x86_xpmap.c revision 1.68
1/*	$NetBSD: x86_xpmap.c,v 1.68 2016/12/16 19:52:22 maxv Exp $	*/
2
3/*
4 * Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19/*
20 * Copyright (c) 2006, 2007 Manuel Bouyer.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the above copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
32 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
34 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43/*
44 * Copyright (c) 2004 Christian Limpach.
45 * All rights reserved.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 *    notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 *    notice, this list of conditions and the following disclaimer in the
54 *    documentation and/or other materials provided with the distribution.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.68 2016/12/16 19:52:22 maxv Exp $");
70
71#include "opt_xen.h"
72#include "opt_ddb.h"
73#include "ksyms.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/mutex.h>
78#include <sys/cpu.h>
79
80#include <uvm/uvm.h>
81
82#include <x86/pmap.h>
83#include <machine/gdt.h>
84#include <xen/xenfunc.h>
85
86#include <dev/isa/isareg.h>
87#include <machine/isa_machdep.h>
88
89#undef	XENDEBUG
90/* #define XENDEBUG_SYNC */
91
92#ifdef XENDEBUG
93#define	XENPRINTF(x) printf x
94#define	XENPRINTK2(x) /* printk x */
95static char XBUF[256];
96#else
97#define	XENPRINTF(x)
98#define	XENPRINTK2(x)
99#endif
100
101volatile shared_info_t *HYPERVISOR_shared_info;
102/* Xen requires the start_info struct to be page aligned */
103union start_info_union start_info_union __aligned(PAGE_SIZE);
104unsigned long *xpmap_phys_to_machine_mapping;
105kmutex_t pte_lock;
106vaddr_t xen_dummy_page;
107
108void xen_failsafe_handler(void);
109
110#define HYPERVISOR_mmu_update_self(req, count, success_count) \
111	HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
112
113extern volatile struct xencons_interface *xencons_interface; /* XXX */
114extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
115
116static void xen_bt_set_readonly(vaddr_t);
117static void xen_bootstrap_tables(vaddr_t, vaddr_t, size_t, size_t, bool);
118
119vaddr_t xen_locore(void);
120
121/*
122 * kcpuset internally uses an array of uint32_t while xen uses an array of
123 * u_long. As we're little-endian we can cast one to the other.
124 */
125typedef union {
126#ifdef _LP64
127	uint32_t xcpum_km[2];
128#else
129	uint32_t xcpum_km[1];
130#endif
131	u_long xcpum_xm;
132} xcpumask_t;
133
134void
135xen_failsafe_handler(void)
136{
137
138	panic("xen_failsafe_handler called!\n");
139}
140
141void
142xen_set_ldt(vaddr_t base, uint32_t entries)
143{
144	vaddr_t va;
145	vaddr_t end;
146	pt_entry_t *ptp;
147	int s;
148
149#ifdef __x86_64__
150	end = base + (entries << 3);
151#else
152	end = base + entries * sizeof(union descriptor);
153#endif
154
155	for (va = base; va < end; va += PAGE_SIZE) {
156		KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
157		ptp = kvtopte(va);
158		XENPRINTF(("xen_set_ldt %#" PRIxVADDR " %d %p\n",
159		    base, entries, ptp));
160		pmap_pte_clearbits(ptp, PG_RW);
161	}
162	s = splvm();
163	xpq_queue_set_ldt(base, entries);
164	splx(s);
165}
166
167#ifdef XENDEBUG
168void xpq_debug_dump(void);
169#endif
170
171#define XPQUEUE_SIZE 2048
172static mmu_update_t xpq_queue_array[MAXCPUS][XPQUEUE_SIZE];
173static int xpq_idx_array[MAXCPUS];
174
175#ifdef i386
176extern union descriptor tmpgdt[];
177#endif
178
179void
180xpq_flush_queue(void)
181{
182	int i, ok = 0, ret;
183
184	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
185	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
186
187	XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
188	for (i = 0; i < xpq_idx; i++)
189		XENPRINTK2(("%d: 0x%08" PRIx64 " 0x%08" PRIx64 "\n", i,
190		    xpq_queue[i].ptr, xpq_queue[i].val));
191
192retry:
193	ret = HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok);
194
195	if (xpq_idx != 0 && ret < 0) {
196		struct cpu_info *ci;
197		CPU_INFO_ITERATOR cii;
198
199		printf("xpq_flush_queue: %d entries (%d successful) on "
200		    "cpu%d (%ld)\n",
201		    xpq_idx, ok, curcpu()->ci_index, curcpu()->ci_cpuid);
202
203		if (ok != 0) {
204			xpq_queue += ok;
205			xpq_idx -= ok;
206			ok = 0;
207			goto retry;
208		}
209
210		for (CPU_INFO_FOREACH(cii, ci)) {
211			xpq_queue = xpq_queue_array[ci->ci_cpuid];
212			xpq_idx = xpq_idx_array[ci->ci_cpuid];
213			printf("cpu%d (%ld):\n", ci->ci_index, ci->ci_cpuid);
214			for (i = 0; i < xpq_idx; i++) {
215				printf("  0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
216				   xpq_queue[i].ptr, xpq_queue[i].val);
217			}
218#ifdef __x86_64__
219			for (i = 0; i < PDIR_SLOT_PTE; i++) {
220				if (ci->ci_kpm_pdir[i] == 0)
221					continue;
222				printf(" kpm_pdir[%d]: 0x%" PRIx64 "\n",
223				    i, ci->ci_kpm_pdir[i]);
224			}
225#endif
226		}
227		panic("HYPERVISOR_mmu_update failed, ret: %d\n", ret);
228	}
229	xpq_idx_array[curcpu()->ci_cpuid] = 0;
230}
231
232static inline void
233xpq_increment_idx(void)
234{
235
236	if (__predict_false(++xpq_idx_array[curcpu()->ci_cpuid] == XPQUEUE_SIZE))
237		xpq_flush_queue();
238}
239
240void
241xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
242{
243
244	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
245	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
246
247	XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
248	    "\n", (int64_t)ma, (int64_t)pa));
249
250	xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
251	xpq_queue[xpq_idx].val = pa >> PAGE_SHIFT;
252	xpq_increment_idx();
253#ifdef XENDEBUG_SYNC
254	xpq_flush_queue();
255#endif
256}
257
258void
259xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
260{
261
262	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
263	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
264
265	KASSERT((ptr & 3) == 0);
266	xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
267	xpq_queue[xpq_idx].val = val;
268	xpq_increment_idx();
269#ifdef XENDEBUG_SYNC
270	xpq_flush_queue();
271#endif
272}
273
274void
275xpq_queue_pt_switch(paddr_t pa)
276{
277	struct mmuext_op op;
278	xpq_flush_queue();
279
280	XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
281	    (int64_t)pa, (int64_t)pa));
282	op.cmd = MMUEXT_NEW_BASEPTR;
283	op.arg1.mfn = pa >> PAGE_SHIFT;
284	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
285		panic("xpq_queue_pt_switch");
286}
287
288void
289xpq_queue_pin_table(paddr_t pa, int lvl)
290{
291	struct mmuext_op op;
292
293	xpq_flush_queue();
294
295	XENPRINTK2(("xpq_queue_pin_l%d_table: %#" PRIxPADDR "\n",
296	    lvl + 1, pa));
297
298	op.arg1.mfn = pa >> PAGE_SHIFT;
299	op.cmd = lvl;
300
301	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
302		panic("xpq_queue_pin_table");
303}
304
305void
306xpq_queue_unpin_table(paddr_t pa)
307{
308	struct mmuext_op op;
309
310	xpq_flush_queue();
311
312	XENPRINTK2(("xpq_queue_unpin_table: %#" PRIxPADDR "\n", pa));
313	op.arg1.mfn = pa >> PAGE_SHIFT;
314	op.cmd = MMUEXT_UNPIN_TABLE;
315	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
316		panic("xpq_queue_unpin_table");
317}
318
319void
320xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
321{
322	struct mmuext_op op;
323
324	xpq_flush_queue();
325
326	XENPRINTK2(("xpq_queue_set_ldt\n"));
327	KASSERT(va == (va & ~PAGE_MASK));
328	op.cmd = MMUEXT_SET_LDT;
329	op.arg1.linear_addr = va;
330	op.arg2.nr_ents = entries;
331	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
332		panic("xpq_queue_set_ldt");
333}
334
335void
336xpq_queue_tlb_flush(void)
337{
338	struct mmuext_op op;
339
340	xpq_flush_queue();
341
342	XENPRINTK2(("xpq_queue_tlb_flush\n"));
343	op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
344	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
345		panic("xpq_queue_tlb_flush");
346}
347
348void
349xpq_flush_cache(void)
350{
351	int s = splvm();
352
353	xpq_flush_queue();
354
355	XENPRINTK2(("xpq_queue_flush_cache\n"));
356	asm("wbinvd":::"memory");
357	splx(s); /* XXX: removeme */
358}
359
360void
361xpq_queue_invlpg(vaddr_t va)
362{
363	struct mmuext_op op;
364	xpq_flush_queue();
365
366	XENPRINTK2(("xpq_queue_invlpg %#" PRIxVADDR "\n", va));
367	op.cmd = MMUEXT_INVLPG_LOCAL;
368	op.arg1.linear_addr = (va & ~PAGE_MASK);
369	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
370		panic("xpq_queue_invlpg");
371}
372
373void
374xen_mcast_invlpg(vaddr_t va, kcpuset_t *kc)
375{
376	xcpumask_t xcpumask;
377	mmuext_op_t op;
378
379	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
380
381	/* Flush pending page updates */
382	xpq_flush_queue();
383
384	op.cmd = MMUEXT_INVLPG_MULTI;
385	op.arg1.linear_addr = va;
386	op.arg2.vcpumask = &xcpumask.xcpum_xm;
387
388	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
389		panic("xpq_queue_invlpg_all");
390	}
391
392	return;
393}
394
395void
396xen_bcast_invlpg(vaddr_t va)
397{
398	mmuext_op_t op;
399
400	/* Flush pending page updates */
401	xpq_flush_queue();
402
403	op.cmd = MMUEXT_INVLPG_ALL;
404	op.arg1.linear_addr = va;
405
406	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
407		panic("xpq_queue_invlpg_all");
408	}
409
410	return;
411}
412
413/* This is a synchronous call. */
414void
415xen_mcast_tlbflush(kcpuset_t *kc)
416{
417	xcpumask_t xcpumask;
418	mmuext_op_t op;
419
420	kcpuset_export_u32(kc, &xcpumask.xcpum_km[0], sizeof(xcpumask));
421
422	/* Flush pending page updates */
423	xpq_flush_queue();
424
425	op.cmd = MMUEXT_TLB_FLUSH_MULTI;
426	op.arg2.vcpumask = &xcpumask.xcpum_xm;
427
428	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
429		panic("xpq_queue_invlpg_all");
430	}
431
432	return;
433}
434
435/* This is a synchronous call. */
436void
437xen_bcast_tlbflush(void)
438{
439	mmuext_op_t op;
440
441	/* Flush pending page updates */
442	xpq_flush_queue();
443
444	op.cmd = MMUEXT_TLB_FLUSH_ALL;
445
446	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
447		panic("xpq_queue_invlpg_all");
448	}
449
450	return;
451}
452
453/* This is a synchronous call. */
454void
455xen_vcpu_mcast_invlpg(vaddr_t sva, vaddr_t eva, kcpuset_t *kc)
456{
457	KASSERT(eva > sva);
458
459	/* Flush pending page updates */
460	xpq_flush_queue();
461
462	/* Align to nearest page boundary */
463	sva &= ~PAGE_MASK;
464	eva &= ~PAGE_MASK;
465
466	for ( ; sva <= eva; sva += PAGE_SIZE) {
467		xen_mcast_invlpg(sva, kc);
468	}
469
470	return;
471}
472
473/* This is a synchronous call. */
474void
475xen_vcpu_bcast_invlpg(vaddr_t sva, vaddr_t eva)
476{
477	KASSERT(eva > sva);
478
479	/* Flush pending page updates */
480	xpq_flush_queue();
481
482	/* Align to nearest page boundary */
483	sva &= ~PAGE_MASK;
484	eva &= ~PAGE_MASK;
485
486	for ( ; sva <= eva; sva += PAGE_SIZE) {
487		xen_bcast_invlpg(sva);
488	}
489
490	return;
491}
492
493/* Copy a page */
494void
495xen_copy_page(paddr_t srcpa, paddr_t dstpa)
496{
497	mmuext_op_t op;
498
499	op.cmd = MMUEXT_COPY_PAGE;
500	op.arg1.mfn = xpmap_ptom(dstpa) >> PAGE_SHIFT;
501	op.arg2.src_mfn = xpmap_ptom(srcpa) >> PAGE_SHIFT;
502
503	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
504		panic(__func__);
505	}
506}
507
508/* Zero a physical page */
509void
510xen_pagezero(paddr_t pa)
511{
512	mmuext_op_t op;
513
514	op.cmd = MMUEXT_CLEAR_PAGE;
515	op.arg1.mfn = xpmap_ptom(pa) >> PAGE_SHIFT;
516
517	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0) {
518		panic(__func__);
519	}
520}
521
522int
523xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
524{
525	mmu_update_t op;
526	int ok;
527
528	xpq_flush_queue();
529
530	op.ptr = ptr;
531	op.val = val;
532	if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
533		return EFAULT;
534	return (0);
535}
536
537#ifdef XENDEBUG
538void
539xpq_debug_dump(void)
540{
541	int i;
542
543	mmu_update_t *xpq_queue = xpq_queue_array[curcpu()->ci_cpuid];
544	int xpq_idx = xpq_idx_array[curcpu()->ci_cpuid];
545
546	XENPRINTK2(("idx: %d\n", xpq_idx));
547	for (i = 0; i < xpq_idx; i++) {
548		snprintf(XBUF, sizeof(XBUF), "%" PRIx64 " %08" PRIx64,
549		    xpq_queue[i].ptr, xpq_queue[i].val);
550		if (++i < xpq_idx)
551			snprintf(XBUF + strlen(XBUF),
552			    sizeof(XBUF) - strlen(XBUF),
553			    "%" PRIx64 " %08" PRIx64,
554			    xpq_queue[i].ptr, xpq_queue[i].val);
555		if (++i < xpq_idx)
556			snprintf(XBUF + strlen(XBUF),
557			    sizeof(XBUF) - strlen(XBUF),
558			    "%" PRIx64 " %08" PRIx64,
559			    xpq_queue[i].ptr, xpq_queue[i].val);
560		if (++i < xpq_idx)
561			snprintf(XBUF + strlen(XBUF),
562			    sizeof(XBUF) - strlen(XBUF),
563			    "%" PRIx64 " %08" PRIx64,
564			    xpq_queue[i].ptr, xpq_queue[i].val);
565		XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
566	}
567}
568#endif
569
570
571#if L2_SLOT_KERNBASE > 0
572#define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
573#else
574#define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
575#endif
576
577#ifdef PAE
578/*
579 * For PAE, we consider a single contiguous L2 "superpage" of 4 pages, all of
580 * them mapped by the L3 page. We also need a shadow page for L3[3].
581 */
582static const int l2_4_count = 6;
583#elif defined(__x86_64__)
584static const int l2_4_count = PTP_LEVELS;
585#else
586static const int l2_4_count = PTP_LEVELS - 1;
587#endif
588
589/*
590 * Xen locore: get rid of the Xen bootstrap tables. Build and switch to new page
591 * tables.
592 *
593 * Virtual address space of the kernel when leaving this function:
594 * +--------------+------------------+-------------+------------+---------------
595 * | KERNEL IMAGE | BOOTSTRAP TABLES | PROC0 UAREA | DUMMY PAGE | HYPER. SHARED
596 * +--------------+------------------+-------------+------------+---------------
597 *
598 * ------+-----------------+-------------+
599 *  INFO | EARLY ZERO PAGE | ISA I/O MEM |
600 * ------+-----------------+-------------+
601 *
602 * DUMMY PAGE is either a PDG for amd64 or a GDT for i386.
603 *
604 * (HYPER. SHARED INFO + EARLY ZERO PAGE + ISA I/O MEM) have no physical
605 * addresses preallocated.
606 */
607vaddr_t
608xen_locore(void)
609{
610	size_t count, oldcount, mapsize;
611	vaddr_t bootstrap_tables, init_tables;
612
613	xen_init_features();
614
615	memset(xpq_idx_array, 0, sizeof(xpq_idx_array));
616
617	xpmap_phys_to_machine_mapping =
618	    (unsigned long *)xen_start_info.mfn_list;
619
620	/* Space after Xen boostrap tables should be free */
621	init_tables = xen_start_info.pt_base;
622	bootstrap_tables = init_tables +
623	    (xen_start_info.nr_pt_frames * PAGE_SIZE);
624
625	/*
626	 * Calculate how much space we need. First, everything mapped before
627	 * the Xen bootstrap tables.
628	 */
629	mapsize = init_tables - KERNTEXTOFF;
630	/* after the tables we'll have:
631	 *  - UAREA
632	 *  - dummy user PGD (x86_64)
633	 *  - HYPERVISOR_shared_info
634	 *  - early_zerop
635	 *  - ISA I/O mem (if needed)
636	 */
637	mapsize += UPAGES * PAGE_SIZE;
638#ifdef __x86_64__
639	mapsize += PAGE_SIZE;
640#endif
641	mapsize += PAGE_SIZE;
642	mapsize += PAGE_SIZE;
643#ifdef DOM0OPS
644	if (xendomain_is_dom0()) {
645		mapsize += IOM_SIZE;
646	}
647#endif
648
649	/*
650	 * At this point, mapsize doesn't include the table size.
651	 */
652#ifdef __x86_64__
653	count = TABLE_L2_ENTRIES;
654#else
655	count = (mapsize + (NBPD_L2 - 1)) >> L2_SHIFT;
656#endif
657
658	/*
659	 * Now compute how many L2 pages we need exactly. This is useful only
660	 * on i386, since the initial count for amd64 is already enough.
661	 */
662	while (KERNTEXTOFF + mapsize + (count + l2_4_count) * PAGE_SIZE >
663	    KERNBASE + (count << L2_SHIFT)) {
664		count++;
665	}
666
667#ifndef __x86_64__
668	/*
669	 * One more L2 page: we'll allocate several pages after kva_start
670	 * in pmap_bootstrap() before pmap_growkernel(), which have not been
671	 * counted here. It's not a big issue to allocate one more L2 as
672	 * pmap_growkernel() will be called anyway.
673	 */
674	count++;
675	nkptp[1] = count;
676#endif
677
678	/*
679	 * Install bootstrap pages. We may need more L2 pages than will
680	 * have the final table here, as it's installed after the final table.
681	 */
682	oldcount = count;
683
684bootstrap_again:
685
686	/*
687	 * Xen space we'll reclaim may not be enough for our new page tables,
688	 * move bootstrap tables if necessary.
689	 */
690	if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
691		bootstrap_tables = init_tables +
692		    ((count + l2_4_count) * PAGE_SIZE);
693
694	/*
695	 * Make sure the number of L2 pages we have is enough to map everything
696	 * from KERNBASE to the bootstrap tables themselves.
697	 */
698	if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
699	    KERNBASE + (oldcount << L2_SHIFT)) {
700		oldcount++;
701		goto bootstrap_again;
702	}
703
704	/* Create temporary tables */
705	xen_bootstrap_tables(init_tables, bootstrap_tables,
706	    xen_start_info.nr_pt_frames, oldcount, false);
707
708	/* Create final tables */
709	xen_bootstrap_tables(bootstrap_tables, init_tables,
710	    oldcount + l2_4_count, count, true);
711
712	/* Zero out PROC0 UAREA and DUMMY PAGE. */
713	memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
714	    (UPAGES + 1) * PAGE_SIZE);
715
716	/* Finally, flush TLB. */
717	xpq_queue_tlb_flush();
718
719	return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
720}
721
722/*
723 * Build a new table and switch to it.
724 * old_count is # of old tables (including PGD, PDTPE and PDE).
725 * new_count is # of new tables (PTE only).
726 * We assume the areas don't overlap.
727 */
728static void
729xen_bootstrap_tables(vaddr_t old_pgd, vaddr_t new_pgd, size_t old_count,
730    size_t new_count, bool final)
731{
732	pd_entry_t *pdtpe, *pde, *pte;
733	pd_entry_t *bt_pgd;
734	paddr_t addr;
735	vaddr_t page, avail, map_end;
736	int i;
737	extern char __rodata_start;
738	extern char __data_start;
739	extern char __kernel_end;
740	extern char *early_zerop; /* from pmap.c */
741	pt_entry_t pg_nx;
742	u_int descs[4];
743
744	/*
745	 * Set the NX/XD bit, if available. descs[3] = %edx.
746	 */
747	x86_cpuid(0x80000001, descs);
748	pg_nx = (descs[3] & CPUID_NOX) ? PG_NX : 0;
749
750	/*
751	 * Layout of RW area after the kernel image:
752	 *     xencons_interface (if present)
753	 *     xenstore_interface (if present)
754	 *     table pages (new_count + l2_4_count entries)
755	 * Extra mappings (only when final is true):
756	 *     UAREA
757	 *     dummy user PGD (x86_64 only) / GDT page (i386 only)
758	 *     HYPERVISOR_shared_info
759	 *     early_zerop
760	 *     ISA I/O mem (if needed)
761	 */
762	map_end = new_pgd + ((new_count + l2_4_count) * PAGE_SIZE);
763	if (final) {
764		map_end += UPAGES * PAGE_SIZE;
765		xen_dummy_page = (vaddr_t)map_end;
766		map_end += PAGE_SIZE;
767		HYPERVISOR_shared_info = (shared_info_t *)map_end;
768		map_end += PAGE_SIZE;
769		early_zerop = (char *)map_end;
770		map_end += PAGE_SIZE;
771	}
772
773	/*
774	 * We always set atdevbase, as it's used by init386 to find the first
775	 * available VA. map_end is updated only if we are dom0, so
776	 * atdevbase -> atdevbase + IOM_SIZE will be mapped only in
777	 * this case.
778	 */
779	if (final) {
780		atdevbase = map_end;
781#ifdef DOM0OPS
782		if (xendomain_is_dom0()) {
783			/* ISA I/O mem */
784			map_end += IOM_SIZE;
785		}
786#endif
787	}
788
789	__PRINTK(("xen_bootstrap_tables map_end 0x%lx\n", map_end));
790	__PRINTK(("console %#lx ", xen_start_info.console_mfn));
791	__PRINTK(("xenstore %#" PRIx32 "\n", xen_start_info.store_mfn));
792
793	/*
794	 * Create bootstrap page tables. What we need:
795	 * - a PGD (level 4)
796	 * - a PDTPE (level 3)
797	 * - a PDE (level 2)
798	 * - some PTEs (level 1)
799	 */
800
801	bt_pgd = (pd_entry_t *)new_pgd;
802	memset(bt_pgd, 0, PAGE_SIZE);
803	avail = new_pgd + PAGE_SIZE;
804
805#if PTP_LEVELS > 3
806	/* Per-cpu L4 */
807	pd_entry_t *bt_cpu_pgd = bt_pgd;
808	/* pmap_kernel() "shadow" L4 */
809	bt_pgd = (pd_entry_t *)avail;
810	memset(bt_pgd, 0, PAGE_SIZE);
811	avail += PAGE_SIZE;
812
813	/* Install L3 */
814	pdtpe = (pd_entry_t *)avail;
815	memset(pdtpe, 0, PAGE_SIZE);
816	avail += PAGE_SIZE;
817
818	addr = ((u_long)pdtpe) - KERNBASE;
819	bt_pgd[pl4_pi(KERNTEXTOFF)] = bt_cpu_pgd[pl4_pi(KERNTEXTOFF)] =
820	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
821#else
822	pdtpe = bt_pgd;
823#endif
824
825#if PTP_LEVELS > 2
826	/* Level 2 */
827	pde = (pd_entry_t *)avail;
828	memset(pde, 0, PAGE_SIZE);
829	avail += PAGE_SIZE;
830
831	addr = ((u_long)pde) - KERNBASE;
832	pdtpe[pl3_pi(KERNTEXTOFF)] =
833	    xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
834#elif defined(PAE)
835	/* Our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
836	pde = (pd_entry_t *)avail;
837	memset(pde, 0, PAGE_SIZE * 5);
838	avail += PAGE_SIZE * 5;
839	addr = ((u_long)pde) - KERNBASE;
840
841	/*
842	 * Enter L2 pages in L3. The real L2 kernel PD will be the last one
843	 * (so that pde[L2_SLOT_KERN] always points to the shadow).
844	 */
845	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
846		/*
847		 * Xen doesn't want RW mappings in L3 entries, it'll add it
848		 * itself.
849		 */
850		pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
851	}
852	addr += PAGE_SIZE;
853	pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
854#else
855	pde = bt_pgd;
856#endif
857
858	/* Level 1 */
859	page = KERNTEXTOFF;
860	for (i = 0; i < new_count; i ++) {
861		vaddr_t cur_page = page;
862
863		pte = (pd_entry_t *)avail;
864		avail += PAGE_SIZE;
865
866		memset(pte, 0, PAGE_SIZE);
867		while (pl2_pi(page) == pl2_pi(cur_page)) {
868			if (page >= map_end) {
869				/* not mapped at all */
870				pte[pl1_pi(page)] = 0;
871				page += PAGE_SIZE;
872				continue;
873			}
874			pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
875			if (page == (vaddr_t)HYPERVISOR_shared_info) {
876				pte[pl1_pi(page)] = xen_start_info.shared_info;
877			}
878			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
879			    == xen_start_info.console.domU.mfn) {
880				xencons_interface = (void *)page;
881				pte[pl1_pi(page)] = xen_start_info.console_mfn;
882				pte[pl1_pi(page)] <<= PAGE_SHIFT;
883			}
884			if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
885			    == xen_start_info.store_mfn) {
886				xenstore_interface = (void *)page;
887				pte[pl1_pi(page)] = xen_start_info.store_mfn;
888				pte[pl1_pi(page)] <<= PAGE_SHIFT;
889			}
890#ifdef DOM0OPS
891			if (page >= (vaddr_t)atdevbase &&
892			    page < (vaddr_t)atdevbase + IOM_SIZE) {
893				pte[pl1_pi(page)] =
894				    IOM_BEGIN + (page - (vaddr_t)atdevbase);
895				pte[pl1_pi(page)] |= pg_nx;
896			}
897#endif
898
899			pte[pl1_pi(page)] |= PG_k | PG_V;
900			if (page < (vaddr_t)&__rodata_start) {
901				/* Map the kernel text RX. */
902				pte[pl1_pi(page)] |= PG_RO;
903			} else if (page >= (vaddr_t)&__rodata_start &&
904			    page < (vaddr_t)&__data_start) {
905				/* Map the kernel rodata R. */
906				pte[pl1_pi(page)] |= PG_RO | pg_nx;
907			} else if (page >= old_pgd &&
908			    page < old_pgd + (old_count * PAGE_SIZE)) {
909				/* Map the old page tables R. */
910				pte[pl1_pi(page)] |= PG_RO | pg_nx;
911			} else if (page >= new_pgd &&
912			    page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
913				/* Map the new page tables R. */
914				pte[pl1_pi(page)] |= PG_RO | pg_nx;
915#ifdef i386
916			} else if (page == (vaddr_t)tmpgdt) {
917				/*
918				 * Map bootstrap gdt R/O. Later, we will re-add
919				 * this page to uvm after making it writable.
920				 */
921				pte[pl1_pi(page)] = 0;
922				page += PAGE_SIZE;
923				continue;
924#endif
925			} else if (page >= (vaddr_t)&__data_start &&
926			    page < (vaddr_t)&__kernel_end) {
927				/* Map the kernel data+bss RW. */
928				pte[pl1_pi(page)] |= PG_RW | pg_nx;
929			} else {
930				/* Map the page RW. */
931				pte[pl1_pi(page)] |= PG_RW | pg_nx;
932			}
933
934			page += PAGE_SIZE;
935		}
936
937		addr = ((u_long)pte) - KERNBASE;
938		pde[pl2_pi(cur_page)] =
939		    xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
940
941		/* Mark readonly */
942		xen_bt_set_readonly((vaddr_t)pte);
943	}
944
945	/* Install recursive page tables mapping */
946#ifdef PAE
947	/*
948	 * We need a shadow page for the kernel's L2 page.
949	 * The real L2 kernel PD will be the last one (so that
950	 * pde[L2_SLOT_KERN] always points to the shadow).
951	 */
952	memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
953	cpu_info_primary.ci_kpm_pdir = &pde[L2_SLOT_KERN + NPDPG];
954	cpu_info_primary.ci_kpm_pdirpa =
955	    (vaddr_t) cpu_info_primary.ci_kpm_pdir - KERNBASE;
956
957	/*
958	 * We don't enter a recursive entry from the L3 PD. Instead, we enter
959	 * the first 4 L2 pages, which includes the kernel's L2 shadow. But we
960	 * have to enter the shadow after switching %cr3, or Xen will refcount
961	 * some PTEs with the wrong type.
962	 */
963	addr = (u_long)pde - KERNBASE;
964	for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
965		pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V |
966		    pg_nx;
967	}
968#if 0
969	addr += PAGE_SIZE; /* point to shadow L2 */
970	pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
971#endif
972	/* Mark tables RO, and pin the kernel's shadow as L2 */
973	addr = (u_long)pde - KERNBASE;
974	for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
975		xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
976#if 0
977		if (i == 2 || i == 3)
978			continue;
979		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
980#endif
981	}
982	if (final) {
983		addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
984		xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
985	}
986#if 0
987	addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
988	xpq_queue_pin_l2_table(xpmap_ptom_masked(addr));
989#endif
990#else /* PAE */
991
992	/* Recursive entry in pmap_kernel(). */
993	bt_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_pgd - KERNBASE)
994	    | PG_k | PG_RO | PG_V | pg_nx;
995#ifdef __x86_64__
996	/* Recursive entry in higher-level per-cpu PD. */
997	bt_cpu_pgd[PDIR_SLOT_PTE] = xpmap_ptom_masked((paddr_t)bt_cpu_pgd - KERNBASE)
998	    | PG_k | PG_RO | PG_V | pg_nx;
999#endif
1000
1001	/* Mark tables RO */
1002	xen_bt_set_readonly((vaddr_t)pde);
1003#endif
1004#if PTP_LEVELS > 2 || defined(PAE)
1005	xen_bt_set_readonly((vaddr_t)pdtpe);
1006#endif
1007#if PTP_LEVELS > 3
1008	xen_bt_set_readonly(new_pgd);
1009#endif
1010
1011	/* Pin the PGD */
1012#ifdef __x86_64__
1013	xpq_queue_pin_l4_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1014#elif PAE
1015	xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1016#else
1017	xpq_queue_pin_l2_table(xpmap_ptom_masked(new_pgd - KERNBASE));
1018#endif
1019
1020	/* Save phys. addr of PDP, for libkvm. */
1021#ifdef PAE
1022	PDPpaddr = (u_long)pde - KERNBASE; /* PDP is the L2 with PAE */
1023#else
1024	PDPpaddr = (u_long)bt_pgd - KERNBASE;
1025#endif
1026
1027	/* Switch to new tables */
1028	xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
1029
1030#ifdef PAE
1031	if (final) {
1032		/* Save the address of the L3 page */
1033		cpu_info_primary.ci_pae_l3_pdir = pdtpe;
1034		cpu_info_primary.ci_pae_l3_pdirpa = (new_pgd - KERNBASE);
1035
1036		/* Now enter the kernel's PTE mappings */
1037		addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
1038		xpq_queue_pte_update(
1039		    xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
1040		    xpmap_ptom_masked(addr) | PG_k | PG_V);
1041		xpq_flush_queue();
1042	}
1043#elif defined(__x86_64__)
1044	if (final) {
1045		/* Save the address of the real per-cpu L4 page. */
1046		cpu_info_primary.ci_kpm_pdir = bt_cpu_pgd;
1047		cpu_info_primary.ci_kpm_pdirpa = ((paddr_t)bt_cpu_pgd - KERNBASE);
1048	}
1049#endif
1050	__USE(pdtpe);
1051
1052	/*
1053	 * Now we can safely reclaim the space taken by the old tables.
1054	 */
1055
1056	/* Unpin old PGD */
1057	xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
1058
1059	/* Mark old tables RW */
1060	page = old_pgd;
1061	addr = xpmap_mtop((paddr_t)pde[pl2_pi(page)] & PG_FRAME);
1062	pte = (pd_entry_t *)((u_long)addr + KERNBASE);
1063	pte += pl1_pi(page);
1064	while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
1065		addr = xpmap_ptom(((u_long)pte) - KERNBASE);
1066		xpq_queue_pte_update(addr, *pte | PG_RW);
1067		page += PAGE_SIZE;
1068		/*
1069		 * Our PTEs are contiguous so it's safe to just "++" here.
1070		 */
1071		pte++;
1072	}
1073	xpq_flush_queue();
1074}
1075
1076
1077/*
1078 * Bootstrap helper functions
1079 */
1080
1081/*
1082 * Mark a page readonly
1083 * XXX: assuming vaddr = paddr + KERNBASE
1084 */
1085
1086static void
1087xen_bt_set_readonly(vaddr_t page)
1088{
1089	pt_entry_t entry;
1090
1091	entry = xpmap_ptom_masked(page - KERNBASE);
1092	entry |= PG_k | PG_V;
1093
1094	HYPERVISOR_update_va_mapping(page, entry, UVMF_INVLPG);
1095}
1096
1097#ifdef __x86_64__
1098void
1099xen_set_user_pgd(paddr_t page)
1100{
1101	struct mmuext_op op;
1102	int s = splvm();
1103
1104	xpq_flush_queue();
1105	op.cmd = MMUEXT_NEW_USER_BASEPTR;
1106	op.arg1.mfn = xpmap_ptom_masked(page) >> PAGE_SHIFT;
1107	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
1108		panic("xen_set_user_pgd: failed to install new user page"
1109			" directory %#" PRIxPADDR, page);
1110	splx(s);
1111}
1112#endif /* __x86_64__ */
1113