if_sq.c revision 1.55
1/*	$NetBSD: if_sq.c,v 1.55 2022/09/18 13:23:53 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 *    derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.55 2022/09/18 13:23:53 thorpej Exp $");
37
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/device.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50
51#include <uvm/uvm_extern.h>
52
53#include <machine/endian.h>
54
55#include <net/if.h>
56#include <net/if_dl.h>
57#include <net/if_media.h>
58#include <net/if_ether.h>
59
60#include <net/bpf.h>
61
62#include <sys/bus.h>
63#include <machine/intr.h>
64#include <machine/sysconf.h>
65
66#include <dev/ic/seeq8003reg.h>
67
68#include <sgimips/hpc/sqvar.h>
69#include <sgimips/hpc/hpcvar.h>
70#include <sgimips/hpc/hpcreg.h>
71
72#include <dev/arcbios/arcbios.h>
73#include <dev/arcbios/arcbiosvar.h>
74
75#define static
76
77/*
78 * Short TODO list:
79 *	(1) Do counters for bad-RX packets.
80 *	(2) Allow multi-segment transmits, instead of copying to a single,
81 *	    contiguous mbuf.
82 *	(3) Verify sq_stop() turns off enough stuff; I was still getting
83 *	    seeq interrupts after sq_stop().
84 *	(4) Implement EDLC modes: especially packet auto-pad and simplex
85 *	    mode.
86 *	(5) Should the driver filter out its own transmissions in non-EDLC
87 *	    mode?
88 *	(6) Multicast support -- multicast filter, address management, ...
89 *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
90 *	    to figure out if RB0 is read-only as stated in one spot in the
91 *	    HPC spec or read-write (ie, is the 'write a one to clear it')
92 *	    the correct thing?
93 */
94
95#if defined(SQ_DEBUG)
96 int sq_debug = 0;
97 #define SQ_DPRINTF(x) if (sq_debug) printf x
98#else
99 #define SQ_DPRINTF(x)
100#endif
101
102static int	sq_match(device_t, cfdata_t, void *);
103static void	sq_attach(device_t, device_t, void *);
104static int	sq_init(struct ifnet *);
105static void	sq_start(struct ifnet *);
106static void	sq_stop(struct ifnet *, int);
107static void	sq_watchdog(struct ifnet *);
108static int	sq_ioctl(struct ifnet *, u_long, void *);
109
110static void	sq_set_filter(struct sq_softc *);
111static int	sq_intr(void *);
112static int	sq_rxintr(struct sq_softc *);
113static int	sq_txintr(struct sq_softc *);
114static void	sq_txring_hpc1(struct sq_softc *);
115static void	sq_txring_hpc3(struct sq_softc *);
116static void	sq_reset(struct sq_softc *);
117static int	sq_add_rxbuf(struct sq_softc *, int);
118static void	sq_dump_buffer(paddr_t, psize_t);
119static void	sq_trace_dump(struct sq_softc *);
120
121CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
122    sq_match, sq_attach, NULL, NULL);
123
124#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
125
126#define sq_seeq_read(sc, off) \
127	bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
128#define sq_seeq_write(sc, off, val) \
129	bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
130
131#define sq_hpc_read(sc, off) \
132	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
133#define sq_hpc_write(sc, off, val) \
134	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
135
136/* MAC address offset for non-onboard implementations */
137#define SQ_HPC_EEPROM_ENADDR	250
138
139#define SGI_OUI_0		0x08
140#define SGI_OUI_1		0x00
141#define SGI_OUI_2		0x69
142
143static int
144sq_match(device_t parent, cfdata_t cf, void *aux)
145{
146	struct hpc_attach_args *ha = aux;
147
148	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
149		vaddr_t reset, txstat;
150
151		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
152		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
153		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
155
156		if (platform.badaddr((void *)reset, sizeof(reset)))
157			return 0;
158
159		*(volatile uint32_t *)reset = 0x1;
160		delay(20);
161		*(volatile uint32_t *)reset = 0x0;
162
163		if (platform.badaddr((void *)txstat, sizeof(txstat)))
164			return 0;
165
166		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
167			return 1;
168	}
169
170	return 0;
171}
172
173static void
174sq_attach(device_t parent, device_t self, void *aux)
175{
176	int i, err;
177	const char* macaddr;
178	struct sq_softc *sc = device_private(self);
179	struct hpc_attach_args *haa = aux;
180	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
181
182	sc->sc_dev = self;
183	sc->sc_hpct = haa->ha_st;
184	sc->hpc_regs = haa->hpc_regs;	   /* HPC register definitions */
185
186	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
187	    haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
188	    &sc->sc_hpch)) != 0) {
189		printf(": unable to map HPC DMA registers, error = %d\n", err);
190		goto fail_0;
191	}
192
193	sc->sc_regt = haa->ha_st;
194	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
195	    haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
196	    &sc->sc_regh)) != 0) {
197		printf(": unable to map Seeq registers, error = %d\n", err);
198		goto fail_0;
199	}
200
201	sc->sc_dmat = haa->ha_dmat;
202
203	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
204	    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
205	    BUS_DMA_NOWAIT)) != 0) {
206		printf(": unable to allocate control data, error = %d\n", err);
207		goto fail_0;
208	}
209
210	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
211	    sizeof(struct sq_control), (void **)&sc->sc_control,
212	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
213		printf(": unable to map control data, error = %d\n", err);
214		goto fail_1;
215	}
216
217	if ((err = bus_dmamap_create(sc->sc_dmat,
218	    sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
219	    BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
220		printf(": unable to create DMA map for control data, error "
221		    "= %d\n", err);
222		goto fail_2;
223	}
224
225	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
226	    sc->sc_control, sizeof(struct sq_control), NULL,
227	    BUS_DMA_NOWAIT)) != 0) {
228		printf(": unable to load DMA map for control data, error "
229		    "= %d\n", err);
230		goto fail_3;
231	}
232
233	memset(sc->sc_control, 0, sizeof(struct sq_control));
234
235	/* Create transmit buffer DMA maps */
236	for (i = 0; i < SQ_NTXDESC; i++) {
237		if ((err = bus_dmamap_create(sc->sc_dmat,
238		    MCLBYTES, 1, MCLBYTES, 0,
239		    BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
240			printf(": unable to create tx DMA map %d, error = %d\n",
241			    i, err);
242			goto fail_4;
243		}
244	}
245
246	/* Create receive buffer DMA maps */
247	for (i = 0; i < SQ_NRXDESC; i++) {
248		if ((err = bus_dmamap_create(sc->sc_dmat,
249		    MCLBYTES, 1, MCLBYTES, 0,
250		    BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
251			printf(": unable to create rx DMA map %d, error = %d\n",
252			    i, err);
253			goto fail_5;
254		}
255	}
256
257	/* Pre-allocate the receive buffers.  */
258	for (i = 0; i < SQ_NRXDESC; i++) {
259		if ((err = sq_add_rxbuf(sc, i)) != 0) {
260			printf(": unable to allocate or map rx buffer %d\n,"
261			    " error = %d\n", i, err);
262			goto fail_6;
263		}
264	}
265
266	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
267	    ETHER_ADDR_LEN);
268
269	/*
270	 * If our mac address is bogus, obtain it from ARCBIOS. This will
271	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
272	 * but rather the DS1386 RTC's battery-backed ram is used.
273	 */
274	if (sc->sc_enaddr[0] != SGI_OUI_0 ||
275	    sc->sc_enaddr[1] != SGI_OUI_1 ||
276	    sc->sc_enaddr[2] != SGI_OUI_2) {
277		macaddr = arcbios_GetEnvironmentVariable("eaddr");
278		if (macaddr == NULL) {
279			printf(": unable to get MAC address!\n");
280			goto fail_6;
281		}
282		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
283	}
284
285	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
286	    device_xname(self), "intr");
287
288	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
289		printf(": unable to establish interrupt!\n");
290		goto fail_6;
291	}
292
293	/* Reset the chip to a known state. */
294	sq_reset(sc);
295
296	/*
297	 * Determine if we're an 8003 or 80c03 by setting the first
298	 * MAC address register to non-zero, and then reading it back.
299	 * If it's zero, we have an 80c03, because we will have read
300	 * the TxCollLSB register.
301	 */
302	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
303	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
304		sc->sc_type = SQ_TYPE_80C03;
305	else
306		sc->sc_type = SQ_TYPE_8003;
307	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
308
309	printf(": SGI Seeq %s\n",
310	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
311
312	printf("%s: Ethernet address %s\n",
313	    device_xname(self), ether_sprintf(sc->sc_enaddr));
314
315	strcpy(ifp->if_xname, device_xname(self));
316	ifp->if_softc = sc;
317	ifp->if_mtu = ETHERMTU;
318	ifp->if_init = sq_init;
319	ifp->if_stop = sq_stop;
320	ifp->if_start = sq_start;
321	ifp->if_ioctl = sq_ioctl;
322	ifp->if_watchdog = sq_watchdog;
323	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
324	IFQ_SET_READY(&ifp->if_snd);
325
326	if_attach(ifp);
327	if_deferred_start_init(ifp, NULL);
328	ether_ifattach(ifp, sc->sc_enaddr);
329
330	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
331	/* Done! */
332	return;
333
334	/*
335	 * Free any resources we've allocated during the failed attach
336	 * attempt.  Do this in reverse order and fall through.
337	 */
338 fail_6:
339	for (i = 0; i < SQ_NRXDESC; i++) {
340		if (sc->sc_rxmbuf[i] != NULL) {
341			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
342			m_freem(sc->sc_rxmbuf[i]);
343		}
344	}
345 fail_5:
346	for (i = 0; i < SQ_NRXDESC; i++) {
347		if (sc->sc_rxmap[i] != NULL)
348			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
349	}
350 fail_4:
351	for (i = 0; i < SQ_NTXDESC; i++) {
352		if (sc->sc_txmap[i] != NULL)
353			bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
354	}
355	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
356 fail_3:
357	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
358 fail_2:
359	bus_dmamem_unmap(sc->sc_dmat,
360	    (void *)sc->sc_control, sizeof(struct sq_control));
361 fail_1:
362	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
363 fail_0:
364	return;
365}
366
367/* Set up data to get the interface up and running. */
368int
369sq_init(struct ifnet *ifp)
370{
371	int i;
372	struct sq_softc *sc = ifp->if_softc;
373
374	/* Cancel any in-progress I/O */
375	sq_stop(ifp, 0);
376
377	sc->sc_nextrx = 0;
378
379	sc->sc_nfreetx = SQ_NTXDESC;
380	sc->sc_nexttx = sc->sc_prevtx = 0;
381
382	SQ_TRACE(SQ_RESET, sc, 0, 0);
383
384	/* Set into 8003 mode, bank 0 to program ethernet address */
385	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
386
387	/* Now write the address */
388	for (i = 0; i < ETHER_ADDR_LEN; i++)
389		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
390
391	sc->sc_rxcmd =
392	    RXCMD_IE_CRC |
393	    RXCMD_IE_DRIB |
394	    RXCMD_IE_SHORT |
395	    RXCMD_IE_END |
396	    RXCMD_IE_GOOD;
397
398	/*
399	 * Set the receive filter -- this will add some bits to the
400	 * prototype RXCMD register.  Do this before setting the
401	 * transmit config register, since we might need to switch
402	 * banks.
403	 */
404	sq_set_filter(sc);
405
406	/* Set up Seeq transmit command register */
407	sq_seeq_write(sc, SEEQ_TXCMD,
408	    TXCMD_IE_UFLOW |
409	    TXCMD_IE_COLL |
410	    TXCMD_IE_16COLL |
411	    TXCMD_IE_GOOD);
412
413	/* Now write the receive command register. */
414	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
415
416	/*
417	 * Set up HPC ethernet PIO and DMA configurations.
418	 *
419	 * The PROM appears to do most of this for the onboard HPC3, but
420	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
421	 * chip is configured and assume that it's correct for both.
422	 */
423	if (sc->hpc_regs->revision == 3) {
424		uint32_t dmareg, pioreg;
425
426		pioreg =
427		    HPC3_ENETR_PIOCFG_P1(1) |
428		    HPC3_ENETR_PIOCFG_P2(6) |
429		    HPC3_ENETR_PIOCFG_P3(1);
430
431		dmareg =
432		    HPC3_ENETR_DMACFG_D1(6) |
433		    HPC3_ENETR_DMACFG_D2(2) |
434		    HPC3_ENETR_DMACFG_D3(0) |
435		    HPC3_ENETR_DMACFG_FIX_RXDC |
436		    HPC3_ENETR_DMACFG_FIX_INTR |
437		    HPC3_ENETR_DMACFG_FIX_EOP |
438		    HPC3_ENETR_DMACFG_TIMEOUT;
439
440		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
441		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
442	}
443
444	/* Pass the start of the receive ring to the HPC */
445	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
446
447	/* And turn on the HPC ethernet receive channel */
448	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
449	    sc->hpc_regs->enetr_ctl_active);
450
451	/*
452	 * Turn off delayed receive interrupts on HPC1.
453	 * (see Hollywood HPC Specification 2.1.4.3)
454	 */
455	if (sc->hpc_regs->revision != 3)
456		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
457
458	ifp->if_flags |= IFF_RUNNING;
459
460	return 0;
461}
462
463static void
464sq_set_filter(struct sq_softc *sc)
465{
466	struct ethercom *ec = &sc->sc_ethercom;
467	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468	struct ether_multi *enm;
469	struct ether_multistep step;
470
471	/*
472	 * Check for promiscuous mode.  Also implies
473	 * all-multicast.
474	 */
475	if (ifp->if_flags & IFF_PROMISC) {
476		sc->sc_rxcmd |= RXCMD_REC_ALL;
477		ifp->if_flags |= IFF_ALLMULTI;
478		return;
479	}
480
481	/*
482	 * The 8003 has no hash table.  If we have any multicast
483	 * addresses on the list, enable reception of all multicast
484	 * frames.
485	 *
486	 * XXX The 80c03 has a hash table.  We should use it.
487	 */
488
489	ETHER_FIRST_MULTI(step, ec, enm);
490
491	if (enm == NULL) {
492		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
493		sc->sc_rxcmd |= RXCMD_REC_BROAD;
494
495		ifp->if_flags &= ~IFF_ALLMULTI;
496		return;
497	}
498
499	sc->sc_rxcmd |= RXCMD_REC_MULTI;
500	ifp->if_flags |= IFF_ALLMULTI;
501}
502
503int
504sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
505{
506	int s, error = 0;
507
508	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
509
510	s = splnet();
511
512	error = ether_ioctl(ifp, cmd, data);
513	if (error == ENETRESET) {
514		/*
515		 * Multicast list has changed; set the hardware filter
516		 * accordingly.
517		 */
518		if (ifp->if_flags & IFF_RUNNING)
519			error = sq_init(ifp);
520		else
521			error = 0;
522	}
523
524	splx(s);
525	return error;
526}
527
528void
529sq_start(struct ifnet *ifp)
530{
531	struct sq_softc *sc = ifp->if_softc;
532	uint32_t status;
533	struct mbuf *m0, *m;
534	bus_dmamap_t dmamap;
535	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
536
537	if ((ifp->if_flags & IFF_RUNNING) == 0)
538		return;
539
540	/*
541	 * Remember the previous number of free descriptors and
542	 * the first descriptor we'll use.
543	 */
544	ofree = sc->sc_nfreetx;
545	firsttx = sc->sc_nexttx;
546
547	/*
548	 * Loop through the send queue, setting up transmit descriptors
549	 * until we drain the queue, or use up all available transmit
550	 * descriptors.
551	 */
552	while (sc->sc_nfreetx != 0) {
553		/*
554		 * Grab a packet off the queue.
555		 */
556		IFQ_POLL(&ifp->if_snd, m0);
557		if (m0 == NULL)
558			break;
559		m = NULL;
560
561		dmamap = sc->sc_txmap[sc->sc_nexttx];
562
563		/*
564		 * Load the DMA map.  If this fails, the packet either
565		 * didn't fit in the alloted number of segments, or we were
566		 * short on resources.  In this case, we'll copy and try
567		 * again.
568		 * Also copy it if we need to pad, so that we are sure there
569		 * is room for the pad buffer.
570		 * XXX the right way of doing this is to use a static buffer
571		 * for padding and adding it to the transmit descriptor (see
572		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
573		 * because we can't send packets with more than one fragment.
574		 */
575		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
576		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
577		    BUS_DMA_NOWAIT) != 0) {
578			MGETHDR(m, M_DONTWAIT, MT_DATA);
579			if (m == NULL) {
580				printf("%s: unable to allocate Tx mbuf\n",
581				    device_xname(sc->sc_dev));
582				break;
583			}
584			if (m0->m_pkthdr.len > MHLEN) {
585				MCLGET(m, M_DONTWAIT);
586				if ((m->m_flags & M_EXT) == 0) {
587					printf("%s: unable to allocate Tx "
588					    "cluster\n",
589					    device_xname(sc->sc_dev));
590					m_freem(m);
591					break;
592				}
593			}
594
595			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
596			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
597				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
598				    ETHER_PAD_LEN - m0->m_pkthdr.len);
599				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
600			} else
601				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
602
603			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
604			    m, BUS_DMA_NOWAIT)) != 0) {
605				printf("%s: unable to load Tx buffer, "
606				    "error = %d\n",
607				    device_xname(sc->sc_dev), err);
608				break;
609			}
610		}
611
612		/*
613		 * Ensure we have enough descriptors free to describe
614		 * the packet.
615		 */
616		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
617			/*
618			 * Not enough free descriptors to transmit this
619			 * packet.  We haven't committed to anything yet,
620			 * so just unload the DMA map, put the packet
621			 * back on the queue, and punt.
622			 *
623			 * XXX We could allocate an mbuf and copy, but
624			 * XXX it is worth it?
625			 */
626			bus_dmamap_unload(sc->sc_dmat, dmamap);
627			if (m != NULL)
628				m_freem(m);
629			break;
630		}
631
632		IFQ_DEQUEUE(&ifp->if_snd, m0);
633		/*
634		 * Pass the packet to any BPF listeners.
635		 */
636		bpf_mtap(ifp, m0, BPF_D_OUT);
637		if (m != NULL) {
638			m_freem(m0);
639			m0 = m;
640		}
641
642		/*
643		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
644		 */
645
646		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
647
648		/* Sync the DMA map. */
649		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
650		    BUS_DMASYNC_PREWRITE);
651
652		/*
653		 * Initialize the transmit descriptors.
654		 */
655		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
656		     seg < dmamap->dm_nsegs;
657		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
658			if (sc->hpc_regs->revision == 3) {
659				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
660				    dmamap->dm_segs[seg].ds_addr;
661				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
662				    dmamap->dm_segs[seg].ds_len;
663			} else {
664				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
665				    dmamap->dm_segs[seg].ds_addr;
666				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
667				    dmamap->dm_segs[seg].ds_len;
668			}
669			sc->sc_txdesc[nexttx].hdd_descptr =
670			    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
671			lasttx = nexttx;
672			totlen += dmamap->dm_segs[seg].ds_len;
673		}
674
675		/* Last descriptor gets end-of-packet */
676		KASSERT(lasttx != -1);
677		if (sc->hpc_regs->revision == 3)
678			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
679			    HPC3_HDD_CTL_EOPACKET;
680		else
681			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
682			    HPC1_HDD_CTL_EOPACKET;
683
684		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
685		    device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
686
687		if (ifp->if_flags & IFF_DEBUG) {
688			printf("     transmit chain:\n");
689			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
690				printf("     descriptor %d:\n", seg);
691				printf("       hdd_bufptr:      0x%08x\n",
692				    (sc->hpc_regs->revision == 3) ?
693				    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
694				    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
695				printf("       hdd_ctl: 0x%08x\n",
696				    (sc->hpc_regs->revision == 3) ?
697				    sc->sc_txdesc[seg].hpc3_hdd_ctl:
698				    sc->sc_txdesc[seg].hpc1_hdd_ctl);
699				printf("       hdd_descptr:      0x%08x\n",
700				    sc->sc_txdesc[seg].hdd_descptr);
701
702				if (seg == lasttx)
703					break;
704			}
705		}
706
707		/* Sync the descriptors we're using. */
708		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
709		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
710
711		/* Store a pointer to the packet so we can free it later */
712		sc->sc_txmbuf[sc->sc_nexttx] = m0;
713
714		/* Advance the tx pointer. */
715		sc->sc_nfreetx -= dmamap->dm_nsegs;
716		sc->sc_nexttx = nexttx;
717	}
718
719	if (sc->sc_nfreetx != ofree) {
720		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
721		    device_xname(sc->sc_dev), lasttx - firsttx + 1,
722		    firsttx, lasttx));
723
724		/*
725		 * Cause a transmit interrupt to happen on the
726		 * last packet we enqueued, mark it as the last
727		 * descriptor.
728		 *
729		 * HPC1_HDD_CTL_INTR will generate an interrupt on
730		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
731		 * addition to HPC3_HDD_CTL_INTR to interrupt.
732		 */
733		KASSERT(lasttx != -1);
734		if (sc->hpc_regs->revision == 3) {
735			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
736			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
737		} else {
738			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
739			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
740			    HPC1_HDD_CTL_EOCHAIN;
741		}
742
743		SQ_CDTXSYNC(sc, lasttx, 1,
744		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
745
746		/*
747		 * There is a potential race condition here if the HPC
748		 * DMA channel is active and we try and either update
749		 * the 'next descriptor' pointer in the HPC PIO space
750		 * or the 'next descriptor' pointer in a previous desc-
751		 * riptor.
752		 *
753		 * To avoid this, if the channel is active, we rely on
754		 * the transmit interrupt routine noticing that there
755		 * are more packets to send and restarting the HPC DMA
756		 * engine, rather than mucking with the DMA state here.
757		 */
758		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
759
760		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
761			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
762
763			/*
764			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
765			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
766			 */
767			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
768			    ~HPC3_HDD_CTL_EOCHAIN;
769
770			if (sc->hpc_regs->revision != 3)
771				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
772				    &= ~HPC1_HDD_CTL_INTR;
773
774			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
775			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
776		} else if (sc->hpc_regs->revision == 3) {
777			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
778
779			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
780			    firsttx));
781
782			/* Kick DMA channel into life */
783			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
784		} else {
785			/*
786			 * In the HPC1 case where transmit DMA is
787			 * inactive, we can either kick off if
788			 * the ring was previously empty, or call
789			 * our transmit interrupt handler to
790			 * figure out if the ring stopped short
791			 * and restart at the right place.
792			 */
793			if (ofree == SQ_NTXDESC) {
794				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
795
796				sq_hpc_write(sc, HPC1_ENETX_NDBP,
797				    SQ_CDTXADDR(sc, firsttx));
798				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
799				    SQ_CDTXADDR(sc, firsttx));
800				sq_hpc_write(sc, HPC1_ENETX_CBP,
801				    SQ_CDTXADDR(sc, firsttx));
802
803				/* Kick DMA channel into life */
804				sq_hpc_write(sc, HPC1_ENETX_CTL,
805				    HPC1_ENETX_CTL_ACTIVE);
806			} else
807				sq_txring_hpc1(sc);
808		}
809
810		/* Set a watchdog timer in case the chip flakes out. */
811		ifp->if_timer = 5;
812	}
813}
814
815void
816sq_stop(struct ifnet *ifp, int disable)
817{
818	int i;
819	struct sq_softc *sc = ifp->if_softc;
820
821	for (i = 0; i < SQ_NTXDESC; i++) {
822		if (sc->sc_txmbuf[i] != NULL) {
823			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
824			m_freem(sc->sc_txmbuf[i]);
825			sc->sc_txmbuf[i] = NULL;
826		}
827	}
828
829	/* Clear Seeq transmit/receive command registers */
830	sq_seeq_write(sc, SEEQ_TXCMD, 0);
831	sq_seeq_write(sc, SEEQ_RXCMD, 0);
832
833	sq_reset(sc);
834
835	ifp->if_flags &= ~IFF_RUNNING;
836	ifp->if_timer = 0;
837}
838
839/* Device timeout/watchdog routine. */
840void
841sq_watchdog(struct ifnet *ifp)
842{
843	uint32_t status;
844	struct sq_softc *sc = ifp->if_softc;
845
846	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
847	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
848	    "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
849	    sc->sc_nexttx, sc->sc_nfreetx, status);
850
851	sq_trace_dump(sc);
852
853	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
854	sc->sq_trace_idx = 0;
855
856	if_statinc(ifp, if_oerrors);
857
858	sq_init(ifp);
859}
860
861static void
862sq_trace_dump(struct sq_softc *sc)
863{
864	int i;
865	const char *act;
866
867	for (i = 0; i < sc->sq_trace_idx; i++) {
868		switch (sc->sq_trace[i].action) {
869		case SQ_RESET:		act = "SQ_RESET";		break;
870		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
871		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
872		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
873		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
874		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
875		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
876		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
877		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
878		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
879		default:		act = "UNKNOWN";
880		}
881
882		printf("%s: [%03d] action %-16s buf %03d free %03d "
883		    "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
884		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
885		    sc->sq_trace[i].status, sc->sq_trace[i].line);
886	}
887}
888
889static int
890sq_intr(void *arg)
891{
892	struct sq_softc *sc = arg;
893	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
894	int handled = 0;
895	uint32_t stat;
896
897	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
898
899	if ((stat & 2) == 0)
900		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
901		    device_xname(sc->sc_dev)));
902	else
903		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
904
905	/*
906	 * If the interface isn't running, the interrupt couldn't
907	 * possibly have come from us.
908	 */
909	if ((ifp->if_flags & IFF_RUNNING) == 0)
910		return 0;
911
912	sc->sq_intrcnt.ev_count++;
913
914	/* Always check for received packets */
915	if (sq_rxintr(sc) != 0)
916		handled++;
917
918	/* Only handle transmit interrupts if we actually sent something */
919	if (sc->sc_nfreetx < SQ_NTXDESC) {
920		sq_txintr(sc);
921		handled++;
922	}
923
924	if (handled)
925		rnd_add_uint32(&sc->rnd_source, stat);
926	return handled;
927}
928
929static int
930sq_rxintr(struct sq_softc *sc)
931{
932	int count = 0;
933	struct mbuf* m;
934	int i, framelen;
935	uint8_t pktstat;
936	uint32_t status;
937	uint32_t ctl_reg;
938	int new_end, orig_end;
939	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
940
941	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
942		SQ_CDRXSYNC(sc, i,
943		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
944
945		/*
946		 * If this is a CPU-owned buffer, we're at the end of the list.
947		 */
948		if (sc->hpc_regs->revision == 3)
949			ctl_reg =
950			    sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
951		else
952			ctl_reg =
953			    sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
954
955		if (ctl_reg) {
956#if defined(SQ_DEBUG)
957			uint32_t reg;
958
959			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
960			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
961			    device_xname(sc->sc_dev), i, reg));
962#endif
963			break;
964		}
965
966		count++;
967
968		m = sc->sc_rxmbuf[i];
969		framelen = m->m_ext.ext_size - 3;
970		if (sc->hpc_regs->revision == 3)
971		    framelen -=
972			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
973		else
974		    framelen -=
975			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
976
977		/* Now sync the actual packet data */
978		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
979		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
980
981		pktstat = *((uint8_t *)m->m_data + framelen + 2);
982
983		if ((pktstat & RXSTAT_GOOD) == 0) {
984			if_statinc(ifp, if_ierrors);
985
986			if (pktstat & RXSTAT_OFLOW)
987				printf("%s: receive FIFO overflow\n",
988				    device_xname(sc->sc_dev));
989
990			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
991			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
992			SQ_INIT_RXDESC(sc, i);
993			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
994			    device_xname(sc->sc_dev), i));
995			continue;
996		}
997
998		if (sq_add_rxbuf(sc, i) != 0) {
999			if_statinc(ifp, if_ierrors);
1000			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1001			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
1002			SQ_INIT_RXDESC(sc, i);
1003			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1004			    "failed\n", device_xname(sc->sc_dev), i));
1005			continue;
1006		}
1007
1008
1009		m->m_data += 2;
1010		m_set_rcvif(m, ifp);
1011		m->m_pkthdr.len = m->m_len = framelen;
1012
1013		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1014		    device_xname(sc->sc_dev), i, framelen));
1015
1016		if_percpuq_enqueue(ifp->if_percpuq, m);
1017	}
1018
1019
1020	/* If anything happened, move ring start/end pointers to new spot */
1021	if (i != sc->sc_nextrx) {
1022		/*
1023		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1024		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1025		 */
1026
1027		new_end = SQ_PREVRX(i);
1028		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1029		SQ_CDRXSYNC(sc, new_end,
1030		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1031
1032		orig_end = SQ_PREVRX(sc->sc_nextrx);
1033		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1034		SQ_CDRXSYNC(sc, orig_end,
1035		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1036
1037		sc->sc_nextrx = i;
1038	}
1039
1040	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1041
1042	/* If receive channel is stopped, restart it... */
1043	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1044		/* Pass the start of the receive ring to the HPC */
1045		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
1046		    SQ_CDRXADDR(sc, sc->sc_nextrx));
1047
1048		/* And turn on the HPC ethernet receive channel */
1049		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1050		    sc->hpc_regs->enetr_ctl_active);
1051	}
1052
1053	return count;
1054}
1055
1056static int
1057sq_txintr(struct sq_softc *sc)
1058{
1059	int shift = 0;
1060	uint32_t status, tmp;
1061	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1062
1063	if (sc->hpc_regs->revision != 3)
1064		shift = 16;
1065
1066	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1067
1068	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1069
1070	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1071	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1072	if ((status & tmp) == 0) {
1073		if (status & TXSTAT_COLL)
1074			if_statinc_ref(nsr, if_collisions);
1075
1076		if (status & TXSTAT_UFLOW) {
1077			printf("%s: transmit underflow\n",
1078			    device_xname(sc->sc_dev));
1079			if_statinc_ref(nsr, if_oerrors);
1080		}
1081
1082		if (status & TXSTAT_16COLL) {
1083			printf("%s: max collisions reached\n",
1084			    device_xname(sc->sc_dev));
1085			if_statinc_ref(nsr, if_oerrors);
1086			if_statadd_ref(nsr, if_collisions, 16);
1087		}
1088	}
1089	IF_STAT_PUTREF(ifp);
1090
1091	/* prevtx now points to next xmit packet not yet finished */
1092	if (sc->hpc_regs->revision == 3)
1093		sq_txring_hpc3(sc);
1094	else
1095		sq_txring_hpc1(sc);
1096
1097	/* If all packets have left the coop, cancel watchdog */
1098	if (sc->sc_nfreetx == SQ_NTXDESC)
1099		ifp->if_timer = 0;
1100
1101	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1102	if_schedule_deferred_start(ifp);
1103
1104	return 1;
1105}
1106
1107/*
1108 * Reclaim used transmit descriptors and restart the transmit DMA
1109 * engine if necessary.
1110 */
1111static void
1112sq_txring_hpc1(struct sq_softc *sc)
1113{
1114	/*
1115	 * HPC1 doesn't tag transmitted descriptors, however,
1116	 * the NDBP register points to the next descriptor that
1117	 * has not yet been processed. If DMA is not in progress,
1118	 * we can safely reclaim all descriptors up to NDBP, and,
1119	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1120	 * is active, we can only safely reclaim up to CBP.
1121	 *
1122	 * For now, we'll only reclaim on inactive DMA and assume
1123	 * that a sufficiently large ring keeps us out of trouble.
1124	 */
1125	uint32_t reclaimto, status;
1126	int reclaimall, i = sc->sc_prevtx;
1127	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1128
1129	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1130	if (status & HPC1_ENETX_CTL_ACTIVE) {
1131		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1132		return;
1133	} else
1134		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1135
1136	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1137		reclaimall = 1;
1138	else
1139		reclaimall = 0;
1140
1141	while (sc->sc_nfreetx < SQ_NTXDESC) {
1142		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1143			break;
1144
1145		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1146		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1147
1148		/* Sync the packet data, unload DMA map, free mbuf */
1149		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1150		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1151		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1152		m_freem(sc->sc_txmbuf[i]);
1153		sc->sc_txmbuf[i] = NULL;
1154
1155		if_statinc(ifp, if_opackets);
1156		sc->sc_nfreetx++;
1157
1158		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1159
1160		i = SQ_NEXTTX(i);
1161	}
1162
1163	if (sc->sc_nfreetx < SQ_NTXDESC) {
1164		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1165
1166		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1167
1168		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1169		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1170
1171		/* Kick DMA channel into life */
1172		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1173
1174		/*
1175		 * Set a watchdog timer in case the chip
1176		 * flakes out.
1177		 */
1178		ifp->if_timer = 5;
1179	}
1180
1181	sc->sc_prevtx = i;
1182}
1183
1184/*
1185 * Reclaim used transmit descriptors and restart the transmit DMA
1186 * engine if necessary.
1187 */
1188static void
1189sq_txring_hpc3(struct sq_softc *sc)
1190{
1191	/*
1192	 * HPC3 tags descriptors with a bit once they've been
1193	 * transmitted. We need only free each XMITDONE'd
1194	 * descriptor, and restart the DMA engine if any
1195	 * descriptors are left over.
1196	 */
1197	int i;
1198	uint32_t status = 0;
1199	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1200
1201	i = sc->sc_prevtx;
1202	while (sc->sc_nfreetx < SQ_NTXDESC) {
1203		/*
1204		 * Check status first so we don't end up with a case of
1205		 * the buffer not being finished while the DMA channel
1206		 * has gone idle.
1207		 */
1208		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1209
1210		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1211		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1212
1213		/* Check for used descriptor and restart DMA chain if needed */
1214		if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
1215		    HPC3_HDD_CTL_XMITDONE) == 0) {
1216			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1217				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1218
1219				sq_hpc_write(sc, HPC3_ENETX_NDBP,
1220				    SQ_CDTXADDR(sc, i));
1221
1222				/* Kick DMA channel into life */
1223				sq_hpc_write(sc, HPC3_ENETX_CTL,
1224				    HPC3_ENETX_CTL_ACTIVE);
1225
1226				/*
1227				 * Set a watchdog timer in case the chip
1228				 * flakes out.
1229				 */
1230				ifp->if_timer = 5;
1231			} else
1232				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1233			break;
1234		}
1235
1236		/* Sync the packet data, unload DMA map, free mbuf */
1237		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1238		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1239		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1240		m_freem(sc->sc_txmbuf[i]);
1241		sc->sc_txmbuf[i] = NULL;
1242
1243		if_statinc(ifp, if_opackets);
1244		sc->sc_nfreetx++;
1245
1246		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1247		i = SQ_NEXTTX(i);
1248	}
1249
1250	sc->sc_prevtx = i;
1251}
1252
1253void
1254sq_reset(struct sq_softc *sc)
1255{
1256
1257	/* Stop HPC dma channels */
1258	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1259	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1260
1261	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1262	delay(20);
1263	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1264}
1265
1266/* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1267int
1268sq_add_rxbuf(struct sq_softc *sc, int idx)
1269{
1270	int err;
1271	struct mbuf *m;
1272
1273	MGETHDR(m, M_DONTWAIT, MT_DATA);
1274	if (m == NULL)
1275		return ENOBUFS;
1276
1277	MCLGET(m, M_DONTWAIT);
1278	if ((m->m_flags & M_EXT) == 0) {
1279		m_freem(m);
1280		return ENOBUFS;
1281	}
1282
1283	if (sc->sc_rxmbuf[idx] != NULL)
1284		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1285
1286	sc->sc_rxmbuf[idx] = m;
1287
1288	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1289	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
1290		printf("%s: can't load rx DMA map %d, error = %d\n",
1291		    device_xname(sc->sc_dev), idx, err);
1292		panic("sq_add_rxbuf");	/* XXX */
1293	}
1294
1295	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
1296	    0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1297
1298	SQ_INIT_RXDESC(sc, idx);
1299
1300	return 0;
1301}
1302
1303void
1304sq_dump_buffer(paddr_t addr, psize_t len)
1305{
1306	u_int i;
1307	uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
1308
1309	if (len == 0)
1310		return;
1311
1312	printf("%p: ", physaddr);
1313
1314	for (i = 0; i < len; i++) {
1315		printf("%02x ", *(physaddr + i) & 0xff);
1316		if ((i % 16) == 15 && i != len - 1)
1317		    printf("\n%p: ", physaddr + i);
1318	}
1319
1320	printf("\n");
1321}
1322