atw.c revision 1.1
1/*	$NetBSD: atw.c,v 1.1 2003/07/06 22:58:08 dyoung Exp $	*/
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41 */
42
43#include <sys/cdefs.h>
44__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.1 2003/07/06 22:58:08 dyoung Exp $");
45
46#include "bpfilter.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/callout.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/kernel.h>
54#include <sys/socket.h>
55#include <sys/ioctl.h>
56#include <sys/errno.h>
57#include <sys/device.h>
58#include <sys/time.h>
59
60#include <machine/endian.h>
61
62#include <uvm/uvm_extern.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_ether.h>
68#include <net/if_ieee80211.h>
69
70#if NBPFILTER > 0
71#include <net/bpf.h>
72#endif
73
74#include <machine/bus.h>
75#include <machine/intr.h>
76
77#include <dev/ic/atwreg.h>
78#include <dev/ic/atwvar.h>
79#include <dev/ic/smc93cx6var.h>
80
81/* XXX TBD open questions
82 *
83 *
84 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
85 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
86 * handle this for me?
87 *
88 */
89/* device attachment
90 *
91 *    print TOFS[012]
92 *
93 * device initialization
94 *
95 *    clear ATW_FRCTL_MAXPSP to disable max power saving
96 *    set ATW_TXBR_ALCUPDATE to enable ALC
97 *    set TOFS[012]? (hope not)
98 *    disable rx/tx
99 *    set ATW_PAR_SWR (software reset)
100 *    wait for ATW_PAR_SWR clear
101 *    disable interrupts
102 *    ack status register
103 *    enable interrupts
104 *
105 * rx/tx initialization
106 *
107 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
108 *    allocate and init descriptor rings
109 *    write ATW_PAR_DSL (descriptor skip length)
110 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
111 *    write ATW_NAR_SQ for one/both transmit descriptor rings
112 *    write ATW_NAR_SQ for one/both transmit descriptor rings
113 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114 *
115 * rx/tx end
116 *
117 *    stop DMA
118 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119 *    flush tx w/ ATW_NAR_HF
120 *
121 * scan
122 *
123 *    initialize rx/tx
124 *
125 * IBSS join/create
126 *
127 *    set ATW_NAR_EA (is set by ASIC?)
128 *
129 * BSS join: (re)association response
130 *
131 *    set ATW_FRCTL_AID
132 *
133 * optimizations ???
134 *
135 */
136
137#define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
138#define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
139int atw_voodoo = VOODOO_DUR_11_ROUNDING;
140
141int atw_rfio_enable_delay = 20 * 1000;
142int atw_rfio_disable_delay = 2 * 1000;
143int atw_writewep_delay = 5;
144int atw_beacon_len_adjust = 4;
145
146#ifdef ATW_DEBUG
147int atw_xhdrctl = 0;
148int atw_xrtylmt = ~0;
149int atw_xservice = IEEE80211_PLCP_SERVICE;
150int atw_xpaylen = 0;
151
152int atw_debug = 0;
153
154#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
155#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
156#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
157#define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
158#define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159#define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160static void atw_print_regs(struct atw_softc *, const char *);
161static void atw_rf3000_print(struct atw_softc *);
162static void atw_si4126_print(struct atw_softc *);
163static void atw_dump_pkt(struct ifnet *, struct mbuf *);
164#else
165#define ATW_DPRINTF(x)
166#define ATW_DPRINTF2(x)
167#define ATW_DPRINTF3(x)
168#define	DPRINTF(sc, x)	/* nothing */
169#define	DPRINTF2(sc, x)	/* nothing */
170#define	DPRINTF3(sc, x)	/* nothing */
171#endif
172
173#ifdef ATW_STATS
174void	atw_print_stats __P((struct atw_softc *));
175#endif
176
177void	atw_start __P((struct ifnet *));
178void	atw_watchdog __P((struct ifnet *));
179int	atw_ioctl __P((struct ifnet *, u_long, caddr_t));
180int	atw_init __P((struct ifnet *));
181void	atw_stop __P((struct ifnet *, int));
182
183void	atw_reset __P((struct atw_softc *));
184int	atw_read_srom __P((struct atw_softc *));
185
186void	atw_shutdown __P((void *));
187
188void	atw_rxdrain __P((struct atw_softc *));
189int	atw_add_rxbuf __P((struct atw_softc *, int));
190void	atw_idle __P((struct atw_softc *, u_int32_t));
191
192int	atw_enable __P((struct atw_softc *));
193void	atw_disable __P((struct atw_softc *));
194void	atw_power __P((int, void *));
195
196void	atw_rxintr __P((struct atw_softc *));
197void	atw_txintr __P((struct atw_softc *));
198void	atw_linkintr __P((struct atw_softc *, u_int32_t));
199
200static int atw_newstate(void *, enum ieee80211_state);
201static void atw_tsf(struct atw_softc *);
202static void atw_start_beacon(struct atw_softc *, int);
203static void atw_write_wep(struct atw_softc *);
204static void atw_write_bssid(struct atw_softc *);
205static void atw_write_bcn_thresh(struct atw_softc *);
206static void atw_write_ssid(struct atw_softc *);
207static void atw_write_sup_rates(struct atw_softc *);
208static void atw_clear_sram(struct atw_softc *);
209static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
210static void atw_media_status(struct ifnet *, struct ifmediareq *);
211static void atw_filter_setup(struct atw_softc *);
212static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
213static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
214static void atw_recv_beacon(struct ieee80211com *, struct mbuf *, int,
215    u_int32_t);
216
217static int atw_tune(struct atw_softc *);
218
219static void atw_rfio_enable(struct atw_softc *, int);
220
221/* RFMD RF3000 Baseband Processor */
222static int atw_rf3000_init(struct atw_softc *);
223static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
224static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
225#ifdef ATW_DEBUG
226static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
227#endif /* ATW_DEBUG */
228
229/* Silicon Laboratories Si4126 RF/IF Synthesizer */
230static int atw_si4126_tune(struct atw_softc *, u_int8_t);
231static int atw_si4126_write(struct atw_softc *, u_int, u_int);
232#ifdef ATW_DEBUG
233static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
234#endif /* ATW_DEBUG */
235
236const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
237const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
238
239const char *atw_tx_state[] = {
240	"STOPPED",
241	"RUNNING - FETCH",
242	"RUNNING - WAIT",
243	"RUNNING - READING",
244	"-- RESERVED1 --",
245	"-- RESERVED2 --",
246	"SUSPENDED",
247	"RUNNING - CLOSE"
248};
249
250const char *atw_rx_state[] = {
251	"STOPPED",
252	"RUNNING - FETCH",
253	"RUNNING - CHECK",
254	"RUNNING - WAIT",
255	"SUSPENDED",
256	"RUNNING - CLOSE",
257	"RUNNING - FLUSH",
258	"RUNNING - QUEUE"
259};
260
261int
262atw_activate(struct device *self, enum devact act)
263{
264	struct atw_softc *sc = (struct atw_softc *)self;
265	int rv = 0, s;
266
267	s = splnet();
268	switch (act) {
269	case DVACT_ACTIVATE:
270		rv = EOPNOTSUPP;
271		break;
272
273	case DVACT_DEACTIVATE:
274		if_deactivate(&sc->sc_ic.ic_if);
275		break;
276	}
277	splx(s);
278	return rv;
279}
280
281/*
282 * atw_enable:
283 *
284 *	Enable the ADM8211 chip.
285 */
286int
287atw_enable(sc)
288	struct atw_softc *sc;
289{
290
291	if (ATW_IS_ENABLED(sc) == 0) {
292		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293			printf("%s: device enable failed\n",
294			    sc->sc_dev.dv_xname);
295			return (EIO);
296		}
297		sc->sc_flags |= ATWF_ENABLED;
298	}
299	return (0);
300}
301
302/*
303 * atw_disable:
304 *
305 *	Disable the ADM8211 chip.
306 */
307void
308atw_disable(sc)
309	struct atw_softc *sc;
310{
311	if (!ATW_IS_ENABLED(sc))
312		return;
313	if (sc->sc_disable != NULL)
314		(*sc->sc_disable)(sc);
315	sc->sc_flags &= ~ATWF_ENABLED;
316}
317
318/* Returns -1 on failure. */
319int
320atw_read_srom(struct atw_softc *sc)
321{
322	struct seeprom_descriptor sd;
323	u_int32_t reg;
324
325	(void)memset(&sd, 0, sizeof(sd));
326
327	reg = ATW_READ(sc, ATW_TEST0);
328
329	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
330		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
331		return -1;
332	}
333
334	switch (reg & ATW_TEST0_EPTYP_MASK) {
335	case ATW_TEST0_EPTYP_93c66:
336		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
337		sc->sc_sromsz = 512;
338		sd.sd_chip = C56_66;
339		break;
340	case ATW_TEST0_EPTYP_93c46:
341		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
342		sc->sc_sromsz = 128;
343		sd.sd_chip = C46;
344		break;
345	default:
346		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
347		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
348		return -1;
349	}
350
351	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
352
353	if (sc->sc_srom == NULL) {
354		printf("%s: unable to allocate SROM buffer\n",
355		    sc->sc_dev.dv_xname);
356		return -1;
357	}
358
359	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
360
361	/* ADM8211 has a single 32-bit register for controlling the
362	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
363	 * "ready" bit. The ADM8211 input/output sense is the reverse
364	 * of read_seeprom's.
365	 */
366	sd.sd_tag = sc->sc_st;
367	sd.sd_bsh = sc->sc_sh;
368	sd.sd_regsize = 4;
369	sd.sd_control_offset = ATW_SPR;
370	sd.sd_status_offset = ATW_SPR;
371	sd.sd_dataout_offset = ATW_SPR;
372	sd.sd_CK = ATW_SPR_SCLK;
373	sd.sd_CS = ATW_SPR_SCS;
374	sd.sd_DI = ATW_SPR_SDO;
375	sd.sd_DO = ATW_SPR_SDI;
376	sd.sd_MS = ATW_SPR_SRS;
377	sd.sd_RDY = 0;
378
379	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
380		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
381		free(sc->sc_srom, M_DEVBUF);
382		return -1;
383	}
384#ifdef ATW_DEBUG
385	{
386		int i;
387		ATW_DPRINTF2(("\nSerial EEPROM:\n\t"));
388		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
389			if (((i % 8) == 0) && (i != 0)) {
390				ATW_DPRINTF2(("\n\t"));
391			}
392			ATW_DPRINTF2((" 0x%x", sc->sc_srom[i]));
393		}
394		ATW_DPRINTF2(("\n"));
395	}
396#endif /* ATW_DEBUG */
397	return 0;
398}
399
400#ifdef ATW_DEBUG
401static void
402atw_print_regs(struct atw_softc *sc, const char *where)
403{
404#define PRINTREG(sc, reg) \
405	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
406	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
407
408	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
409
410	PRINTREG(sc, ATW_PAR);
411	PRINTREG(sc, ATW_FRCTL);
412	PRINTREG(sc, ATW_TDR);
413	PRINTREG(sc, ATW_WTDP);
414	PRINTREG(sc, ATW_RDR);
415	PRINTREG(sc, ATW_WRDP);
416	PRINTREG(sc, ATW_RDB);
417	PRINTREG(sc, ATW_CSR3A);
418	PRINTREG(sc, ATW_TDBD);
419	PRINTREG(sc, ATW_TDBP);
420	PRINTREG(sc, ATW_STSR);
421	PRINTREG(sc, ATW_CSR5A);
422	PRINTREG(sc, ATW_NAR);
423	PRINTREG(sc, ATW_CSR6A);
424	PRINTREG(sc, ATW_IER);
425	PRINTREG(sc, ATW_CSR7A);
426	PRINTREG(sc, ATW_LPC);
427	PRINTREG(sc, ATW_TEST1);
428	PRINTREG(sc, ATW_SPR);
429	PRINTREG(sc, ATW_TEST0);
430	PRINTREG(sc, ATW_WCSR);
431	PRINTREG(sc, ATW_WPDR);
432	PRINTREG(sc, ATW_GPTMR);
433	PRINTREG(sc, ATW_GPIO);
434	PRINTREG(sc, ATW_BBPCTL);
435	PRINTREG(sc, ATW_SYNCTL);
436	PRINTREG(sc, ATW_PLCPHD);
437	PRINTREG(sc, ATW_MMIWADDR);
438	PRINTREG(sc, ATW_MMIRADDR1);
439	PRINTREG(sc, ATW_MMIRADDR2);
440	PRINTREG(sc, ATW_TXBR);
441	PRINTREG(sc, ATW_CSR15A);
442	PRINTREG(sc, ATW_ALCSTAT);
443	PRINTREG(sc, ATW_TOFS2);
444	PRINTREG(sc, ATW_CMDR);
445	PRINTREG(sc, ATW_PCIC);
446	PRINTREG(sc, ATW_PMCSR);
447	PRINTREG(sc, ATW_PAR0);
448	PRINTREG(sc, ATW_PAR1);
449	PRINTREG(sc, ATW_MAR0);
450	PRINTREG(sc, ATW_MAR1);
451	PRINTREG(sc, ATW_ATIMDA0);
452	PRINTREG(sc, ATW_ABDA1);
453	PRINTREG(sc, ATW_BSSID0);
454	PRINTREG(sc, ATW_TXLMT);
455	PRINTREG(sc, ATW_MIBCNT);
456	PRINTREG(sc, ATW_BCNT);
457	PRINTREG(sc, ATW_TSFTH);
458	PRINTREG(sc, ATW_TSC);
459	PRINTREG(sc, ATW_SYNRF);
460	PRINTREG(sc, ATW_BPLI);
461	PRINTREG(sc, ATW_CAP0);
462	PRINTREG(sc, ATW_CAP1);
463	PRINTREG(sc, ATW_RMD);
464	PRINTREG(sc, ATW_CFPP);
465	PRINTREG(sc, ATW_TOFS0);
466	PRINTREG(sc, ATW_TOFS1);
467	PRINTREG(sc, ATW_IFST);
468	PRINTREG(sc, ATW_RSPT);
469	PRINTREG(sc, ATW_TSFTL);
470	PRINTREG(sc, ATW_WEPCTL);
471	PRINTREG(sc, ATW_WESK);
472	PRINTREG(sc, ATW_WEPCNT);
473	PRINTREG(sc, ATW_MACTEST);
474	PRINTREG(sc, ATW_FER);
475	PRINTREG(sc, ATW_FEMR);
476	PRINTREG(sc, ATW_FPSR);
477	PRINTREG(sc, ATW_FFER);
478#undef PRINTREG
479}
480#endif /* ATW_DEBUG */
481
482/*
483 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
484 */
485void
486atw_attach(struct atw_softc *sc)
487{
488	struct ieee80211com *ic = &sc->sc_ic;
489	struct ifnet *ifp = &ic->ic_if;
490	int country_code, error, i, nrate;
491	u_int32_t reg;
492	static const char *type_strings[] = {"Intersil (not supported)",
493	    "RFMD", "Marvel (not supported)"};
494	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
495		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
496	};
497
498	sc->sc_txth = atw_txthresh_tab_lo;
499
500	SIMPLEQ_INIT(&sc->sc_txfreeq);
501	SIMPLEQ_INIT(&sc->sc_txdirtyq);
502
503#ifdef ATW_DEBUG
504	atw_print_regs(sc, "atw_attach");
505#endif /* ATW_DEBUG */
506
507	/*
508	 * Allocate the control data structures, and create and load the
509	 * DMA map for it.
510	 */
511	if ((error = bus_dmamem_alloc(sc->sc_dmat,
512	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
513	    1, &sc->sc_cdnseg, 0)) != 0) {
514		printf("%s: unable to allocate control data, error = %d\n",
515		    sc->sc_dev.dv_xname, error);
516		goto fail_0;
517	}
518
519	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
520	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
521	    BUS_DMA_COHERENT)) != 0) {
522		printf("%s: unable to map control data, error = %d\n",
523		    sc->sc_dev.dv_xname, error);
524		goto fail_1;
525	}
526
527	if ((error = bus_dmamap_create(sc->sc_dmat,
528	    sizeof(struct atw_control_data), 1,
529	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
530		printf("%s: unable to create control data DMA map, "
531		    "error = %d\n", sc->sc_dev.dv_xname, error);
532		goto fail_2;
533	}
534
535	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
536	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
537	    0)) != 0) {
538		printf("%s: unable to load control data DMA map, error = %d\n",
539		    sc->sc_dev.dv_xname, error);
540		goto fail_3;
541	}
542
543	/*
544	 * Create the transmit buffer DMA maps.
545	 */
546	sc->sc_ntxsegs = ATW_NTXSEGS;
547	for (i = 0; i < ATW_TXQUEUELEN; i++) {
548		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
549		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
550		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
551			printf("%s: unable to create tx DMA map %d, "
552			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
553			goto fail_4;
554		}
555	}
556
557	/*
558	 * Create the receive buffer DMA maps.
559	 */
560	for (i = 0; i < ATW_NRXDESC; i++) {
561		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
562		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
563			printf("%s: unable to create rx DMA map %d, "
564			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
565			goto fail_5;
566		}
567		sc->sc_rxsoft[i].rxs_mbuf = NULL;
568	}
569
570	/* Reset the chip to a known state. */
571	atw_reset(sc);
572
573	if (atw_read_srom(sc) == -1)
574		return;
575
576	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
577	    ATW_SR_RFTYPE_MASK);
578
579	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
580	    ATW_SR_BBPTYPE_MASK);
581
582	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
583		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
584		return;
585	}
586	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
587		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
588		return;
589	}
590
591	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
592	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
593
594	/* XXX There exists a Linux driver which seems to use RFType = 0 for
595	 * MARVEL. My bug, or theirs?
596	 */
597
598	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
599
600	switch (sc->sc_rftype) {
601	case ATW_RFTYPE_INTERSIL:
602		reg |= ATW_SYNCTL_CS1;
603		break;
604	case ATW_RFTYPE_RFMD:
605		reg |= ATW_SYNCTL_CS0;
606		break;
607	case ATW_RFTYPE_MARVEL:
608		break;
609	}
610
611	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
612	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
613
614	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
615
616	switch (sc->sc_bbptype) {
617	case ATW_RFTYPE_INTERSIL:
618		reg |= ATW_BBPCTL_TWI;
619		break;
620	case ATW_RFTYPE_RFMD:
621		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
622		    ATW_BBPCTL_CCA_ACTLO;
623		break;
624	case ATW_RFTYPE_MARVEL:
625		break;
626	}
627
628	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
629	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
630
631	/*
632	 * From this point forward, the attachment cannot fail.  A failure
633	 * before this point releases all resources that may have been
634	 * allocated.
635	 */
636	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
637
638	ATW_DPRINTF2((" SROM MAC %04x%04x%04x",
639	    htole16(sc->sc_srom[ATW_SR_MAC00]),
640	    htole16(sc->sc_srom[ATW_SR_MAC01]),
641	    htole16(sc->sc_srom[ATW_SR_MAC10])));
642
643	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
644	    ATW_SR_CTRY_MASK);
645
646	/* Find available channels */
647	switch (country_code) {
648	case COUNTRY_MMK2:	/* 1-14 */
649		setbit(ic->ic_chan_avail, 14);
650		break;
651	case COUNTRY_ETSI:	/* 1-13 */
652		for (i = 1; i <= 13; i++)
653			setbit(ic->ic_chan_avail, i);
654		break;
655	case COUNTRY_FCC:	/* 1-11 */
656	case COUNTRY_IC:	/* 1-11 */
657		for (i = 1; i <= 11; i++)
658			setbit(ic->ic_chan_avail, i);
659		break;
660	case COUNTRY_MMK:	/* 14 */
661		setbit(ic->ic_chan_avail, 14);
662		break;
663	case COUNTRY_FRANCE:	/* 10-13 */
664		for (i = 10; i <= 13; i++)
665			setbit(ic->ic_chan_avail, i);
666		break;
667	default:	/* assume channels 10-11 */
668	case COUNTRY_SPAIN:	/* 10-11 */
669		for (i = 10; i <= 11; i++)
670			setbit(ic->ic_chan_avail, i);
671		break;
672	}
673
674	/* Read the MAC address. */
675	reg = ATW_READ(sc, ATW_PAR0);
676	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
677	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
678	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
679	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
680	reg = ATW_READ(sc, ATW_PAR1);
681	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
682	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
683
684	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
685		printf(" could not get mac address, attach failed\n");
686		return;
687	}
688
689	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
690
691	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
692	ifp->if_softc = sc;
693	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
694	    IFF_NOTRAILERS;
695	ifp->if_ioctl = atw_ioctl;
696	ifp->if_start = atw_start;
697	ifp->if_watchdog = atw_watchdog;
698	ifp->if_init = atw_init;
699	ifp->if_stop = atw_stop;
700	IFQ_SET_READY(&ifp->if_snd);
701
702	ic->ic_phytype = IEEE80211_T_DS;
703	ic->ic_opmode = IEEE80211_M_STA;
704	ic->ic_flags = IEEE80211_F_HASPMGT | IEEE80211_F_HASIBSS |
705	    IEEE80211_F_HASHOSTAP | IEEE80211_F_HASWEP;
706	ic->ic_state = IEEE80211_S_INIT;
707	ic->ic_newstate = atw_newstate;
708
709#if 0
710	ic->ic_pfxlen = offsetof(struct atw_frame, atw_ihdr);
711#endif
712	ic->ic_hdrlen = sizeof(struct ieee80211_frame_addr4);
713
714	nrate = 0;
715	ic->ic_sup_rates[nrate++] = 2;
716	ic->ic_sup_rates[nrate++] = 4;
717	ic->ic_sup_rates[nrate++] = 11;
718	ic->ic_sup_rates[nrate++] = 22;
719
720	/*
721	 * Call MI attach routines.
722	 */
723
724	if_attach(ifp);
725	ieee80211_ifattach(ifp);
726
727	callout_init(&sc->sc_scan_timer);
728
729	/* hardware answers probe request */
730	ic->ic_recv_mgmt[IEEE80211_FC0_SUBTYPE_PROBE_REQ
731	    >> IEEE80211_FC0_SUBTYPE_SHIFT] = NULL;
732
733        /* NB: override default setting */
734	ic->ic_media.ifm_status = atw_media_status;
735
736	/* possibly we should fill in our own sc_send_prresp, since
737	 * the ADM8211 is probably sending probe responses in ad hoc
738	 * mode.
739	 */
740
741	sc->sc_recv_beacon =
742	    ic->ic_recv_mgmt[IEEE80211_FC0_SUBTYPE_BEACON >>
743	        IEEE80211_FC0_SUBTYPE_SHIFT];
744	sc->sc_recv_prresp =
745	    ic->ic_recv_mgmt[IEEE80211_FC0_SUBTYPE_PROBE_RESP >>
746	        IEEE80211_FC0_SUBTYPE_SHIFT];
747
748	ic->ic_recv_mgmt[IEEE80211_FC0_SUBTYPE_BEACON
749	    >> IEEE80211_FC0_SUBTYPE_SHIFT] = atw_recv_beacon;
750	ic->ic_recv_mgmt[IEEE80211_FC0_SUBTYPE_PROBE_RESP
751	    >> IEEE80211_FC0_SUBTYPE_SHIFT] = atw_recv_beacon;
752#if 0
753#if NBPFILTER > 0
754	bpfattach2(ifp, DLT_IEEE802_11_RADIO, /* ??? */,
755		   &sc->sc_radiobpf);
756#endif
757#endif
758
759	/*
760	 * Make sure the interface is shutdown during reboot.
761	 */
762	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
763	if (sc->sc_sdhook == NULL)
764		printf("%s: WARNING: unable to establish shutdown hook\n",
765		    sc->sc_dev.dv_xname);
766
767	/*
768	 * Add a suspend hook to make sure we come back up after a
769	 * resume.
770	 */
771	sc->sc_powerhook = powerhook_establish(atw_power, sc);
772	if (sc->sc_powerhook == NULL)
773		printf("%s: WARNING: unable to establish power hook\n",
774		    sc->sc_dev.dv_xname);
775
776	return;
777
778	/*
779	 * Free any resources we've allocated during the failed attach
780	 * attempt.  Do this in reverse order and fall through.
781	 */
782 fail_5:
783	for (i = 0; i < ATW_NRXDESC; i++) {
784		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
785			continue;
786		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
787	}
788 fail_4:
789	for (i = 0; i < ATW_TXQUEUELEN; i++) {
790		if (sc->sc_txsoft[i].txs_dmamap == NULL)
791			continue;
792		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
793	}
794	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
795 fail_3:
796	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
797 fail_2:
798	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
799	    sizeof(struct atw_control_data));
800 fail_1:
801	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
802 fail_0:
803	return;
804}
805
806/*
807 * atw_reset:
808 *
809 *	Perform a soft reset on the ADM8211.
810 */
811void
812atw_reset(sc)
813	struct atw_softc *sc;
814{
815	int i;
816
817	if (ATW_IS_ENABLED(sc) == 0)
818		return;
819
820	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
821
822	for (i = 0; i < 10000; i++) {
823		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
824			break;
825		DELAY(1);
826	}
827
828	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
829
830	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
831		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
832
833	/* Turn off maximum power saving. */
834	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
835
836	/* Recall EEPROM. */
837	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
838
839	DELAY(10 * 1000);
840
841	/* A reset seems to affect the SRAM contents, so put them into
842	 * a known state.
843	 */
844	atw_clear_sram(sc);
845
846	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
847
848	sc->sc_lost_bcn_thresh = 0;
849}
850
851static void
852atw_clear_sram(sc)
853	struct atw_softc *sc;
854{
855#if 0
856	for (addr = 0; addr < 448; addr++) {
857		ATW_WRITE(sc, ATW_WEPCTL,
858		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
859		DELAY(1000);
860		ATW_WRITE(sc, ATW_WESK, 0);
861		DELAY(1000); /* paranoia */
862	}
863	return;
864#endif
865	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
866	/* XXX not for revision 0x20. */
867	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
868}
869
870/* TBD atw_init
871 *
872 * set MAC based on ic->ic_bss.myaddr
873 * write WEP keys
874 * set TX rate
875 */
876
877/*
878 * atw_init:		[ ifnet interface function ]
879 *
880 *	Initialize the interface.  Must be called at splnet().
881 */
882int
883atw_init(ifp)
884	struct ifnet *ifp;
885{
886	struct atw_softc *sc = ifp->if_softc;
887	struct ieee80211com *ic = &sc->sc_ic;
888	struct atw_txsoft *txs;
889	struct atw_rxsoft *rxs;
890	u_int32_t reg;
891	int i, error = 0;
892
893	if ((error = atw_enable(sc)) != 0)
894		goto out;
895
896	/*
897	 * Cancel any pending I/O. This also resets.
898	 */
899	atw_stop(ifp, 0);
900
901	/* Turn off APM??? (A binary-only driver does this.)
902	 *
903	 * Set Rx store-and-forward mode.
904	 */
905	reg = ATW_READ(sc, ATW_CMDR);
906	reg &= ~ATW_CMDR_APM;
907	reg &= ~ATW_CMDR_DRT_MASK;
908	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
909
910	ATW_WRITE(sc, ATW_CMDR, reg);
911
912	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
913	 *
914	 * XXX a binary-only driver sets a different service field than
915	 * 0. why?
916	 */
917	reg = ATW_READ(sc, ATW_PLCPHD);
918	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
919	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
920	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
921	ATW_WRITE(sc, ATW_PLCPHD, reg);
922
923	/* XXX */
924	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
925	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
926	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
927	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
928	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
929	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
930	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
931	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
932	ATW_WRITE(sc, ATW_TOFS2, reg);
933
934	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
935	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
936
937	/* XXX this resets an Intersil RF front-end? */
938	/* TBD condition on Intersil RFType? */
939	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
940	DELAY(10 * 1000);
941	ATW_WRITE(sc, ATW_SYNRF, 0);
942	DELAY(5 * 1000);
943
944	/* 16 TU max duration for contention-free period */
945	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
946	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
947
948	/* XXX I guess that the Cardbus clock is 22MHz?
949	 * I am assuming that the role of ATW_TOFS0_USCNT is
950	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
951	 * very clear on this point. It says in the datasheet that it is
952	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
953	 * and 33MHz; maybe this is the way? I see a binary-only driver write
954	 * these values. These values are also the power-on default.
955	 */
956	ATW_WRITE(sc, ATW_TOFS0,
957	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
958	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
959
960	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
961	 * driver. go figure.
962	 */
963	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
964	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
965	             ATW_IFST_SIFS_MASK) |
966	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
967	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
968
969	ATW_WRITE(sc, ATW_IFST, reg);
970
971	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
972	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
973
974	/* Set up the MMI read/write addresses for the BBP.
975	 *
976	 * TBD find out the Marvel settings.
977	 */
978	switch (sc->sc_bbptype) {
979	case ATW_BBPTYPE_INTERSIL:
980		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
981		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
982		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
983		break;
984	case ATW_BBPTYPE_MARVEL:
985		break;
986	case ATW_BBPTYPE_RFMD:
987		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
988		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
989		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
990	default:
991		break;
992	}
993
994	sc->sc_wepctl = 0;
995	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
996
997	if ((error = atw_rf3000_init(sc)) != 0)
998		goto out;
999
1000	/*
1001	 * Initialize the PCI Access Register.
1002	 */
1003	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
1004
1005	/*
1006	 * If we're allowed to do so, use Memory Read Line
1007	 * and Memory Read Multiple.
1008	 *
1009	 * XXX Should we use Memory Write and Invalidate?
1010	 */
1011	if (sc->sc_flags & ATWF_MRL)
1012		sc->sc_busmode |= ATW_PAR_MRLE;
1013	if (sc->sc_flags & ATWF_MRM)
1014		sc->sc_busmode |= ATW_PAR_MRME;
1015	if (sc->sc_flags & ATWF_MWI)
1016		sc->sc_busmode |= ATW_PAR_MWIE;
1017	if (sc->sc_maxburst == 0)
1018		sc->sc_maxburst = 8;	/* ADM8211 default */
1019
1020	switch (sc->sc_cacheline) {
1021	default:
1022		/* Use burst length. */
1023		break;
1024	case 8:
1025		sc->sc_busmode |= ATW_PAR_CAL_8DW;
1026		break;
1027	case 16:
1028		sc->sc_busmode |= ATW_PAR_CAL_16DW;
1029		break;
1030	case 32:
1031		sc->sc_busmode |= ATW_PAR_CAL_32DW;
1032		break;
1033	}
1034	switch (sc->sc_maxburst) {
1035	case 1:
1036		sc->sc_busmode |= ATW_PAR_PBL_1DW;
1037		break;
1038	case 2:
1039		sc->sc_busmode |= ATW_PAR_PBL_2DW;
1040		break;
1041	case 4:
1042		sc->sc_busmode |= ATW_PAR_PBL_4DW;
1043		break;
1044	case 8:
1045		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1046		break;
1047	case 16:
1048		sc->sc_busmode |= ATW_PAR_PBL_16DW;
1049		break;
1050	case 32:
1051		sc->sc_busmode |= ATW_PAR_PBL_32DW;
1052		break;
1053	default:
1054		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1055		break;
1056	}
1057
1058	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1059	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1060	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1061
1062	/*
1063	 * Initialize the OPMODE register.  We don't write it until
1064	 * we're ready to begin the transmit and receive processes.
1065	 */
1066	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1067	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1068
1069	/*
1070	 * Initialize the transmit descriptor ring.
1071	 */
1072	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1073	for (i = 0; i < ATW_NTXDESC; i++) {
1074		/* no transmit chaining */
1075		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1076		sc->sc_txdescs[i].at_buf2 =
1077		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1078	}
1079	/* use ring mode */
1080	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1081	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1082	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083	sc->sc_txfree = ATW_NTXDESC;
1084	sc->sc_txnext = 0;
1085
1086	/*
1087	 * Initialize the transmit job descriptors.
1088	 */
1089	SIMPLEQ_INIT(&sc->sc_txfreeq);
1090	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1091	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1092		txs = &sc->sc_txsoft[i];
1093		txs->txs_mbuf = NULL;
1094		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1095	}
1096
1097	/*
1098	 * Initialize the receive descriptor and receive job
1099	 * descriptor rings.
1100	 */
1101	for (i = 0; i < ATW_NRXDESC; i++) {
1102		rxs = &sc->sc_rxsoft[i];
1103		if (rxs->rxs_mbuf == NULL) {
1104			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1105				printf("%s: unable to allocate or map rx "
1106				    "buffer %d, error = %d\n",
1107				    sc->sc_dev.dv_xname, i, error);
1108				/*
1109				 * XXX Should attempt to run with fewer receive
1110				 * XXX buffers instead of just failing.
1111				 */
1112				atw_rxdrain(sc);
1113				goto out;
1114			}
1115		} else
1116			ATW_INIT_RXDESC(sc, i);
1117	}
1118	sc->sc_rxptr = 0;
1119
1120	/* disable all wake-up events */
1121	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1122	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1123			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1124			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1125
1126	/* ack all wake-up events */
1127	ATW_SET(sc, ATW_WCSR, 0);
1128
1129	/*
1130	 * Initialize the interrupt mask and enable interrupts.
1131	 */
1132	/* normal interrupts */
1133	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1134	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1135
1136	/* abnormal interrupts */
1137	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1138	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1139	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1140
1141	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1142	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1143
1144	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1145	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1146	    ATW_INTR_TRT;
1147
1148	sc->sc_linkint_mask &= sc->sc_inten;
1149	sc->sc_rxint_mask &= sc->sc_inten;
1150	sc->sc_txint_mask &= sc->sc_inten;
1151
1152	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1153	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1154	if (sc->sc_intr_ack != NULL)
1155		(*sc->sc_intr_ack)(sc);
1156
1157	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1158	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1159
1160	/*
1161	 * Give the transmit and receive rings to the ADM8211.
1162	 */
1163	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1164	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1165
1166	/* common 802.11 configuration */
1167	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1168	switch (ic->ic_opmode) {
1169	case IEEE80211_M_HOSTAP: /* XXX */
1170	case IEEE80211_M_STA:
1171		sc->sc_opmode &= ~ATW_NAR_EA;
1172		break;
1173	case IEEE80211_M_AHDEMO: /* XXX */
1174	case IEEE80211_M_IBSS:
1175		/* EA bit seems important for ad hoc reception. */
1176		sc->sc_opmode |= ATW_NAR_EA;
1177		ic->ic_flags |= IEEE80211_F_IBSSON;
1178		break;
1179	case IEEE80211_M_MONITOR: /* XXX */
1180		break;
1181	}
1182
1183	atw_start_beacon(sc, 0);
1184
1185	switch (ic->ic_opmode) {
1186	case IEEE80211_M_IBSS:
1187	case IEEE80211_M_STA:
1188		error = ieee80211_new_state(ifp, IEEE80211_S_SCAN, -1);
1189		if (error)
1190			goto out;
1191		break;
1192	case IEEE80211_M_AHDEMO:
1193	case IEEE80211_M_HOSTAP:
1194		ic->ic_bss.ni_chan = ic->ic_ibss_chan;
1195		ic->ic_bss.ni_intval = ic->ic_lintval;
1196		ic->ic_bss.ni_rssi = 0;
1197		ic->ic_bss.ni_rstamp = 0;
1198		ic->ic_state = IEEE80211_S_SCAN;	/*XXX*/
1199
1200		error = ieee80211_new_state(&ic->ic_if, IEEE80211_S_RUN, -1);
1201		if (error)
1202			goto out;
1203		break;
1204	case IEEE80211_M_MONITOR: /* XXX */
1205		break;
1206	}
1207
1208	atw_write_ssid(sc);
1209	atw_write_sup_rates(sc);
1210	if (ic->ic_flags & IEEE80211_F_HASWEP)
1211		atw_write_wep(sc);
1212
1213	/*
1214	 * Set the receive filter.  This will start the transmit and
1215	 * receive processes.
1216	 */
1217	atw_filter_setup(sc);
1218
1219	/*
1220	 * Start the receive process.
1221	 */
1222	ATW_WRITE(sc, ATW_RDR, 0x1);
1223
1224	/*
1225	 * Note that the interface is now running.
1226	 */
1227	ifp->if_flags |= IFF_RUNNING;
1228	ifp->if_flags &= ~IFF_OACTIVE;
1229
1230 out:
1231	if (error) {
1232		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1233		ifp->if_timer = 0;
1234		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1235	}
1236#ifdef ATW_DEBUG
1237	atw_print_regs(sc, "end of init");
1238#endif /* ATW_DEBUG */
1239
1240	return (error);
1241}
1242
1243/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1244 *           0: MAC control of RF3000/Si4126.
1245 *
1246 * Applies power, or selects RF front-end? Sets reset condition.
1247 *
1248 * TBD support non-RFMD BBP, non-SiLabs synth.
1249 */
1250static void
1251atw_rfio_enable(struct atw_softc *sc, int enable)
1252{
1253	if (enable) {
1254		ATW_WRITE(sc, ATW_SYNRF,
1255		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1256		DELAY(atw_rfio_enable_delay);
1257	} else {
1258		ATW_WRITE(sc, ATW_SYNRF, 0);
1259		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1260	}
1261}
1262
1263static int
1264atw_tune(sc)
1265	struct atw_softc *sc;
1266{
1267	int rc;
1268	u_int32_t reg;
1269	u_int8_t chan;
1270	struct ieee80211com *ic = &sc->sc_ic;
1271
1272	chan = ic->ic_bss.ni_chan;
1273
1274	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1275	    sc->sc_cur_chan, chan));
1276
1277	if (chan == sc->sc_cur_chan)
1278		return 0;
1279
1280	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1281
1282	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1283	    (rc = atw_rf3000_tune(sc, chan)) != 0)
1284		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1285		    chan);
1286
1287	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1288	ATW_WRITE(sc, ATW_CAP0,
1289	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1290
1291	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1292
1293	if (rc == 0)
1294		sc->sc_cur_chan = chan;
1295
1296	return rc;
1297}
1298
1299#ifdef ATW_DEBUG
1300static void
1301atw_si4126_print(sc)
1302	struct atw_softc *sc;
1303{
1304	struct ifnet *ifp = &sc->sc_ic.ic_if;
1305	u_int addr, val;
1306
1307	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1308		return;
1309
1310	for (addr = 0; addr <= 8; addr++) {
1311		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1312		if (atw_si4126_read(sc, addr, &val) == 0) {
1313			printf("<unknown> (quitting print-out)\n");
1314			break;
1315		}
1316		printf("%05x\n", val);
1317	}
1318}
1319#endif /* ATW_DEBUG */
1320
1321/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1322 *
1323 * The RF/IF synthesizer produces two reference frequencies for
1324 * the RF2948B transceiver.  The first frequency the RF2948B requires
1325 * is two times the so-called "intermediate frequency" (IF). Since
1326 * a SAW filter on the radio fixes the IF at 374MHz, I program the
1327 * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1328 * frequency required by the transceiver is the radio frequency
1329 * (RF). This is a superheterodyne transceiver; for f(chan) the
1330 * center frequency of the channel we are tuning, RF = f(chan) -
1331 * IF.
1332 *
1333 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1334 * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1335 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1336 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1337 */
1338static int
1339atw_si4126_tune(sc, chan)
1340	struct atw_softc *sc;
1341	u_int8_t chan;
1342{
1343	int rc = 0;
1344	u_int mhz;
1345	u_int R;
1346	u_int32_t reg;
1347	u_int16_t gain;
1348
1349#ifdef ATW_DEBUG
1350	atw_si4126_print(sc);
1351#endif /* ATW_DEBUG */
1352
1353	if (chan == 14)
1354		mhz = 2484;
1355	else
1356		mhz = 2412 + 5 * (chan - 1);
1357
1358	/* Tune IF to 748MHz to suit the IF LO input of the
1359	 * RF2494B, which is 2 x IF. No need to set an IF divider
1360         * because an IF in 526MHz - 952MHz is allowed.
1361	 *
1362	 * XIN is 44.000MHz, so divide it by two to get allowable
1363	 * range of 2-25MHz. SiLabs tells me that this is not
1364	 * strictly necessary.
1365	 */
1366
1367	R = 44;
1368
1369	atw_rfio_enable(sc, 1);
1370
1371	/* Power-up RF, IF synthesizers. */
1372	if ((rc = atw_si4126_write(sc, SI4126_POWER,
1373	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1374		goto out;
1375
1376	/* If RF2 N > 2047, then set KP2 to 1. */
1377	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1378
1379	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1380		goto out;
1381
1382	/* set LPWR, too? */
1383	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1384	    SI4126_MAIN_XINDIV2)) != 0)
1385		goto out;
1386
1387	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
1388	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1389	 */
1390	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1391		goto out;
1392
1393	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1394		goto out;
1395
1396	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1397	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1398	 * which has no RF1!
1399	 */
1400	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1401		goto out;
1402
1403	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1404		goto out;
1405
1406	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1407	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1408	 * Now let's multiply it to mhz. So mhz - IF = N.
1409	 */
1410	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1411		goto out;
1412
1413	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1414		goto out;
1415
1416	/* wait 100us from power-up for RF, IF to settle */
1417	DELAY(100);
1418
1419	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1420		/* XXX there is a binary driver which sends
1421		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1422		 * that this enables the Si4126 by raising its PWDN#, but I
1423		 * think that it actually sets the Prism RF front-end
1424		 * to a special mode for channel 14.
1425		 */
1426		reg = ATW_READ(sc, ATW_GPIO);
1427		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1428		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1429		ATW_WRITE(sc, ATW_GPIO, reg);
1430	}
1431
1432#ifdef ATW_DEBUG
1433	atw_si4126_print(sc);
1434#endif /* ATW_DEBUG */
1435
1436out:
1437	atw_rfio_enable(sc, 0);
1438
1439	return rc;
1440}
1441
1442/* Baseline initialization of RF3000 BBP: set CCA mode, enable antenna
1443 * diversity, and write some magic.
1444 *
1445 * Call this w/ Tx/Rx suspended.
1446 */
1447static int
1448atw_rf3000_init(sc)
1449	struct atw_softc *sc;
1450{
1451	int rc = 0;
1452
1453	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1454
1455	atw_rfio_enable(sc, 1);
1456
1457	/* enable diversity */
1458	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1459
1460	if (rc != 0)
1461		goto out;
1462
1463	/* sensible setting from a binary-only driver */
1464	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1465	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1466
1467	if (rc != 0)
1468		goto out;
1469
1470	/* magic from a binary-only driver */
1471	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1472	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1473
1474	if (rc != 0)
1475		goto out;
1476
1477	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1478
1479	if (rc != 0)
1480		goto out;
1481
1482	/* magic derived from binary-only driver */
1483	rc = atw_rf3000_write(sc, RF3000_MAGIC0, RF3000_MAGIC0_VAL);
1484
1485	if (rc != 0)
1486		goto out;
1487
1488	rc = atw_rf3000_write(sc, RF3000_MAGIC1, RF3000_MAGIC1_VAL);
1489
1490	if (rc != 0)
1491		goto out;
1492
1493	/* CCA is acquisition sensitive */
1494	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1495	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1496
1497	if (rc != 0)
1498		goto out;
1499
1500out:
1501	atw_rfio_enable(sc, 0);
1502	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1503	return rc;
1504}
1505
1506#ifdef ATW_DEBUG
1507static void
1508atw_rf3000_print(sc)
1509	struct atw_softc *sc;
1510{
1511	struct ifnet *ifp = &sc->sc_ic.ic_if;
1512	u_int addr, val;
1513
1514	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1515		return;
1516
1517	for (addr = 0x01; addr <= 0x15; addr++) {
1518		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1519		if (atw_rf3000_read(sc, addr, &val) != 0) {
1520			printf("<unknown> (quitting print-out)\n");
1521			break;
1522		}
1523		printf("%08x\n", val);
1524	}
1525}
1526#endif /* ATW_DEBUG */
1527
1528/* Set the power settings on the BBP for channel `chan'. */
1529static int
1530atw_rf3000_tune(sc, chan)
1531	struct atw_softc *sc;
1532	u_int8_t chan;
1533{
1534	int rc = 0;
1535	u_int32_t reg;
1536	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1537
1538	atw_rfio_enable(sc, 1);
1539
1540	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1541	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1542	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1543
1544	/* odd channels: LSB, even channels: MSB */
1545	if (chan % 2 == 1) {
1546		txpower &= 0xFF;
1547		lpf_cutoff &= 0xFF;
1548		lna_gs_thresh &= 0xFF;
1549	} else {
1550		txpower >>= 8;
1551		lpf_cutoff >>= 8;
1552		lna_gs_thresh >>= 8;
1553	}
1554
1555#ifdef ATW_DEBUG
1556	atw_rf3000_print(sc);
1557#endif /* ATW_DEBUG */
1558
1559	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1560	    "lna_gs_thresh %02x\n",
1561	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1562
1563	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1564	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1565		goto out;
1566
1567	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1568		goto out;
1569
1570	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1571		goto out;
1572
1573	/* from a binary-only driver. */
1574	reg = ATW_READ(sc, ATW_PLCPHD);
1575	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1576	reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
1577	ATW_WRITE(sc, ATW_PLCPHD, reg);
1578
1579#ifdef ATW_DEBUG
1580	atw_rf3000_print(sc);
1581#endif /* ATW_DEBUG */
1582
1583out:
1584	atw_rfio_enable(sc, 0);
1585
1586	return rc;
1587}
1588
1589/* Write a register on the RF3000 baseband processor using the
1590 * registers provided by the ADM8211 for this purpose.
1591 *
1592 * Return 0 on success.
1593 */
1594static int
1595atw_rf3000_write(sc, addr, val)
1596	struct atw_softc *sc;
1597	u_int addr, val;
1598{
1599	u_int32_t reg;
1600	int i;
1601
1602	for (i = 1000; --i >= 0; ) {
1603		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1604			break;
1605		DELAY(100);
1606	}
1607
1608	if (i < 0) {
1609		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1610		return ETIMEDOUT;
1611	}
1612
1613	reg = sc->sc_bbpctl_wr |
1614	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1615	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1616
1617	ATW_WRITE(sc, ATW_BBPCTL, reg);
1618
1619	for (i = 1000; --i >= 0; ) {
1620		DELAY(100);
1621		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1622			break;
1623	}
1624
1625	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1626
1627	if (i < 0) {
1628		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1629		return ETIMEDOUT;
1630	}
1631	return 0;
1632}
1633
1634/* Read a register on the RF3000 baseband processor using the registers
1635 * the ADM8211 provides for this purpose.
1636 *
1637 * The 7-bit register address is addr.  Record the 8-bit data in the register
1638 * in *val.
1639 *
1640 * Return 0 on success.
1641 *
1642 * XXX This does not seem to work. The ADM8211 must require more or
1643 * different magic to read the chip than to write it. Possibly some
1644 * of the magic I have derived from a binary-only driver concerns
1645 * the "chip address" (see the RF3000 manual).
1646 */
1647#ifdef ATW_DEBUG
1648static int
1649atw_rf3000_read(sc, addr, val)
1650	struct atw_softc *sc;
1651	u_int addr, *val;
1652{
1653	u_int32_t reg;
1654	int i;
1655
1656	for (i = 1000; --i >= 0; ) {
1657		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1658			break;
1659		DELAY(100);
1660	}
1661
1662	if (i < 0) {
1663		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1664		    sc->sc_dev.dv_xname);
1665		return ETIMEDOUT;
1666	}
1667
1668	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1669
1670	ATW_WRITE(sc, ATW_BBPCTL, reg);
1671
1672	for (i = 1000; --i >= 0; ) {
1673		DELAY(100);
1674		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1675			break;
1676	}
1677
1678	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1679
1680	if (i < 0) {
1681		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1682		    sc->sc_dev.dv_xname, reg);
1683		return ETIMEDOUT;
1684	}
1685	if (val != NULL)
1686		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1687	return 0;
1688}
1689#endif /* ATW_DEBUG */
1690
1691/* Write a register on the Si4126 RF/IF synthesizer using the registers
1692 * provided by the ADM8211 for that purpose.
1693 *
1694 * val is 18 bits of data, and val is the 4-bit address of the register.
1695 *
1696 * Return 0 on success.
1697 */
1698static int
1699atw_si4126_write(sc, addr, val)
1700	struct atw_softc *sc;
1701	u_int addr, val;
1702{
1703	u_int32_t reg;
1704	int i;
1705
1706	for (i = 1000; --i >= 0; ) {
1707		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1708			break;
1709		DELAY(100);
1710	}
1711
1712	if (i < 0) {
1713		printf("%s: start atw_si4126_write, SYNCTL busy\n",
1714		    sc->sc_dev.dv_xname);
1715		return ETIMEDOUT;
1716	}
1717
1718	reg = sc->sc_synctl_wr |
1719	    LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
1720
1721	ATW_WRITE(sc, ATW_SYNCTL, reg);
1722
1723	for (i = 1000; --i >= 0; ) {
1724		DELAY(100);
1725		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1726			break;
1727	}
1728
1729	/* restore to acceptable starting condition */
1730	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1731
1732	if (i < 0) {
1733		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1734		    sc->sc_dev.dv_xname, reg);
1735		return ETIMEDOUT;
1736	}
1737	return 0;
1738}
1739
1740/* Read 18-bit data from the 4-bit address addr in Si4126
1741 * RF synthesizer and write the data to *val. Return 0 on success.
1742 *
1743 * XXX This does not seem to work. The ADM8211 must require more or
1744 * different magic to read the chip than to write it.
1745 */
1746#ifdef ATW_DEBUG
1747static int
1748atw_si4126_read(sc, addr, val)
1749	struct atw_softc *sc;
1750	u_int addr;
1751	u_int *val;
1752{
1753	u_int32_t reg;
1754	int i;
1755
1756	for (i = 1000; --i >= 0; ) {
1757		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1758			break;
1759		DELAY(100);
1760	}
1761
1762	if (i < 0) {
1763		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1764		    sc->sc_dev.dv_xname);
1765		return ETIMEDOUT;
1766	}
1767
1768	reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
1769
1770	ATW_WRITE(sc, ATW_SYNCTL, reg);
1771
1772	for (i = 1000; --i >= 0; ) {
1773		DELAY(100);
1774		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1775			break;
1776	}
1777
1778	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1779
1780	if (i < 0) {
1781		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1782		    sc->sc_dev.dv_xname, reg);
1783		return ETIMEDOUT;
1784	}
1785	if (val != NULL)
1786		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1787		                       ATW_SYNCTL_DATA_MASK);
1788	return 0;
1789}
1790#endif /* ATW_DEBUG */
1791
1792/* XXX is the endianness correct? test. */
1793#define	atw_calchash(addr) \
1794	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1795
1796/*
1797 * atw_filter_setup:
1798 *
1799 *	Set the ADM8211's receive filter.
1800 */
1801static void
1802atw_filter_setup(sc)
1803	struct atw_softc *sc;
1804{
1805	struct ieee80211com *ic = &sc->sc_ic;
1806	struct ethercom *ec = &ic->ic_ec;
1807	struct ifnet *ifp = &sc->sc_ic.ic_if;
1808	int hash;
1809	u_int32_t hashes[2] = { 0, 0 };
1810	struct ether_multi *enm;
1811	struct ether_multistep step;
1812
1813	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1814	    sc->sc_dev.dv_xname, sc->sc_flags));
1815
1816	/*
1817	 * If we're running, idle the receive engine.  If we're NOT running,
1818	 * we're being called from atw_init(), and our writing ATW_NAR will
1819	 * start the transmit and receive processes in motion.
1820	 */
1821	if (ifp->if_flags & IFF_RUNNING)
1822		atw_idle(sc, ATW_NAR_SR);
1823
1824	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1825
1826	ifp->if_flags &= ~IFF_ALLMULTI;
1827
1828	if (ifp->if_flags & IFF_PROMISC) {
1829		sc->sc_opmode |= ATW_NAR_PR;
1830allmulti:
1831		ifp->if_flags |= IFF_ALLMULTI;
1832		goto setit;
1833	}
1834
1835	/*
1836	 * Program the 64-bit multicast hash filter.
1837	 */
1838	ETHER_FIRST_MULTI(step, ec, enm);
1839	while (enm != NULL) {
1840		/* XXX */
1841		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1842		    ETHER_ADDR_LEN) != 0)
1843			goto allmulti;
1844
1845		hash = atw_calchash(enm->enm_addrlo);
1846		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1847		ETHER_NEXT_MULTI(step, enm);
1848	}
1849
1850	if (ifp->if_flags & IFF_BROADCAST) {
1851		hash = atw_calchash(etherbroadcastaddr);
1852		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1853	}
1854
1855	/* all bits set => hash is useless */
1856	if (~(hashes[0] & hashes[1]) == 0)
1857		goto allmulti;
1858
1859 setit:
1860	if (ifp->if_flags & IFF_ALLMULTI)
1861		sc->sc_opmode |= ATW_NAR_MM;
1862
1863	/* XXX in scan mode, do not filter packets. maybe this is
1864	 * unnecessary.
1865	 */
1866	if (ic->ic_state == IEEE80211_S_SCAN)
1867		sc->sc_opmode |= ATW_NAR_PR;
1868
1869	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1870	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1871	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1872	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1873	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1874
1875	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1876}
1877
1878/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1879 * a beacon's BSSID and SSID against the preferred BSSID and SSID
1880 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1881 * no beacon with the preferred BSSID and SSID in the number of
1882 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1883 */
1884static void
1885atw_write_bssid(sc)
1886	struct atw_softc *sc;
1887{
1888	struct ieee80211com *ic = &sc->sc_ic;
1889	u_int8_t *bssid;
1890
1891	bssid = ic->ic_bss.ni_bssid;
1892
1893	ATW_WRITE(sc, ATW_ABDA1,
1894	    (ATW_READ(sc, ATW_ABDA1) &
1895	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1896	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1897	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1898
1899	ATW_WRITE(sc, ATW_BSSID0,
1900	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1901	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1902	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1903	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1904
1905	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1906	    ether_sprintf(sc->sc_bssid)));
1907	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1908
1909	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1910}
1911
1912/* Tell the ADM8211 how many beacon intervals must pass without
1913 * receiving a beacon with the preferred BSSID & SSID set by
1914 * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1915 * raised.
1916 */
1917static void
1918atw_write_bcn_thresh(sc)
1919	struct atw_softc *sc;
1920{
1921	struct ieee80211com *ic = &sc->sc_ic;
1922	int lost_bcn_thresh;
1923
1924	/* Lose link after one second or 7 beacons, whichever comes
1925	 * first, but do not lose link before 2 beacons are lost.
1926	 *
1927	 * In host AP mode, set the lost-beacon threshold to 0.
1928	 */
1929	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1930		lost_bcn_thresh = 0;
1931	else
1932		lost_bcn_thresh = MAX(2,
1933		    MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss.ni_intval), 7));
1934
1935	/* XXX resets wake-up status bits */
1936	ATW_WRITE(sc, ATW_WCSR,
1937	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1938	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1939
1940	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1941	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1942
1943	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1944
1945	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1946	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1947}
1948
1949/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1950 * 16-bit word.
1951 */
1952static void
1953atw_write_sram(sc, ofs, buf, buflen)
1954	struct atw_softc *sc;
1955	u_int ofs;
1956	u_int8_t *buf;
1957	u_int buflen;
1958{
1959	u_int i;
1960	u_int8_t *ptr;
1961
1962	memcpy(&sc->sc_sram[ofs], buf, buflen);
1963
1964	if (ofs % 2 != 0) {
1965		ofs--;
1966		buflen++;
1967	}
1968
1969	if (buflen % 2 != 0)
1970		buflen++;
1971
1972	assert(buflen + ofs <= ATW_SRAM_SIZE);
1973
1974	ptr = &sc->sc_sram[ofs];
1975
1976	for (i = 0; i < buflen; i += 2) {
1977		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1978		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1979		DELAY(atw_writewep_delay);
1980
1981		ATW_WRITE(sc, ATW_WESK,
1982		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1983		DELAY(atw_writewep_delay);
1984	}
1985	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
1986
1987	if (sc->sc_if.if_flags & IFF_DEBUG) {
1988		int n_octets = 0;
1989		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
1990		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
1991		for (i = 0; i < buflen; i++) {
1992			printf(" %02x", ptr[i]);
1993			if (++n_octets % 24 == 0)
1994				printf("\n");
1995		}
1996		if (n_octets % 24 != 0)
1997			printf("\n");
1998	}
1999}
2000
2001/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2002static void
2003atw_write_wep(sc)
2004	struct atw_softc *sc;
2005{
2006	struct ieee80211com *ic = &sc->sc_ic;
2007	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2008	u_int8_t buf[IEEE80211_WEP_NKID]
2009	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2010	u_int32_t reg;
2011	int i;
2012
2013	sc->sc_wepctl = 0;
2014	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2015
2016	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2017		return;
2018
2019	memset(&buf[0][0], 0, sizeof(buf));
2020
2021	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2022		if (ic->ic_nw_keys[i].wk_len > 5) {
2023			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2024		} else if (ic->ic_nw_keys[i].wk_len != 0) {
2025			buf[i][1] = ATW_WEP_ENABLED;
2026		} else {
2027			buf[i][1] = 0;
2028			continue;
2029		}
2030		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2031		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2032		    ic->ic_nw_keys[i].wk_len - 1);
2033	}
2034
2035	reg = ATW_READ(sc, ATW_MACTEST);
2036	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2037	reg &= ~ATW_MACTEST_KEYID_MASK;
2038	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2039	ATW_WRITE(sc, ATW_MACTEST, reg);
2040
2041	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2042	 * throughout.)
2043	 */
2044	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2045	if (sc->sc_if.if_flags & IFF_LINK2)
2046		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2047
2048	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2049	    sizeof(buf));
2050}
2051
2052const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2053
2054/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2055 * of IBSSs with like SSID/channel but different BSSID. It joins the
2056 * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2057 * convention. Possibly the ADMtek chip does this for us; I will have
2058 * to test to find out.
2059 *
2060 * XXX we should add the duration field of the received beacon to
2061 * the TSF time it contains before comparing it with the ADM8211's
2062 * TSF.
2063 */
2064static void
2065atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0, int rssi,
2066    u_int32_t rstamp)
2067{
2068	struct atw_softc *sc;
2069	struct ieee80211_frame *wh;
2070	struct ieee80211_node *ni, tmp_ni;
2071	u_int64_t tsft, bcn_tsft;
2072	u_int32_t tsftl, tsfth;
2073	int do_print = 0;
2074	void *p;
2075
2076	sc = (struct atw_softc*)ic->ic_if.if_softc;
2077
2078	if (ic->ic_if.if_flags & IFF_DEBUG)
2079		do_print = (ic->ic_if.if_flags & IFF_LINK0)
2080		    ? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
2081
2082	wh = mtod(m0, struct ieee80211_frame *);
2083
2084	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2085	    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2086		(*sc->sc_recv_prresp)(ic, m0, rssi, rstamp);
2087	else
2088		(*sc->sc_recv_beacon)(ic, m0, rssi, rstamp);
2089
2090	if (ic->ic_state != IEEE80211_S_RUN) {
2091		if (do_print)
2092			printf("%s: atw_recv_beacon: not running\n",
2093			    sc->sc_dev.dv_xname);
2094		return;
2095	}
2096
2097	if ((ni = ieee80211_find_node(ic, wh->i_addr2)) == NULL) {
2098		if (do_print)
2099			printf("%s: atw_recv_beacon: no node %s\n",
2100			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2101		return;
2102	}
2103
2104	if (ieee80211_match_bss(ic, ni) != 0) {
2105		if (do_print)
2106			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2107			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2108		return;
2109	}
2110
2111	if (memcmp(ni->ni_bssid, ic->ic_bss.ni_bssid, IEEE80211_ADDR_LEN) == 0)
2112		return;
2113
2114	if (do_print)
2115		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2116		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2117
2118	if (sc->sc_opmode != IEEE80211_M_IBSS)
2119		return;
2120
2121	/* If we read TSFTL right before rollover, we read a TSF timer
2122	 * that is too high rather than too low. This prevents a spurious
2123	 * synchronization down the line, however, our IBSS could suffer
2124	 * from a creeping TSF....
2125	 */
2126	tsftl = ATW_READ(sc, ATW_TSFTL);
2127	tsfth = ATW_READ(sc, ATW_TSFTH);
2128
2129	tsft = (u_int64_t)tsfth << 32 | tsftl;
2130	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2131
2132	if (do_print)
2133		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2134		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
2135
2136	/* we are faster, let the other guy catch up */
2137	if (bcn_tsft < tsft)
2138		return;
2139
2140	if (do_print)
2141		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2142		    ether_sprintf(wh->i_addr2));
2143
2144	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2145
2146#if 0
2147	atw_tsf(sc);
2148#endif
2149
2150	tmp_ni = *ni;
2151	/* negotiate rates with new IBSS */
2152	ieee80211_fix_rate(ic, &tmp_ni, IEEE80211_F_DOFRATE |
2153	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2154	if (tmp_ni.ni_nrate == 0) {
2155		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2156			ether_sprintf(ni->ni_bssid));
2157		return;
2158	}
2159
2160	if (do_print) {
2161		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2162		    ether_sprintf(ic->ic_bss.ni_bssid));
2163		printf("%s ", ether_sprintf(ni->ni_bssid));
2164		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2165	}
2166
2167	p = ic->ic_bss.ni_private;
2168	ic->ic_bss = *ni;
2169	ic->ic_bss.ni_private = p;
2170	if (p != NULL && ic->ic_node_privlen)
2171		memcpy(p, ni->ni_private, ic->ic_node_privlen);
2172
2173	atw_write_bssid(sc);
2174	if (atw_tune(sc) != 0)
2175		printf("%s: could not sync channel\n", sc->sc_dev.dv_xname);
2176	atw_write_bcn_thresh(sc);
2177	atw_start_beacon(sc, 1);
2178}
2179
2180/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2181 * In ad hoc mode, the SSID is written to the beacons sent by the
2182 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2183 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2184 * indications.
2185 */
2186static void
2187atw_write_ssid(sc)
2188	struct atw_softc *sc;
2189{
2190	struct ieee80211com *ic = &sc->sc_ic;
2191	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2192	u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
2193	             1 /* for a round number */];
2194
2195	memset(buf, 0, sizeof(buf));
2196	buf[0] = ic->ic_bss.ni_esslen;
2197	memcpy(&buf[1], ic->ic_bss.ni_essid, ic->ic_bss.ni_esslen);
2198
2199	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2200}
2201
2202/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2203 * In ad hoc mode, the supported rates are written to beacons sent by the
2204 * ADM8211.
2205 */
2206static void
2207atw_write_sup_rates(sc)
2208	struct atw_softc *sc;
2209{
2210	struct ieee80211com *ic = &sc->sc_ic;
2211	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2212	 * supported rates
2213	 */
2214	u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
2215	             1 /* for a round number */];
2216
2217	memset(buf, 0, sizeof(buf));
2218
2219	buf[0] = ic->ic_bss.ni_nrate;
2220
2221	memcpy(&buf[1], ic->ic_bss.ni_rates, ic->ic_bss.ni_nrate);
2222
2223	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2224}
2225
2226/* Start/stop sending beacons. */
2227void
2228atw_start_beacon(struct atw_softc *sc, int start)
2229{
2230	struct ieee80211com *ic = &sc->sc_ic;
2231	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2232
2233	if (ATW_IS_ENABLED(sc) == 0)
2234		return;
2235
2236	len = capinfo = 0;
2237
2238	/* start beacons */
2239	len = sizeof(struct ieee80211_frame) +
2240	    8 /* timestamp */ + 2 /* beacon interval */ +
2241	    2 /* capability info */ +
2242	    2 + ic->ic_bss.ni_esslen /* SSID element */ +
2243	    2 + ic->ic_bss.ni_nrate /* rates element */ +
2244	    3 /* DS parameters */ +
2245	    IEEE80211_CRC_LEN;
2246
2247	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2248
2249	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2250
2251	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2252	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2253
2254	if (!start)
2255		return;
2256
2257	/* TBD use ni_capinfo */
2258
2259	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2260		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2261	if (ic->ic_flags & IEEE80211_F_WEPON)
2262		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2263
2264	switch (ic->ic_opmode) {
2265	case IEEE80211_M_IBSS:
2266		len += 4; /* IBSS parameters */
2267		capinfo |= IEEE80211_CAPINFO_IBSS;
2268		break;
2269	case IEEE80211_M_HOSTAP:
2270		/* XXX 6-byte minimum TIM */
2271		len += atw_beacon_len_adjust;
2272		capinfo |= IEEE80211_CAPINFO_ESS;
2273		break;
2274	default:
2275		return;
2276	}
2277
2278	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2279	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2280
2281	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2282	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2283
2284	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2285	    sc->sc_dev.dv_xname, reg_bcnt));
2286
2287	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2288	    sc->sc_dev.dv_xname, reg_cap1));
2289}
2290
2291/* First beacon was sent at time 0 microseconds, current time is
2292 * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2293 * microseconds.  Return the expected time in microseconds for the
2294 * beacon after next.
2295 */
2296static __inline u_int64_t
2297atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2298{
2299	return tsft + (tbtt - tsft % tbtt);
2300}
2301
2302/* If we've created an IBSS, write the TSF time in the ADM8211 to
2303 * the ieee80211com.
2304 *
2305 * Predict the next target beacon transmission time (TBTT) and
2306 * write it to the ADM8211.
2307 */
2308static void
2309atw_tsf(struct atw_softc *sc)
2310{
2311#define TBTTOFS 20 /* TU */
2312
2313	struct ieee80211com *ic = &sc->sc_ic;
2314	u_int64_t tsft, tbtt;
2315
2316	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2317	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2318	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2319		tsft = ATW_READ(sc, ATW_TSFTH);
2320		tsft <<= 32;
2321		tsft |= ATW_READ(sc, ATW_TSFTL);
2322		*(u_int64_t*)&ic->ic_bss.ni_tstamp[0] = htole64(tsft);
2323	} else
2324		tsft = le64toh(*(u_int64_t*)&ic->ic_bss.ni_tstamp[0]);
2325
2326	tbtt = atw_predict_beacon(tsft,
2327	    ic->ic_bss.ni_intval * IEEE80211_DUR_TU);
2328
2329	/* skip one more beacon so that the TBTT cannot pass before
2330	 * we've programmed it, and also so that we can subtract a
2331	 * few TU so that we wake a little before TBTT.
2332	 */
2333	tbtt += ic->ic_bss.ni_intval * IEEE80211_DUR_TU;
2334
2335	/* wake up a little early */
2336	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2337
2338	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2339	    sc->sc_dev.dv_xname, tsft, tbtt));
2340
2341	ATW_WRITE(sc, ATW_TOFS1,
2342	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2343	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2344	    LSHIFT(
2345		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2346		ATW_TOFS1_TBTTPRE_MASK));
2347#undef TBTTOFS
2348}
2349
2350/* Synchronize the hardware state with the software state. */
2351static int
2352atw_newstate(void *arg, enum ieee80211_state nstate)
2353{
2354	enum ieee80211_state ostate;
2355	int error, scan_timo, start_beacon = 0;
2356	struct atw_softc *sc = arg;
2357	struct ieee80211com *ic = &sc->sc_ic;
2358
2359	ostate = ic->ic_state;
2360
2361	switch (nstate) {
2362	case IEEE80211_S_INIT:
2363		break;
2364	case IEEE80211_S_SCAN:
2365		if (ic->ic_flags & IEEE80211_F_ASCAN)
2366			scan_timo = 100 + 54 /* overhead */;
2367		else
2368			scan_timo = 200 + 54 /* overhead */;
2369
2370		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2371		atw_write_bssid(sc);
2372
2373		callout_reset(&sc->sc_scan_timer, scan_timo * hz / 1000,
2374		    (void(*)(void*))ieee80211_next_scan, (void*)&ic->ic_if);
2375
2376		error = atw_tune(sc);
2377		if (error != 0)
2378			return error;
2379
2380		break;
2381	case IEEE80211_S_RUN:
2382		if (ic->ic_opmode == IEEE80211_M_STA)
2383			break;
2384		/*FALLTHROUGH*/
2385	case IEEE80211_S_AUTH:
2386		atw_write_bssid(sc);
2387		atw_write_bcn_thresh(sc);
2388		atw_write_ssid(sc);
2389		atw_write_sup_rates(sc);
2390
2391		switch (ic->ic_opmode) {
2392		case IEEE80211_M_HOSTAP:
2393		case IEEE80211_M_IBSS:
2394			start_beacon = 1;
2395			/* FALL THROUGH */
2396		case IEEE80211_M_STA:
2397			/* set listen interval
2398			 * XXX do software units agree w/ hardware?
2399			 */
2400			ATW_WRITE(sc, ATW_BPLI,
2401			    LSHIFT(ic->ic_bss.ni_intval, ATW_BPLI_BP_MASK) |
2402			    LSHIFT(ic->ic_lintval / ic->ic_bss.ni_intval,
2403				   ATW_BPLI_LI_MASK));
2404
2405			DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2406			    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2407
2408			atw_tsf(sc);
2409			break;
2410
2411		case IEEE80211_M_AHDEMO:
2412		case IEEE80211_M_MONITOR:
2413			/* TBD */
2414			break;
2415		}
2416		error = atw_tune(sc);
2417		if (error != 0)
2418			return error;
2419
2420		break;
2421	default:
2422		break;
2423	}
2424
2425	switch (ostate) {
2426	case IEEE80211_S_SCAN:
2427		if (nstate != IEEE80211_S_SCAN)
2428			callout_stop(&sc->sc_scan_timer);
2429		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2430			sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2431		break;
2432	case IEEE80211_S_INIT:
2433		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2434		break;
2435	default:
2436		break;
2437	}
2438
2439	atw_start_beacon(sc, start_beacon);
2440
2441	return 0;
2442}
2443
2444/*
2445 * atw_add_rxbuf:
2446 *
2447 *	Add a receive buffer to the indicated descriptor.
2448 */
2449int
2450atw_add_rxbuf(sc, idx)
2451	struct atw_softc *sc;
2452	int idx;
2453{
2454	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2455	struct mbuf *m;
2456	int error;
2457
2458	MGETHDR(m, M_DONTWAIT, MT_DATA);
2459	if (m == NULL)
2460		return (ENOBUFS);
2461
2462	MCLGET(m, M_DONTWAIT);
2463	if ((m->m_flags & M_EXT) == 0) {
2464		m_freem(m);
2465		return (ENOBUFS);
2466	}
2467
2468	if (rxs->rxs_mbuf != NULL)
2469		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2470
2471	rxs->rxs_mbuf = m;
2472
2473	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2474	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2475	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2476	if (error) {
2477		printf("%s: can't load rx DMA map %d, error = %d\n",
2478		    sc->sc_dev.dv_xname, idx, error);
2479		panic("atw_add_rxbuf");	/* XXX */
2480	}
2481
2482	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2483	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2484
2485	ATW_INIT_RXDESC(sc, idx);
2486
2487	return (0);
2488}
2489
2490/*
2491 * atw_stop:		[ ifnet interface function ]
2492 *
2493 *	Stop transmission on the interface.
2494 */
2495void
2496atw_stop(ifp, disable)
2497	struct ifnet *ifp;
2498	int disable;
2499{
2500	struct atw_softc *sc = ifp->if_softc;
2501	struct atw_txsoft *txs;
2502
2503	ieee80211_new_state(ifp, IEEE80211_S_INIT, -1);
2504
2505	/* Disable interrupts. */
2506	ATW_WRITE(sc, ATW_IER, 0);
2507
2508	/* Stop the transmit and receive processes. */
2509	sc->sc_opmode = 0;
2510	ATW_WRITE(sc, ATW_NAR, 0);
2511	ATW_WRITE(sc, ATW_TDBD, 0);
2512	ATW_WRITE(sc, ATW_TDBP, 0);
2513	ATW_WRITE(sc, ATW_RDB, 0);
2514
2515	/*
2516	 * Release any queued transmit buffers.
2517	 */
2518	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2519		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2520		if (txs->txs_mbuf != NULL) {
2521			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2522			m_freem(txs->txs_mbuf);
2523			txs->txs_mbuf = NULL;
2524		}
2525		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2526	}
2527
2528	if (disable) {
2529		atw_rxdrain(sc);
2530		atw_disable(sc);
2531	}
2532
2533	/*
2534	 * Mark the interface down and cancel the watchdog timer.
2535	 */
2536	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2537	ifp->if_timer = 0;
2538
2539	/* XXX */
2540	atw_reset(sc);
2541}
2542
2543/*
2544 * atw_rxdrain:
2545 *
2546 *	Drain the receive queue.
2547 */
2548void
2549atw_rxdrain(sc)
2550	struct atw_softc *sc;
2551{
2552	struct atw_rxsoft *rxs;
2553	int i;
2554
2555	for (i = 0; i < ATW_NRXDESC; i++) {
2556		rxs = &sc->sc_rxsoft[i];
2557		if (rxs->rxs_mbuf == NULL)
2558			continue;
2559		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2560		m_freem(rxs->rxs_mbuf);
2561		rxs->rxs_mbuf = NULL;
2562	}
2563}
2564
2565/*
2566 * atw_detach:
2567 *
2568 *	Detach an ADM8211 interface.
2569 */
2570int
2571atw_detach(sc)
2572	struct atw_softc *sc;
2573{
2574	struct ifnet *ifp = &sc->sc_ic.ic_if;
2575	struct atw_rxsoft *rxs;
2576	struct atw_txsoft *txs;
2577	int i;
2578
2579	/*
2580	 * Succeed now if there isn't any work to do.
2581	 */
2582	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2583		return (0);
2584
2585	ieee80211_ifdetach(ifp);
2586	if_detach(ifp);
2587
2588	for (i = 0; i < ATW_NRXDESC; i++) {
2589		rxs = &sc->sc_rxsoft[i];
2590		if (rxs->rxs_mbuf != NULL) {
2591			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2592			m_freem(rxs->rxs_mbuf);
2593			rxs->rxs_mbuf = NULL;
2594		}
2595		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2596	}
2597	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2598		txs = &sc->sc_txsoft[i];
2599		if (txs->txs_mbuf != NULL) {
2600			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2601			m_freem(txs->txs_mbuf);
2602			txs->txs_mbuf = NULL;
2603		}
2604		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2605	}
2606	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2607	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2608	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2609	    sizeof(struct atw_control_data));
2610	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2611
2612	shutdownhook_disestablish(sc->sc_sdhook);
2613	powerhook_disestablish(sc->sc_powerhook);
2614
2615	if (sc->sc_srom)
2616		free(sc->sc_srom, M_DEVBUF);
2617
2618	return (0);
2619}
2620
2621/* atw_shutdown: make sure the interface is stopped at reboot time. */
2622void
2623atw_shutdown(arg)
2624	void *arg;
2625{
2626	struct atw_softc *sc = arg;
2627
2628	atw_stop(&sc->sc_ic.ic_if, 1);
2629}
2630
2631int
2632atw_intr(arg)
2633	void *arg;
2634{
2635	struct atw_softc *sc = arg;
2636	struct ifnet *ifp = &sc->sc_ic.ic_if;
2637	u_int32_t status, rxstatus, txstatus, linkstatus;
2638	int handled = 0, txthresh;
2639
2640#ifdef DEBUG
2641	if (ATW_IS_ENABLED(sc) == 0)
2642		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2643#endif
2644
2645	/*
2646	 * If the interface isn't running, the interrupt couldn't
2647	 * possibly have come from us.
2648	 */
2649	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2650	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2651		return (0);
2652
2653	for (;;) {
2654		status = ATW_READ(sc, ATW_STSR);
2655
2656		if (status)
2657			ATW_WRITE(sc, ATW_STSR, status);
2658
2659		if (sc->sc_intr_ack != NULL)
2660			(*sc->sc_intr_ack)(sc);
2661
2662#ifdef ATW_DEBUG
2663#define PRINTINTR(flag) do { \
2664	if ((status & flag) != 0) { \
2665		printf("%s" #flag, delim); \
2666		delim = ","; \
2667	} \
2668} while (0)
2669
2670		if (atw_debug > 1 && status) {
2671			const char *delim = "<";
2672
2673			printf("%s: reg[STSR] = %x",
2674			    sc->sc_dev.dv_xname, status);
2675
2676			PRINTINTR(ATW_INTR_FBE);
2677			PRINTINTR(ATW_INTR_LINKOFF);
2678			PRINTINTR(ATW_INTR_LINKON);
2679			PRINTINTR(ATW_INTR_RCI);
2680			PRINTINTR(ATW_INTR_RDU);
2681			PRINTINTR(ATW_INTR_RPS);
2682			PRINTINTR(ATW_INTR_TCI);
2683			PRINTINTR(ATW_INTR_TDU);
2684			PRINTINTR(ATW_INTR_TLT);
2685			PRINTINTR(ATW_INTR_TPS);
2686			PRINTINTR(ATW_INTR_TRT);
2687			PRINTINTR(ATW_INTR_TUF);
2688			PRINTINTR(ATW_INTR_BCNTC);
2689			PRINTINTR(ATW_INTR_ATIME);
2690			PRINTINTR(ATW_INTR_TBTT);
2691			PRINTINTR(ATW_INTR_TSCZ);
2692			PRINTINTR(ATW_INTR_TSFTF);
2693			printf(">\n");
2694		}
2695#undef PRINTINTR
2696#endif /* ATW_DEBUG */
2697
2698		if ((status & sc->sc_inten) == 0)
2699			break;
2700
2701		handled = 1;
2702
2703		rxstatus = status & sc->sc_rxint_mask;
2704		txstatus = status & sc->sc_txint_mask;
2705		linkstatus = status & sc->sc_linkint_mask;
2706
2707		if (linkstatus) {
2708			atw_linkintr(sc, linkstatus);
2709		}
2710
2711		if (rxstatus) {
2712			/* Grab any new packets. */
2713			atw_rxintr(sc);
2714
2715			if (rxstatus & ATW_INTR_RDU) {
2716				printf("%s: receive ring overrun\n",
2717				    sc->sc_dev.dv_xname);
2718				/* Get the receive process going again. */
2719				ATW_WRITE(sc, ATW_RDR, 0x1);
2720				break;
2721			}
2722		}
2723
2724		if (txstatus) {
2725			/* Sweep up transmit descriptors. */
2726			atw_txintr(sc);
2727
2728			if (txstatus & ATW_INTR_TLT)
2729				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2730				    sc->sc_dev.dv_xname));
2731
2732			if (txstatus & ATW_INTR_TRT)
2733				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2734				    sc->sc_dev.dv_xname));
2735
2736			/* If Tx under-run, increase our transmit threshold
2737			 * if another is available.
2738			 */
2739			txthresh = sc->sc_txthresh + 1;
2740			if ((txstatus & ATW_INTR_TUF) &&
2741			    sc->sc_txth[txthresh].txth_name != NULL) {
2742				/* Idle the transmit process. */
2743				atw_idle(sc, ATW_NAR_ST);
2744
2745				sc->sc_txthresh = txthresh;
2746				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2747				sc->sc_opmode |=
2748				    sc->sc_txth[txthresh].txth_opmode;
2749				printf("%s: transmit underrun; new "
2750				    "threshold: %s\n", sc->sc_dev.dv_xname,
2751				    sc->sc_txth[txthresh].txth_name);
2752
2753				/* Set the new threshold and restart
2754				 * the transmit process.
2755				 */
2756				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2757				/* XXX Log every Nth underrun from
2758				 * XXX now on?
2759				 */
2760			}
2761		}
2762
2763		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2764			if (status & ATW_INTR_TPS)
2765				printf("%s: transmit process stopped\n",
2766				    sc->sc_dev.dv_xname);
2767			if (status & ATW_INTR_RPS)
2768				printf("%s: receive process stopped\n",
2769				    sc->sc_dev.dv_xname);
2770			(void)atw_init(ifp);
2771			break;
2772		}
2773
2774		if (status & ATW_INTR_FBE) {
2775			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2776			(void)atw_init(ifp);
2777			break;
2778		}
2779
2780		/*
2781		 * Not handled:
2782		 *
2783		 *	Transmit buffer unavailable -- normal
2784		 *	condition, nothing to do, really.
2785		 *
2786		 *	Early receive interrupt -- not available on
2787		 *	all chips, we just use RI.  We also only
2788		 *	use single-segment receive DMA, so this
2789		 *	is mostly useless.
2790		 *
2791		 *      TBD others
2792		 */
2793	}
2794
2795	/* Try to get more packets going. */
2796	atw_start(ifp);
2797
2798	return (handled);
2799}
2800
2801/*
2802 * atw_idle:
2803 *
2804 *	Cause the transmit and/or receive processes to go idle.
2805 *
2806 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2807 *	process in STSR if I clear SR or ST after the process has already
2808 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2809 *      do not seem to be too reliable. Perhaps I have the sense of the
2810 *	Rx bits switched with the Tx bits?
2811 */
2812void
2813atw_idle(sc, bits)
2814	struct atw_softc *sc;
2815	u_int32_t bits;
2816{
2817	u_int32_t ackmask = 0, opmode, stsr, test0;
2818	int i, s;
2819
2820	/* without this, somehow we run concurrently w/ interrupt handler */
2821	s = splnet();
2822
2823	opmode = sc->sc_opmode & ~bits;
2824
2825	if (bits & ATW_NAR_SR)
2826		ackmask |= ATW_INTR_RPS;
2827
2828	if (bits & ATW_NAR_ST) {
2829		ackmask |= ATW_INTR_TPS;
2830		/* set ATW_NAR_HF to flush TX FIFO. */
2831		opmode |= ATW_NAR_HF;
2832	}
2833
2834	ATW_WRITE(sc, ATW_NAR, opmode);
2835
2836	for (i = 0; i < 1000; i++) {
2837		stsr = ATW_READ(sc, ATW_STSR);
2838		if ((stsr & ackmask) == ackmask)
2839			break;
2840		DELAY(10);
2841	}
2842
2843	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2844
2845	if ((stsr & ackmask) == ackmask)
2846		goto out;
2847
2848	test0 = ATW_READ(sc, ATW_TEST0);
2849
2850	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2851	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2852		printf("%s: transmit process not idle [%s]\n",
2853		    sc->sc_dev.dv_xname,
2854		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2855		printf("%s: bits %08x test0 %08x stsr %08x\n",
2856		    sc->sc_dev.dv_xname, bits, test0, stsr);
2857	}
2858
2859	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2860	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2861		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2862		    sc->sc_dev.dv_xname,
2863		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2864		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2865		    sc->sc_dev.dv_xname, bits, test0, stsr));
2866	}
2867out:
2868	splx(s);
2869	return;
2870}
2871
2872/*
2873 * atw_linkintr:
2874 *
2875 *	Helper; handle link-status interrupts.
2876 */
2877void
2878atw_linkintr(sc, linkstatus)
2879	struct atw_softc *sc;
2880	u_int32_t linkstatus;
2881{
2882	struct ieee80211com *ic = &sc->sc_ic;
2883
2884	if (ic->ic_state != IEEE80211_S_RUN)
2885		return;
2886
2887	if (linkstatus & ATW_INTR_LINKON) {
2888		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2889		sc->sc_rescan_timer = 0;
2890	} else if (linkstatus & ATW_INTR_LINKOFF) {
2891		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2892		switch (ic->ic_opmode) {
2893		case IEEE80211_M_IBSS:
2894			if (ic->ic_flags & IEEE80211_F_SIBSS)
2895				return;
2896			/* FALL THROUGH */
2897		case IEEE80211_M_STA:
2898			sc->sc_rescan_timer = 3;
2899			ic->ic_if.if_timer = 1;
2900			break;
2901		default:
2902			break;
2903		}
2904	}
2905}
2906
2907/*
2908 * atw_rxintr:
2909 *
2910 *	Helper; handle receive interrupts.
2911 */
2912void
2913atw_rxintr(sc)
2914	struct atw_softc *sc;
2915{
2916	static int rate_tbl[] = {2, 4, 11, 22, 44};
2917	struct ifnet *ifp = &sc->sc_ic.ic_if;
2918	struct atw_rxsoft *rxs;
2919	struct mbuf *m;
2920	u_int32_t rxstat;
2921	int i, len, rate, rate0, rssi;
2922
2923	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2924		rxs = &sc->sc_rxsoft[i];
2925
2926		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2927
2928		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2929		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2930		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2931
2932		if (rxstat & ATW_RXSTAT_OWN) {
2933			/*
2934			 * We have processed all of the receive buffers.
2935			 */
2936			break;
2937		}
2938
2939		ATW_DPRINTF3(("%s: rssi %d\n", sc->sc_dev.dv_xname, rssi));
2940
2941		/*
2942		 * Make sure the packet fit in one buffer.  This should
2943		 * always be the case.
2944		 */
2945		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2946		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2947			printf("%s: incoming packet spilled, resetting\n",
2948			    sc->sc_dev.dv_xname);
2949			(void)atw_init(ifp);
2950			return;
2951		}
2952
2953		/*
2954		 * If an error occurred, update stats, clear the status
2955		 * word, and leave the packet buffer in place.  It will
2956		 * simply be reused the next time the ring comes around.
2957	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2958		 * error.
2959		 */
2960
2961		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2962		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2963		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2964		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2965				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2966				ATW_RXSTAT_ICVE)) != 0)) {
2967#define	PRINTERR(bit, str)						\
2968			if (rxstat & (bit))				\
2969				printf("%s: receive error: %s\n",	\
2970				    sc->sc_dev.dv_xname, str)
2971			ifp->if_ierrors++;
2972			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2973			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2974			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2975			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2976			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2977			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2978			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2979#undef PRINTERR
2980			ATW_INIT_RXDESC(sc, i);
2981			continue;
2982		}
2983
2984		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2985		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2986
2987		/*
2988		 * No errors; receive the packet.  Note the ADM8211
2989		 * includes the CRC in promiscuous mode.
2990		 */
2991		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2992
2993		/*
2994		 * Allocate a new mbuf cluster.  If that fails, we are
2995		 * out of memory, and must drop the packet and recycle
2996		 * the buffer that's already attached to this descriptor.
2997		 */
2998		m = rxs->rxs_mbuf;
2999		if (atw_add_rxbuf(sc, i) != 0) {
3000			ifp->if_ierrors++;
3001			ATW_INIT_RXDESC(sc, i);
3002			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3003			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3004			continue;
3005		}
3006
3007		ifp->if_ipackets++;
3008		if (sc->sc_opmode & ATW_NAR_PR)
3009			m->m_flags |= M_HASFCS;
3010		m->m_pkthdr.rcvif = ifp;
3011		m->m_pkthdr.len = m->m_len = len;
3012
3013		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3014			rate = 0;
3015		else
3016			rate = rate_tbl[rate0];
3017
3018#if NBPFILTER > 0
3019		/*
3020		 * Pass this up to any BPF listeners, but only
3021		 * pass it up the stack if it's for us.
3022		 */
3023		if (sc->sc_radiobpf) {
3024			/* TBD capture DLT_IEEE802_11_RADIO */
3025		}
3026#endif /* NPBFILTER > 0 */
3027
3028		/* Pass it on. */
3029		ieee80211_input(ifp, m, rssi, 0);
3030	}
3031
3032	/* Update the receive pointer. */
3033	sc->sc_rxptr = i;
3034}
3035
3036/*
3037 * atw_txintr:
3038 *
3039 *	Helper; handle transmit interrupts.
3040 */
3041void
3042atw_txintr(sc)
3043	struct atw_softc *sc;
3044{
3045#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3046    ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3047#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3048    "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3049
3050	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3051	struct ifnet *ifp = &sc->sc_ic.ic_if;
3052	struct atw_txsoft *txs;
3053	u_int32_t txstat;
3054
3055	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3056	    sc->sc_dev.dv_xname, sc->sc_flags));
3057
3058	ifp->if_flags &= ~IFF_OACTIVE;
3059
3060	/*
3061	 * Go through our Tx list and free mbufs for those
3062	 * frames that have been transmitted.
3063	 */
3064	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3065		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3066		    txs->txs_ndescs,
3067		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3068
3069#ifdef ATW_DEBUG
3070		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3071			int i;
3072			printf("    txsoft %p transmit chain:\n", txs);
3073			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3074				printf("     descriptor %d:\n", i);
3075				printf("       at_status:   0x%08x\n",
3076				    le32toh(sc->sc_txdescs[i].at_stat));
3077				printf("       at_flags:      0x%08x\n",
3078				    le32toh(sc->sc_txdescs[i].at_flags));
3079				printf("       at_buf1: 0x%08x\n",
3080				    le32toh(sc->sc_txdescs[i].at_buf1));
3081				printf("       at_buf2: 0x%08x\n",
3082				    le32toh(sc->sc_txdescs[i].at_buf2));
3083				if (i == txs->txs_lastdesc)
3084					break;
3085			}
3086		}
3087#endif
3088
3089		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3090		if (txstat & ATW_TXSTAT_OWN)
3091			break;
3092
3093		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3094
3095		sc->sc_txfree += txs->txs_ndescs;
3096
3097		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3098		    0, txs->txs_dmamap->dm_mapsize,
3099		    BUS_DMASYNC_POSTWRITE);
3100		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3101		m_freem(txs->txs_mbuf);
3102		txs->txs_mbuf = NULL;
3103
3104		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3105
3106		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3107		    (txstat & TXSTAT_ERRMASK) != 0) {
3108			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3109			    txstat_buf, sizeof(txstat_buf));
3110			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3111			    txstat_buf,
3112			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3113		}
3114
3115		/*
3116		 * Check for errors and collisions.
3117		 */
3118		if (txstat & ATW_TXSTAT_TUF)
3119			sc->sc_stats.ts_tx_tuf++;
3120		if (txstat & ATW_TXSTAT_TLT)
3121			sc->sc_stats.ts_tx_tlt++;
3122		if (txstat & ATW_TXSTAT_TRT)
3123			sc->sc_stats.ts_tx_trt++;
3124		if (txstat & ATW_TXSTAT_TRO)
3125			sc->sc_stats.ts_tx_tro++;
3126		if (txstat & ATW_TXSTAT_SOFBR) {
3127			sc->sc_stats.ts_tx_sofbr++;
3128		}
3129
3130		if ((txstat & ATW_TXSTAT_ES) == 0)
3131			ifp->if_collisions +=
3132			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3133		else
3134			ifp->if_oerrors++;
3135
3136		ifp->if_opackets++;
3137	}
3138
3139	/*
3140	 * If there are no more pending transmissions, cancel the watchdog
3141	 * timer.
3142	 */
3143	if (txs == NULL)
3144		sc->sc_tx_timer = 0;
3145#undef TXSTAT_ERRMASK
3146#undef TXSTAT_FMT
3147}
3148
3149/*
3150 * atw_watchdog:	[ifnet interface function]
3151 *
3152 *	Watchdog timer handler.
3153 */
3154void
3155atw_watchdog(ifp)
3156	struct ifnet *ifp;
3157{
3158	struct atw_softc *sc = ifp->if_softc;
3159
3160	ifp->if_timer = 0;
3161	if (ATW_IS_ENABLED(sc) == 0)
3162		return;
3163
3164	if (sc->sc_rescan_timer) {
3165		if (--sc->sc_rescan_timer == 0)
3166			(void)ieee80211_new_state(ifp, IEEE80211_S_SCAN, -1);
3167	}
3168	if (sc->sc_tx_timer) {
3169		if (--sc->sc_tx_timer == 0 &&
3170		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3171			printf("%s: transmit timeout\n", ifp->if_xname);
3172			ifp->if_oerrors++;
3173			(void)atw_init(ifp);
3174			atw_start(ifp);
3175		}
3176	}
3177	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3178		ifp->if_timer = 1;
3179	ieee80211_watchdog(ifp);
3180}
3181
3182/* Compute the 802.11 Duration field and the PLCP Length fields for
3183 * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3184 * Write the fields to the ADM8211 Tx header, frm.
3185 *
3186 * TBD use the fragmentation threshold to find the right duration for
3187 * the first & last fragments.
3188 *
3189 * TBD make certain of the duration fields applied by the ADM8211 to each
3190 * fragment. I think that the ADM8211 knows how to subtract the CTS
3191 * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3192 * I also think that the ADM8211 does *some* arithmetic for us, because
3193 * otherwise I think we would have to set a first duration for CTS/first
3194 * fragment, a second duration for fragments between the first and the
3195 * last, and a third duration for the last fragment.
3196 *
3197 * TBD make certain that duration fields reflect addition of FCS/WEP
3198 * and correct duration arithmetic as necessary.
3199 */
3200static void
3201atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3202    int len)
3203{
3204	int remainder;
3205
3206	/* deal also with encrypted fragments */
3207	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3208		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3209		    sc->sc_dev.dv_xname));
3210		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3211		       IEEE80211_WEP_CRCLEN;
3212	}
3213
3214	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3215	 * duration (XXX added by MAC?).
3216	 */
3217	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3218	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3219
3220	if (rate <= 4)
3221		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3222		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3223		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3224		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3225		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3226	else
3227		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3228		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3229		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3230		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3231		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3232
3233	/* lengthen duration if long preamble */
3234	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3235		frm->atw_head_dur +=
3236		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3237		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3238		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3239		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3240
3241	if (remainder != 0)
3242		frm->atw_head_dur++;
3243
3244	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3245	    (rate == 2 || rate == 4)) {
3246		/* derived from Linux: how could this be right? */
3247		frm->atw_head_plcplen = frm->atw_head_dur;
3248	} else {
3249		frm->atw_head_plcplen = (16 * len) / rate;
3250		remainder = (80 * len) % (rate * 5);
3251
3252		if (remainder != 0) {
3253			frm->atw_head_plcplen++;
3254
3255			/* XXX magic */
3256			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3257			    rate == 22 && remainder <= 30)
3258				frm->atw_head_plcplen |= 0x8000;
3259		}
3260	}
3261	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3262	    htole16(frm->atw_head_plcplen);
3263	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3264}
3265
3266#ifdef ATW_DEBUG
3267static void
3268atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3269{
3270	struct atw_softc *sc = ifp->if_softc;
3271	struct mbuf *m;
3272	int i, noctets = 0;
3273
3274	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3275	    m0->m_pkthdr.len);
3276
3277	for (m = m0; m; m = m->m_next) {
3278		if (m->m_len == 0)
3279			continue;
3280		for (i = 0; i < m->m_len; i++) {
3281			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3282			if (++noctets % 24 == 0)
3283				printf("\n");
3284		}
3285	}
3286	printf("%s%s: %d bytes emitted\n",
3287	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3288}
3289#endif /* ATW_DEBUG */
3290
3291/*
3292 * atw_start:		[ifnet interface function]
3293 *
3294 *	Start packet transmission on the interface.
3295 */
3296void
3297atw_start(ifp)
3298	struct ifnet *ifp;
3299{
3300	struct atw_softc *sc = ifp->if_softc;
3301	struct ieee80211com *ic = &sc->sc_ic;
3302	struct ieee80211_frame_addr4 *wh;
3303	struct atw_frame *hh;
3304	struct mbuf *m0, *m, *mh;
3305	struct atw_txsoft *txs, *last_txs;
3306	struct atw_txdesc *txd;
3307	int do_encrypt, is_mgt, rate;
3308	bus_dmamap_t dmamap;
3309	int ctl, error, firsttx, nexttx, lasttx, ofree, seg;
3310
3311	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3312	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3313
3314	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3315		return;
3316
3317#if 0 /* TBD ??? */
3318	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3319		return;
3320#endif
3321
3322	/*
3323	 * Remember the previous number of free descriptors and
3324	 * the first descriptor we'll use.
3325	 */
3326	ofree = sc->sc_txfree;
3327	firsttx = sc->sc_txnext;
3328
3329	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3330	    sc->sc_dev.dv_xname, ofree, firsttx));
3331
3332	/*
3333	 * Loop through the send queue, setting up transmit descriptors
3334	 * until we drain the queue, or use up all available transmit
3335	 * descriptors.
3336	 */
3337	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3338	       sc->sc_txfree != 0) {
3339
3340		do_encrypt = 0;
3341		is_mgt = 1;
3342
3343		/*
3344		 * Grab a packet off the management queue, if it
3345		 * is not empty. Otherwise, from the data queue.
3346		 */
3347		IF_POLL(&ic->ic_mgtq, m0);
3348		if (m0 == NULL) {
3349			is_mgt = 0;
3350			IFQ_POLL(&ifp->if_snd, m0);
3351			if (m0 == NULL)
3352				break;
3353#if NBPFILTER > 0
3354			if (ifp->if_bpf != NULL)
3355				bpf_mtap(ifp->if_bpf, m0);
3356#endif /* NBPFILTER > 0 */
3357			if ((m0 = ieee80211_encap(ifp, m0)) == NULL) {
3358				ifp->if_oerrors++;
3359				continue;
3360			}
3361		}
3362		m = NULL;
3363
3364#if NBPFILTER > 0
3365		/*
3366		 * Pass the packet to any BPF listeners.
3367		 */
3368		if (ic->ic_rawbpf != NULL)
3369			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3370		if (sc->sc_radiobpf != NULL)
3371			; /* TBD tap w/ radio header */
3372#endif /* NBPFILTER > 0 */
3373
3374		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3375
3376		if (m0 == NULL) {
3377			ifp->if_oerrors++;
3378			continue;
3379		}
3380
3381		/* just to make sure. */
3382		m0 = m_pullup(m0, sizeof(struct atw_frame));
3383
3384		if (m0 == NULL) {
3385			ifp->if_oerrors++;
3386			continue;
3387		}
3388
3389		hh = mtod(m0, struct atw_frame *);
3390		wh = &hh->atw_ihdr;
3391
3392		do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
3393
3394		/* Copy everything we need from the 802.11 header:
3395		 * Frame Control; address 1, address 3, or addresses
3396		 * 3 and 4. NIC fills in BSSID, SA.
3397		 */
3398		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3399			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3400			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3401				memcpy(hh->atw_addr4, wh->i_addr4,
3402				    IEEE80211_ADDR_LEN);
3403		} else
3404			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3405
3406		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3407
3408		/* zero 802.11 header before we fill it w/ Tx parameters */
3409		memset(&hh->atw_ihdr, 0, sizeof(hh->atw_ihdr));
3410
3411		rate = MAX(ieee80211_get_rate(ic), 2);
3412
3413		hh->atw_rate = rate * 5;
3414		/* XXX this could be incorrect if M_FCS. _encap should
3415		 * probably strip FCS just in case it sticks around in
3416		 * bridged packets.
3417		 */
3418		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3419		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3420		    sizeof(struct atw_frame));
3421
3422#if 0
3423		/* this virtually guaranteed that WEP-encrypted frames
3424		 * are fragmented. oops.
3425		 */
3426		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3427		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3428		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3429#else
3430		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3431#endif
3432
3433		hh->atw_rtylmt = 3;
3434		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3435		if (do_encrypt) {
3436			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3437			hh->atw_keyid = ic->ic_wep_txkey;
3438		}
3439
3440		/* TBD 4-addr frames */
3441		atw_frame_setdurs(sc, hh, rate,
3442		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3443		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3444
3445		/* never fragment multicast frames */
3446		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3447			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3448		} else if (sc->sc_flags & ATWF_RTSCTS) {
3449			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3450		}
3451
3452#ifdef ATW_DEBUG
3453		/* experimental stuff */
3454		if (atw_xrtylmt != ~0)
3455			hh->atw_rtylmt = atw_xrtylmt;
3456		if (atw_xhdrctl != 0)
3457			hh->atw_hdrctl |= htole16(atw_xhdrctl);
3458		if (atw_xservice != IEEE80211_PLCP_SERVICE)
3459			hh->atw_service = atw_xservice;
3460		if (atw_xpaylen != 0)
3461			hh->atw_paylen = htole16(atw_xpaylen);
3462		memset(hh->atw_addr4, 0, IEEE80211_ADDR_LEN);
3463		hh->atw_fragnum = 0;
3464
3465		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3466			printf("%s: dst = %s, rate = 0x%02x, "
3467			    "service = 0x%02x, paylen = 0x%04x\n",
3468			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3469			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3470
3471			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3472			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3473			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3474			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3475			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3476			    hh->atw_tail_dur, hh->atw_head_dur);
3477
3478			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3479			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3480			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3481			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3482
3483			printf("%s: keyid = %d\n",
3484			    sc->sc_dev.dv_xname, hh->atw_keyid);
3485
3486			atw_dump_pkt(ifp, m0);
3487		}
3488#endif /* ATW_DEBUG */
3489
3490		dmamap = txs->txs_dmamap;
3491
3492		/*
3493		 * Load the DMA map.  If this fails, the packet either
3494		 * didn't fit in the alloted number of segments, or we were
3495		 * short on resources.  In this case, we'll copy and try
3496		 * again.
3497		 */
3498		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3499		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
3500			MGETHDR(m, M_DONTWAIT, MT_DATA);
3501			if (m == NULL) {
3502				printf("%s: unable to allocate Tx mbuf\n",
3503				    sc->sc_dev.dv_xname);
3504				break;
3505			}
3506			if (m0->m_pkthdr.len > MHLEN) {
3507				MCLGET(m, M_DONTWAIT);
3508				if ((m->m_flags & M_EXT) == 0) {
3509					printf("%s: unable to allocate Tx "
3510					    "cluster\n", sc->sc_dev.dv_xname);
3511					m_freem(m);
3512					break;
3513				}
3514			}
3515			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3516			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3517			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
3518			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
3519			if (error) {
3520				printf("%s: unable to load Tx buffer, "
3521				    "error = %d\n", sc->sc_dev.dv_xname, error);
3522				if (m != NULL)
3523					m_freem(m);
3524				break;
3525			}
3526		}
3527
3528		/*
3529		 * Ensure we have enough descriptors free to describe
3530		 * the packet.
3531		 */
3532		if (dmamap->dm_nsegs > sc->sc_txfree) {
3533			/*
3534			 * Not enough free descriptors to transmit this
3535			 * packet.  We haven't committed to anything yet,
3536			 * so just unload the DMA map, put the packet
3537			 * back on the queue, and punt.  Notify the upper
3538			 * layer that there are no more slots left.
3539			 *
3540			 * XXX We could allocate an mbuf and copy, but
3541			 * XXX it is worth it?
3542			 */
3543			ifp->if_flags |= IFF_OACTIVE;
3544			bus_dmamap_unload(sc->sc_dmat, dmamap);
3545			if (m != NULL)
3546				m_freem(m);
3547			break;
3548		}
3549
3550		if (is_mgt) {
3551			IF_DEQUEUE(&ic->ic_mgtq, mh);
3552		} else {
3553			IFQ_DEQUEUE(&ifp->if_snd, mh);
3554		}
3555
3556		if (m != NULL) {
3557			m_freem(m0);
3558			m0 = m;
3559		}
3560
3561		/*
3562		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3563		 */
3564
3565		/* Sync the DMA map. */
3566		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3567		    BUS_DMASYNC_PREWRITE);
3568
3569		/* XXX arbitrary retry limit; 8 because I have seen it in
3570		 * use already and maybe 0 means "no tries" !
3571		 */
3572		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3573
3574		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3575		    sc->sc_dev.dv_xname, rate * 5));
3576		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3577
3578		/*
3579		 * Initialize the transmit descriptors.
3580		 */
3581		for (nexttx = sc->sc_txnext, seg = 0;
3582		     seg < dmamap->dm_nsegs;
3583		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3584			/*
3585			 * If this is the first descriptor we're
3586			 * enqueueing, don't set the OWN bit just
3587			 * yet.  That could cause a race condition.
3588			 * We'll do it below.
3589			 */
3590			txd = &sc->sc_txdescs[nexttx];
3591			txd->at_ctl = ctl |
3592			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3593
3594			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3595			txd->at_flags =
3596			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3597			                   ATW_TXFLAG_TBS1_MASK)) |
3598			    ((nexttx == (ATW_NTXDESC - 1))
3599			        ? htole32(ATW_TXFLAG_TER) : 0);
3600			lasttx = nexttx;
3601		}
3602
3603		/* Set `first segment' and `last segment' appropriately. */
3604		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3605		    htole32(ATW_TXFLAG_FS);
3606		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3607
3608#ifdef ATW_DEBUG
3609		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3610			printf("     txsoft %p transmit chain:\n", txs);
3611			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3612				printf("     descriptor %d:\n", seg);
3613				printf("       at_ctl:   0x%08x\n",
3614				    le32toh(sc->sc_txdescs[seg].at_ctl));
3615				printf("       at_flags:      0x%08x\n",
3616				    le32toh(sc->sc_txdescs[seg].at_flags));
3617				printf("       at_buf1: 0x%08x\n",
3618				    le32toh(sc->sc_txdescs[seg].at_buf1));
3619				printf("       at_buf2: 0x%08x\n",
3620				    le32toh(sc->sc_txdescs[seg].at_buf2));
3621				if (seg == lasttx)
3622					break;
3623			}
3624		}
3625#endif
3626
3627		/* Sync the descriptors we're using. */
3628		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3629		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3630
3631		/*
3632		 * Store a pointer to the packet so we can free it later,
3633		 * and remember what txdirty will be once the packet is
3634		 * done.
3635		 */
3636		txs->txs_mbuf = m0;
3637		txs->txs_firstdesc = sc->sc_txnext;
3638		txs->txs_lastdesc = lasttx;
3639		txs->txs_ndescs = dmamap->dm_nsegs;
3640
3641		/* Advance the tx pointer. */
3642		sc->sc_txfree -= dmamap->dm_nsegs;
3643		sc->sc_txnext = nexttx;
3644
3645		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3646		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3647
3648		last_txs = txs;
3649	}
3650
3651	if (txs == NULL || sc->sc_txfree == 0) {
3652		/* No more slots left; notify upper layer. */
3653		ifp->if_flags |= IFF_OACTIVE;
3654	}
3655
3656	if (sc->sc_txfree != ofree) {
3657		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3658		    sc->sc_dev.dv_xname, lasttx, firsttx));
3659		/*
3660		 * Cause a transmit interrupt to happen on the
3661		 * last packet we enqueued.
3662		 */
3663		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3664		ATW_CDTXSYNC(sc, lasttx, 1,
3665		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3666
3667		/*
3668		 * The entire packet chain is set up.  Give the
3669		 * first descriptor to the chip now.
3670		 */
3671		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3672		ATW_CDTXSYNC(sc, firsttx, 1,
3673		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3674
3675		/* Wake up the transmitter. */
3676		/* XXX USE AUTOPOLLING? */
3677		ATW_WRITE(sc, ATW_TDR, 0x1);
3678
3679		/* Set a watchdog timer in case the chip flakes out. */
3680		sc->sc_tx_timer = 5;
3681		ifp->if_timer = 1;
3682	}
3683}
3684
3685/*
3686 * atw_power:
3687 *
3688 *	Power management (suspend/resume) hook.
3689 */
3690void
3691atw_power(why, arg)
3692	int why;
3693	void *arg;
3694{
3695	struct atw_softc *sc = arg;
3696	struct ifnet *ifp = &sc->sc_ic.ic_if;
3697	int s;
3698
3699	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3700
3701	s = splnet();
3702	switch (why) {
3703	case PWR_STANDBY:
3704		/* XXX do nothing. */
3705		break;
3706	case PWR_SUSPEND:
3707		atw_stop(ifp, 0);
3708		if (sc->sc_power != NULL)
3709			(*sc->sc_power)(sc, why);
3710		break;
3711	case PWR_RESUME:
3712		if (ifp->if_flags & IFF_UP) {
3713			if (sc->sc_power != NULL)
3714				(*sc->sc_power)(sc, why);
3715			atw_init(ifp);
3716		}
3717		break;
3718	case PWR_SOFTSUSPEND:
3719	case PWR_SOFTSTANDBY:
3720	case PWR_SOFTRESUME:
3721		break;
3722	}
3723	splx(s);
3724}
3725
3726/*
3727 * atw_ioctl:		[ifnet interface function]
3728 *
3729 *	Handle control requests from the operator.
3730 */
3731int
3732atw_ioctl(ifp, cmd, data)
3733	struct ifnet *ifp;
3734	u_long cmd;
3735	caddr_t data;
3736{
3737	struct atw_softc *sc = ifp->if_softc;
3738	struct ifreq *ifr = (struct ifreq *)data;
3739	int s, error = 0;
3740
3741	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3742	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3743		return ENXIO;
3744
3745	s = splnet();
3746
3747	switch (cmd) {
3748	case SIOCSIFFLAGS:
3749		if (ifp->if_flags & IFF_UP) {
3750			if (ATW_IS_ENABLED(sc)) {
3751				/*
3752				 * To avoid rescanning another access point,
3753				 * do not call atw_init() here.  Instead,
3754				 * only reflect media settings.
3755				 */
3756				atw_filter_setup(sc);
3757			} else
3758				error = atw_init(ifp);
3759		} else if (ATW_IS_ENABLED(sc))
3760			atw_stop(ifp, 1);
3761		break;
3762	case SIOCADDMULTI:
3763	case SIOCDELMULTI:
3764		error = (cmd == SIOCADDMULTI) ?
3765		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3766		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3767		if (error == ENETRESET) {
3768			if (ATW_IS_ENABLED(sc))
3769				atw_filter_setup(sc); /* do not rescan */
3770			error = 0;
3771		}
3772		break;
3773	default:
3774		error = ieee80211_ioctl(ifp, cmd, data);
3775		if (error == ENETRESET) {
3776			if (ATW_IS_ENABLED(sc))
3777				error = atw_init(ifp);
3778			else
3779				error = 0;
3780		}
3781		break;
3782	}
3783
3784	/* Try to get more packets going. */
3785	if (ATW_IS_ENABLED(sc))
3786		atw_start(ifp);
3787
3788	splx(s);
3789	return (error);
3790}
3791
3792static void
3793atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3794{
3795	struct atw_softc *sc = ifp->if_softc;
3796
3797	if (ATW_IS_ENABLED(sc) == 0) {
3798		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3799		imr->ifm_status = 0;
3800		return;
3801	}
3802	ieee80211_media_status(ifp, imr);
3803}
3804