x86_xpmap.c revision 1.80
1/*	$NetBSD: x86_xpmap.c,v 1.80 2018/07/27 10:04:22 maxv Exp $	*/
2
3/*
4 * Copyright (c) 2017 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr>
34 *
35 * Permission to use, copy, modify, and distribute this software for any
36 * purpose with or without fee is hereby granted, provided that the above
37 * copyright notice and this permission notice appear in all copies.
38 *
39 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
40 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
41 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
42 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
43 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
44 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
45 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
46 */
47
48/*
49 * Copyright (c) 2006, 2007 Manuel Bouyer.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 *    notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 *    notice, this list of conditions and the following disclaimer in the
58 *    documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
61 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
62 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
63 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
64 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
65 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
66 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
67 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
68 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
69 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
70 */
71
72/*
73 * Copyright (c) 2004 Christian Limpach.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 *    notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 *    notice, this list of conditions and the following disclaimer in the
83 *    documentation and/or other materials provided with the distribution.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
86 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
87 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
89 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
90 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
91 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
92 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
93 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
94 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
95 */
96
97#include <sys/cdefs.h>
98__KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.80 2018/07/27 10:04:22 maxv Exp $");
99
100#include "opt_xen.h"
101#include "opt_ddb.h"
102#include "ksyms.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/mutex.h>
107#include <sys/cpu.h>
108
109#include <uvm/uvm.h>
110
111#include <x86/pmap.h>
112#include <machine/gdt.h>
113#include <xen/xenfunc.h>
114
115#include <dev/isa/isareg.h>
116#include <machine/isa_machdep.h>
117
118#ifdef XENDEBUG
119#define	__PRINTK(x) printk x
120#else
121#define	__PRINTK(x)
122#endif
123
124/* Xen requires the start_info struct to be page aligned */
125union start_info_union start_info_union __aligned(PAGE_SIZE);
126
127volatile shared_info_t *HYPERVISOR_shared_info __read_mostly;
128unsigned long *xpmap_phys_to_machine_mapping __read_mostly;
129kmutex_t pte_lock __cacheline_aligned;
130vaddr_t xen_dummy_page;
131pt_entry_t xpmap_pg_nx __read_mostly;
132
133#define XPQUEUE_SIZE 2048
134static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
135
136void xen_failsafe_handler(void);
137
138extern volatile struct xencons_interface *xencons_interface; /* XXX */
139extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
140
141static void xen_bt_set_readonly(vaddr_t);
142static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
143
144vaddr_t xen_locore(void);
145
146/*
147 * kcpuset internally uses an array of uint32_t while xen uses an array of
148 * u_long. As we're little-endian we can cast one to the other.
149 */
150typedef union {
151#ifdef _LP64
152	uint32_t xcpum_km[2];
153#else
154	uint32_t xcpum_km[1];
155#endif
156	u_long xcpum_xm;
157} xcpumask_t;
158
159void
160xen_failsafe_handler(void)
161{
162
163	panic("xen_failsafe_handler called!\n");
164}
165
166void
167xen_set_ldt(vaddr_t base, uint32_t entries)
168{
169	vaddr_t va;
170	vaddr_t end;
171	pt_entry_t *ptp;
172	int s;
173
174#ifdef __x86_64__
175	end = base + (entries << 3);
176#else
177	end = base + entries * sizeof(union descriptor);
178#endif
179
180	for (va = base; va < end; va += PAGE_SIZE) {
181		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
182		ptp = kvtopte(va);
183		pmap_pte_clearbits(ptp, PG_RW);
184	}
185	s = splvm(); /* XXXSMP */
186	xpq_queue_set_ldt(base, entries);
187	splx(s);
188}
189
190void
191xpq_flush_queue(void)
192{
193	mmu_update_t *xpq_queue;
194	int done = 0, ret;
195	size_t xpq_idx;
196
197	xpq_idx = curcpu()->ci_xpq_idx;
198	xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
199
200retry:
201	ret = HYPERVISOR_mmu_update(xpq_queue, xpq_idx, &done, DOMID_SELF);
202
203	if (ret < 0 && xpq_idx != 0) {
204		printf("xpq_flush_queue: %zu entries (%d successful) on "
205		    "cpu%d (%ld)\n",
206		    xpq_idx, done, curcpu()->ci_index, curcpu()->ci_cpuid);
207
208		if (done != 0) {
209			xpq_queue += done;
210			xpq_idx -= done;
211			done = 0;
212			goto retry;
213		}
214
215		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
216	}
217	curcpu()->ci_xpq_idx = 0;
218}
219
220static inline void
221xpq_increment_idx(void)
222{
223
224	if (__predict_false(++curcpu()->ci_xpq_idx == XPQUEUE_SIZE))
225		xpq_flush_queue();
226}
227
228void
229xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
230{
231	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
232	size_t xpq_idx = curcpu()->ci_xpq_idx;
233
234	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
235	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
236	xpq_increment_idx();
237}
238
239void
240xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
241{
242	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
243	size_t xpq_idx = curcpu()->ci_xpq_idx;
244
245	xpq_queue[xpq_idx].ptr = ptr | MMU_NORMAL_PT_UPDATE;
246	xpq_queue[xpq_idx].val = val;
247	xpq_increment_idx();
248}
249
250void
251xpq_queue_pt_switch(paddr_t pa)
252{
253	struct mmuext_op op;
254
255	xpq_flush_queue();
256
257	op.cmd = MMUEXT_NEW_BASEPTR;
258	op.arg1.mfn = pa >> PAGE_SHIFT;
259	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
260		panic(__func__);
261}
262
263void
264xpq_queue_pin_table(paddr_t pa, int lvl)
265{
266	struct mmuext_op op;
267
268	xpq_flush_queue();
269
270	op.cmd = lvl;
271	op.arg1.mfn = pa >> PAGE_SHIFT;
272	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
273		panic(__func__);
274}
275
276void
277xpq_queue_unpin_table(paddr_t pa)
278{
279	struct mmuext_op op;
280
281	xpq_flush_queue();
282
283	op.cmd = MMUEXT_UNPIN_TABLE;
284	op.arg1.mfn = pa >> PAGE_SHIFT;
285	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
286		panic(__func__);
287}
288
289void
290xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
291{
292	struct mmuext_op op;
293
294	xpq_flush_queue();
295
296	KASSERT(va == (va & ~PAGE_MASK));
297	op.cmd = MMUEXT_SET_LDT;
298	op.arg1.linear_addr = va;
299	op.arg2.nr_ents = entries;
300	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
301		panic(__func__);
302}
303
304void
305xpq_queue_tlb_flush(void)
306{
307	struct mmuext_op op;
308
309	xpq_flush_queue();
310
311	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
312	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
313		panic(__func__);
314}
315
316void
317xpq_flush_cache(void)
318{
319	int s = splvm(); /* XXXSMP */
320
321	xpq_flush_queue();
322
323	asm("wbinvd":::"memory");
324	splx(s); /* XXX: removeme */
325}
326
327void
328xpq_queue_invlpg(vaddr_t va)
329{
330	struct mmuext_op op;
331
332	xpq_flush_queue();
333
334	op.cmd = MMUEXT_INVLPG_LOCAL;
335	op.arg1.linear_addr = (va & ~PAGE_MASK);
336	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
337		panic(__func__);
338}
339
340void
341xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
342{
343	xcpumask_t xcpumask;
344	mmuext_op_t op;
345
346	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
347
348	xpq_flush_queue();
349
350	op.cmd = MMUEXT_INVLPG_MULTI;
351	op.arg1.linear_addr = va;
352	op.arg2.vcpumask = &xcpumask.xcpum_xm;
353
354	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
355		panic(__func__);
356}
357
358void
359xen_bcast_invlpg(vaddr_t va)
360{
361	mmuext_op_t op;
362
363	xpq_flush_queue();
364
365	op.cmd = MMUEXT_INVLPG_ALL;
366	op.arg1.linear_addr = va;
367
368	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
369		panic(__func__);
370}
371
372/* This is a synchronous call. */
373void
374xen_mcast_tlbflush(kcpuset_t *kc)
375{
376	xcpumask_t xcpumask;
377	mmuext_op_t op;
378
379	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
380
381	xpq_flush_queue();
382
383	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
384	op.arg2.vcpumask = &xcpumask.xcpum_xm;
385
386	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
387		panic(__func__);
388}
389
390/* This is a synchronous call. */
391void
392xen_bcast_tlbflush(void)
393{
394	mmuext_op_t op;
395
396	xpq_flush_queue();
397
398	op.cmd = MMUEXT_TLB_FLUSH_ALL;
399
400	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
401		panic(__func__);
402}
403
404void
405xen_copy_page(paddr_t srcpa, paddr_t dstpa)
406{
407	mmuext_op_t op;
408
409	op.cmd = MMUEXT_COPY_PAGE;
410	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
411	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
412
413	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
414		panic(__func__);
415}
416
417void
418xen_pagezero(paddr_t pa)
419{
420	mmuext_op_t op;
421
422	op.cmd = MMUEXT_CLEAR_PAGE;
423	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
424
425	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
426		panic(__func__);
427}
428
429int
430xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
431{
432	mmu_update_t op;
433	int ok;
434
435	xpq_flush_queue();
436
437	op.ptr = ptr;
438	op.val = val;
439	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
440		return EFAULT;
441	return 0;
442}
443
444#if L2_SLOT_KERNBASE > 0
445#define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
446#else
447#define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
448#endif
449
450#ifdef __x86_64__
451#define PDIRSZ	PTP_LEVELS
452#else
453/*
454 * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
455 * them mapped by the L3 page. We also need a shadow page for L3[3].
456 * XXX so why 6?
457 */
458#define PDIRSZ	6
459#endif
460
461/*
462 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
463 * tables.
464 *
465 * Virtual address space of the kernel when leaving this function:
466 * +--------------+------------------+-------------+------------+---------------
467 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
468 * +--------------+------------------+-------------+------------+---------------
469 *
470 * ------+-----------------+-------------+
471 *  INFO | EARLY ZERO PAGE | ISA I/O MEM |
472 * ------+-----------------+-------------+
473 *
474 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
475 *
476 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
477 * addresses preallocated.
478 */
479vaddr_t
480xen_locore(void)
481{
482	size_t nL2, oldcount, mapsize;
483	vaddr_t our_tables, xen_tables;
484	u_int descs[4];
485
486	xen_init_features();
487
488	xpmap_phys_to_machine_mapping =
489	    (unsigned long *)xen_start_info.mfn_list;
490
491	/* Set the NX/XD bit, if available. descs[3] = %edx. */
492	x86_cpuid(0x80000001, descs);
493	xpmap_pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
494
495	/* Space after Xen boostrap tables should be free */
496	xen_tables = xen_start_info.pt_base;
497	our_tables = xen_tables + (xen_start_info.nr_pt_frames * PAGE_SIZE);
498
499	/*
500	 * Calculate how much space we need. First, everything mapped before
501	 * the Xen bootstrap tables.
502	 */
503	mapsize = xen_tables - KERNTEXTOFF;
504
505	/* After the tables we'll have:
506	 *  - UAREA
507	 *  - dummy user PGD (x86_64)
508	 *  - HYPERVISOR_shared_info
509	 *  - early_zerop
510	 *  - ISA I/O mem (if needed)
511	 */
512	mapsize += UPAGES * PAGE_SIZE;
513#ifdef __x86_64__
514	mapsize += PAGE_SIZE;
515#endif
516	mapsize += PAGE_SIZE;
517	mapsize += PAGE_SIZE;
518#ifdef DOM0OPS
519	if (xendomain_is_dom0()) {
520		mapsize += IOM_SIZE;
521	}
522#endif
523
524	/*
525	 * At this point, mapsize doesn't include the table size.
526	 */
527#ifdef __x86_64__
528	nL2 = TABLE_L2_ENTRIES;
529#else
530	nL2 = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
531#endif
532
533	/*
534	 * Now compute how many L2 pages we need exactly. This is useful only
535	 * on i386, since the initial count for amd64 is already enough.
536	 */
537	while (KERNTEXTOFF + mapsize + (nL2 + PDIRSZ) * PAGE_SIZE >
538	    KERNBASE + (nL2 << L2_SHIFT)) {
539		nL2++;
540	}
541
542#ifdef i386
543	/*
544	 * One more L2 page: we'll allocate several pages after kva_start
545	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
546	 * counted here. It's not a big issue to allocate one more L2 as
547	 * pmap_growkernel() will be called anyway.
548	 */
549	nL2++;
550	nkptp[1] = nL2;
551#endif
552
553	/*
554	 * Install bootstrap pages. We may need more L2 pages than will
555	 * have the final table here, as it's installed after the final table.
556	 */
557	oldcount = nL2;
558
559bootstrap_again:
560
561	/*
562	 * Xen space we'll reclaim may not be enough for our new page tables,
563	 * move bootstrap tables if necessary.
564	 */
565	if (our_tables < xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE))
566		our_tables = xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE);
567
568	/*
569	 * Make sure the number of L2 pages we have is enough to map everything
570	 * from KERNBASE to the bootstrap tables themselves.
571	 */
572	if (our_tables + ((oldcount + PDIRSZ) * PAGE_SIZE) >
573	    KERNBASE + (oldcount << L2_SHIFT)) {
574		oldcount++;
575		goto bootstrap_again;
576	}
577
578	/* Create temporary tables */
579	xen_bootstrap_tables(xen_tables, our_tables,
580	    xen_start_info.nr_pt_frames, oldcount, false);
581
582	/* Create final tables */
583	xen_bootstrap_tables(our_tables, xen_tables,
584	    oldcount + PDIRSZ, nL2, true);
585
586	/* Zero out PROC0 UAREA and DUMMY PAGE. */
587	memset((void *)(xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE)), 0,
588	    (UPAGES + 1) * PAGE_SIZE);
589
590	/* Finally, flush TLB. */
591	xpq_queue_tlb_flush();
592
593	return (xen_tables + ((nL2 + PDIRSZ) * PAGE_SIZE));
594}
595
596/*
597 * Build a new table and switch to it.
598 * old_count is # of old tables (including PGD, PDTPE and PDE).
599 * new_count is # of new tables (PTE only).
600 * We assume the areas don't overlap.
601 */
602static void
603xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
604    size_t new_count, bool final)
605{
606	pd_entry_t *pdtpe, *pde, *pte;
607	pd_entry_t *bt_pgd;
608	paddr_t addr;
609	vaddr_t page, avail, map_end;
610	int i;
611	extern char __rodata_start;
612	extern char __data_start;
613	extern char __kernel_end;
614	extern char *early_zerop; /* from pmap.c */
615#ifdef i386
616	extern union descriptor tmpgdt[];
617#endif
618
619	/*
620	 * Layout of RW area after the kernel image:
621	 *     xencons_interface (if present)
622	 *     xenstore_interface (if present)
623	 *     table pages (new_count + PDIRSZ entries)
624	 * Extra mappings (only when final is true):
625	 *     UAREA
626	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
627	 *     HYPERVISOR_shared_info
628	 *     early_zerop
629	 *     ISA I/O mem (if needed)
630	 */
631	map_end = new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE);
632	if (final) {
633		map_end += UPAGES * PAGE_SIZE;
634		xen_dummy_page = (vaddr_t)map_end;
635		map_end += PAGE_SIZE;
636		HYPERVISOR_shared_info = (shared_info_t *)map_end;
637		map_end += PAGE_SIZE;
638		early_zerop = (char *)map_end;
639		map_end += PAGE_SIZE;
640	}
641
642	/*
643	 * We always set atdevbase, as it's used by init386 to find the first
644	 * available VA. map_end is updated only if we are dom0, so
645	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
646	 * this case.
647	 */
648	if (final) {
649		atdevbase = map_end;
650#ifdef DOM0OPS
651		if (xendomain_is_dom0()) {
652			/* ISA I/O mem */
653			map_end += IOM_SIZE;
654		}
655#endif
656	}
657
658	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
659	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
660	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
661
662	/*
663	 * Create bootstrap page tables. What we need:
664	 * - a PGD (level 4)
665	 * - a PDTPE (level 3)
666	 * - a PDE (level 2)
667	 * - some PTEs (level 1)
668	 */
669
670	bt_pgd = (pd_entry_t *)new_pgd;
671	memset(bt_pgd, 0, PAGE_SIZE);
672	avail = new_pgd + PAGE_SIZE;
673
674#ifdef __x86_64__
675	/* Per-cpu L4 */
676	pd_entry_t *bt_cpu_pgd = bt_pgd;
677	/* pmap_kernel() "shadow" L4 */
678	bt_pgd = (pd_entry_t *)avail;
679	memset(bt_pgd, 0, PAGE_SIZE);
680	avail += PAGE_SIZE;
681
682	/* Install L3 */
683	pdtpe = (pd_entry_t *)avail;
684	memset(pdtpe, 0, PAGE_SIZE);
685	avail += PAGE_SIZE;
686
687	addr = ((u_long)pdtpe) - KERNBASE;
688	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
689	    xpmap_ptom_masked(addr) | PG_V | PG_RW;
690
691	/* Level 2 */
692	pde = (pd_entry_t *)avail;
693	memset(pde, 0, PAGE_SIZE);
694	avail += PAGE_SIZE;
695
696	addr = ((u_long)pde) - KERNBASE;
697	pdtpe[pl3_pi(KERNTEXTOFF)] =
698	    xpmap_ptom_masked(addr) | PG_V | PG_RW;
699#else
700	pdtpe = bt_pgd;
701
702	/*
703	 * Our PAE-style level 2, 5 contiguous pages (4 L2 + 1 shadow).
704	 *                  +-----------------+----------------+---------+
705	 * Physical layout: | 3 * USERLAND L2 | L2 KERN SHADOW | L2 KERN |
706	 *                  +-----------------+----------------+---------+
707	 * However, we enter pdtpte[3] into L2 KERN, and not L2 KERN SHADOW.
708	 * This way, pde[L2_SLOT_KERN] always points to the shadow.
709	 */
710	pde = (pd_entry_t *)avail;
711	memset(pde, 0, PAGE_SIZE * 5);
712	avail += PAGE_SIZE * 5;
713
714	/*
715	 * Link L2 pages in L3, with a special case for L2 KERN. Xen doesn't
716	 * want RW permissions in L3 entries, it'll add them itself.
717	 */
718	addr = ((u_long)pde) - KERNBASE;
719	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
720		pdtpe[i] = xpmap_ptom_masked(addr) | PG_V;
721	}
722	addr += PAGE_SIZE;
723	pdtpe[3] = xpmap_ptom_masked(addr) | PG_V;
724#endif
725
726	/* Level 1 */
727	page = KERNTEXTOFF;
728	for (i = 0; i < new_count; i ++) {
729		vaddr_t cur_page = page;
730
731		pte = (pd_entry_t *)avail;
732		avail += PAGE_SIZE;
733
734		memset(pte, 0, PAGE_SIZE);
735		while (pl2_pi(page) == pl2_pi(cur_page)) {
736			if (page >= map_end) {
737				/* not mapped at all */
738				pte[pl1_pi(page)] = 0;
739				page += PAGE_SIZE;
740				continue;
741			}
742			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
743			if (page == (vaddr_t)HYPERVISOR_shared_info) {
744				pte[pl1_pi(page)] = xen_start_info.shared_info;
745			}
746			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
747			    == xen_start_info.console.domU.mfn) {
748				xencons_interface = (void *)page;
749				pte[pl1_pi(page)] = xen_start_info.console_mfn;
750				pte[pl1_pi(page)] <<= PAGE_SHIFT;
751			}
752			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
753			    == xen_start_info.store_mfn) {
754				xenstore_interface = (void *)page;
755				pte[pl1_pi(page)] = xen_start_info.store_mfn;
756				pte[pl1_pi(page)] <<= PAGE_SHIFT;
757			}
758#ifdef DOM0OPS
759			if (page >= (vaddr_t)atdevbase &&
760			    page < (vaddr_t)atdevbase + IOM_SIZE) {
761				pte[pl1_pi(page)] =
762				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
763				pte[pl1_pi(page)] |= xpmap_pg_nx;
764			}
765#endif
766
767			pte[pl1_pi(page)] |= PG_V;
768			if (page < (vaddr_t)&__rodata_start) {
769				/* Map the kernel text RX. */
770				pte[pl1_pi(page)] |= PG_RO;
771			} else if (page >= (vaddr_t)&__rodata_start &&
772			    page < (vaddr_t)&__data_start) {
773				/* Map the kernel rodata R. */
774				pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
775			} else if (page >= old_pgd &&
776			    page < old_pgd + (old_count * PAGE_SIZE)) {
777				/* Map the old page tables R. */
778				pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
779			} else if (page >= new_pgd &&
780			    page < new_pgd + ((new_count + PDIRSZ) * PAGE_SIZE)) {
781				/* Map the new page tables R. */
782				pte[pl1_pi(page)] |= PG_RO | xpmap_pg_nx;
783#ifdef i386
784			} else if (page == (vaddr_t)tmpgdt) {
785				/*
786				 * Map bootstrap gdt R/O. Later, we will re-add
787				 * this page to uvm after making it writable.
788				 */
789				pte[pl1_pi(page)] = 0;
790				page += PAGE_SIZE;
791				continue;
792#endif
793			} else if (page >= (vaddr_t)&__data_start &&
794			    page < (vaddr_t)&__kernel_end) {
795				/* Map the kernel data+bss RW. */
796				pte[pl1_pi(page)] |= PG_RW | xpmap_pg_nx;
797			} else {
798				/* Map the page RW. */
799				pte[pl1_pi(page)] |= PG_RW | xpmap_pg_nx;
800			}
801
802			page += PAGE_SIZE;
803		}
804
805		addr = ((u_long)pte) - KERNBASE;
806		pde[pl2_pi(cur_page)] =
807		    xpmap_ptom_masked(addr) | PG_RW | PG_V;
808
809		/* Mark readonly */
810		xen_bt_set_readonly((vaddr_t)pte);
811	}
812
813	/* Install recursive page tables mapping */
814#ifdef __x86_64__
815	/* Recursive entry in pmap_kernel(). */
816	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
817	    | PG_RO | PG_V | xpmap_pg_nx;
818	/* Recursive entry in higher-level per-cpu PD. */
819	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
820	    | PG_RO | PG_V | xpmap_pg_nx;
821
822	/* Mark tables RO */
823	xen_bt_set_readonly((vaddr_t)pde);
824#else
825	/* Copy L2 KERN into L2 KERN SHADOW, and reference the latter in cpu0. */
826	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
827	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
828	cpu_info_primary.ci_kpm_pdirpa =
829	    (vaddr_t)cpu_info_primary.ci_kpm_pdir - KERNBASE;
830
831	/*
832	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
833	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
834	 * have to enter the shadow after switching %cr3, or Xen will refcount
835	 * some PTEs with the wrong type.
836	 */
837	addr = (u_long)pde - KERNBASE;
838	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
839		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_V |
840		    xpmap_pg_nx;
841	}
842
843	/* Mark tables RO, and pin L2 KERN SHADOW. */
844	addr = (u_long)pde - KERNBASE;
845	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
846		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
847	}
848	if (final) {
849		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
850		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
851	}
852#endif
853
854	xen_bt_set_readonly((vaddr_t)pdtpe);
855#ifdef __x86_64__
856	xen_bt_set_readonly(new_pgd);
857#endif
858
859	/* Pin the PGD */
860#ifdef __x86_64__
861	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
862#else
863	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
864#endif
865
866	/* Save phys. addr of PDP, for libkvm. */
867#ifdef __x86_64__
868	PDPpaddr = (u_long)bt_pgd - KERNBASE;
869#else
870	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
871#endif
872
873	/* Switch to new tables */
874	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
875
876	if (final) {
877#ifdef __x86_64__
878		/* Save the address of the real per-cpu L4 page. */
879		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
880		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
881#else
882		/* Save the address of the L3 page */
883		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
884		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
885
886		/* Now enter the kernel's PTE mappings */
887		addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
888		xpq_queue_pte_update(
889		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
890		    xpmap_ptom_masked(addr) | PG_V);
891		xpq_flush_queue();
892#endif
893	}
894
895	/*
896	 * Now we can safely reclaim the space taken by the old tables.
897	 */
898
899	/* Unpin old PGD */
900	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
901
902	/* Mark old tables RW */
903	page = old_pgd;
904	addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
905	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
906	pte += pl1_pi(page);
907	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
908		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
909		xpq_queue_pte_update(addr, *pte | PG_RW);
910		page += PAGE_SIZE;
911		/*
912		 * Our PTEs are contiguous so it's safe to just "++" here.
913		 */
914		pte++;
915	}
916	xpq_flush_queue();
917}
918
919/*
920 * Mark a page read-only, assuming vaddr = paddr + KERNBASE.
921 */
922static void
923xen_bt_set_readonly(vaddr_t page)
924{
925	pt_entry_t entry;
926
927	entry = xpmap_ptom_masked(page - KERNBASE);
928	entry |= PG_V | xpmap_pg_nx;
929
930	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
931}
932
933#ifdef __x86_64__
934void
935xen_set_user_pgd(paddr_t page)
936{
937	struct mmuext_op op;
938	int s = splvm(); /* XXXSMP */
939
940	xpq_flush_queue();
941	op.cmd = MMUEXT_NEW_USER_BASEPTR;
942	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
943	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
944		panic("xen_set_user_pgd: failed to install new user page"
945			" directory %#" PRIxPADDR, page);
946	splx(s);
947}
948#endif /* __x86_64__ */
949