x86_xpmap.c revision 1.85
1/*	$NetBSD: x86_xpmap.c,v 1.85 2019/10/30 07:40:06 maxv Exp $	*/
2
3/*
4 * Copyright (c) 2017 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr>
34 *
35 * Permission to use, copy, modify, and distribute this software for any
36 * purpose with or without fee is hereby granted, provided that the above
37 * copyright notice and this permission notice appear in all copies.
38 *
39 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
40 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
41 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
42 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
43 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
44 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
45 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
46 */
47
48/*
49 * Copyright (c) 2006, 2007 Manuel Bouyer.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 *    notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 *    notice, this list of conditions and the following disclaimer in the
58 *    documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72/*
73 * Copyright (c) 2004 Christian Limpach.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 *    notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 *    notice, this list of conditions and the following disclaimer in the
83 *    documentation and/or other materials provided with the distribution.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
86 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
87 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
89 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
90 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
91 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
92 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
93 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
94 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
95 */
96
97#include <sys/cdefs.h>
98__KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.85 2019/10/30 07:40:06 maxv Exp $");
99
100#include "opt_xen.h"
101#include "opt_ddb.h"
102#include "ksyms.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/mutex.h>
107#include <sys/cpu.h>
108
109#include <uvm/uvm.h>
110
111#include <x86/pmap.h>
112#include <machine/gdt.h>
113#include <xen/xenfunc.h>
114
115#include <dev/isa/isareg.h>
116#include <machine/isa_machdep.h>
117
118#ifdef XENDEBUG
119#define	__PRINTK(x) printk x
120#else
121#define	__PRINTK(x)
122#endif
123
124/* Xen requires the start_info struct to be page aligned */
125union start_info_union start_info_union __aligned(PAGE_SIZE);
126
127volatile shared_info_t *HYPERVISOR_shared_info __read_mostly;
128unsigned long *xpmap_phys_to_machine_mapping __read_mostly;
129kmutex_t pte_lock __cacheline_aligned;
130vaddr_t xen_dummy_page;
131pt_entry_t xpmap_pg_nx __read_mostly;
132
133#define XPQUEUE_SIZE 2048
134static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
135
136void xen_failsafe_handler(void);
137
138extern volatile struct xencons_interface *xencons_interface; /* XXX */
139extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
140
141static void xen_bt_set_readonly(vaddr_t);
142static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
143
144vaddr_t xen_locore(void);
145
146/*
147 * kcpuset internally uses an array of uint32_t while xen uses an array of
148 * u_long. As we're little-endian we can cast one to the other.
149 */
150typedef union {
151#ifdef _LP64
152	uint32_t xcpum_km[2];
153#else
154	uint32_t xcpum_km[1];
155#endif
156	u_long xcpum_xm;
157} xcpumask_t;
158
159void
160xen_failsafe_handler(void)
161{
162
163	panic("xen_failsafe_handler called!\n");
164}
165
166void
167xen_set_ldt(vaddr_t base, uint32_t entries)
168{
169	vaddr_t va;
170	vaddr_t end;
171	pt_entry_t *ptp;
172	int s;
173
174#ifdef __x86_64__
175	end = base + (entries << 3);
176#else
177	end = base + entries * sizeof(union descriptor);
178#endif
179
180	for (va = base; va < end; va += PAGE_SIZE) {
181		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
182		ptp = kvtopte(va);
183		pmap_pte_clearbits(ptp, PTE_W);
184	}
185	s = splvm(); /* XXXSMP */
186	xpq_queue_set_ldt(base, entries);
187	splx(s);
188}
189
190void
191xpq_flush_queue(void)
192{
193	mmu_update_t *xpq_queue;
194	int done = 0, ret;
195	size_t xpq_idx;
196
197	xpq_idx = curcpu()->ci_xpq_idx;
198	xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
199
200retry:
201	ret = HYPERVISOR_mmu_update(xpq_queue, xpq_idx, &done, DOMID_SELF);
202
203	if (ret < 0 && xpq_idx != 0) {
204		printf("xpq_flush_queue: %zu entries (%d successful) on "
205		    "cpu%d (%ld)\n",
206		    xpq_idx, done, curcpu()->ci_index, curcpu()->ci_cpuid);
207
208		if (done != 0) {
209			xpq_queue += done;
210			xpq_idx -= done;
211			done = 0;
212			goto retry;
213		}
214
215		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
216	}
217	curcpu()->ci_xpq_idx = 0;
218}
219
220static inline void
221xpq_increment_idx(void)
222{
223
224	if (__predict_false(++curcpu()->ci_xpq_idx == XPQUEUE_SIZE))
225		xpq_flush_queue();
226}
227
228void
229xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
230{
231	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
232	size_t xpq_idx = curcpu()->ci_xpq_idx;
233
234	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
235	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
236	xpq_increment_idx();
237}
238
239void
240xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
241{
242	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
243	size_t xpq_idx = curcpu()->ci_xpq_idx;
244
245	xpq_queue[xpq_idx].ptr = ptr | MMU_NORMAL_PT_UPDATE;
246	xpq_queue[xpq_idx].val = val;
247	xpq_increment_idx();
248}
249
250void
251xpq_queue_pt_switch(paddr_t pa)
252{
253	struct mmuext_op op;
254
255	xpq_flush_queue();
256
257	op.cmd = MMUEXT_NEW_BASEPTR;
258	op.arg1.mfn = pa >> PAGE_SHIFT;
259	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
260		panic(__func__);
261}
262
263void
264xpq_queue_pin_table(paddr_t pa, int lvl)
265{
266	struct mmuext_op op;
267
268	xpq_flush_queue();
269
270	op.cmd = lvl;
271	op.arg1.mfn = pa >> PAGE_SHIFT;
272	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
273		panic(__func__);
274}
275
276void
277xpq_queue_unpin_table(paddr_t pa)
278{
279	struct mmuext_op op;
280
281	xpq_flush_queue();
282
283	op.cmd = MMUEXT_UNPIN_TABLE;
284	op.arg1.mfn = pa >> PAGE_SHIFT;
285	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
286		panic(__func__);
287}
288
289void
290xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
291{
292	struct mmuext_op op;
293
294	xpq_flush_queue();
295
296	KASSERT(va == (va & ~PAGE_MASK));
297	op.cmd = MMUEXT_SET_LDT;
298	op.arg1.linear_addr = va;
299	op.arg2.nr_ents = entries;
300	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
301		panic(__func__);
302}
303
304void
305xpq_queue_tlb_flush(void)
306{
307	struct mmuext_op op;
308
309	xpq_flush_queue();
310
311	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
312	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
313		panic(__func__);
314}
315
316void
317xpq_flush_cache(void)
318{
319	int s = splvm(); /* XXXSMP */
320
321	xpq_flush_queue();
322
323	asm("wbinvd":::"memory");
324	splx(s); /* XXX: removeme */
325}
326
327void
328xpq_queue_invlpg(vaddr_t va)
329{
330	struct mmuext_op op;
331
332	xpq_flush_queue();
333
334	op.cmd = MMUEXT_INVLPG_LOCAL;
335	op.arg1.linear_addr = (va & ~PAGE_MASK);
336	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
337		panic(__func__);
338}
339
340void
341xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
342{
343	xcpumask_t xcpumask;
344	mmuext_op_t op;
345
346	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
347
348	xpq_flush_queue();
349
350	op.cmd = MMUEXT_INVLPG_MULTI;
351	op.arg1.linear_addr = va;
352	set_xen_guest_handle(op.arg2.vcpumask, &xcpumask.xcpum_xm);
353
354	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
355		panic(__func__);
356}
357
358void
359xen_bcast_invlpg(vaddr_t va)
360{
361	mmuext_op_t op;
362
363	xpq_flush_queue();
364
365	op.cmd = MMUEXT_INVLPG_ALL;
366	op.arg1.linear_addr = va;
367
368	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
369		panic(__func__);
370}
371
372/* This is a synchronous call. */
373void
374xen_mcast_tlbflush(kcpuset_t *kc)
375{
376	xcpumask_t xcpumask;
377	mmuext_op_t op;
378
379	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
380
381	xpq_flush_queue();
382
383	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
384	set_xen_guest_handle(op.arg2.vcpumask, &xcpumask.xcpum_xm);
385
386	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
387		panic(__func__);
388}
389
390/* This is a synchronous call. */
391void
392xen_bcast_tlbflush(void)
393{
394	mmuext_op_t op;
395
396	xpq_flush_queue();
397
398	op.cmd = MMUEXT_TLB_FLUSH_ALL;
399
400	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
401		panic(__func__);
402}
403
404void
405xen_copy_page(paddr_t srcpa, paddr_t dstpa)
406{
407	mmuext_op_t op;
408
409	op.cmd = MMUEXT_COPY_PAGE;
410	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
411	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
412
413	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
414		panic(__func__);
415}
416
417void
418xen_pagezero(paddr_t pa)
419{
420	mmuext_op_t op;
421
422	op.cmd = MMUEXT_CLEAR_PAGE;
423	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
424
425	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
426		panic(__func__);
427}
428
429int
430xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
431{
432	mmu_update_t op;
433	int ok;
434
435	xpq_flush_queue();
436
437	op.ptr = ptr;
438	op.val = val;
439	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
440		return EFAULT;
441	return 0;
442}
443
444#if L2_SLOT_KERNBASE > 0
445#define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
446#else
447#define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
448#endif
449
450#ifdef __x86_64__
451#define PDIRSZ	PTP_LEVELS
452#else
453/*
454 * For PAE, we need an L3 page, a single contiguous L2 "superpage" of 4 pages
455 * (all of them mapped by the L3 page), and a shadow page for L3[3].
456 */
457#define PDIRSZ	(1 + 4 + 1)
458#endif
459
460/*
461 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
462 * tables.
463 *
464 * Virtual address space of the kernel when leaving this function:
465 * +--------------+------------------+-------------+------------+---------------
466 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
467 * +--------------+------------------+-------------+------------+---------------
468 *
469 * ------+-----------------+-------------+
470 *  INFO | EARLY ZERO PAGE | ISA I/O MEM |
471 * ------+-----------------+-------------+
472 *
473 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
474 *
475 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
476 * addresses preallocated.
477 */
478vaddr_t
479xen_locore(void)
480{
481	size_t nL2, oldcount, mapsize;
482	vaddr_t our_tables, xen_tables;
483	u_int descs[4];
484
485	xen_init_features();
486
487	xpmap_phys_to_machine_mapping =
488	    (unsigned long *)xen_start_info.mfn_list;
489
490	/* Set the NX/XD bit, if available. descs[3] = %edx. */
491	x86_cpuid(0x80000001, descs);
492	xpmap_pg_nx = (descs[3] & CPUID_NOX) ? PTE_NX : 0;
493
494	/* Space after Xen boostrap tables should be free */
495	xen_tables = xen_start_info.pt_base;
496	our_tables = xen_tables + (xen_start_info.nr_pt_frames * PAGE_SIZE);
497
498	/*
499	 * Calculate how much space we need. First, everything mapped before
500	 * the Xen bootstrap tables.
501	 */
502	mapsize = xen_tables - KERNTEXTOFF;
503
504	/* After the tables we'll have:
505	 *  - UAREA
506	 *  - dummy user PGD (x86_64)
507	 *  - HYPERVISOR_shared_info
508	 *  - early_zerop
509	 *  - ISA I/O mem (if needed)
510	 */
511	mapsize += UPAGES * PAGE_SIZE;
512#ifdef __x86_64__
513	mapsize += PAGE_SIZE;
514#endif
515	mapsize += PAGE_SIZE;
516	mapsize += PAGE_SIZE;
517#ifdef DOM0OPS
518	if (xendomain_is_dom0()) {
519		mapsize += IOM_SIZE;
520	}
521#endif
522
523	/*
524	 * At this point, mapsize doesn't include the table size.
525	 */
526#ifdef __x86_64__
527	nL2 = TABLE_L2_ENTRIES;
528#else
529	nL2 = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
530#endif
531
532	/*
533	 * Now compute how many L2 pages we need exactly. This is useful only
534	 * on i386, since the initial count for amd64 is already enough.
535	 */
536	while (KERNTEXTOFF + mapsize + (nL2 + PDIRSZ) * PAGE_SIZE >
537	    KERNBASE + (nL2 << L2_SHIFT)) {
538		nL2++;
539	}
540
541#ifdef i386
542	/*
543	 * One more L2 page: we'll allocate several pages after kva_start
544	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
545	 * counted here. It's not a big issue to allocate one more L2 as
546	 * pmap_growkernel() will be called anyway.
547	 */
548	nL2++;
549	nkptp[1] = nL2;
550#endif
551
552	/*
553	 * Install bootstrap pages. We may need more L2 pages than will
554	 * have the final table here, as it's installed after the final table.
555	 */
556	oldcount = nL2;
557
558bootstrap_again:
559
560	/*
561	 * Xen space we'll reclaim may not be enough for our new page tables,
562	 * move bootstrap tables if necessary.
563	 */
564	if (our_tables < xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE))
565		our_tables = xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE);
566
567	/*
568	 * Make sure the number of L2 pages we have is enough to map everything
569	 * from KERNBASE to the bootstrap tables themselves.
570	 */
571	if (our_tables + ((oldcount + PDIRSZ) * PAGE_SIZE) >
572	    KERNBASE + (oldcount << L2_SHIFT)) {
573		oldcount++;
574		goto bootstrap_again;
575	}
576
577	/* Create temporary tables */
578	xen_bootstrap_tables(xen_tables, our_tables,
579	    xen_start_info.nr_pt_frames, oldcount, false);
580
581	/* Create final tables */
582	xen_bootstrap_tables(our_tables, xen_tables,
583	    oldcount + PDIRSZ, nL2, true);
584
585	/* Zero out PROC0 UAREA and DUMMY PAGE. */
586	memset((void *)(xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE)), 0,
587	    (UPAGES + 1) * PAGE_SIZE);
588
589	/* Finally, flush TLB. */
590	xpq_queue_tlb_flush();
591
592	return (xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE));
593}
594
595/*
596 * Build a new table and switch to it.
597 * old_count is # of old tables (including L4, L3 and L2).
598 * new_count is # of new tables (PTE only).
599 * We assume the areas don't overlap.
600 */
601static void
602xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
603    size_t new_count, bool final)
604{
605	pd_entry_t *L4cpu, *L4, *L3, *L2, *pte;
606	paddr_t addr;
607	vaddr_t page, avail, map_end;
608	int i;
609	extern char __rodata_start;
610	extern char __data_start;
611	extern char __kernel_end;
612	extern char *early_zerop; /* from pmap.c */
613#ifdef i386
614	extern union descriptor tmpgdt[];
615#endif
616
617	/*
618	 * Layout of RW area after the kernel image:
619	 *     xencons_interface (if present)
620	 *     xenstore_interface (if present)
621	 *     table pages (new_count + PDIRSZ entries)
622	 * Extra mappings (only when final is true):
623	 *     UAREA
624	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
625	 *     HYPERVISOR_shared_info
626	 *     early_zerop
627	 *     ISA I/O mem (if needed)
628	 */
629	map_end = new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE);
630	if (final) {
631		map_end += UPAGES * PAGE_SIZE;
632		xen_dummy_page = (vaddr_t)map_end;
633		map_end += PAGE_SIZE;
634		HYPERVISOR_shared_info = (shared_info_t *)map_end;
635		map_end += PAGE_SIZE;
636		early_zerop = (char *)map_end;
637		map_end += PAGE_SIZE;
638	}
639
640	/*
641	 * We always set atdevbase, as it's used by init386 to find the first
642	 * available VA. map_end is updated only if we are dom0, so
643	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
644	 * this case.
645	 */
646	if (final) {
647		atdevbase = map_end;
648#ifdef DOM0OPS
649		if (xendomain_is_dom0()) {
650			/* ISA I/O mem */
651			map_end += IOM_SIZE;
652		}
653#endif
654	}
655
656	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
657	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
658	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
659
660	avail = new_pgd;
661
662	/*
663	 * Create our page tables.
664	 */
665
666#ifdef __x86_64__
667	/* per-cpu L4 */
668	L4cpu = (pd_entry_t *)avail;
669	memset(L4cpu, 0, PAGE_SIZE);
670	avail += PAGE_SIZE;
671
672	/* pmap_kernel L4 */
673	L4 = (pd_entry_t *)avail;
674	memset(L4, 0, PAGE_SIZE);
675	avail += PAGE_SIZE;
676
677	/* L3 */
678	L3 = (pd_entry_t *)avail;
679	memset(L3, 0, PAGE_SIZE);
680	avail += PAGE_SIZE;
681
682	/* link L4->L3 */
683	addr = ((u_long)L3) - KERNBASE;
684	L4cpu[pl4_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
685	L4[pl4_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
686
687	/* L2 */
688	L2 = (pd_entry_t *)avail;
689	memset(L2, 0, PAGE_SIZE);
690	avail += PAGE_SIZE;
691
692	/* link L3->L2 */
693	addr = ((u_long)L2) - KERNBASE;
694	L3[pl3_pi(KERNTEXTOFF)] = xpmap_ptom_masked(addr) | PTE_P | PTE_W;
695#else
696	/* no L4 on i386PAE */
697	__USE(L4cpu);
698	__USE(L4);
699
700	/* L3 */
701	L3 = (pd_entry_t *)avail;
702	memset(L3, 0, PAGE_SIZE);
703	avail += PAGE_SIZE;
704
705	/*
706	 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
707	 *                  +-----------------+----------------+---------+
708	 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
709	 *                  +-----------------+----------------+---------+
710	 * However, we enter L3[3] into L2 KERN, and not L2 KERN SHADOW.
711	 * This way, L2[L2_SLOT_KERN] always points to the shadow.
712	 */
713	L2 = (pd_entry_t *)avail;
714	memset(L2, 0, PAGE_SIZE * 5);
715	avail += PAGE_SIZE * 5;
716
717	/*
718	 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
719	 * want RW permissions in L3 entries, it'll add them itself.
720	 */
721	addr = ((u_long)L2) - KERNBASE;
722	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
723		L3[i] = xpmap_ptom_masked(addr) | PTE_P;
724	}
725	addr += PAGE_SIZE;
726	L3[3] = xpmap_ptom_masked(addr) | PTE_P;
727#endif
728
729	/* Level 1 */
730	page = KERNTEXTOFF;
731	for (i = 0; i < new_count; i ++) {
732		vaddr_t cur_page = page;
733
734		pte = (pd_entry_t *)avail;
735		memset(pte, 0, PAGE_SIZE);
736		avail += PAGE_SIZE;
737
738		while (pl2_pi(page) == pl2_pi(cur_page)) {
739			if (page >= map_end) {
740				/* not mapped at all */
741				pte[pl1_pi(page)] = 0;
742				page += PAGE_SIZE;
743				continue;
744			}
745			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
746			if (page == (vaddr_t)HYPERVISOR_shared_info) {
747				pte[pl1_pi(page)] = xen_start_info.shared_info;
748			}
749			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
750			    == xen_start_info.console.domU.mfn) {
751				xencons_interface = (void *)page;
752				pte[pl1_pi(page)] = xen_start_info.console_mfn;
753				pte[pl1_pi(page)] <<= PAGE_SHIFT;
754			}
755			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
756			    == xen_start_info.store_mfn) {
757				xenstore_interface = (void *)page;
758				pte[pl1_pi(page)] = xen_start_info.store_mfn;
759				pte[pl1_pi(page)] <<= PAGE_SHIFT;
760			}
761#ifdef DOM0OPS
762			if (page >= (vaddr_t)atdevbase &&
763			    page < (vaddr_t)atdevbase + IOM_SIZE) {
764				pte[pl1_pi(page)] =
765				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
766				pte[pl1_pi(page)] |= xpmap_pg_nx;
767			}
768#endif
769
770			pte[pl1_pi(page)] |= PTE_P;
771			if (page < (vaddr_t)&__rodata_start) {
772				/* Map the kernel text RX. Nothing to do. */
773			} else if (page >= (vaddr_t)&__rodata_start &&
774			    page < (vaddr_t)&__data_start) {
775				/* Map the kernel rodata R. */
776				pte[pl1_pi(page)] |= xpmap_pg_nx;
777			} else if (page >= old_pgd &&
778			    page < old_pgd + (old_count * PAGE_SIZE)) {
779				/* Map the old page tables R. */
780				pte[pl1_pi(page)] |= xpmap_pg_nx;
781			} else if (page >= new_pgd &&
782			    page < new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE)) {
783				/* Map the new page tables R. */
784				pte[pl1_pi(page)] |= xpmap_pg_nx;
785#ifdef i386
786			} else if (page == (vaddr_t)tmpgdt) {
787				/*
788				 * Map bootstrap gdt R/O. Later, we will re-add
789				 * this page to uvm after making it writable.
790				 */
791				pte[pl1_pi(page)] = 0;
792				page += PAGE_SIZE;
793				continue;
794#endif
795			} else if (page >= (vaddr_t)&__data_start &&
796			    page < (vaddr_t)&__kernel_end) {
797				/* Map the kernel data+bss RW. */
798				pte[pl1_pi(page)] |= PTE_W | xpmap_pg_nx;
799			} else {
800				/* Map the page RW. */
801				pte[pl1_pi(page)] |= PTE_W | xpmap_pg_nx;
802			}
803
804			page += PAGE_SIZE;
805		}
806
807		addr = ((u_long)pte) - KERNBASE;
808		L2[pl2_pi(cur_page)] = xpmap_ptom_masked(addr) | PTE_W | PTE_P;
809
810		/* Mark readonly */
811		xen_bt_set_readonly((vaddr_t)pte);
812	}
813
814	/* Install recursive page tables mapping */
815#ifdef __x86_64__
816	/* Recursive entry in pmap_kernel(). */
817	L4[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)L4 - KERNBASE)
818	    | PTE_P | xpmap_pg_nx;
819	/* Recursive entry in higher-level per-cpu PD. */
820	L4cpu[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)L4cpu - KERNBASE)
821	    | PTE_P | xpmap_pg_nx;
822
823	/* Mark tables RO */
824	xen_bt_set_readonly((vaddr_t)L2);
825#else
826	/* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
827	memcpy(&L2[L2_SLOT_KERN + NPDPG], &L2[L2_SLOT_KERN], PAGE_SIZE);
828	cpu_info_primary.ci_kpm_pdir = &L2[L2_SLOT_KERN + NPDPG];
829	cpu_info_primary.ci_kpm_pdirpa =
830	    (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
831
832	/*
833	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
834	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
835	 * have to enter the shadow after switching %cr3, or Xen will refcount
836	 * some PTEs with the wrong type.
837	 */
838	addr = (u_long)L2 - KERNBASE;
839	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
840		L2[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PTE_P |
841		    xpmap_pg_nx;
842	}
843
844	/* Mark tables RO, and pin L2 KERN SHADOW. */
845	addr = (u_long)L2 - KERNBASE;
846	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
847		xen_bt_set_readonly(((vaddr_t)L2) + PAGE_SIZE * i);
848	}
849	if (final) {
850		addr = (u_long)L2 - KERNBASE + 3 * PAGE_SIZE;
851		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
852	}
853#endif
854
855	xen_bt_set_readonly((vaddr_t)L3);
856#ifdef __x86_64__
857	xen_bt_set_readonly((vaddr_t)L4cpu);
858#endif
859
860	/* Pin the PGD */
861#ifdef __x86_64__
862	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
863#else
864	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
865#endif
866
867	/* Save phys. addr of PDP, for libkvm. */
868#ifdef __x86_64__
869	PDPpaddr = (u_long)L4 - KERNBASE;
870#else
871	PDPpaddr = (u_long)L2 - KERNBASE; /* PDP is the L2 with PAE */
872#endif
873
874	/* Switch to new tables */
875	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
876
877	if (final) {
878#ifdef __x86_64__
879		/* Save the address of the real per-cpu L4 page. */
880		cpu_info_primary.ci_kpm_pdir = L4cpu;
881		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)L4cpu - KERNBASE);
882#else
883		/* Save the address of the L3 page */
884		cpu_info_primary.ci_pae_l3_pdir = L3;
885		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
886
887		/* Now enter the kernel's PTE mappings */
888		addr = (u_long)L2 - KERNBASE + PAGE_SIZE * 3;
889		xpq_queue_pte_update(
890		    xpmap_ptom(((vaddr_t)&L2[PDIR_SLOT_PTE + 3]) - KERNBASE),
891		    xpmap_ptom_masked(addr) | PTE_P);
892		xpq_flush_queue();
893#endif
894	}
895
896	/*
897	 * Now we can safely reclaim the space taken by the old tables.
898	 */
899
900	/* Unpin old PGD */
901	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
902
903	/* Mark old tables RW */
904	page = old_pgd;
905	addr = xpmap_mtop((paddr_t)L2[pl2_pi(page)] & PTE_4KFRAME);
906	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
907	pte += pl1_pi(page);
908	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
909		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
910		xpq_queue_pte_update(addr, *pte | PTE_W);
911		page += PAGE_SIZE;
912		/*
913		 * Our PTEs are contiguous so it's safe to just "++" here.
914		 */
915		pte++;
916	}
917	xpq_flush_queue();
918}
919
920/*
921 * Mark a page read-only, assuming vaddr = paddr + KERNBASE.
922 */
923static void
924xen_bt_set_readonly(vaddr_t page)
925{
926	pt_entry_t entry;
927
928	entry = xpmap_ptom_masked(page - KERNBASE);
929	entry |= PTE_P | xpmap_pg_nx;
930
931	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
932}
933
934#ifdef __x86_64__
935void
936xen_set_user_pgd(paddr_t page)
937{
938	struct mmuext_op op;
939	int s = splvm(); /* XXXSMP */
940
941	xpq_flush_queue();
942	op.cmd = MMUEXT_NEW_USER_BASEPTR;
943	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
944	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
945		panic("xen_set_user_pgd: failed to install new user page"
946			" directory %#" PRIxPADDR, page);
947	splx(s);
948}
949#endif /* __x86_64__ */
950