acpi_cpu_cstate.c revision 1.29
1/* $NetBSD: acpi_cpu_cstate.c,v 1.29 2010/08/16 17:58:42 jruoho Exp $ */
2
3/*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29#include <sys/cdefs.h>
30__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.29 2010/08/16 17:58:42 jruoho Exp $");
31
32#include <sys/param.h>
33#include <sys/cpu.h>
34#include <sys/device.h>
35#include <sys/evcnt.h>
36#include <sys/kernel.h>
37#include <sys/once.h>
38#include <sys/mutex.h>
39#include <sys/timetc.h>
40
41#include <dev/acpi/acpireg.h>
42#include <dev/acpi/acpivar.h>
43#include <dev/acpi/acpi_cpu.h>
44#include <dev/acpi/acpi_timer.h>
45
46#include <machine/acpi_machdep.h>
47
48#define _COMPONENT	 ACPI_BUS_COMPONENT
49ACPI_MODULE_NAME	 ("acpi_cpu_cstate")
50
51static void		 acpicpu_cstate_attach_print(struct acpicpu_softc *);
52static void		 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *);
53static void		 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *);
54static ACPI_STATUS	 acpicpu_cstate_cst(struct acpicpu_softc *);
55static ACPI_STATUS	 acpicpu_cstate_cst_add(struct acpicpu_softc *,
56						ACPI_OBJECT *);
57static void		 acpicpu_cstate_cst_bios(void);
58static void		 acpicpu_cstate_memset(struct acpicpu_softc *);
59static void		 acpicpu_cstate_fadt(struct acpicpu_softc *);
60static void		 acpicpu_cstate_quirks(struct acpicpu_softc *);
61static int		 acpicpu_cstate_latency(struct acpicpu_softc *);
62static bool		 acpicpu_cstate_bm_check(void);
63static void		 acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
64
65extern struct acpicpu_softc **acpicpu_sc;
66
67/*
68 * XXX:	The local APIC timer (as well as TSC) is typically stopped in C3.
69 *	For now, we cannot but disable C3. But there appears to be timer-
70 *	related interrupt issues also in C2. The only entirely safe option
71 *	at the moment is to use C1.
72 */
73#ifdef ACPICPU_ENABLE_C3
74static int cs_state_max = ACPI_STATE_C3;
75#else
76static int cs_state_max = ACPI_STATE_C1;
77#endif
78
79void
80acpicpu_cstate_attach(device_t self)
81{
82	struct acpicpu_softc *sc = device_private(self);
83	ACPI_STATUS rv;
84
85	/*
86	 * Either use the preferred _CST or resort to FADT.
87	 */
88	rv = acpicpu_cstate_cst(sc);
89
90	switch (rv) {
91
92	case AE_OK:
93		acpicpu_cstate_cst_bios();
94		break;
95
96	default:
97		sc->sc_flags |= ACPICPU_FLAG_C_FADT;
98		acpicpu_cstate_fadt(sc);
99		break;
100	}
101
102	sc->sc_flags |= ACPICPU_FLAG_C;
103
104	acpicpu_cstate_quirks(sc);
105	acpicpu_cstate_attach_evcnt(sc);
106	acpicpu_cstate_attach_print(sc);
107}
108
109void
110acpicpu_cstate_attach_print(struct acpicpu_softc *sc)
111{
112	struct acpicpu_cstate *cs;
113	static bool once = false;
114	const char *str;
115	int i;
116
117	if (once != false)
118		return;
119
120	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
121
122		cs = &sc->sc_cstate[i];
123
124		if (cs->cs_method == 0)
125			continue;
126
127		switch (cs->cs_method) {
128
129		case ACPICPU_C_STATE_HALT:
130			str = "HLT";
131			break;
132
133		case ACPICPU_C_STATE_FFH:
134			str = "FFH";
135			break;
136
137		case ACPICPU_C_STATE_SYSIO:
138			str = "I/O";
139			break;
140
141		default:
142			panic("NOTREACHED");
143		}
144
145		aprint_debug_dev(sc->sc_dev, "C%d: %3s, "
146		    "lat %3u us, pow %5u mW, flags 0x%02x\n", i, str,
147		    cs->cs_latency, cs->cs_power, cs->cs_flags);
148	}
149
150	once = true;
151}
152
153static void
154acpicpu_cstate_attach_evcnt(struct acpicpu_softc *sc)
155{
156	struct acpicpu_cstate *cs;
157	const char *str;
158	int i;
159
160	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
161
162		cs = &sc->sc_cstate[i];
163
164		if (cs->cs_method == 0)
165			continue;
166
167		str = "HALT";
168
169		if (cs->cs_method == ACPICPU_C_STATE_FFH)
170			str = "MWAIT";
171
172		if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
173			str = "I/O";
174
175		(void)snprintf(cs->cs_name, sizeof(cs->cs_name),
176		    "C%d (%s)", i, str);
177
178		evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
179		    NULL, device_xname(sc->sc_dev), cs->cs_name);
180	}
181}
182
183int
184acpicpu_cstate_detach(device_t self)
185{
186	struct acpicpu_softc *sc = device_private(self);
187	static ONCE_DECL(once_detach);
188	int rv;
189
190	rv = RUN_ONCE(&once_detach, acpicpu_md_idle_stop);
191
192	if (rv != 0)
193		return rv;
194
195	sc->sc_flags &= ~ACPICPU_FLAG_C;
196	acpicpu_cstate_detach_evcnt(sc);
197
198	return 0;
199}
200
201static void
202acpicpu_cstate_detach_evcnt(struct acpicpu_softc *sc)
203{
204	struct acpicpu_cstate *cs;
205	int i;
206
207	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
208
209		cs = &sc->sc_cstate[i];
210
211		if (cs->cs_method != 0)
212			evcnt_detach(&cs->cs_evcnt);
213	}
214}
215
216void
217acpicpu_cstate_start(device_t self)
218{
219
220	(void)acpicpu_md_idle_start();
221}
222
223bool
224acpicpu_cstate_suspend(device_t self)
225{
226
227	return true;
228}
229
230bool
231acpicpu_cstate_resume(device_t self)
232{
233	struct acpicpu_softc *sc = device_private(self);
234
235	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
236		acpicpu_cstate_callback(self);
237
238	return true;
239}
240
241void
242acpicpu_cstate_callback(void *aux)
243{
244	struct acpicpu_softc *sc;
245	device_t self = aux;
246
247	sc = device_private(self);
248
249	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
250		return;
251
252	mutex_enter(&sc->sc_mtx);
253	(void)acpicpu_cstate_cst(sc);
254	mutex_exit(&sc->sc_mtx);
255}
256
257static ACPI_STATUS
258acpicpu_cstate_cst(struct acpicpu_softc *sc)
259{
260	ACPI_OBJECT *elm, *obj;
261	ACPI_BUFFER buf;
262	ACPI_STATUS rv;
263	uint32_t i, n;
264	uint8_t count;
265
266	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
267
268	if (ACPI_FAILURE(rv))
269		return rv;
270
271	obj = buf.Pointer;
272
273	if (obj->Type != ACPI_TYPE_PACKAGE) {
274		rv = AE_TYPE;
275		goto out;
276	}
277
278	if (obj->Package.Count < 2) {
279		rv = AE_LIMIT;
280		goto out;
281	}
282
283	elm = obj->Package.Elements;
284
285	if (elm[0].Type != ACPI_TYPE_INTEGER) {
286		rv = AE_TYPE;
287		goto out;
288	}
289
290	n = elm[0].Integer.Value;
291
292	if (n != obj->Package.Count - 1) {
293		rv = AE_BAD_VALUE;
294		goto out;
295	}
296
297	if (n > ACPI_C_STATES_MAX) {
298		rv = AE_LIMIT;
299		goto out;
300	}
301
302	acpicpu_cstate_memset(sc);
303
304	CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
305	CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
306
307	for (count = 0, i = 1; i <= n; i++) {
308
309		elm = &obj->Package.Elements[i];
310		rv = acpicpu_cstate_cst_add(sc, elm);
311
312		if (ACPI_SUCCESS(rv))
313			count++;
314	}
315
316	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
317
318out:
319	if (buf.Pointer != NULL)
320		ACPI_FREE(buf.Pointer);
321
322	return rv;
323}
324
325static ACPI_STATUS
326acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
327{
328	const struct acpicpu_object *ao = &sc->sc_object;
329	struct acpicpu_cstate *cs = sc->sc_cstate;
330	struct acpicpu_cstate state;
331	struct acpicpu_reg *reg;
332	ACPI_STATUS rv = AE_OK;
333	ACPI_OBJECT *obj;
334	uint32_t type;
335
336	(void)memset(&state, 0, sizeof(*cs));
337
338	state.cs_flags = ACPICPU_FLAG_C_BM_STS;
339
340	if (elm->Type != ACPI_TYPE_PACKAGE) {
341		rv = AE_TYPE;
342		goto out;
343	}
344
345	if (elm->Package.Count != 4) {
346		rv = AE_LIMIT;
347		goto out;
348	}
349
350	/*
351	 * Type.
352	 */
353	obj = &elm->Package.Elements[1];
354
355	if (obj->Type != ACPI_TYPE_INTEGER) {
356		rv = AE_TYPE;
357		goto out;
358	}
359
360	type = obj->Integer.Value;
361
362	if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
363		rv = AE_TYPE;
364		goto out;
365	}
366
367	/*
368	 * Latency.
369	 */
370	obj = &elm->Package.Elements[2];
371
372	if (obj->Type != ACPI_TYPE_INTEGER) {
373		rv = AE_TYPE;
374		goto out;
375	}
376
377	state.cs_latency = obj->Integer.Value;
378
379	/*
380	 * Power.
381	 */
382	obj = &elm->Package.Elements[3];
383
384	if (obj->Type != ACPI_TYPE_INTEGER) {
385		rv = AE_TYPE;
386		goto out;
387	}
388
389	state.cs_power = obj->Integer.Value;
390
391	/*
392	 * Register.
393	 */
394	obj = &elm->Package.Elements[0];
395
396	if (obj->Type != ACPI_TYPE_BUFFER) {
397		rv = AE_TYPE;
398		goto out;
399	}
400
401	CTASSERT(sizeof(struct acpicpu_reg) == 15);
402
403	if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
404		rv = AE_LIMIT;
405		goto out;
406	}
407
408	reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
409
410	switch (reg->reg_spaceid) {
411
412	case ACPI_ADR_SPACE_SYSTEM_IO:
413		state.cs_method = ACPICPU_C_STATE_SYSIO;
414
415		if (reg->reg_addr == 0) {
416			rv = AE_AML_ILLEGAL_ADDRESS;
417			goto out;
418		}
419
420		if (reg->reg_bitwidth != 8) {
421			rv = AE_AML_BAD_RESOURCE_LENGTH;
422			goto out;
423		}
424
425		/*
426		 * Check only that the address is in the mapped space.
427		 * Systems are allowed to change it when operating
428		 * with _CST (see ACPI 4.0, pp. 94-95). For instance,
429		 * the offset of P_LVL3 may change depending on whether
430		 * acpiacad(4) is connected or disconnected.
431		 */
432		if (reg->reg_addr > ao->ao_pblkaddr + ao->ao_pblklen) {
433			rv = AE_BAD_ADDRESS;
434			goto out;
435		}
436
437		state.cs_addr = reg->reg_addr;
438		break;
439
440	case ACPI_ADR_SPACE_FIXED_HARDWARE:
441		state.cs_method = ACPICPU_C_STATE_FFH;
442
443		switch (type) {
444
445		case ACPI_STATE_C1:
446
447			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
448				state.cs_method = ACPICPU_C_STATE_HALT;
449
450			break;
451
452		default:
453
454			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
455				rv = AE_SUPPORT;
456				goto out;
457			}
458		}
459
460		if (sc->sc_cap != 0) {
461
462			/*
463			 * The _CST FFH GAS encoding may contain
464			 * additional hints on Intel processors.
465			 * Use these to determine whether we can
466			 * avoid the bus master activity check.
467			 */
468			if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
469				state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
470		}
471
472		break;
473
474	default:
475		rv = AE_AML_INVALID_SPACE_ID;
476		goto out;
477	}
478
479	if (cs[type].cs_method != 0) {
480		rv = AE_ALREADY_EXISTS;
481		goto out;
482	}
483
484	cs[type].cs_addr = state.cs_addr;
485	cs[type].cs_power = state.cs_power;
486	cs[type].cs_flags = state.cs_flags;
487	cs[type].cs_method = state.cs_method;
488	cs[type].cs_latency = state.cs_latency;
489
490out:
491	if (ACPI_FAILURE(rv))
492		aprint_debug_dev(sc->sc_dev, "invalid "
493		    "_CST: %s\n", AcpiFormatException(rv));
494
495	return rv;
496}
497
498static void
499acpicpu_cstate_cst_bios(void)
500{
501	const uint8_t val = AcpiGbl_FADT.CstControl;
502	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
503
504	if (addr == 0 || val == 0)
505		return;
506
507	(void)AcpiOsWritePort(addr, val, 8);
508}
509
510static void
511acpicpu_cstate_memset(struct acpicpu_softc *sc)
512{
513	int i = 0;
514
515	while (i < ACPI_C_STATE_COUNT) {
516
517		sc->sc_cstate[i].cs_addr = 0;
518		sc->sc_cstate[i].cs_power = 0;
519		sc->sc_cstate[i].cs_flags = 0;
520		sc->sc_cstate[i].cs_method = 0;
521		sc->sc_cstate[i].cs_latency = 0;
522
523		i++;
524	}
525}
526
527static void
528acpicpu_cstate_fadt(struct acpicpu_softc *sc)
529{
530	struct acpicpu_cstate *cs = sc->sc_cstate;
531
532	acpicpu_cstate_memset(sc);
533
534	/*
535	 * All x86 processors should support C1 (a.k.a. HALT).
536	 */
537	if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) != 0)
538		cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
539
540	if (sc->sc_object.ao_pblkaddr == 0)
541		return;
542
543	if (acpicpu_md_cpus_running() > 1) {
544
545		if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
546			return;
547	}
548
549	cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
550	cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
551
552	cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
553	cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
554
555	cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
556	cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
557
558	/*
559	 * The P_BLK length should always be 6. If it
560	 * is not, reduce functionality accordingly.
561	 */
562	if (sc->sc_object.ao_pblklen < 5)
563		cs[ACPI_STATE_C2].cs_method = 0;
564
565	if (sc->sc_object.ao_pblklen < 6)
566		cs[ACPI_STATE_C3].cs_method = 0;
567
568	/*
569	 * Sanity check the latency levels in FADT.
570	 * Values above the thresholds are used to
571	 * inform that C-states are not supported.
572	 */
573	CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
574	CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
575
576	if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
577		cs[ACPI_STATE_C2].cs_method = 0;
578
579	if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
580		cs[ACPI_STATE_C3].cs_method = 0;
581}
582
583static void
584acpicpu_cstate_quirks(struct acpicpu_softc *sc)
585{
586	const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
587	const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
588
589	/*
590	 * Disable C3 for PIIX4.
591	 */
592	if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
593		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
594		return;
595	}
596
597	/*
598	 * Check bus master arbitration. If ARB_DIS
599	 * is not available, processor caches must be
600	 * flushed before C3 (ACPI 4.0, section 8.2).
601	 */
602	if (reg != 0 && len != 0) {
603		sc->sc_flags |= ACPICPU_FLAG_C_ARB;
604		return;
605	}
606
607	/*
608	 * Disable C3 entirely if WBINVD is not present.
609	 */
610	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
611		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
612	else {
613		/*
614		 * If WBINVD is present and functioning properly,
615		 * flush all processor caches before entering C3.
616		 */
617		if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
618			sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
619		else
620			sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
621	}
622}
623
624static int
625acpicpu_cstate_latency(struct acpicpu_softc *sc)
626{
627	static const uint32_t cs_factor = 3;
628	struct acpicpu_cstate *cs;
629	int i;
630
631	for (i = cs_state_max; i > 0; i--) {
632
633		cs = &sc->sc_cstate[i];
634
635		if (__predict_false(cs->cs_method == 0))
636			continue;
637
638		/*
639		 * Choose a state if we have previously slept
640		 * longer than the worst case latency of the
641		 * state times an arbitrary multiplier.
642		 */
643		if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
644			return i;
645	}
646
647	return ACPI_STATE_C1;
648}
649
650/*
651 * The main idle loop.
652 */
653void
654acpicpu_cstate_idle(void)
655{
656        struct cpu_info *ci = curcpu();
657	struct acpicpu_softc *sc;
658	int state;
659
660	if (__predict_false(ci->ci_want_resched) != 0)
661		return;
662
663	acpi_md_OsDisableInterrupt();
664
665	KASSERT(acpicpu_sc != NULL);
666	KASSERT(ci->ci_acpiid < maxcpus);
667	KASSERT(ci->ci_ilevel == IPL_NONE);
668	KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
669
670	sc = acpicpu_sc[ci->ci_acpiid];
671
672	if (__predict_false(sc == NULL))
673		goto halt;
674
675	if (__predict_false(sc->sc_cold != false))
676		goto halt;
677
678	if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
679		goto halt;
680
681	mutex_exit(&sc->sc_mtx);
682	state = acpicpu_cstate_latency(sc);
683
684	/*
685	 * Check for bus master activity. Note that particularly usb(4)
686	 * causes high activity, which may prevent the use of C3 states.
687	 */
688	if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
689
690		if (acpicpu_cstate_bm_check() != false)
691			state--;
692
693		if (__predict_false(sc->sc_cstate[state].cs_method == 0))
694			state = ACPI_STATE_C1;
695	}
696
697	KASSERT(state != ACPI_STATE_C0);
698
699	if (state != ACPI_STATE_C3) {
700		acpicpu_cstate_idle_enter(sc, state);
701		return;
702	}
703
704	/*
705	 * On all recent (Intel) CPUs caches are shared
706	 * by CPUs and bus master control is required to
707	 * keep these coherent while in C3. Flushing the
708	 * CPU caches is only the last resort.
709	 */
710	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
711		ACPI_FLUSH_CPU_CACHE();
712
713	/*
714	 * Allow the bus master to request that any given
715	 * CPU should return immediately to C0 from C3.
716	 */
717	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
718		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
719
720	/*
721	 * It may be necessary to disable bus master arbitration
722	 * to ensure that bus master cycles do not occur while
723	 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
724	 */
725	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
726		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
727
728	acpicpu_cstate_idle_enter(sc, state);
729
730	/*
731	 * Disable bus master wake and re-enable the arbiter.
732	 */
733	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
734		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
735
736	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
737		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
738
739	return;
740
741halt:
742	acpicpu_md_idle_enter(ACPICPU_C_STATE_HALT, ACPI_STATE_C1);
743}
744
745static void
746acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
747{
748	struct acpicpu_cstate *cs = &sc->sc_cstate[state];
749	uint32_t end, start, val;
750
751	start = acpitimer_read_safe(NULL);
752
753	switch (cs->cs_method) {
754
755	case ACPICPU_C_STATE_FFH:
756	case ACPICPU_C_STATE_HALT:
757		acpicpu_md_idle_enter(cs->cs_method, state);
758		break;
759
760	case ACPICPU_C_STATE_SYSIO:
761		(void)AcpiOsReadPort(cs->cs_addr, &val, 8);
762		break;
763
764	default:
765		acpicpu_md_idle_enter(ACPICPU_C_STATE_HALT, ACPI_STATE_C1);
766		break;
767	}
768
769	cs->cs_evcnt.ev_count++;
770
771	end = acpitimer_read_safe(NULL);
772	sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
773
774	acpi_md_OsEnableInterrupt();
775}
776
777static bool
778acpicpu_cstate_bm_check(void)
779{
780	uint32_t val = 0;
781	ACPI_STATUS rv;
782
783	rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
784
785	if (ACPI_FAILURE(rv) || val == 0)
786		return false;
787
788	(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
789
790	return true;
791}
792