acpi_cpu_cstate.c revision 1.35
1/* $NetBSD: acpi_cpu_cstate.c,v 1.35 2011/01/04 05:48:48 jruoho Exp $ */
2
3/*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29#include <sys/cdefs.h>
30__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.35 2011/01/04 05:48:48 jruoho Exp $");
31
32#include <sys/param.h>
33#include <sys/cpu.h>
34#include <sys/device.h>
35#include <sys/evcnt.h>
36#include <sys/kernel.h>
37#include <sys/once.h>
38#include <sys/mutex.h>
39#include <sys/timetc.h>
40
41#include <dev/acpi/acpireg.h>
42#include <dev/acpi/acpivar.h>
43#include <dev/acpi/acpi_cpu.h>
44#include <dev/acpi/acpi_timer.h>
45
46#include <machine/acpi_machdep.h>
47
48#define _COMPONENT	 ACPI_BUS_COMPONENT
49ACPI_MODULE_NAME	 ("acpi_cpu_cstate")
50
51static void		 acpicpu_cstate_attach_print(struct acpicpu_softc *);
52static void		 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *);
53static void		 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *);
54static ACPI_STATUS	 acpicpu_cstate_cst(struct acpicpu_softc *);
55static ACPI_STATUS	 acpicpu_cstate_cst_add(struct acpicpu_softc *,
56						ACPI_OBJECT *);
57static void		 acpicpu_cstate_cst_bios(void);
58static void		 acpicpu_cstate_memset(struct acpicpu_softc *);
59static void		 acpicpu_cstate_fadt(struct acpicpu_softc *);
60static void		 acpicpu_cstate_quirks(struct acpicpu_softc *);
61static int		 acpicpu_cstate_latency(struct acpicpu_softc *);
62static bool		 acpicpu_cstate_bm_check(void);
63static void		 acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
64
65extern struct acpicpu_softc **acpicpu_sc;
66
67/*
68 * XXX:	The local APIC timer (as well as TSC) is typically stopped in C3.
69 *	For now, we cannot but disable C3. But there appears to be timer-
70 *	related interrupt issues also in C2. The only entirely safe option
71 *	at the moment is to use C1.
72 */
73#ifdef ACPICPU_ENABLE_C3
74static int cs_state_max = ACPI_STATE_C3;
75#else
76static int cs_state_max = ACPI_STATE_C1;
77#endif
78
79void
80acpicpu_cstate_attach(device_t self)
81{
82	struct acpicpu_softc *sc = device_private(self);
83	ACPI_STATUS rv;
84
85	/*
86	 * Either use the preferred _CST or resort to FADT.
87	 */
88	rv = acpicpu_cstate_cst(sc);
89
90	switch (rv) {
91
92	case AE_OK:
93		acpicpu_cstate_cst_bios();
94		break;
95
96	default:
97		sc->sc_flags |= ACPICPU_FLAG_C_FADT;
98		acpicpu_cstate_fadt(sc);
99		break;
100	}
101
102	sc->sc_flags |= ACPICPU_FLAG_C;
103
104	acpicpu_cstate_quirks(sc);
105	acpicpu_cstate_attach_evcnt(sc);
106	acpicpu_cstate_attach_print(sc);
107}
108
109void
110acpicpu_cstate_attach_print(struct acpicpu_softc *sc)
111{
112	struct acpicpu_cstate *cs;
113	static bool once = false;
114	const char *str;
115	int i;
116
117	if (once != false)
118		return;
119
120	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
121
122		cs = &sc->sc_cstate[i];
123
124		if (cs->cs_method == 0)
125			continue;
126
127		switch (cs->cs_method) {
128
129		case ACPICPU_C_STATE_HALT:
130			str = "HLT";
131			break;
132
133		case ACPICPU_C_STATE_FFH:
134			str = "FFH";
135			break;
136
137		case ACPICPU_C_STATE_SYSIO:
138			str = "I/O";
139			break;
140
141		default:
142			panic("NOTREACHED");
143		}
144
145		aprint_debug_dev(sc->sc_dev, "C%d: %3s, "
146		    "lat %3u us, pow %5u mW, flags 0x%02x\n", i, str,
147		    cs->cs_latency, cs->cs_power, cs->cs_flags);
148	}
149
150	once = true;
151}
152
153static void
154acpicpu_cstate_attach_evcnt(struct acpicpu_softc *sc)
155{
156	struct acpicpu_cstate *cs;
157	const char *str;
158	int i;
159
160	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
161
162		cs = &sc->sc_cstate[i];
163
164		if (cs->cs_method == 0)
165			continue;
166
167		str = "HALT";
168
169		if (cs->cs_method == ACPICPU_C_STATE_FFH)
170			str = "MWAIT";
171
172		if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
173			str = "I/O";
174
175		(void)snprintf(cs->cs_name, sizeof(cs->cs_name),
176		    "C%d (%s)", i, str);
177
178		evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
179		    NULL, device_xname(sc->sc_dev), cs->cs_name);
180	}
181}
182
183int
184acpicpu_cstate_detach(device_t self)
185{
186	struct acpicpu_softc *sc = device_private(self);
187	static ONCE_DECL(once_detach);
188	int rv;
189
190	rv = RUN_ONCE(&once_detach, acpicpu_md_idle_stop);
191
192	if (rv != 0)
193		return rv;
194
195	sc->sc_flags &= ~ACPICPU_FLAG_C;
196	acpicpu_cstate_detach_evcnt(sc);
197
198	return 0;
199}
200
201static void
202acpicpu_cstate_detach_evcnt(struct acpicpu_softc *sc)
203{
204	struct acpicpu_cstate *cs;
205	int i;
206
207	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
208
209		cs = &sc->sc_cstate[i];
210
211		if (cs->cs_method != 0)
212			evcnt_detach(&cs->cs_evcnt);
213	}
214}
215
216void
217acpicpu_cstate_start(device_t self)
218{
219	struct acpicpu_softc *sc = device_private(self);
220
221	(void)acpicpu_md_idle_start(sc);
222}
223
224bool
225acpicpu_cstate_suspend(device_t self)
226{
227	return true;
228}
229
230bool
231acpicpu_cstate_resume(device_t self)
232{
233	static const ACPI_OSD_EXEC_CALLBACK func = acpicpu_cstate_callback;
234	struct acpicpu_softc *sc = device_private(self);
235
236	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
237		(void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
238
239	return true;
240}
241
242void
243acpicpu_cstate_callback(void *aux)
244{
245	struct acpicpu_softc *sc;
246	device_t self = aux;
247
248	sc = device_private(self);
249
250	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
251		return;
252
253	mutex_enter(&sc->sc_mtx);
254	(void)acpicpu_cstate_cst(sc);
255	mutex_exit(&sc->sc_mtx);
256}
257
258static ACPI_STATUS
259acpicpu_cstate_cst(struct acpicpu_softc *sc)
260{
261	ACPI_OBJECT *elm, *obj;
262	ACPI_BUFFER buf;
263	ACPI_STATUS rv;
264	uint32_t i, n;
265	uint8_t count;
266
267	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
268
269	if (ACPI_FAILURE(rv))
270		return rv;
271
272	obj = buf.Pointer;
273
274	if (obj->Type != ACPI_TYPE_PACKAGE) {
275		rv = AE_TYPE;
276		goto out;
277	}
278
279	if (obj->Package.Count < 2) {
280		rv = AE_LIMIT;
281		goto out;
282	}
283
284	elm = obj->Package.Elements;
285
286	if (elm[0].Type != ACPI_TYPE_INTEGER) {
287		rv = AE_TYPE;
288		goto out;
289	}
290
291	n = elm[0].Integer.Value;
292
293	if (n != obj->Package.Count - 1) {
294		rv = AE_BAD_VALUE;
295		goto out;
296	}
297
298	if (n > ACPI_C_STATES_MAX) {
299		rv = AE_LIMIT;
300		goto out;
301	}
302
303	acpicpu_cstate_memset(sc);
304
305	CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
306	CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
307
308	for (count = 0, i = 1; i <= n; i++) {
309
310		elm = &obj->Package.Elements[i];
311		rv = acpicpu_cstate_cst_add(sc, elm);
312
313		if (ACPI_SUCCESS(rv))
314			count++;
315	}
316
317	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
318
319out:
320	if (buf.Pointer != NULL)
321		ACPI_FREE(buf.Pointer);
322
323	return rv;
324}
325
326static ACPI_STATUS
327acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
328{
329	const struct acpicpu_object *ao = &sc->sc_object;
330	struct acpicpu_cstate *cs = sc->sc_cstate;
331	struct acpicpu_cstate state;
332	struct acpicpu_reg *reg;
333	ACPI_STATUS rv = AE_OK;
334	ACPI_OBJECT *obj;
335	uint32_t type;
336
337	(void)memset(&state, 0, sizeof(*cs));
338
339	state.cs_flags = ACPICPU_FLAG_C_BM_STS;
340
341	if (elm->Type != ACPI_TYPE_PACKAGE) {
342		rv = AE_TYPE;
343		goto out;
344	}
345
346	if (elm->Package.Count != 4) {
347		rv = AE_LIMIT;
348		goto out;
349	}
350
351	/*
352	 * Type.
353	 */
354	obj = &elm->Package.Elements[1];
355
356	if (obj->Type != ACPI_TYPE_INTEGER) {
357		rv = AE_TYPE;
358		goto out;
359	}
360
361	type = obj->Integer.Value;
362
363	if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
364		rv = AE_TYPE;
365		goto out;
366	}
367
368	/*
369	 * Latency.
370	 */
371	obj = &elm->Package.Elements[2];
372
373	if (obj->Type != ACPI_TYPE_INTEGER) {
374		rv = AE_TYPE;
375		goto out;
376	}
377
378	state.cs_latency = obj->Integer.Value;
379
380	/*
381	 * Power.
382	 */
383	obj = &elm->Package.Elements[3];
384
385	if (obj->Type != ACPI_TYPE_INTEGER) {
386		rv = AE_TYPE;
387		goto out;
388	}
389
390	state.cs_power = obj->Integer.Value;
391
392	/*
393	 * Register.
394	 */
395	obj = &elm->Package.Elements[0];
396
397	if (obj->Type != ACPI_TYPE_BUFFER) {
398		rv = AE_TYPE;
399		goto out;
400	}
401
402	CTASSERT(sizeof(struct acpicpu_reg) == 15);
403
404	if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
405		rv = AE_LIMIT;
406		goto out;
407	}
408
409	reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
410
411	switch (reg->reg_spaceid) {
412
413	case ACPI_ADR_SPACE_SYSTEM_IO:
414		state.cs_method = ACPICPU_C_STATE_SYSIO;
415
416		if (reg->reg_addr == 0) {
417			rv = AE_AML_ILLEGAL_ADDRESS;
418			goto out;
419		}
420
421		if (reg->reg_bitwidth != 8) {
422			rv = AE_AML_BAD_RESOURCE_LENGTH;
423			goto out;
424		}
425
426		/*
427		 * Check only that the address is in the mapped space.
428		 * Systems are allowed to change it when operating
429		 * with _CST (see ACPI 4.0, pp. 94-95). For instance,
430		 * the offset of P_LVL3 may change depending on whether
431		 * acpiacad(4) is connected or disconnected.
432		 */
433		if (reg->reg_addr > ao->ao_pblkaddr + ao->ao_pblklen) {
434			rv = AE_BAD_ADDRESS;
435			goto out;
436		}
437
438		state.cs_addr = reg->reg_addr;
439		break;
440
441	case ACPI_ADR_SPACE_FIXED_HARDWARE:
442		state.cs_method = ACPICPU_C_STATE_FFH;
443
444		switch (type) {
445
446		case ACPI_STATE_C1:
447
448			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
449				state.cs_method = ACPICPU_C_STATE_HALT;
450
451			break;
452
453		default:
454
455			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
456				rv = AE_SUPPORT;
457				goto out;
458			}
459		}
460
461		if (sc->sc_cap != 0) {
462
463			/*
464			 * The _CST FFH GAS encoding may contain
465			 * additional hints on Intel processors.
466			 * Use these to determine whether we can
467			 * avoid the bus master activity check.
468			 */
469			if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
470				state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
471		}
472
473		break;
474
475	default:
476		rv = AE_AML_INVALID_SPACE_ID;
477		goto out;
478	}
479
480	if (cs[type].cs_method != 0) {
481		rv = AE_ALREADY_EXISTS;
482		goto out;
483	}
484
485	cs[type].cs_addr = state.cs_addr;
486	cs[type].cs_power = state.cs_power;
487	cs[type].cs_flags = state.cs_flags;
488	cs[type].cs_method = state.cs_method;
489	cs[type].cs_latency = state.cs_latency;
490
491out:
492	if (ACPI_FAILURE(rv))
493		aprint_debug_dev(sc->sc_dev, "invalid "
494		    "_CST: %s\n", AcpiFormatException(rv));
495
496	return rv;
497}
498
499static void
500acpicpu_cstate_cst_bios(void)
501{
502	const uint8_t val = AcpiGbl_FADT.CstControl;
503	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
504
505	if (addr == 0 || val == 0)
506		return;
507
508	(void)AcpiOsWritePort(addr, val, 8);
509}
510
511static void
512acpicpu_cstate_memset(struct acpicpu_softc *sc)
513{
514	int i = 0;
515
516	while (i < ACPI_C_STATE_COUNT) {
517
518		sc->sc_cstate[i].cs_addr = 0;
519		sc->sc_cstate[i].cs_power = 0;
520		sc->sc_cstate[i].cs_flags = 0;
521		sc->sc_cstate[i].cs_method = 0;
522		sc->sc_cstate[i].cs_latency = 0;
523
524		i++;
525	}
526}
527
528static void
529acpicpu_cstate_fadt(struct acpicpu_softc *sc)
530{
531	struct acpicpu_cstate *cs = sc->sc_cstate;
532
533	acpicpu_cstate_memset(sc);
534
535	/*
536	 * All x86 processors should support C1 (a.k.a. HALT).
537	 */
538	if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) != 0)
539		cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
540
541	if (sc->sc_object.ao_pblkaddr == 0)
542		return;
543
544	if (acpicpu_md_cpus_running() > 1) {
545
546		if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
547			return;
548	}
549
550	cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
551	cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
552
553	cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
554	cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
555
556	cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
557	cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
558
559	/*
560	 * The P_BLK length should always be 6. If it
561	 * is not, reduce functionality accordingly.
562	 */
563	if (sc->sc_object.ao_pblklen < 5)
564		cs[ACPI_STATE_C2].cs_method = 0;
565
566	if (sc->sc_object.ao_pblklen < 6)
567		cs[ACPI_STATE_C3].cs_method = 0;
568
569	/*
570	 * Sanity check the latency levels in FADT.
571	 * Values above the thresholds are used to
572	 * inform that C-states are not supported.
573	 */
574	CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
575	CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
576
577	if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
578		cs[ACPI_STATE_C2].cs_method = 0;
579
580	if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
581		cs[ACPI_STATE_C3].cs_method = 0;
582}
583
584static void
585acpicpu_cstate_quirks(struct acpicpu_softc *sc)
586{
587	const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
588	const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
589
590	/*
591	 * Disable C3 for PIIX4.
592	 */
593	if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
594		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
595		return;
596	}
597
598	/*
599	 * Check bus master arbitration. If ARB_DIS
600	 * is not available, processor caches must be
601	 * flushed before C3 (ACPI 4.0, section 8.2).
602	 */
603	if (reg != 0 && len != 0) {
604		sc->sc_flags |= ACPICPU_FLAG_C_ARB;
605		return;
606	}
607
608	/*
609	 * Disable C3 entirely if WBINVD is not present.
610	 */
611	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
612		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
613	else {
614		/*
615		 * If WBINVD is present and functioning properly,
616		 * flush all processor caches before entering C3.
617		 */
618		if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
619			sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
620		else
621			sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
622	}
623}
624
625static int
626acpicpu_cstate_latency(struct acpicpu_softc *sc)
627{
628	static const uint32_t cs_factor = 3;
629	struct acpicpu_cstate *cs;
630	int i;
631
632	for (i = cs_state_max; i > 0; i--) {
633
634		cs = &sc->sc_cstate[i];
635
636		if (__predict_false(cs->cs_method == 0))
637			continue;
638
639		/*
640		 * Choose a state if we have previously slept
641		 * longer than the worst case latency of the
642		 * state times an arbitrary multiplier.
643		 */
644		if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
645			return i;
646	}
647
648	return ACPI_STATE_C1;
649}
650
651/*
652 * The main idle loop.
653 */
654void
655acpicpu_cstate_idle(void)
656{
657	struct cpu_info *ci = curcpu();
658	struct acpicpu_softc *sc;
659	int state;
660
661	acpi_md_OsDisableInterrupt();
662
663	if (__predict_false(ci->ci_want_resched != 0))
664		goto out;
665
666	KASSERT(acpicpu_sc != NULL);
667	KASSERT(ci->ci_acpiid < maxcpus);
668
669	sc = acpicpu_sc[ci->ci_acpiid];
670
671	if (__predict_false(sc == NULL))
672		goto out;
673
674	KASSERT(ci->ci_ilevel == IPL_NONE);
675	KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
676
677	if (__predict_false(sc->sc_cold != false))
678		goto out;
679
680	if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
681		goto out;
682
683	mutex_exit(&sc->sc_mtx);
684	state = acpicpu_cstate_latency(sc);
685
686	/*
687	 * Apply AMD C1E quirk.
688	 */
689	if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
690		acpicpu_md_quirks_c1e();
691
692	/*
693	 * Check for bus master activity. Note that particularly usb(4)
694	 * causes high activity, which may prevent the use of C3 states.
695	 */
696	if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
697
698		if (acpicpu_cstate_bm_check() != false)
699			state--;
700
701		if (__predict_false(sc->sc_cstate[state].cs_method == 0))
702			state = ACPI_STATE_C1;
703	}
704
705	KASSERT(state != ACPI_STATE_C0);
706
707	if (state != ACPI_STATE_C3) {
708		acpicpu_cstate_idle_enter(sc, state);
709		return;
710	}
711
712	/*
713	 * On all recent (Intel) CPUs caches are shared
714	 * by CPUs and bus master control is required to
715	 * keep these coherent while in C3. Flushing the
716	 * CPU caches is only the last resort.
717	 */
718	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
719		ACPI_FLUSH_CPU_CACHE();
720
721	/*
722	 * Allow the bus master to request that any given
723	 * CPU should return immediately to C0 from C3.
724	 */
725	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
726		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
727
728	/*
729	 * It may be necessary to disable bus master arbitration
730	 * to ensure that bus master cycles do not occur while
731	 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
732	 */
733	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
734		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
735
736	acpicpu_cstate_idle_enter(sc, state);
737
738	/*
739	 * Disable bus master wake and re-enable the arbiter.
740	 */
741	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
742		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
743
744	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
745		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
746
747	return;
748
749out:
750	acpi_md_OsEnableInterrupt();
751}
752
753static void
754acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
755{
756	struct acpicpu_cstate *cs = &sc->sc_cstate[state];
757	uint32_t end, start, val;
758
759	start = acpitimer_read_fast(NULL);
760
761	switch (cs->cs_method) {
762
763	case ACPICPU_C_STATE_FFH:
764	case ACPICPU_C_STATE_HALT:
765		acpicpu_md_idle_enter(cs->cs_method, state);
766		break;
767
768	case ACPICPU_C_STATE_SYSIO:
769		(void)AcpiOsReadPort(cs->cs_addr, &val, 8);
770		break;
771	}
772
773	acpi_md_OsEnableInterrupt();
774
775	cs->cs_evcnt.ev_count++;
776	end = acpitimer_read_fast(NULL);
777	sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
778}
779
780static bool
781acpicpu_cstate_bm_check(void)
782{
783	uint32_t val = 0;
784	ACPI_STATUS rv;
785
786	rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
787
788	if (ACPI_FAILURE(rv) || val == 0)
789		return false;
790
791	(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
792
793	return true;
794}
795