
2023		atw_idle(sc, ATW_NAR_SR);
2024
2025	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2026	ifp->if_flags &= ~IFF_ALLMULTI;
2027
2028	/* XXX in scan mode, do not filter packets.  Maybe this is
2029	 * unnecessary.
2030	 */
2031	if (ic->ic_state == IEEE80211_S_SCAN ||
2032	    (ifp->if_flags & IFF_PROMISC) != 0) {
2033		sc->sc_opmode |= ATW_NAR_PR;
2034		goto allmulti;
2035	}
2036
2037	hashes[0] = hashes[1] = 0x0;
2038
2039	/*
2040	 * Program the 64-bit multicast hash filter.
2041	 */
2042	ETHER_FIRST_MULTI(step, ec, enm);
2043	while (enm != NULL) {
2044		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2045		    ETHER_ADDR_LEN) != 0)
2046			goto allmulti;
2047
2048		hash = atw_calchash(enm->enm_addrlo);
2049		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2050		ETHER_NEXT_MULTI(step, enm);
2051		sc->sc_opmode |= ATW_NAR_MM;
2052	}
2053	ifp->if_flags &= ~IFF_ALLMULTI;
2054	goto setit;
2055
2056allmulti:
2057	sc->sc_opmode |= ATW_NAR_MM;
2058	ifp->if_flags |= IFF_ALLMULTI;
2059	hashes[0] = hashes[1] = 0xffffffff;
2060
2061setit:
2062	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2063	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2064	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2065	DELAY(atw_nar_delay);
2066	ATW_WRITE(sc, ATW_RDR, 0x1);
2067
2068	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2069	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2070}
2071
2072/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2073 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2074 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2075 * no beacon with the preferred BSSID and SSID in the number of
2076 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2077 */
2078static void
2079atw_write_bssid(struct atw_softc *sc)
2080{
2081	struct ieee80211com *ic = &sc->sc_ic;
2082	u_int8_t *bssid;
2083
2084	bssid = ic->ic_bss->ni_bssid;
2085
2086	ATW_WRITE(sc, ATW_BSSID0,
2087	    SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2088	    SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2089	    SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2090	    SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2091
2092	ATW_WRITE(sc, ATW_ABDA1,
2093	    (ATW_READ(sc, ATW_ABDA1) &
2094	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2095	    SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2096	    SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2097
2098	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2099	    ether_sprintf(sc->sc_bssid)));
2100	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2101
2102	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2103}
2104
2105/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2106 * 16-bit word.
2107 */
2108static void
2109atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2110{
2111	u_int i;
2112	u_int8_t *ptr;
2113
2114	memcpy(&sc->sc_sram[ofs], buf, buflen);
2115
2116	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2117
2118	KASSERT(buflen + ofs <= sc->sc_sramlen);
2119
2120	ptr = &sc->sc_sram[ofs];
2121
2122	for (i = 0; i < buflen; i += 2) {
2123		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2124		    SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2125		DELAY(atw_writewep_delay);
2126
2127		ATW_WRITE(sc, ATW_WESK,
2128		    SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2129		DELAY(atw_writewep_delay);
2130	}
2131	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2132
2133	if (sc->sc_if.if_flags & IFF_DEBUG) {
2134		int n_octets = 0;
2135		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2136		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2137		for (i = 0; i < buflen; i++) {
2138			printf(" %02x", ptr[i]);
2139			if (++n_octets % 24 == 0)
2140				printf("\n");
2141		}
2142		if (n_octets % 24 != 0)
2143			printf("\n");
2144	}
2145}
2146
2147static int
2148atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2149{
2150	struct atw_softc *sc = ic->ic_ifp->if_softc;
2151	u_int keyix = k->wk_keyix;
2152
2153	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2154
2155	if (keyix >= IEEE80211_WEP_NKID)
2156		return 0;
2157	if (k->wk_keylen != 0)
2158		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2159
2160	return 1;
2161}
2162
2163static int
2164atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2165	const u_int8_t mac[IEEE80211_ADDR_LEN])
2166{
2167	struct atw_softc *sc = ic->ic_ifp->if_softc;
2168
2169	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2170
2171	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2172		return 0;
2173
2174	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2175
2176	return 1;
2177}
2178
2179static void
2180atw_key_update_begin(struct ieee80211com *ic)
2181{
2182#ifdef ATW_DEBUG
2183	struct ifnet *ifp = ic->ic_ifp;
2184	struct atw_softc *sc = ifp->if_softc;
2185#endif
2186
2187	DPRINTF(sc, ("%s:\n", __func__));
2188}
2189
2190static void
2191atw_key_update_end(struct ieee80211com *ic)
2192{
2193	struct ifnet *ifp = ic->ic_ifp;
2194	struct atw_softc *sc = ifp->if_softc;
2195
2196	DPRINTF(sc, ("%s:\n", __func__));
2197
2198	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2199		return;
2200	if (ATW_IS_ENABLED(sc) == 0)
2201		return;
2202	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2203	atw_write_wep(sc);
2204	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2205	DELAY(atw_nar_delay);
2206	ATW_WRITE(sc, ATW_RDR, 0x1);
2207}
2208
2209/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2210static void
2211atw_write_wep(struct atw_softc *sc)
2212{
2213#if 0
2214	struct ieee80211com *ic = &sc->sc_ic;
2215	u_int32_t reg;
2216	int i;
2217#endif
2218	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2219	u_int8_t buf[IEEE80211_WEP_NKID]
2220	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2221
2222	sc->sc_wepctl = 0;
2223	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2224
2225	memset(&buf[0][0], 0, sizeof(buf));
2226
2227#if 0
2228	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2229		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2230			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2231		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2232			buf[i][1] = ATW_WEP_ENABLED;
2233		} else {
2234			buf[i][1] = 0;
2235			continue;
2236		}
2237		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2238		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2239		    ic->ic_nw_keys[i].wk_keylen - 1);
2240	}
2241
2242	reg = ATW_READ(sc, ATW_MACTEST);
2243	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2244	reg &= ~ATW_MACTEST_KEYID_MASK;
2245	reg |= SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2246	ATW_WRITE(sc, ATW_MACTEST, reg);
2247
2248	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2249		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2250
2251	switch (sc->sc_rev) {
2252	case ATW_REVISION_AB:
2253	case ATW_REVISION_AF:
2254		/* Bypass WEP on Rx. */
2255		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2256		break;
2257	default:
2258		break;
2259	}
2260#endif
2261
2262	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2263	    sizeof(buf));
2264
2265	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2266}
2267
2268static void
2269atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2270    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2271{
2272	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2273
2274	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2275	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2276		return;
2277
2278	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2279
2280	switch (subtype) {
2281	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2282	case IEEE80211_FC0_SUBTYPE_BEACON:
2283		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2284		    ic->ic_state == IEEE80211_S_RUN) {
2285			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2286				(void)ieee80211_ibss_merge(ni);
2287		}
2288		break;
2289	default:
2290		break;
2291	}
2292	return;
2293}
2294
2295/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2296 * In ad hoc mode, the SSID is written to the beacons sent by the
2297 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2298 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2299 * indications.
2300 */
2301static void
2302atw_write_ssid(struct atw_softc *sc)
2303{
2304	struct ieee80211com *ic = &sc->sc_ic;
2305	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2306	 * it only expects the element length, not its ID.
2307	 */
2308	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2309
2310	memset(buf, 0, sizeof(buf));
2311	buf[0] = ic->ic_bss->ni_esslen;
2312	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2313
2314	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2315	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2316}
2317
2318/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2319 * In ad hoc mode, the supported rates are written to beacons sent by the
2320 * ADM8211.
2321 */
2322static void
2323atw_write_sup_rates(struct atw_softc *sc)
2324{
2325	struct ieee80211com *ic = &sc->sc_ic;
2326	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2327	 * supported rates
2328	 */
2329	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2330
2331	memset(buf, 0, sizeof(buf));
2332
2333	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2334
2335	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2336	    ic->ic_bss->ni_rates.rs_nrates);
2337
2338	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2339}
2340
2341/* Start/stop sending beacons. */
2342void
2343atw_start_beacon(struct atw_softc *sc, int start)
2344{
2345	struct ieee80211com *ic = &sc->sc_ic;
2346	uint16_t chan;
2347	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2348	size_t len;
2349
2350	if (ATW_IS_ENABLED(sc) == 0)
2351		return;
2352
2353	/* start beacons */
2354	len = sizeof(struct ieee80211_frame) +
2355	    8 /* timestamp */ + 2 /* beacon interval */ +
2356	    2 /* capability info */ +
2357	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2358	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2359	    3 /* DS parameters */ +
2360	    IEEE80211_CRC_LEN;
2361
2362	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2363	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2364	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2365
2366	ATW_WRITE(sc, ATW_BCNT, bcnt);
2367	ATW_WRITE(sc, ATW_CAP1, cap1);
2368
2369	if (!start)
2370		return;
2371
2372	/* TBD use ni_capinfo */
2373
2374	capinfo = 0;
2375	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2376		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2377	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2378		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2379
2380	switch (ic->ic_opmode) {
2381	case IEEE80211_M_IBSS:
2382		len += 4; /* IBSS parameters */
2383		capinfo |= IEEE80211_CAPINFO_IBSS;
2384		break;
2385	case IEEE80211_M_HOSTAP:
2386		/* XXX 6-byte minimum TIM */
2387		len += atw_beacon_len_adjust;
2388		capinfo |= IEEE80211_CAPINFO_ESS;
2389		break;
2390	default:
2391		return;
2392	}
2393
2394	/* set listen interval
2395	 * XXX do software units agree w/ hardware?
2396	 */
2397	bpli = SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2398	    SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2399
2400	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2401
2402	bcnt |= SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2403	cap0 |= SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2404	cap1 |= SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2405
2406	ATW_WRITE(sc, ATW_BCNT, bcnt);
2407	ATW_WRITE(sc, ATW_BPLI, bpli);
2408	ATW_WRITE(sc, ATW_CAP0, cap0);
2409	ATW_WRITE(sc, ATW_CAP1, cap1);
2410
2411	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2412	    sc->sc_dev.dv_xname, bcnt));
2413
2414	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2415	    sc->sc_dev.dv_xname, cap1));
2416}
2417
2418/* Return the 32 lsb of the last TSFT divisible by ival. */
2419static inline uint32_t
2420atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2421{
2422	/* Following the reference driver's lead, I compute
2423	 *
2424	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2425	 *
2426	 * without using 64-bit arithmetic, using the following
2427	 * relationship:
2428	 *
2429	 *     (0x100000000 * H + L) % m
2430	 *   = ((0x100000000 % m) * H + L) % m
2431	 *   = (((0xffffffff + 1) % m) * H + L) % m
2432	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2433	 *   = ((0xffffffff % m + 1) * H + L) % m
2434	 */
2435	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2436}
2437
2438static uint64_t
2439atw_get_tsft(struct atw_softc *sc)
2440{
2441	int i;
2442	uint32_t tsfth, tsftl;
2443	for (i = 0; i < 2; i++) {
2444		tsfth = ATW_READ(sc, ATW_TSFTH);
2445		tsftl = ATW_READ(sc, ATW_TSFTL);
2446		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2447			break;
2448	}
2449	return ((uint64_t)tsfth << 32) | tsftl;
2450}
2451
2452/* If we've created an IBSS, write the TSF time in the ADM8211 to
2453 * the ieee80211com.
2454 *
2455 * Predict the next target beacon transmission time (TBTT) and
2456 * write it to the ADM8211.
2457 */
2458static void
2459atw_predict_beacon(struct atw_softc *sc)
2460{
2461#define TBTTOFS 20 /* TU */
2462
2463	struct ieee80211com *ic = &sc->sc_ic;
2464	uint64_t tsft;
2465	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2466	union {
2467		uint64_t	word;
2468		uint8_t		tstamp[8];
2469	} u;
2470
2471	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2472	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2473	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2474		tsft = atw_get_tsft(sc);
2475		u.word = htole64(tsft);
2476		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2477		    sizeof(ic->ic_bss->ni_tstamp));
2478	} else
2479		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2480
2481	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2482
2483	tsftl = tsft & 0xFFFFFFFF;
2484	tsfth = tsft >> 32;
2485
2486	/* We sent/received the last beacon `past' microseconds
2487	 * after the interval divided the TSF timer.
2488	 */
2489	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2490
2491	/* Skip ten beacons so that the TBTT cannot pass before
2492	 * we've programmed it.  Ten is an arbitrary number.
2493	 */
2494	tbtt = past_even + ival * 10;
2495
2496	ATW_WRITE(sc, ATW_TOFS1,
2497	    SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2498	    SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2499	    SHIFTIN(SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2500	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2501#undef TBTTOFS
2502}
2503
2504static void
2505atw_next_scan(void *arg)
2506{
2507	struct atw_softc *sc = arg;
2508	struct ieee80211com *ic = &sc->sc_ic;
2509	int s;
2510
2511	/* don't call atw_start w/o network interrupts blocked */
2512	s = splnet();
2513	if (ic->ic_state == IEEE80211_S_SCAN)
2514		ieee80211_next_scan(ic);
2515	splx(s);
2516}
2517
2518/* Synchronize the hardware state with the software state. */
2519static int
2520atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2521{
2522	struct ifnet *ifp = ic->ic_ifp;
2523	struct atw_softc *sc = ifp->if_softc;
2524	enum ieee80211_state ostate;
2525	int error = 0;
2526
2527	ostate = ic->ic_state;
2528	callout_stop(&sc->sc_scan_ch);
2529
2530	switch (nstate) {
2531	case IEEE80211_S_AUTH:
2532	case IEEE80211_S_ASSOC:
2533		atw_write_bssid(sc);
2534		error = atw_tune(sc);
2535		break;
2536	case IEEE80211_S_INIT:
2537		callout_stop(&sc->sc_scan_ch);
2538		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2539		atw_start_beacon(sc, 0);
2540		break;
2541	case IEEE80211_S_SCAN:
2542		error = atw_tune(sc);
2543		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2544		    atw_next_scan, sc);
2545		break;
2546	case IEEE80211_S_RUN:
2547		error = atw_tune(sc);
2548		atw_write_bssid(sc);
2549		atw_write_ssid(sc);
2550		atw_write_sup_rates(sc);
2551
2552		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2553		    ic->ic_opmode == IEEE80211_M_MONITOR)
2554			break;
2555
2556		/* set listen interval
2557		 * XXX do software units agree w/ hardware?
2558		 */
2559		ATW_WRITE(sc, ATW_BPLI,
2560		    SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2561		    SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2562			   ATW_BPLI_LI_MASK));
2563
2564		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2565		    ATW_READ(sc, ATW_BPLI)));
2566
2567		atw_predict_beacon(sc);
2568
2569		switch (ic->ic_opmode) {
2570		case IEEE80211_M_AHDEMO:
2571		case IEEE80211_M_HOSTAP:
2572		case IEEE80211_M_IBSS:
2573			atw_start_beacon(sc, 1);
2574			break;
2575		case IEEE80211_M_MONITOR:
2576		case IEEE80211_M_STA:
2577			break;
2578		}
2579
2580		break;
2581	}
2582	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2583}
2584
2585/*
2586 * atw_add_rxbuf:
2587 *
2588 *	Add a receive buffer to the indicated descriptor.
2589 */
2590int
2591atw_add_rxbuf(struct atw_softc *sc, int idx)
2592{
2593	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2594	struct mbuf *m;
2595	int error;
2596
2597	MGETHDR(m, M_DONTWAIT, MT_DATA);
2598	if (m == NULL)
2599		return (ENOBUFS);
2600
2601	MCLGET(m, M_DONTWAIT);
2602	if ((m->m_flags & M_EXT) == 0) {
2603		m_freem(m);
2604		return (ENOBUFS);
2605	}
2606
2607	if (rxs->rxs_mbuf != NULL)
2608		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2609
2610	rxs->rxs_mbuf = m;
2611
2612	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2613	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2614	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2615	if (error) {
2616		printf("%s: can't load rx DMA map %d, error = %d\n",
2617		    sc->sc_dev.dv_xname, idx, error);
2618		panic("atw_add_rxbuf");	/* XXX */
2619	}
2620
2621	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2622	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2623
2624	ATW_INIT_RXDESC(sc, idx);
2625
2626	return (0);
2627}
2628
2629/*
2630 * Release any queued transmit buffers.
2631 */
2632void
2633atw_txdrain(struct atw_softc *sc)
2634{
2635	struct atw_txsoft *txs;
2636
2637	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2638		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2639		if (txs->txs_mbuf != NULL) {
2640			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2641			m_freem(txs->txs_mbuf);
2642			txs->txs_mbuf = NULL;
2643		}
2644		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2645		sc->sc_txfree += txs->txs_ndescs;
2646	}
2647
2648	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2649	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2650		  sc->sc_txfree != ATW_NTXDESC));
2651	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2652	sc->sc_tx_timer = 0;
2653}
2654
2655/*
2656 * atw_stop:		[ ifnet interface function ]
2657 *
2658 *	Stop transmission on the interface.
2659 */
2660void
2661atw_stop(struct ifnet *ifp, int disable)
2662{
2663	struct atw_softc *sc = ifp->if_softc;
2664	struct ieee80211com *ic = &sc->sc_ic;
2665
2666	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2667
2668	/* Disable interrupts. */
2669	ATW_WRITE(sc, ATW_IER, 0);
2670
2671	/* Stop the transmit and receive processes. */
2672	sc->sc_opmode = 0;
2673	ATW_WRITE(sc, ATW_NAR, 0);
2674	DELAY(atw_nar_delay);
2675	ATW_WRITE(sc, ATW_TDBD, 0);
2676	ATW_WRITE(sc, ATW_TDBP, 0);
2677	ATW_WRITE(sc, ATW_RDB, 0);
2678
2679	atw_txdrain(sc);
2680
2681	if (disable) {
2682		atw_rxdrain(sc);
2683		atw_disable(sc);
2684	}
2685
2686	/*
2687	 * Mark the interface down and cancel the watchdog timer.
2688	 */
2689	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2690	sc->sc_tx_timer = 0;
2691	ifp->if_timer = 0;
2692
2693	if (!disable)
2694		atw_reset(sc);
2695}
2696
2697/*
2698 * atw_rxdrain:
2699 *
2700 *	Drain the receive queue.
2701 */
2702void
2703atw_rxdrain(struct atw_softc *sc)
2704{
2705	struct atw_rxsoft *rxs;
2706	int i;
2707
2708	for (i = 0; i < ATW_NRXDESC; i++) {
2709		rxs = &sc->sc_rxsoft[i];
2710		if (rxs->rxs_mbuf == NULL)
2711			continue;
2712		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2713		m_freem(rxs->rxs_mbuf);
2714		rxs->rxs_mbuf = NULL;
2715	}
2716}
2717
2718/*
2719 * atw_detach:
2720 *
2721 *	Detach an ADM8211 interface.
2722 */
2723int
2724atw_detach(struct atw_softc *sc)
2725{
2726	struct ifnet *ifp = &sc->sc_if;
2727	struct atw_rxsoft *rxs;
2728	struct atw_txsoft *txs;
2729	int i;
2730
2731	/*
2732	 * Succeed now if there isn't any work to do.
2733	 */
2734	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2735		return (0);
2736
2737	callout_stop(&sc->sc_scan_ch);
2738
2739	ieee80211_ifdetach(&sc->sc_ic);
2740	if_detach(ifp);
2741
2742	for (i = 0; i < ATW_NRXDESC; i++) {
2743		rxs = &sc->sc_rxsoft[i];
2744		if (rxs->rxs_mbuf != NULL) {
2745			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2746			m_freem(rxs->rxs_mbuf);
2747			rxs->rxs_mbuf = NULL;
2748		}
2749		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2750	}
2751	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2752		txs = &sc->sc_txsoft[i];
2753		if (txs->txs_mbuf != NULL) {
2754			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2755			m_freem(txs->txs_mbuf);
2756			txs->txs_mbuf = NULL;
2757		}
2758		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2759	}
2760	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2761	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2762	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2763	    sizeof(struct atw_control_data));
2764	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2765
2766	shutdownhook_disestablish(sc->sc_sdhook);
2767	powerhook_disestablish(sc->sc_powerhook);
2768
2769	if (sc->sc_srom)
2770		free(sc->sc_srom, M_DEVBUF);
2771
2772	return (0);
2773}
2774
2775/* atw_shutdown: make sure the interface is stopped at reboot time. */
2776void
2777atw_shutdown(void *arg)
2778{
2779	struct atw_softc *sc = arg;
2780
2781	atw_stop(&sc->sc_if, 1);
2782}
2783
2784int
2785atw_intr(void *arg)
2786{
2787	struct atw_softc *sc = arg;
2788	struct ifnet *ifp = &sc->sc_if;
2789	u_int32_t status, rxstatus, txstatus, linkstatus;
2790	int handled = 0, txthresh;
2791
2792#ifdef DEBUG
2793	if (ATW_IS_ENABLED(sc) == 0)
2794		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2795#endif
2796
2797	/*
2798	 * If the interface isn't running, the interrupt couldn't
2799	 * possibly have come from us.
2800	 */
2801	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2802	    !device_is_active(&sc->sc_dev))
2803		return (0);
2804
2805	for (;;) {
2806		status = ATW_READ(sc, ATW_STSR);
2807
2808		if (status)
2809			ATW_WRITE(sc, ATW_STSR, status);
2810
2811#ifdef ATW_DEBUG
2812#define PRINTINTR(flag) do { \
2813	if ((status & flag) != 0) { \
2814		printf("%s" #flag, delim); \
2815		delim = ","; \
2816	} \
2817} while (0)
2818
2819		if (atw_debug > 1 && status) {
2820			const char *delim = "<";
2821
2822			printf("%s: reg[STSR] = %x",
2823			    sc->sc_dev.dv_xname, status);
2824
2825			PRINTINTR(ATW_INTR_FBE);
2826			PRINTINTR(ATW_INTR_LINKOFF);
2827			PRINTINTR(ATW_INTR_LINKON);
2828			PRINTINTR(ATW_INTR_RCI);
2829			PRINTINTR(ATW_INTR_RDU);
2830			PRINTINTR(ATW_INTR_REIS);
2831			PRINTINTR(ATW_INTR_RPS);
2832			PRINTINTR(ATW_INTR_TCI);
2833			PRINTINTR(ATW_INTR_TDU);
2834			PRINTINTR(ATW_INTR_TLT);
2835			PRINTINTR(ATW_INTR_TPS);
2836			PRINTINTR(ATW_INTR_TRT);
2837			PRINTINTR(ATW_INTR_TUF);
2838			PRINTINTR(ATW_INTR_BCNTC);
2839			PRINTINTR(ATW_INTR_ATIME);
2840			PRINTINTR(ATW_INTR_TBTT);
2841			PRINTINTR(ATW_INTR_TSCZ);
2842			PRINTINTR(ATW_INTR_TSFTF);
2843			printf(">\n");
2844		}
2845#undef PRINTINTR
2846#endif /* ATW_DEBUG */
2847
2848		if ((status & sc->sc_inten) == 0)
2849			break;
2850
2851		handled = 1;
2852
2853		rxstatus = status & sc->sc_rxint_mask;
2854		txstatus = status & sc->sc_txint_mask;
2855		linkstatus = status & sc->sc_linkint_mask;
2856
2857		if (linkstatus) {
2858			atw_linkintr(sc, linkstatus);
2859		}
2860
2861		if (rxstatus) {
2862			/* Grab any new packets. */
2863			atw_rxintr(sc);
2864
2865			if (rxstatus & ATW_INTR_RDU) {
2866				printf("%s: receive ring overrun\n",
2867				    sc->sc_dev.dv_xname);
2868				/* Get the receive process going again. */
2869				ATW_WRITE(sc, ATW_RDR, 0x1);
2870				break;
2871			}
2872		}
2873
2874		if (txstatus) {
2875			/* Sweep up transmit descriptors. */
2876			atw_txintr(sc);
2877
2878			if (txstatus & ATW_INTR_TLT)
2879				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2880				    sc->sc_dev.dv_xname));
2881
2882			if (txstatus & ATW_INTR_TRT)
2883				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2884				    sc->sc_dev.dv_xname));
2885
2886			/* If Tx under-run, increase our transmit threshold
2887			 * if another is available.
2888			 */
2889			txthresh = sc->sc_txthresh + 1;
2890			if ((txstatus & ATW_INTR_TUF) &&
2891			    sc->sc_txth[txthresh].txth_name != NULL) {
2892				/* Idle the transmit process. */
2893				atw_idle(sc, ATW_NAR_ST);
2894
2895				sc->sc_txthresh = txthresh;
2896				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2897				sc->sc_opmode |=
2898				    sc->sc_txth[txthresh].txth_opmode;
2899				printf("%s: transmit underrun; new "
2900				    "threshold: %s\n", sc->sc_dev.dv_xname,
2901				    sc->sc_txth[txthresh].txth_name);
2902
2903				/* Set the new threshold and restart
2904				 * the transmit process.
2905				 */
2906				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2907				DELAY(atw_nar_delay);
2908				ATW_WRITE(sc, ATW_RDR, 0x1);
2909				/* XXX Log every Nth underrun from
2910				 * XXX now on?
2911				 */
2912			}
2913		}
2914
2915		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2916			if (status & ATW_INTR_TPS)
2917				printf("%s: transmit process stopped\n",
2918				    sc->sc_dev.dv_xname);
2919			if (status & ATW_INTR_RPS)
2920				printf("%s: receive process stopped\n",
2921				    sc->sc_dev.dv_xname);
2922			(void)atw_init(ifp);
2923			break;
2924		}
2925
2926		if (status & ATW_INTR_FBE) {
2927			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2928			(void)atw_init(ifp);
2929			break;
2930		}
2931
2932		/*
2933		 * Not handled:
2934		 *
2935		 *	Transmit buffer unavailable -- normal
2936		 *	condition, nothing to do, really.
2937		 *
2938		 *	Early receive interrupt -- not available on
2939		 *	all chips, we just use RI.  We also only
2940		 *	use single-segment receive DMA, so this
2941		 *	is mostly useless.
2942		 *
2943		 *      TBD others
2944		 */
2945	}
2946
2947	/* Try to get more packets going. */
2948	atw_start(ifp);
2949
2950	return (handled);
2951}
2952
2953/*
2954 * atw_idle:
2955 *
2956 *	Cause the transmit and/or receive processes to go idle.
2957 *
2958 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2959 *	process in STSR if I clear SR or ST after the process has already
2960 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2961 *      do not seem to be too reliable. Perhaps I have the sense of the
2962 *	Rx bits switched with the Tx bits?
2963 */
2964void
2965atw_idle(struct atw_softc *sc, u_int32_t bits)
2966{
2967	u_int32_t ackmask = 0, opmode, stsr, test0;
2968	int i, s;
2969
2970	s = splnet();
2971
2972	opmode = sc->sc_opmode & ~bits;
2973
2974	if (bits & ATW_NAR_SR)
2975		ackmask |= ATW_INTR_RPS;
2976
2977	if (bits & ATW_NAR_ST) {
2978		ackmask |= ATW_INTR_TPS;
2979		/* set ATW_NAR_HF to flush TX FIFO. */
2980		opmode |= ATW_NAR_HF;
2981	}
2982
2983	ATW_WRITE(sc, ATW_NAR, opmode);
2984	DELAY(atw_nar_delay);
2985
2986	for (i = 0; i < 1000; i++) {
2987		stsr = ATW_READ(sc, ATW_STSR);
2988		if ((stsr & ackmask) == ackmask)
2989			break;
2990		DELAY(10);
2991	}
2992
2993	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2994
2995	if ((stsr & ackmask) == ackmask)
2996		goto out;
2997
2998	test0 = ATW_READ(sc, ATW_TEST0);
2999
3000	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3001	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3002		printf("%s: transmit process not idle [%s]\n",
3003		    sc->sc_dev.dv_xname,
3004		    atw_tx_state[SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3005		printf("%s: bits %08x test0 %08x stsr %08x\n",
3006		    sc->sc_dev.dv_xname, bits, test0, stsr);
3007	}
3008
3009	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3010	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3011		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3012		    sc->sc_dev.dv_xname,
3013		    atw_rx_state[SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3014		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3015		    sc->sc_dev.dv_xname, bits, test0, stsr));
3016	}
3017out:
3018	if ((bits & ATW_NAR_ST) != 0)
3019		atw_txdrain(sc);
3020	splx(s);
3021	return;
3022}
3023
3024/*
3025 * atw_linkintr:
3026 *
3027 *	Helper; handle link-status interrupts.
3028 */
3029void
3030atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3031{
3032	struct ieee80211com *ic = &sc->sc_ic;
3033
3034	if (ic->ic_state != IEEE80211_S_RUN)
3035		return;
3036
3037	if (linkstatus & ATW_INTR_LINKON) {
3038		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3039		sc->sc_rescan_timer = 0;
3040	} else if (linkstatus & ATW_INTR_LINKOFF) {
3041		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3042		if (ic->ic_opmode != IEEE80211_M_STA)
3043			return;
3044		sc->sc_rescan_timer = 3;
3045		sc->sc_if.if_timer = 1;
3046	}
3047}
3048
3049static inline int
3050atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3051{
3052	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3053		return 0;
3054	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3055		return 0;
3056	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3057}
3058
3059/*
3060 * atw_rxintr:
3061 *
3062 *	Helper; handle receive interrupts.
3063 */
3064void
3065atw_rxintr(struct atw_softc *sc)
3066{
3067	static int rate_tbl[] = {2, 4, 11, 22, 44};
3068	struct ieee80211com *ic = &sc->sc_ic;
3069	struct ieee80211_node *ni;
3070	struct ieee80211_frame_min *wh;
3071	struct ifnet *ifp = &sc->sc_if;
3072	struct atw_rxsoft *rxs;
3073	struct mbuf *m;
3074	u_int32_t rxstat;
3075	int i, len, rate, rate0;
3076	u_int32_t rssi, rssi0;
3077
3078	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3079		rxs = &sc->sc_rxsoft[i];
3080
3081		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3082
3083		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3084		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3085		rate0 = SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3086
3087		if (rxstat & ATW_RXSTAT_OWN)
3088			break; /* We have processed all receive buffers. */
3089
3090		DPRINTF3(sc,
3091		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3092		    sc->sc_dev.dv_xname,
3093		    rxstat, rssi0,
3094		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3095		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3096
3097		/*
3098		 * Make sure the packet fits in one buffer.  This should
3099		 * always be the case.
3100		 */
3101		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3102		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3103			printf("%s: incoming packet spilled, resetting\n",
3104			    sc->sc_dev.dv_xname);
3105			(void)atw_init(ifp);
3106			return;
3107		}
3108
3109		/*
3110		 * If an error occurred, update stats, clear the status
3111		 * word, and leave the packet buffer in place.  It will
3112		 * simply be reused the next time the ring comes around.
3113	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3114		 * error.
3115		 */
3116
3117		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3118		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3119		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3120		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3121				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3122				ATW_RXSTAT_ICVE)) != 0)) {
3123#define	PRINTERR(bit, str)						\
3124			if (rxstat & (bit))				\
3125				printf("%s: receive error: %s\n",	\
3126				    sc->sc_dev.dv_xname, str)
3127			ifp->if_ierrors++;
3128			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3129			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3130			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3131			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3132			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3133			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3134			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3135#undef PRINTERR
3136			ATW_INIT_RXDESC(sc, i);
3137			continue;
3138		}
3139
3140		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3141		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3142
3143		/*
3144		 * No errors; receive the packet.  Note the ADM8211
3145		 * includes the CRC in promiscuous mode.
3146		 */
3147		len = SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3148
3149		/*
3150		 * Allocate a new mbuf cluster.  If that fails, we are
3151		 * out of memory, and must drop the packet and recycle
3152		 * the buffer that's already attached to this descriptor.
3153		 */
3154		m = rxs->rxs_mbuf;
3155		if (atw_add_rxbuf(sc, i) != 0) {
3156			ifp->if_ierrors++;
3157			ATW_INIT_RXDESC(sc, i);
3158			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3159			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3160			continue;
3161		}
3162
3163		ifp->if_ipackets++;
3164		if (sc->sc_opmode & ATW_NAR_PR)
3165			len -= IEEE80211_CRC_LEN;
3166		m->m_pkthdr.rcvif = ifp;
3167		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3168
3169		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3170			rate = 0;
3171		else
3172			rate = rate_tbl[rate0];
3173
3174		/* The RSSI comes straight from a register in the
3175		 * baseband processor.  I know that for the RF3000,
3176		 * the RSSI register also contains the antenna-selection
3177		 * bits.  Mask those off.
3178		 *
3179		 * TBD Treat other basebands.
3180		 */
3181		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3182			rssi = rssi0 & RF3000_RSSI_MASK;
3183		else
3184			rssi = rssi0;
3185
3186 #if NBPFILTER > 0
3187		/* Pass this up to any BPF listeners. */
3188		if (sc->sc_radiobpf != NULL) {
3189			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3190
3191			tap->ar_rate = rate;
3192			tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3193			tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3194
3195			/* TBD verify units are dB */
3196			tap->ar_antsignal = (int)rssi;
3197			/* TBD tap->ar_flags */
3198
3199			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3200			    tap->ar_ihdr.it_len, m);
3201 		}
3202 #endif /* NPBFILTER > 0 */
3203
3204		wh = mtod(m, struct ieee80211_frame_min *);
3205		ni = ieee80211_find_rxnode(ic, wh);
3206#if 0
3207		if (atw_hw_decrypted(sc, wh)) {
3208			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3209			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3210		}
3211#endif
3212		ieee80211_input(ic, m, ni, (int)rssi, 0);
3213		ieee80211_free_node(ni);
3214	}
3215
3216	/* Update the receive pointer. */
3217	sc->sc_rxptr = i;
3218}
3219
3220/*
3221 * atw_txintr:
3222 *
3223 *	Helper; handle transmit interrupts.
3224 */
3225void
3226atw_txintr(struct atw_softc *sc)
3227{
3228#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3229    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3230#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3231    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3232
3233	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3234	struct ifnet *ifp = &sc->sc_if;
3235	struct atw_txsoft *txs;
3236	u_int32_t txstat;
3237
3238	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3239	    sc->sc_dev.dv_xname, sc->sc_flags));
3240
3241	/*
3242	 * Go through our Tx list and free mbufs for those
3243	 * frames that have been transmitted.
3244	 */
3245	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3246		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3247		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3248
3249#ifdef ATW_DEBUG
3250		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3251			int i;
3252			printf("    txsoft %p transmit chain:\n", txs);
3253			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3254			    txs->txs_ndescs - 1,
3255			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3256			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3257				printf("     descriptor %d:\n", i);
3258				printf("       at_status:   0x%08x\n",
3259				    le32toh(sc->sc_txdescs[i].at_stat));
3260				printf("       at_flags:      0x%08x\n",
3261				    le32toh(sc->sc_txdescs[i].at_flags));
3262				printf("       at_buf1: 0x%08x\n",
3263				    le32toh(sc->sc_txdescs[i].at_buf1));
3264				printf("       at_buf2: 0x%08x\n",
3265				    le32toh(sc->sc_txdescs[i].at_buf2));
3266				if (i == txs->txs_lastdesc)
3267					break;
3268			}
3269		}
3270#endif
3271
3272		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3273		if (txstat & ATW_TXSTAT_OWN)
3274			break;
3275
3276		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3277
3278		sc->sc_txfree += txs->txs_ndescs;
3279
3280		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3281		    0, txs->txs_dmamap->dm_mapsize,
3282		    BUS_DMASYNC_POSTWRITE);
3283		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3284		m_freem(txs->txs_mbuf);
3285		txs->txs_mbuf = NULL;
3286
3287		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3288
3289		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3290		        sc->sc_txfree == 0));
3291		ifp->if_flags &= ~IFF_OACTIVE;
3292
3293		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3294		    (txstat & TXSTAT_ERRMASK) != 0) {
3295			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3296			    txstat_buf, sizeof(txstat_buf));
3297			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3298			    txstat_buf,
3299			    SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3300		}
3301
3302		/*
3303		 * Check for errors and collisions.
3304		 */
3305		if (txstat & ATW_TXSTAT_TUF)
3306			sc->sc_stats.ts_tx_tuf++;
3307		if (txstat & ATW_TXSTAT_TLT)
3308			sc->sc_stats.ts_tx_tlt++;
3309		if (txstat & ATW_TXSTAT_TRT)
3310			sc->sc_stats.ts_tx_trt++;
3311		if (txstat & ATW_TXSTAT_TRO)
3312			sc->sc_stats.ts_tx_tro++;
3313		if (txstat & ATW_TXSTAT_SOFBR) {
3314			sc->sc_stats.ts_tx_sofbr++;
3315		}
3316
3317		if ((txstat & ATW_TXSTAT_ES) == 0)
3318			ifp->if_collisions +=
3319			    SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3320		else
3321			ifp->if_oerrors++;
3322
3323		ifp->if_opackets++;
3324	}
3325
3326	/*
3327	 * If there are no more pending transmissions, cancel the watchdog
3328	 * timer.
3329	 */
3330	if (txs == NULL) {
3331		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3332		sc->sc_tx_timer = 0;
3333	}
3334#undef TXSTAT_ERRMASK
3335#undef TXSTAT_FMT
3336}
3337
3338/*
3339 * atw_watchdog:	[ifnet interface function]
3340 *
3341 *	Watchdog timer handler.
3342 */
3343void
3344atw_watchdog(struct ifnet *ifp)
3345{
3346	struct atw_softc *sc = ifp->if_softc;
3347	struct ieee80211com *ic = &sc->sc_ic;
3348
3349	ifp->if_timer = 0;
3350	if (ATW_IS_ENABLED(sc) == 0)
3351		return;
3352
3353	if (sc->sc_rescan_timer) {
3354		if (--sc->sc_rescan_timer == 0)
3355			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3356	}
3357	if (sc->sc_tx_timer) {
3358		if (--sc->sc_tx_timer == 0 &&
3359		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3360			printf("%s: transmit timeout\n", ifp->if_xname);
3361			ifp->if_oerrors++;
3362			(void)atw_init(ifp);
3363			atw_start(ifp);
3364		}
3365	}
3366	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3367		ifp->if_timer = 1;
3368	ieee80211_watchdog(ic);
3369}
3370
3371#ifdef ATW_DEBUG
3372static void
3373atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3374{
3375	struct atw_softc *sc = ifp->if_softc;
3376	struct mbuf *m;
3377	int i, noctets = 0;
3378
3379	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3380	    m0->m_pkthdr.len);
3381
3382	for (m = m0; m; m = m->m_next) {
3383		if (m->m_len == 0)
3384			continue;
3385		for (i = 0; i < m->m_len; i++) {
3386			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3387			if (++noctets % 24 == 0)
3388				printf("\n");
3389		}
3390	}
3391	printf("%s%s: %d bytes emitted\n",
3392	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3393}
3394#endif /* ATW_DEBUG */
3395
3396/*
3397 * atw_start:		[ifnet interface function]
3398 *
3399 *	Start packet transmission on the interface.
3400 */
3401void
3402atw_start(struct ifnet *ifp)
3403{
3404	struct atw_softc *sc = ifp->if_softc;
3405	struct ieee80211_key *k;
3406	struct ieee80211com *ic = &sc->sc_ic;
3407	struct ieee80211_node *ni;
3408	struct ieee80211_frame_min *whm;
3409	struct ieee80211_frame *wh;
3410	struct atw_frame *hh;
3411	struct mbuf *m0, *m;
3412	struct atw_txsoft *txs, *last_txs;
3413	struct atw_txdesc *txd;
3414	int npkt, rate;
3415	bus_dmamap_t dmamap;
3416	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3417
3418	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3419	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3420
3421	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3422		return;
3423
3424	/*
3425	 * Remember the previous number of free descriptors and
3426	 * the first descriptor we'll use.
3427	 */
3428	ofree = sc->sc_txfree;
3429	firsttx = sc->sc_txnext;
3430
3431	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3432	    sc->sc_dev.dv_xname, ofree, firsttx));
3433
3434	/*
3435	 * Loop through the send queue, setting up transmit descriptors
3436	 * until we drain the queue, or use up all available transmit
3437	 * descriptors.
3438	 */
3439	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3440	       sc->sc_txfree != 0) {
3441
3442		/*
3443		 * Grab a packet off the management queue, if it
3444		 * is not empty. Otherwise, from the data queue.
3445		 */
3446		IF_DEQUEUE(&ic->ic_mgtq, m0);
3447		if (m0 != NULL) {
3448			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3449			m0->m_pkthdr.rcvif = NULL;
3450		} else if (ic->ic_state != IEEE80211_S_RUN)
3451			break; /* send no data until associated */
3452		else {
3453			IFQ_DEQUEUE(&ifp->if_snd, m0);
3454			if (m0 == NULL)
3455				break;
3456#if NBPFILTER > 0
3457			if (ifp->if_bpf != NULL)
3458				bpf_mtap(ifp->if_bpf, m0);
3459#endif /* NBPFILTER > 0 */
3460			ni = ieee80211_find_txnode(ic,
3461			    mtod(m0, struct ether_header *)->ether_dhost);
3462			if (ni == NULL) {
3463				ifp->if_oerrors++;
3464				break;
3465			}
3466			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3467				ieee80211_free_node(ni);
3468				ifp->if_oerrors++;
3469				break;
3470			}
3471		}
3472
3473		rate = MAX(ieee80211_get_rate(ic), 2);
3474
3475		whm = mtod(m0, struct ieee80211_frame_min *);
3476
3477		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3478			k = NULL;
3479		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3480			m_freem(m0);
3481			ieee80211_free_node(ni);
3482			ifp->if_oerrors++;
3483			break;
3484		}
3485
3486		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3487		    ic->ic_flags, ic->ic_fragthreshold, rate,
3488		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3489			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3490			m_freem(m0);
3491			break;
3492		}
3493
3494		/* XXX Misleading if fragmentation is enabled.  Better
3495		 * to fragment in software?
3496		 */
3497		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3498
3499#if NBPFILTER > 0
3500		/*
3501		 * Pass the packet to any BPF listeners.
3502		 */
3503		if (ic->ic_rawbpf != NULL)
3504			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3505
3506		if (sc->sc_radiobpf != NULL) {
3507			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3508
3509			tap->at_rate = rate;
3510			tap->at_chan_freq = ic->ic_curchan->ic_freq;
3511			tap->at_chan_flags = ic->ic_curchan->ic_flags;
3512
3513			/* TBD tap->at_flags */
3514
3515			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3516			    tap->at_ihdr.it_len, m0);
3517		}
3518#endif /* NBPFILTER > 0 */
3519
3520		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3521
3522		if (ni != NULL)
3523			ieee80211_free_node(ni);
3524
3525		if (m0 == NULL) {
3526			ifp->if_oerrors++;
3527			break;
3528		}
3529
3530		/* just to make sure. */
3531		m0 = m_pullup(m0, sizeof(struct atw_frame));
3532
3533		if (m0 == NULL) {
3534			ifp->if_oerrors++;
3535			break;
3536		}
3537
3538		hh = mtod(m0, struct atw_frame *);
3539		wh = &hh->atw_ihdr;
3540
3541		/* Copy everything we need from the 802.11 header:
3542		 * Frame Control; address 1, address 3, or addresses
3543		 * 3 and 4. NIC fills in BSSID, SA.
3544		 */
3545		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3546			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3547				panic("%s: illegal WDS frame",
3548				    sc->sc_dev.dv_xname);
3549			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3550		} else
3551			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3552
3553		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3554
3555		/* initialize remaining Tx parameters */
3556		memset(&hh->u, 0, sizeof(hh->u));
3557
3558		hh->atw_rate = rate * 5;
3559		/* XXX this could be incorrect if M_FCS. _encap should
3560		 * probably strip FCS just in case it sticks around in
3561		 * bridged packets.
3562		 */
3563		hh->atw_service = 0x00; /* XXX guess */
3564		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3565		    sizeof(struct atw_frame));
3566
3567		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3568		hh->atw_rtylmt = 3;
3569		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3570#if 0
3571		if (do_encrypt) {
3572			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3573			hh->atw_keyid = ic->ic_def_txkey;
3574		}
3575#endif
3576
3577		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3578		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3579		if (txs->txs_d0.d_residue)
3580			hh->atw_head_plcplen |= htole16(0x8000);
3581		if (txs->txs_dn.d_residue)
3582			hh->atw_tail_plcplen |= htole16(0x8000);
3583		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3584		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3585
3586		/* never fragment multicast frames */
3587		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3588			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3589		} else if (sc->sc_flags & ATWF_RTSCTS) {
3590			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3591		}
3592
3593#ifdef ATW_DEBUG
3594		hh->atw_fragnum = 0;
3595
3596		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3597			printf("%s: dst = %s, rate = 0x%02x, "
3598			    "service = 0x%02x, paylen = 0x%04x\n",
3599			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3600			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3601
3602			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3603			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3604			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3605			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3606			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3607			    hh->atw_tail_dur, hh->atw_head_dur);
3608
3609			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3610			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3611			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3612			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3613
3614			printf("%s: keyid = %d\n",
3615			    sc->sc_dev.dv_xname, hh->atw_keyid);
3616
3617			atw_dump_pkt(ifp, m0);
3618		}
3619#endif /* ATW_DEBUG */
3620
3621		dmamap = txs->txs_dmamap;
3622
3623		/*
3624		 * Load the DMA map.  Copy and try (once) again if the packet
3625		 * didn't fit in the alloted number of segments.
3626		 */
3627		for (first = 1;
3628		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3629		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3630		     first = 0) {
3631			MGETHDR(m, M_DONTWAIT, MT_DATA);
3632			if (m == NULL) {
3633				printf("%s: unable to allocate Tx mbuf\n",
3634				    sc->sc_dev.dv_xname);
3635				break;
3636			}
3637			if (m0->m_pkthdr.len > MHLEN) {
3638				MCLGET(m, M_DONTWAIT);
3639				if ((m->m_flags & M_EXT) == 0) {
3640					printf("%s: unable to allocate Tx "
3641					    "cluster\n", sc->sc_dev.dv_xname);
3642					m_freem(m);
3643					break;
3644				}
3645			}
3646			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3647			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3648			m_freem(m0);
3649			m0 = m;
3650			m = NULL;
3651		}
3652		if (error != 0) {
3653			printf("%s: unable to load Tx buffer, "
3654			    "error = %d\n", sc->sc_dev.dv_xname, error);
3655			m_freem(m0);
3656			break;
3657		}
3658
3659		/*
3660		 * Ensure we have enough descriptors free to describe
3661		 * the packet.
3662		 */
3663		if (dmamap->dm_nsegs > sc->sc_txfree) {
3664			/*
3665			 * Not enough free descriptors to transmit
3666			 * this packet.  Unload the DMA map and
3667			 * drop the packet.  Notify the upper layer
3668			 * that there are no more slots left.
3669			 *
3670			 * XXX We could allocate an mbuf and copy, but
3671			 * XXX it is worth it?
3672			 */
3673			bus_dmamap_unload(sc->sc_dmat, dmamap);
3674			m_freem(m0);
3675			break;
3676		}
3677
3678		/*
3679		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3680		 */
3681
3682		/* Sync the DMA map. */
3683		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3684		    BUS_DMASYNC_PREWRITE);
3685
3686		/* XXX arbitrary retry limit; 8 because I have seen it in
3687		 * use already and maybe 0 means "no tries" !
3688		 */
3689		ctl = htole32(SHIFTIN(8, ATW_TXCTL_TL_MASK));
3690
3691		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3692		    sc->sc_dev.dv_xname, rate * 5));
3693		ctl |= htole32(SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3694
3695		/*
3696		 * Initialize the transmit descriptors.
3697		 */
3698		for (nexttx = sc->sc_txnext, seg = 0;
3699		     seg < dmamap->dm_nsegs;
3700		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3701			/*
3702			 * If this is the first descriptor we're
3703			 * enqueueing, don't set the OWN bit just
3704			 * yet.  That could cause a race condition.
3705			 * We'll do it below.
3706			 */
3707			txd = &sc->sc_txdescs[nexttx];
3708			txd->at_ctl = ctl |
3709			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3710
3711			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3712			txd->at_flags =
3713			    htole32(SHIFTIN(dmamap->dm_segs[seg].ds_len,
3714			                   ATW_TXFLAG_TBS1_MASK)) |
3715			    ((nexttx == (ATW_NTXDESC - 1))
3716			        ? htole32(ATW_TXFLAG_TER) : 0);
3717			lasttx = nexttx;
3718		}
3719
3720		IASSERT(lasttx != -1, ("bad lastx"));
3721		/* Set `first segment' and `last segment' appropriately. */
3722		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3723		    htole32(ATW_TXFLAG_FS);
3724		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3725
3726#ifdef ATW_DEBUG
3727		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3728			printf("     txsoft %p transmit chain:\n", txs);
3729			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3730				printf("     descriptor %d:\n", seg);
3731				printf("       at_ctl:   0x%08x\n",
3732				    le32toh(sc->sc_txdescs[seg].at_ctl));
3733				printf("       at_flags:      0x%08x\n",
3734				    le32toh(sc->sc_txdescs[seg].at_flags));
3735				printf("       at_buf1: 0x%08x\n",
3736				    le32toh(sc->sc_txdescs[seg].at_buf1));
3737				printf("       at_buf2: 0x%08x\n",
3738				    le32toh(sc->sc_txdescs[seg].at_buf2));
3739				if (seg == lasttx)
3740					break;
3741			}
3742		}
3743#endif
3744
3745		/* Sync the descriptors we're using. */
3746		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3747		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3748
3749		/*
3750		 * Store a pointer to the packet so we can free it later,
3751		 * and remember what txdirty will be once the packet is
3752		 * done.
3753		 */
3754		txs->txs_mbuf = m0;
3755		txs->txs_firstdesc = sc->sc_txnext;
3756		txs->txs_lastdesc = lasttx;
3757		txs->txs_ndescs = dmamap->dm_nsegs;
3758
3759		/* Advance the tx pointer. */
3760		sc->sc_txfree -= dmamap->dm_nsegs;
3761		sc->sc_txnext = nexttx;
3762
3763		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3764		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3765
3766		last_txs = txs;
3767	}
3768
3769	if (sc->sc_txfree != ofree) {
3770		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3771		    sc->sc_dev.dv_xname, lasttx, firsttx));
3772		/*
3773		 * Cause a transmit interrupt to happen on the
3774		 * last packet we enqueued.
3775		 */
3776		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3777		ATW_CDTXSYNC(sc, lasttx, 1,
3778		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3779
3780		/*
3781		 * The entire packet chain is set up.  Give the
3782		 * first descriptor to the chip now.
3783		 */
3784		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3785		ATW_CDTXSYNC(sc, firsttx, 1,
3786		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3787
3788		/* Wake up the transmitter. */
3789		ATW_WRITE(sc, ATW_TDR, 0x1);
3790
3791		if (txs == NULL || sc->sc_txfree == 0)
3792			ifp->if_flags |= IFF_OACTIVE;
3793
3794		/* Set a watchdog timer in case the chip flakes out. */
3795		sc->sc_tx_timer = 5;
3796		ifp->if_timer = 1;
3797	}
3798}
3799
3800/*
3801 * atw_power:
3802 *
3803 *	Power management (suspend/resume) hook.
3804 */
3805void
3806atw_power(int why, void *arg)
3807{
3808	struct atw_softc *sc = arg;
3809	struct ifnet *ifp = &sc->sc_if;
3810	int s;
3811
3812	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3813
3814	s = splnet();
3815	switch (why) {
3816	case PWR_STANDBY:
3817		/* XXX do nothing. */
3818		break;
3819	case PWR_SUSPEND:
3820		atw_stop(ifp, 0);
3821		if (sc->sc_power != NULL)
3822			(*sc->sc_power)(sc, why);
3823		break;
3824	case PWR_RESUME:
3825		if (ifp->if_flags & IFF_UP) {
3826			if (sc->sc_power != NULL)
3827				(*sc->sc_power)(sc, why);
3828			atw_init(ifp);
3829		}
3830		break;
3831	case PWR_SOFTSUSPEND:
3832	case PWR_SOFTSTANDBY:
3833	case PWR_SOFTRESUME:
3834		break;
3835	}
3836	splx(s);
3837}
3838
3839/*
3840 * atw_ioctl:		[ifnet interface function]
3841 *
3842 *	Handle control requests from the operator.
3843 */
3844int
3845atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3846{
3847	struct atw_softc *sc = ifp->if_softc;
3848	struct ifreq *ifr = (struct ifreq *)data;
3849	int s, error = 0;
3850
3851	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3852	if (!device_is_active(&sc->sc_dev))
3853		return ENXIO;
3854
3855	s = splnet();
3856
3857	switch (cmd) {
3858	case SIOCSIFFLAGS:
3859		if (ifp->if_flags & IFF_UP) {
3860			if (ATW_IS_ENABLED(sc)) {
3861				/*
3862				 * To avoid rescanning another access point,
3863				 * do not call atw_init() here.  Instead,
3864				 * only reflect media settings.
3865				 */
3866				atw_filter_setup(sc);
3867			} else
3868				error = atw_init(ifp);
3869		} else if (ATW_IS_ENABLED(sc))
3870			atw_stop(ifp, 1);
3871		break;
3872	case SIOCADDMULTI:
3873	case SIOCDELMULTI:
3874		error = (cmd == SIOCADDMULTI) ?
3875		    ether_addmulti(ifr, &sc->sc_ec) :
3876		    ether_delmulti(ifr, &sc->sc_ec);
3877		if (error == ENETRESET) {
3878			if (ifp->if_flags & IFF_RUNNING)
3879				atw_filter_setup(sc); /* do not rescan */
3880			error = 0;
3881		}
3882		break;
3883	default:
3884		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3885		if (error == ENETRESET || error == ERESTART) {
3886			if (is_running(ifp))
3887				error = atw_init(ifp);
3888			else
3889				error = 0;
3890		}
3891		break;
3892	}
3893
3894	/* Try to get more packets going. */
3895	if (ATW_IS_ENABLED(sc))
3896		atw_start(ifp);
3897
3898	splx(s);
3899	return (error);
3900}
3901
3902static int
3903atw_media_change(struct ifnet *ifp)
3904{
3905	int error;
3906
3907	error = ieee80211_media_change(ifp);
3908	if (error == ENETRESET) {
3909		if (is_running(ifp))
3910			error = atw_init(ifp);
3911		else
3912			error = 0;
3913	}
3914	return error;
3915}
3916