x86_xpmap.c revision 1.87
1/*	$NetBSD: x86_xpmap.c,v 1.87 2020/05/06 17:28:26 bouyer Exp $	*/
2
3/*
4 * Copyright (c) 2017 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr>
34 *
35 * Permission to use, copy, modify, and distribute this software for any
36 * purpose with or without fee is hereby granted, provided that the above
37 * copyright notice and this permission notice appear in all copies.
38 *
39 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
40 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
41 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
42 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
43 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
44 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
45 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
46 */
47
48/*
49 * Copyright (c) 2006, 2007 Manuel Bouyer.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 *    notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 *    notice, this list of conditions and the following disclaimer in the
58 *    documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72/*
73 * Copyright (c) 2004 Christian Limpach.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 *    notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 *    notice, this list of conditions and the following disclaimer in the
83 *    documentation and/or other materials provided with the distribution.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
86 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
87 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
89 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
90 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
91 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
92 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
93 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
94 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
95 */
96
97#include <sys/cdefs.h>
98__KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.87 2020/05/06 17:28:26 bouyer Exp $");
99
100#include "opt_xen.h"
101#include "opt_ddb.h"
102#include "ksyms.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/mutex.h>
107#include <sys/cpu.h>
108#include <sys/kernel.h>
109
110#include <uvm/uvm.h>
111
112#include <x86/pmap.h>
113#include <machine/gdt.h>
114#include <xen/xenfunc.h>
115
116#include <dev/isa/isareg.h>
117#include <machine/isa_machdep.h>
118
119#ifdef XENDEBUG
120#define	__PRINTK(x) printk x
121#else
122#define	__PRINTK(x)
123#endif
124
125/* Xen requires the start_info struct to be page aligned */
126union start_info_union start_info_union __aligned(PAGE_SIZE);
127
128volatile shared_info_t *HYPERVISOR_shared_info __read_mostly;
129unsigned long *xpmap_phys_to_machine_mapping __read_mostly;
130kmutex_t pte_lock __cacheline_aligned;
131vaddr_t xen_dummy_page;
132pt_entry_t xpmap_pg_nx __read_mostly;
133
134#define XPQUEUE_SIZE 2048
135static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
136
137void xen_failsafe_handler(void);
138
139extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
140
141static void xen_bt_set_readonly(vaddr_t);
142static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
143
144vaddr_t xen_locore(void);
145
146/*
147 * kcpuset internally uses an array of uint32_t while xen uses an array of
148 * u_long. As we're little-endian we can cast one to the other.
149 */
150typedef union {
151#ifdef _LP64
152	uint32_t xcpum_km[2];
153#else
154	uint32_t xcpum_km[1];
155#endif
156	u_long xcpum_xm;
157} xcpumask_t;
158
159void
160xen_failsafe_handler(void)
161{
162
163	panic("xen_failsafe_handler called!\n");
164}
165
166void
167xen_set_ldt(vaddr_t base, uint32_t entries)
168{
169	vaddr_t va;
170	vaddr_t end;
171	pt_entry_t *ptp;
172	int s;
173
174#ifdef __x86_64__
175	end = base + (entries << 3);
176#else
177	end = base + entries * sizeof(union descriptor);
178#endif
179
180	for (va = base; va < end; va += PAGE_SIZE) {
181		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
182		ptp = kvtopte(va);
183		pmap_pte_clearbits(ptp, PTE_W);
184	}
185	s = splvm(); /* XXXSMP */
186	xpq_queue_set_ldt(base, entries);
187	splx(s);
188}
189
190void
191xpq_flush_queue(void)
192{
193	mmu_update_t *xpq_queue;
194	int done = 0, ret;
195	size_t xpq_idx;
196
197	KASSERT(curcpu()->ci_ilevel >= IPL_VM || cold);
198
199	xpq_idx = curcpu()->ci_xpq_idx;
200	xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
201
202retry:
203	ret = HYPERVISOR_mmu_update(xpq_queue, xpq_idx, &done, DOMID_SELF);
204
205	if (ret < 0 && xpq_idx != 0) {
206		printf("xpq_flush_queue: %zu entries (%d successful) on "
207		    "cpu%d (%ld)\n",
208		    xpq_idx, done, curcpu()->ci_index, curcpu()->ci_cpuid);
209
210		if (done != 0) {
211			xpq_queue += done;
212			xpq_idx -= done;
213			done = 0;
214			goto retry;
215		}
216
217		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
218	}
219	curcpu()->ci_xpq_idx = 0;
220}
221
222static inline void
223xpq_increment_idx(void)
224{
225	KASSERT(curcpu()->ci_ilevel >= IPL_VM || cold);
226	if (__predict_false(++curcpu()->ci_xpq_idx == XPQUEUE_SIZE))
227		xpq_flush_queue();
228}
229
230void
231xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
232{
233	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
234	size_t xpq_idx = curcpu()->ci_xpq_idx;
235
236	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
237	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
238	xpq_increment_idx();
239}
240
241void
242xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
243{
244	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
245	size_t xpq_idx = curcpu()->ci_xpq_idx;
246
247	xpq_queue[xpq_idx].ptr = ptr | MMU_NORMAL_PT_UPDATE;
248	xpq_queue[xpq_idx].val = val;
249	xpq_increment_idx();
250}
251
252void
253xpq_queue_pt_switch(paddr_t pa)
254{
255	struct mmuext_op op;
256
257	xpq_flush_queue();
258
259	op.cmd = MMUEXT_NEW_BASEPTR;
260	op.arg1.mfn = pa >> PAGE_SHIFT;
261	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
262		panic(__func__);
263}
264
265void
266xpq_queue_pin_table(paddr_t pa, int lvl)
267{
268	struct mmuext_op op;
269
270	xpq_flush_queue();
271
272	op.cmd = lvl;
273	op.arg1.mfn = pa >> PAGE_SHIFT;
274	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
275		panic(__func__);
276}
277
278void
279xpq_queue_unpin_table(paddr_t pa)
280{
281	struct mmuext_op op;
282
283	xpq_flush_queue();
284
285	op.cmd = MMUEXT_UNPIN_TABLE;
286	op.arg1.mfn = pa >> PAGE_SHIFT;
287	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
288		panic(__func__);
289}
290
291void
292xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
293{
294	struct mmuext_op op;
295
296	xpq_flush_queue();
297
298	KASSERT(va == (va & ~PAGE_MASK));
299	op.cmd = MMUEXT_SET_LDT;
300	op.arg1.linear_addr = va;
301	op.arg2.nr_ents = entries;
302	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
303		panic(__func__);
304}
305
306void
307xpq_queue_tlb_flush(void)
308{
309	struct mmuext_op op;
310
311	xpq_flush_queue();
312
313	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
314	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
315		panic(__func__);
316}
317
318void
319xpq_flush_cache(void)
320{
321	int s = splvm();
322
323	xpq_flush_queue();
324
325	asm("wbinvd":::"memory");
326	splx(s);
327}
328
329void
330xpq_queue_invlpg(vaddr_t va)
331{
332	struct mmuext_op op;
333
334	xpq_flush_queue();
335
336	op.cmd = MMUEXT_INVLPG_LOCAL;
337	op.arg1.linear_addr = (va & ~PAGE_MASK);
338	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
339		panic(__func__);
340}
341
342void
343xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
344{
345	xcpumask_t xcpumask;
346	mmuext_op_t op;
347
348	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
349
350	xpq_flush_queue();
351
352	op.cmd = MMUEXT_INVLPG_MULTI;
353	op.arg1.linear_addr = va;
354	set_xen_guest_handle(op.arg2.vcpumask, &xcpumask.xcpum_xm);
355
356	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
357		panic(__func__);
358}
359
360void
361xen_bcast_invlpg(vaddr_t va)
362{
363	mmuext_op_t op;
364
365	xpq_flush_queue();
366
367	op.cmd = MMUEXT_INVLPG_ALL;
368	op.arg1.linear_addr = va;
369
370	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
371		panic(__func__);
372}
373
374/* This is a synchronous call. */
375void
376xen_mcast_tlbflush(kcpuset_t *kc)
377{
378	xcpumask_t xcpumask;
379	mmuext_op_t op;
380
381	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
382
383	xpq_flush_queue();
384
385	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
386	set_xen_guest_handle(op.arg2.vcpumask, &xcpumask.xcpum_xm);
387
388	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
389		panic(__func__);
390}
391
392/* This is a synchronous call. */
393void
394xen_bcast_tlbflush(void)
395{
396	mmuext_op_t op;
397
398	xpq_flush_queue();
399
400	op.cmd = MMUEXT_TLB_FLUSH_ALL;
401
402	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
403		panic(__func__);
404}
405
406void
407xen_copy_page(paddr_t srcpa, paddr_t dstpa)
408{
409	mmuext_op_t op;
410
411	op.cmd = MMUEXT_COPY_PAGE;
412	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
413	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
414
415	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
416		panic(__func__);
417}
418
419void
420xen_pagezero(paddr_t pa)
421{
422	mmuext_op_t op;
423
424	op.cmd = MMUEXT_CLEAR_PAGE;
425	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
426
427	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
428		panic(__func__);
429}
430
431int
432xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
433{
434	mmu_update_t op;
435	int ok;
436
437	xpq_flush_queue();
438
439	op.ptr = ptr;
440	op.val = val;
441	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
442		return EFAULT;
443	return 0;
444}
445
446#if L2_SLOT_KERNBASE > 0
447#define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
448#else
449#define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
450#endif
451
452#ifdef __x86_64__
453#define PDIRSZ	PTP_LEVELS
454#else
455/*
456 * For PAE, we need an L3 page, a single contiguous L2 "superpage" of 4 pages
457 * (all of them mapped by the L3 page), and a shadow page for L3[3].
458 */
459#define PDIRSZ	(1 + 4 + 1)
460#endif
461
462/*
463 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
464 * tables.
465 *
466 * Virtual address space of the kernel when leaving this function:
467 * +--------------+------------------+-------------+------------+---------------
468 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
469 * +--------------+------------------+-------------+------------+---------------
470 *
471 * ------+-----------------+-------------+
472 *  INFO | EARLY ZERO PAGE | ISA I/O MEM |
473 * ------+-----------------+-------------+
474 *
475 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
476 *
477 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
478 * addresses preallocated.
479 */
480vaddr_t
481xen_locore(void)
482{
483	size_t nL2, oldcount, mapsize;
484	vaddr_t our_tables, xen_tables;
485	u_int descs[4];
486
487	xen_init_features();
488
489	xpmap_phys_to_machine_mapping =
490	    (unsigned long *)xen_start_info.mfn_list;
491
492	/* Set the NX/XD bit, if available. descs[3] = %edx. */
493	x86_cpuid(0x80000001, descs);
494	xpmap_pg_nx = (descs[3] & CPUID_NOX) ? PTE_NX : 0;
495
496	/* Space after Xen boostrap tables should be free */
497	xen_tables = xen_start_info.pt_base;
498	our_tables = xen_tables + (xen_start_info.nr_pt_frames * PAGE_SIZE);
499
500	/*
501	 * Calculate how much space we need. First, everything mapped before
502	 * the Xen bootstrap tables.
503	 */
504	mapsize = xen_tables - KERNTEXTOFF;
505
506	/* After the tables we'll have:
507	 *  - UAREA
508	 *  - dummy user PGD (x86_64)
509	 *  - HYPERVISOR_shared_info
510	 *  - early_zerop
511	 *  - ISA I/O mem (if needed)
512	 */
513	mapsize += UPAGES * PAGE_SIZE;
514#ifdef __x86_64__
515	mapsize += PAGE_SIZE;
516#endif
517	mapsize += PAGE_SIZE;
518	mapsize += PAGE_SIZE;
519#ifdef DOM0OPS
520	if (xendomain_is_dom0()) {
521		mapsize += IOM_SIZE;
522	}
523#endif
524
525	/*
526	 * At this point, mapsize doesn't include the table size.
527	 */
528#ifdef __x86_64__
529	nL2 = TABLE_L2_ENTRIES;
530#else
531	nL2 = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
532#endif
533
534	/*
535	 * Now compute how many L2 pages we need exactly. This is useful only
536	 * on i386, since the initial count for amd64 is already enough.
537	 */
538	while (KERNTEXTOFF + mapsize + (nL2 + PDIRSZ) * PAGE_SIZE >
539	    KERNBASE + (nL2 << L2_SHIFT)) {
540		nL2++;
541	}
542
543#ifdef i386
544	/*
545	 * One more L2 page: we'll allocate several pages after kva_start
546	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
547	 * counted here. It's not a big issue to allocate one more L2 as
548	 * pmap_growkernel() will be called anyway.
549	 */
550	nL2++;
551	nkptp[1] = nL2;
552#endif
553
554	/*
555	 * Install bootstrap pages. We may need more L2 pages than will
556	 * have the final table here, as it's installed after the final table.
557	 */
558	oldcount = nL2;
559
560bootstrap_again:
561
562	/*
563	 * Xen space we'll reclaim may not be enough for our new page tables,
564	 * move bootstrap tables if necessary.
565	 */
566	if (our_tables < xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE))
567		our_tables = xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE);
568
569	/*
570	 * Make sure the number of L2 pages we have is enough to map everything
571	 * from KERNBASE to the bootstrap tables themselves.
572	 */
573	if (our_tables + ((oldcount + PDIRSZ) * PAGE_SIZE) >
574	    KERNBASE + (oldcount << L2_SHIFT)) {
575		oldcount++;
576		goto bootstrap_again;
577	}
578
579	/* Create temporary tables */
580	xen_bootstrap_tables(xen_tables, our_tables,
581	    xen_start_info.nr_pt_frames, oldcount, false);
582
583	/* Create final tables */
584	xen_bootstrap_tables(our_tables, xen_tables,
585	    oldcount + PDIRSZ, nL2, true);
586
587	/* Zero out PROC0 UAREA and DUMMY PAGE. */
588	memset((void *)(xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE)), 0,
589	    (UPAGES + 1) * PAGE_SIZE);
590
591	/* Finally, flush TLB. */
592	xpq_queue_tlb_flush();
593
594	return (xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE));
595}
596
597/*
598 * Build a new table and switch to it.
599 * old_count is # of old tables (including L4, L3 and L2).
600 * new_count is # of new tables (PTE only).
601 * We assume the areas don't overlap.
602 */
603static void
604xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
605    size_t new_count, bool final)
606{
607	pd_entry_t *L4cpu, *L4, *L3, *L2, *pte;
608	paddr_t addr;
609	vaddr_t page, avail, map_end;
610	int i;
611	extern char __rodata_start;
612	extern char __data_start;
613	extern char __kernel_end;
614	extern char *early_zerop; /* from pmap.c */
615#ifdef i386
616	extern union descriptor tmpgdt[];
617#endif
618
619	/*
620	 * Layout of RW area after the kernel image:
621	 *     xencons_interface (if present)
622	 *     xenstore_interface (if present)
623	 *     table pages (new_count + PDIRSZ entries)
624	 * Extra mappings (only when final is true):
625	 *     UAREA
626	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
627	 *     HYPERVISOR_shared_info
628	 *     early_zerop
629	 *     ISA I/O mem (if needed)
630	 */
631	map_end = new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE);
632	if (final) {
633		map_end += UPAGES * PAGE_SIZE;
634		xen_dummy_page = (vaddr_t)map_end;
635		map_end += PAGE_SIZE;
636		HYPERVISOR_shared_info = (shared_info_t *)map_end;
637		map_end += PAGE_SIZE;
638		early_zerop = (char *)map_end;
639		map_end += PAGE_SIZE;
640	}
641
642	/*
643	 * We always set atdevbase, as it's used by init386 to find the first
644	 * available VA. map_end is updated only if we are dom0, so
645	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
646	 * this case.
647	 */
648	if (final) {
649		atdevbase = map_end;
650#ifdef DOM0OPS
651		if (xendomain_is_dom0()) {
652			/* ISA I/O mem */
653			map_end += IOM_SIZE;
654		}
655#endif
656	}
657
658	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
659	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
660	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
661
662	avail = new_pgd;
663
664	/*
665	 * Create our page tables.
666	 */
667
668#ifdef __x86_64__
669	/* per-cpu L4 */
670	L4cpu = (pd_entry_t *)avail;
671	memset(L4cpu, 0, PAGE_SIZE);
672	avail += PAGE_SIZE;
673
674	/* pmap_kernel L4 */
675	L4 = (pd_entry_t *)avail;
676	memset(L4, 0, PAGE_SIZE);
677	avail += PAGE_SIZE;
678
679	/* L3 */
680	L3 = (pd_entry_t *)avail;
681	memset(L3, 0, PAGE_SIZE);
682	avail += PAGE_SIZE;
683
684	/* link L4->L3 */
685	addr = ((u_long)L3) - KERNBASE;
686	L4cpu[pl4_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
687	L4[pl4_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
688
689	/* L2 */
690	L2 = (pd_entry_t *)avail;
691	memset(L2, 0, PAGE_SIZE);
692	avail += PAGE_SIZE;
693
694	/* link L3->L2 */
695	addr = ((u_long)L2) - KERNBASE;
696	L3[pl3_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
697#else
698	/* no L4 on i386PAE */
699	__USE(L4cpu);
700	__USE(L4);
701
702	/* L3 */
703	L3 = (pd_entry_t *)avail;
704	memset(L3, 0, PAGE_SIZE);
705	avail += PAGE_SIZE;
706
707	/*
708	 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
709	 *                  +-----------------+----------------+---------+
710	 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
711	 *                  +-----------------+----------------+---------+
712	 * However, we enter L3[3] into L2 KERN, and not L2 KERN SHADOW.
713	 * This way, L2[L2_SLOT_KERN] always points to the shadow.
714	 */
715	L2 = (pd_entry_t *)avail;
716	memset(L2, 0, PAGE_SIZE * 5);
717	avail += PAGE_SIZE * 5;
718
719	/*
720	 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
721	 * want RW permissions in L3 entries, it'll add them itself.
722	 */
723	addr = ((u_long)L2) - KERNBASE;
724	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
725		L3[i] = xpmap_ptom_masked(addr) | PTE_P;
726	}
727	addr += PAGE_SIZE;
728	L3[3] = xpmap_ptom_masked(addr) | PTE_P;
729#endif
730
731	/* Level 1 */
732	page = KERNTEXTOFF;
733	for (i = 0; i < new_count; i ++) {
734		vaddr_t cur_page = page;
735
736		pte = (pd_entry_t *)avail;
737		memset(pte, 0, PAGE_SIZE);
738		avail += PAGE_SIZE;
739
740		while (pl2_pi(page) == pl2_pi(cur_page)) {
741			if (page >= map_end) {
742				/* not mapped at all */
743				pte[pl1_pi(page)] = 0;
744				page += PAGE_SIZE;
745				continue;
746			}
747			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
748			if (page == (vaddr_t)HYPERVISOR_shared_info) {
749				pte[pl1_pi(page)] = xen_start_info.shared_info;
750			}
751			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
752			    == xen_start_info.console.domU.mfn) {
753				xencons_interface = (void *)page;
754				pte[pl1_pi(page)] = xen_start_info.console_mfn;
755				pte[pl1_pi(page)] <<= PAGE_SHIFT;
756			}
757			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
758			    == xen_start_info.store_mfn) {
759				xenstore_interface = (void *)page;
760				pte[pl1_pi(page)] = xen_start_info.store_mfn;
761				pte[pl1_pi(page)] <<= PAGE_SHIFT;
762			}
763#ifdef DOM0OPS
764			if (page >= (vaddr_t)atdevbase &&
765			    page < (vaddr_t)atdevbase + IOM_SIZE) {
766				pte[pl1_pi(page)] =
767				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
768				pte[pl1_pi(page)] |= xpmap_pg_nx;
769			}
770#endif
771
772			pte[pl1_pi(page)] |= PTE_P;
773			if (page < (vaddr_t)&__rodata_start) {
774				/* Map the kernel text RX. Nothing to do. */
775			} else if (page >= (vaddr_t)&__rodata_start &&
776			    page < (vaddr_t)&__data_start) {
777				/* Map the kernel rodata R. */
778				pte[pl1_pi(page)] |= xpmap_pg_nx;
779			} else if (page >= old_pgd &&
780			    page < old_pgd + (old_count * PAGE_SIZE)) {
781				/* Map the old page tables R. */
782				pte[pl1_pi(page)] |= xpmap_pg_nx;
783			} else if (page >= new_pgd &&
784			    page < new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE)) {
785				/* Map the new page tables R. */
786				pte[pl1_pi(page)] |= xpmap_pg_nx;
787#ifdef i386
788			} else if (page == (vaddr_t)tmpgdt) {
789				/*
790				 * Map bootstrap gdt R/O. Later, we will re-add
791				 * this page to uvm after making it writable.
792				 */
793				pte[pl1_pi(page)] = 0;
794				page += PAGE_SIZE;
795				continue;
796#endif
797			} else if (page >= (vaddr_t)&__data_start &&
798			    page < (vaddr_t)&__kernel_end) {
799				/* Map the kernel data+bss RW. */
800				pte[pl1_pi(page)] |= PTE_W | xpmap_pg_nx;
801			} else {
802				/* Map the page RW. */
803				pte[pl1_pi(page)] |= PTE_W | xpmap_pg_nx;
804			}
805
806			page += PAGE_SIZE;
807		}
808
809		addr = ((u_long)pte) - KERNBASE;
810		L2[pl2_pi(cur_page)] = xpmap_ptom_masked(addr) | PTE_W | PTE_P;
811
812		/* Mark readonly */
813		xen_bt_set_readonly((vaddr_t)pte);
814	}
815
816	/* Install recursive page tables mapping */
817#ifdef __x86_64__
818	/* Recursive entry in pmap_kernel(). */
819	L4[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)L4 - KERNBASE)
820	    | PTE_P | xpmap_pg_nx;
821	/* Recursive entry in higher-level per-cpu PD. */
822	L4cpu[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)L4cpu - KERNBASE)
823	    | PTE_P | xpmap_pg_nx;
824
825	/* Mark tables RO */
826	xen_bt_set_readonly((vaddr_t)L2);
827#else
828	/* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
829	memcpy(&L2[L2_SLOT_KERN + NPDPG], &L2[L2_SLOT_KERN], PAGE_SIZE);
830	cpu_info_primary.ci_kpm_pdir = &L2[L2_SLOT_KERN + NPDPG];
831	cpu_info_primary.ci_kpm_pdirpa =
832	    (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
833
834	/*
835	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
836	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
837	 * have to enter the shadow after switching %cr3, or Xen will refcount
838	 * some PTEs with the wrong type.
839	 */
840	addr = (u_long)L2 - KERNBASE;
841	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
842		L2[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PTE_P |
843		    xpmap_pg_nx;
844	}
845
846	/* Mark tables RO, and pin L2 KERN SHADOW. */
847	addr = (u_long)L2 - KERNBASE;
848	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
849		xen_bt_set_readonly(((vaddr_t)L2) + PAGE_SIZE * i);
850	}
851	if (final) {
852		addr = (u_long)L2 - KERNBASE + 3 * PAGE_SIZE;
853		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
854	}
855#endif
856
857	xen_bt_set_readonly((vaddr_t)L3);
858#ifdef __x86_64__
859	xen_bt_set_readonly((vaddr_t)L4cpu);
860#endif
861
862	/* Pin the PGD */
863#ifdef __x86_64__
864	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
865#else
866	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
867#endif
868
869	/* Save phys. addr of PDP, for libkvm. */
870#ifdef __x86_64__
871	PDPpaddr = (u_long)L4 - KERNBASE;
872#else
873	PDPpaddr = (u_long)L2 - KERNBASE; /* PDP is the L2 with PAE */
874#endif
875
876	/* Switch to new tables */
877	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
878
879	if (final) {
880#ifdef __x86_64__
881		/* Save the address of the real per-cpu L4 page. */
882		cpu_info_primary.ci_kpm_pdir = L4cpu;
883		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)L4cpu - KERNBASE);
884#else
885		/* Save the address of the L3 page */
886		cpu_info_primary.ci_pae_l3_pdir = L3;
887		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
888
889		/* Now enter the kernel's PTE mappings */
890		addr = (u_long)L2 - KERNBASE + PAGE_SIZE * 3;
891		xpq_queue_pte_update(
892		    xpmap_ptom(((vaddr_t)&L2[PDIR_SLOT_PTE + 3]) - KERNBASE),
893		    xpmap_ptom_masked(addr) | PTE_P);
894		xpq_flush_queue();
895#endif
896	}
897
898	/*
899	 * Now we can safely reclaim the space taken by the old tables.
900	 */
901
902	/* Unpin old PGD */
903	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
904
905	/* Mark old tables RW */
906	page = old_pgd;
907	addr = xpmap_mtop((paddr_t)L2[pl2_pi(page)] & PTE_4KFRAME);
908	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
909	pte += pl1_pi(page);
910	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
911		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
912		xpq_queue_pte_update(addr, *pte | PTE_W);
913		page += PAGE_SIZE;
914		/*
915		 * Our PTEs are contiguous so it's safe to just "++" here.
916		 */
917		pte++;
918	}
919	xpq_flush_queue();
920}
921
922/*
923 * Mark a page read-only, assuming vaddr = paddr + KERNBASE.
924 */
925static void
926xen_bt_set_readonly(vaddr_t page)
927{
928	pt_entry_t entry;
929
930	entry = xpmap_ptom_masked(page - KERNBASE);
931	entry |= PTE_P | xpmap_pg_nx;
932
933	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
934}
935
936#ifdef __x86_64__
937void
938xen_set_user_pgd(paddr_t page)
939{
940	struct mmuext_op op;
941	int s = splvm(); /* XXXSMP */
942
943	xpq_flush_queue();
944	op.cmd = MMUEXT_NEW_USER_BASEPTR;
945	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
946	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
947		panic("xen_set_user_pgd: failed to install new user page"
948			" directory %#" PRIxPADDR, page);
949	splx(s);
950}
951#endif /* __x86_64__ */
952