pmap.h revision 1.11
1/*	$NetBSD: pmap.h,v 1.11 2001/04/22 17:37:55 uch Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgment:
17 *      This product includes software developed by Charles D. Cranor and
18 *      Washington University.
19 * 4. The name of the author may not be used to endorse or promote products
20 *    derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34/*
35 * pmap.h: see pmap.c for the history of this pmap module.
36 */
37
38#ifndef _SH3_PMAP_H_
39#define _SH3_PMAP_H_
40
41#include <machine/cpufunc.h>
42#include <machine/pte.h>
43#include <uvm/uvm_object.h>
44
45/*
46 * see pte.h for a description of i386 MMU terminology and hardware
47 * interface.
48 *
49 * a pmap describes a processes' 4GB virtual address space.  this
50 * virtual address space can be broken up into 1024 4MB regions which
51 * are described by PDEs in the PDP.  the PDEs are defined as follows:
52 *
53 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
54 * (the following assumes that KERNBASE is 0xf0000000)
55 *
56 * PDE#s	VA range		usage
57 * 0->959	0x0 -> 0xefc00000	user address space, note that the
58 *					max user address is 0xefbfe000
59 *					the final two pages in the last 4MB
60 *					used to be reserved for the UAREA
61 *					but now are no longer used
62 * 959		0xefc00000->		recursive mapping of PDP (used for
63 *			0xf0000000	linear mapping of PTPs)
64 * 960->1023	0xf0000000->		kernel address space (constant
65 *			0xffc00000	across all pmap's/processes)
66 * 1023		0xffc00000->		"alternate" recursive PDP mapping
67 *			<end>		(for other pmaps)
68 *
69 *
70 * note: a recursive PDP mapping provides a way to map all the PTEs for
71 * a 4GB address space into a linear chunk of virtual memory.  in other
72 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
73 * area.  the PTE for page 1 is the second int.  the very last int in the
74 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
75 * address).
76 *
77 * all pmap's PD's must have the same values in slots 960->1023 so that
78 * the kernel is always mapped in every process.  these values are loaded
79 * into the PD at pmap creation time.
80 *
81 * at any one time only one pmap can be active on a processor.  this is
82 * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
83 * will have all its PTEs mapped into memory at the recursive mapping
84 * point (slot #959 as show above).  when the pmap code wants to find the
85 * PTE for a virtual address, all it has to do is the following:
86 *
87 * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
88 *                = 0xefc00000 + (VA / 4096) * 4
89 *
90 * what happens if the pmap layer is asked to perform an operation
91 * on a pmap that is not the one which is currently active?  in that
92 * case we take the PA of the PDP of non-active pmap and put it in
93 * slot 1023 of the active pmap.  this causes the non-active pmap's
94 * PTEs to get mapped in the final 4MB of the 4GB address space
95 * (e.g. starting at 0xffc00000).
96 *
97 * the following figure shows the effects of the recursive PDP mapping:
98 *
99 *   PDP (%cr3)
100 *   +----+
101 *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
102 *   |    |
103 *   |    |
104 *   | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
105 *   | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
106 *   |    |
107 *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
108 *   +----+
109 *
110 * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
111 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
112 *
113 * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
114 * PTP:
115 *
116 * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
117 *   +----+
118 *   |   0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
119 *   |    |
120 *   |    |
121 *   | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
122 *   | 960| -> maps contents of first kernel PTP
123 *   |    |
124 *   |1023|
125 *   +----+
126 *
127 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
128 * defined as "PDP_BASE".... within that mapping there are two
129 * defines:
130 *   "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
131 *      which points back to itself.
132 *   "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
133 *      establishes the recursive mapping of the alternate pmap.
134 *      to set the alternate PDP, one just has to put the correct
135 *	PA info in *APDP_PDE.
136 *
137 * note that in the APTE_BASE space, the APDP appears at VA
138 * "APDP_BASE" (0xfffff000).
139 */
140
141/*
142 * the following defines identify the slots used as described above.
143 */
144
145#define PDSLOT_PTE	((u_int)0x33f)	/* PTDPTDI for recursive PDP map */
146#define PDSLOT_KERN	((u_int)0x340)	/* KPTDI start of kernel space */
147#define PDSLOT_APTE	((u_int)0x37f)	/* alternative recursive slot */
148
149/*
150 * the following defines give the virtual addresses of various MMU
151 * data structures:
152 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
153 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
154 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
155 */
156
157#define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
158#define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
159#define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
160#define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
161#define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
162#define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
163
164/*
165 * XXXCDC: tmp xlate from old names:
166 * PTDPTDI -> PDSLOT_PTE
167 * KPTDI -> PDSLOT_KERN
168 * APTDPTDI -> PDSLOT_APTE
169 */
170
171/*
172 * the follow define determines how many PTPs should be set up for the
173 * kernel by locore.s at boot time.  this should be large enough to
174 * get the VM system running.  once the VM system is running, the
175 * pmap module can add more PTPs to the kernel area on demand.
176 */
177
178#ifndef NKPTP
179#define NKPTP		8	/* 32MB to start */
180#endif
181#define NKPTP_MIN	8	/* smallest value we allow */
182#define NKPTP_MAX	63	/* (1024 - (0xd0000000/NBPD) - 1) */
183				/* largest value (-1 for APTP space) */
184
185/*
186 * various address macros
187 *
188 *  vtopte: return a pointer to the PTE mapping a VA
189 *  kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
190 *  ptetov: given a pointer to a PTE, return the VA that it maps
191 *  vtophys: translate a VA to the PA mapped to it
192 *
193 * plus alternative versions of the above
194 */
195
196#define vtopte(VA)	(PTE_BASE + sh3_btop(VA))
197#define kvtopte(VA)	vtopte(VA)
198#define ptetov(PT)	(sh3_ptob(PT - PTE_BASE))
199#define avtopte(VA)	(APTE_BASE + sh3_btop(VA))
200#define ptetoav(PT)	(sh3_ptob(PT - APTE_BASE))
201#define avtophys(VA)	((*avtopte(VA) & PG_FRAME) | \
202			 ((unsigned)(VA) & ~PG_FRAME))
203
204/*
205 * pdei/ptei: generate index into PDP/PTP from a VA
206 */
207#define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
208#define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
209
210/*
211 * PTP macros:
212 *   a PTP's index is the PD index of the PDE that points to it
213 *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
214 *   a PTP's VA is the first VA mapped by that PTP
215 *
216 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
217 *           NBPD == number of bytes a PTP can map (4MB)
218 */
219
220#define ptp_i2o(I)	((I) * NBPG)	/* index => offset */
221#define ptp_o2i(O)	((O) / NBPG)	/* offset => index */
222#define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
223#define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
224
225/*
226 * PG_AVAIL usage: we make use of the ignored bits of the PTE
227 */
228
229#define PG_PVLIST	PG_AVAIL1	/* mapping has entry on pvlist */
230
231#ifdef _KERNEL
232/*
233 * pmap data structures: see pmap.c for details of locking.
234 */
235
236struct pmap;
237typedef struct pmap *pmap_t;
238
239/*
240 * we maintain a list of all non-kernel pmaps
241 */
242
243LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
244
245/*
246 * the pmap structure
247 *
248 * note that the pm_obj contains the simple_lock, the reference count,
249 * page list, and number of PTPs within the pmap.
250 */
251
252struct pmap {
253	struct uvm_object pm_obj;	/* object (lck by object lock) */
254#define	pm_lock	pm_obj.vmobjlock
255	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
256	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
257	u_int32_t pm_pdirpa;		/* PA of PD (read-only after create) */
258	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
259	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
260
261	int pm_flags;			/* see below */
262};
263
264/* pm_flags */
265#define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
266
267/*
268 * for each managed physical page we maintain a list of <PMAP,VA>'s
269 * which it is mapped at.  the list is headed by a pv_head structure.
270 * there is one pv_head per managed phys page (allocated at boot time).
271 * the pv_head structure points to a list of pv_entry structures (each
272 * describes one mapping).
273 */
274
275struct pv_entry;
276
277struct pv_head {
278	simple_lock_data_t pvh_lock;	/* locks every pv on this list */
279	struct pv_entry *pvh_list;	/* head of list (locked by pvh_lock) */
280};
281
282/* These are kept in the vm_physseg array. */
283#define	PGA_REFERENCED	0x01		/* page is referenced */
284#define	PGA_MODIFIED	0x02		/* page is modified */
285
286struct pv_entry {			/* locked by its list's pvh_lock */
287	struct pv_entry *pv_next;	/* next entry */
288	struct pmap *pv_pmap;		/* the pmap */
289	vaddr_t pv_va;			/* the virtual address */
290	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
291};
292
293/*
294 * pv_entrys are dynamically allocated in chunks from a single page.
295 * we keep track of how many pv_entrys are in use for each page and
296 * we can free pv_entry pages if needed.  there is one lock for the
297 * entire allocation system.
298 */
299
300struct pv_page_info {
301	TAILQ_ENTRY(pv_page) pvpi_list;
302	struct pv_entry *pvpi_pvfree;
303	int pvpi_nfree;
304};
305
306/*
307 * number of pv_entry's in a pv_page
308 * (note: won't work on systems where NPBG isn't a constant)
309 */
310
311#define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
312			sizeof(struct pv_entry))
313
314/*
315 * a pv_page: where pv_entrys are allocated from
316 */
317
318struct pv_page {
319	struct pv_page_info pvinfo;
320	struct pv_entry pvents[PVE_PER_PVPAGE];
321};
322
323/*
324 * pmap_remove_record: a record of VAs that have been unmapped, used to
325 * flush TLB.  if we have more than PMAP_RR_MAX then we stop recording.
326 */
327
328#define PMAP_RR_MAX	16	/* max of 16 pages (64K) */
329
330struct pmap_remove_record {
331	int prr_npages;
332	vaddr_t prr_vas[PMAP_RR_MAX];
333};
334
335/*
336 * pmap_transfer_location: used to pass the current location in the
337 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
338 * a pmap_copy].
339 */
340
341struct pmap_transfer_location {
342	vaddr_t addr;			/* the address (page-aligned) */
343	pt_entry_t *pte;		/* the PTE that maps address */
344	struct vm_page *ptp;		/* the PTP that the PTE lives in */
345};
346
347/*
348 * global kernel variables
349 */
350
351/* PTDpaddr: is the physical address of the kernel's PDP */
352extern u_long PTDpaddr;
353
354extern struct pmap kernel_pmap_store;	/* kernel pmap */
355extern int nkpde;			/* current # of PDEs for kernel */
356extern int pmap_pg_g;			/* do we support PG_G? */
357
358/*
359 * macros
360 */
361
362/* XXX XXX XXX */
363#ifdef SH4
364#define	TLBFLUSH()			(cacheflush(), tlbflush())
365#else
366#define	TLBFLUSH()			tlbflush()
367#endif
368
369#define	pmap_kernel()			(&kernel_pmap_store)
370#define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
371#define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
372#define	pmap_update(pmap)		/* nothing (yet) */
373
374#define	pmap_is_referenced(pg)		pmap_test_attrs(pg, PGA_REFERENCED)
375#define	pmap_is_modified(pg)		pmap_test_attrs(pg, PGA_MODIFIED)
376
377#define pmap_copy(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, FALSE)
378#define pmap_move(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, TRUE)
379#define pmap_phys_address(ppn)		sh3_ptob(ppn)
380#define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
381
382
383/*
384 * prototypes
385 */
386
387void		pmap_activate __P((struct proc *));
388void		pmap_bootstrap __P((vaddr_t));
389boolean_t	pmap_change_attrs __P((struct vm_page *, int, int));
390void		pmap_deactivate __P((struct proc *));
391void		pmap_page_remove  __P((struct vm_page *));
392static void	pmap_protect __P((struct pmap *, vaddr_t,
393				vaddr_t, vm_prot_t));
394void		pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
395boolean_t	pmap_test_attrs __P((struct vm_page *, int));
396void		pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
397				   vsize_t, vaddr_t, boolean_t));
398static void	pmap_update_pg __P((vaddr_t));
399static void	pmap_update_2pg __P((vaddr_t,vaddr_t));
400void		pmap_write_protect __P((struct pmap *, vaddr_t,
401				vaddr_t, vm_prot_t));
402
403vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
404
405#define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
406
407/*
408 * Alternate mapping hooks for pool pages.  Avoids thrashing the TLB.
409 */
410/*
411 * XXX Indeed, first, we should refine physical address v.s. virtual
412 *	address mapping.
413 * See
414 *	uvm_km.c:uvm_km_free_poolpage1,
415 *	vm_page.h:PHYS_TO_VM_PAGE, vm_physseg_find
416 *	machdep.c:pmap_bootstrap (uvm_page_physload, etc)
417 */
418#if 0
419/* broken */
420#define PMAP_MAP_POOLPAGE(pa)	SH3_PHYS_TO_P1SEG((pa))
421#define PMAP_UNMAP_POOLPAGE(va)	SH3_P1SEG_TO_PHYS((va))
422#else
423#define PMAP_MAP_POOLPAGE(pa)	(pa)
424#define PMAP_UNMAP_POOLPAGE(va)	(va)
425#endif
426
427/*
428 * inline functions
429 */
430
431/*
432 * pmap_update_pg: flush one page from the TLB
433 */
434
435__inline static void
436pmap_update_pg(va)
437	vaddr_t va;
438{
439#ifdef SH4
440#if 1
441	tlbflush();
442	cacheflush();
443#else
444	u_int32_t *addr, data;
445
446	addr = (void *)(0xf6000080 | (va & 0x00003f00)); /* 13-8 */
447	data =         (0x00000000 | (va & 0xfffff000)); /* 31-17, 11-10 */
448	*addr = data;
449#endif
450#else
451	u_int32_t *addr, data;
452
453	addr = (void *)(0xf2000080 | (va & 0x0001f000)); /* 16-12 */
454	data =         (0x00000000 | (va & 0xfffe0c00)); /* 31-17, 11-10 */
455
456	*addr = data;
457#endif
458}
459
460/*
461 * pmap_update_2pg: flush two pages from the TLB
462 */
463
464__inline static void
465pmap_update_2pg(va, vb)
466	vaddr_t va, vb;
467{
468#ifdef SH4
469	tlbflush();
470	cacheflush();
471#else
472	pmap_update_pg(va);
473	pmap_update_pg(vb);
474#endif
475}
476
477/*
478 * pmap_protect: change the protection of pages in a pmap
479 *
480 * => this function is a frontend for pmap_remove/pmap_write_protect
481 * => we only have to worry about making the page more protected.
482 *	unprotecting a page is done on-demand at fault time.
483 */
484
485__inline static void
486pmap_protect(pmap, sva, eva, prot)
487	struct pmap *pmap;
488	vaddr_t sva, eva;
489	vm_prot_t prot;
490{
491	if ((prot & VM_PROT_WRITE) == 0) {
492		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
493			pmap_write_protect(pmap, sva, eva, prot);
494		} else {
495			pmap_remove(pmap, sva, eva);
496		}
497	}
498}
499
500vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
501paddr_t vtophys __P((vaddr_t));
502void pmap_emulate_reference __P((struct proc *, vaddr_t, int, int));
503
504/* XXX */
505#define PG_U 0		/* referenced bit */
506
507#endif /* _KERNEL */
508#endif /* _SH3_PMAP_H_ */
509