if_sq.c revision 1.51
1/*	$NetBSD: if_sq.c,v 1.51 2019/05/23 10:57:27 msaitoh Exp $	*/
2
3/*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 *    derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.51 2019/05/23 10:57:27 msaitoh Exp $");
37
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/device.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50
51#include <uvm/uvm_extern.h>
52
53#include <machine/endian.h>
54
55#include <net/if.h>
56#include <net/if_dl.h>
57#include <net/if_media.h>
58#include <net/if_ether.h>
59
60#include <net/bpf.h>
61
62#include <sys/bus.h>
63#include <machine/intr.h>
64#include <machine/sysconf.h>
65
66#include <dev/ic/seeq8003reg.h>
67
68#include <sgimips/hpc/sqvar.h>
69#include <sgimips/hpc/hpcvar.h>
70#include <sgimips/hpc/hpcreg.h>
71
72#include <dev/arcbios/arcbios.h>
73#include <dev/arcbios/arcbiosvar.h>
74
75#define static
76
77/*
78 * Short TODO list:
79 *	(1) Do counters for bad-RX packets.
80 *	(2) Allow multi-segment transmits, instead of copying to a single,
81 *	    contiguous mbuf.
82 *	(3) Verify sq_stop() turns off enough stuff; I was still getting
83 *	    seeq interrupts after sq_stop().
84 *	(4) Implement EDLC modes: especially packet auto-pad and simplex
85 *	    mode.
86 *	(5) Should the driver filter out its own transmissions in non-EDLC
87 *	    mode?
88 *	(6) Multicast support -- multicast filter, address management, ...
89 *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
90 *	    to figure out if RB0 is read-only as stated in one spot in the
91 *	    HPC spec or read-write (ie, is the 'write a one to clear it')
92 *	    the correct thing?
93 */
94
95#if defined(SQ_DEBUG)
96 int sq_debug = 0;
97 #define SQ_DPRINTF(x) if (sq_debug) printf x
98#else
99 #define SQ_DPRINTF(x)
100#endif
101
102static int	sq_match(device_t, cfdata_t, void *);
103static void	sq_attach(device_t, device_t, void *);
104static int	sq_init(struct ifnet *);
105static void	sq_start(struct ifnet *);
106static void	sq_stop(struct ifnet *, int);
107static void	sq_watchdog(struct ifnet *);
108static int	sq_ioctl(struct ifnet *, u_long, void *);
109
110static void	sq_set_filter(struct sq_softc *);
111static int	sq_intr(void *);
112static int	sq_rxintr(struct sq_softc *);
113static int	sq_txintr(struct sq_softc *);
114static void	sq_txring_hpc1(struct sq_softc *);
115static void	sq_txring_hpc3(struct sq_softc *);
116static void	sq_reset(struct sq_softc *);
117static int	sq_add_rxbuf(struct sq_softc *, int);
118static void	sq_dump_buffer(paddr_t, psize_t);
119static void	sq_trace_dump(struct sq_softc *);
120
121CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
122    sq_match, sq_attach, NULL, NULL);
123
124#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
125
126#define sq_seeq_read(sc, off) \
127	bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
128#define sq_seeq_write(sc, off, val) \
129	bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
130
131#define sq_hpc_read(sc, off) \
132	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
133#define sq_hpc_write(sc, off, val) \
134	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
135
136/* MAC address offset for non-onboard implementations */
137#define SQ_HPC_EEPROM_ENADDR	250
138
139#define SGI_OUI_0		0x08
140#define SGI_OUI_1		0x00
141#define SGI_OUI_2		0x69
142
143static int
144sq_match(device_t parent, cfdata_t cf, void *aux)
145{
146	struct hpc_attach_args *ha = aux;
147
148	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
149		vaddr_t reset, txstat;
150
151		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
152		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
153		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
155
156		if (platform.badaddr((void *)reset, sizeof(reset)))
157			return 0;
158
159		*(volatile uint32_t *)reset = 0x1;
160		delay(20);
161		*(volatile uint32_t *)reset = 0x0;
162
163		if (platform.badaddr((void *)txstat, sizeof(txstat)))
164			return 0;
165
166		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
167			return 1;
168	}
169
170	return 0;
171}
172
173static void
174sq_attach(device_t parent, device_t self, void *aux)
175{
176	int i, err;
177	const char* macaddr;
178	struct sq_softc *sc = device_private(self);
179	struct hpc_attach_args *haa = aux;
180	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
181
182	sc->sc_dev = self;
183	sc->sc_hpct = haa->ha_st;
184	sc->hpc_regs = haa->hpc_regs;      /* HPC register definitions */
185
186	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
187	    haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
188	    &sc->sc_hpch)) != 0) {
189		printf(": unable to map HPC DMA registers, error = %d\n", err);
190		goto fail_0;
191	}
192
193	sc->sc_regt = haa->ha_st;
194	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
195	    haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
196	    &sc->sc_regh)) != 0) {
197		printf(": unable to map Seeq registers, error = %d\n", err);
198		goto fail_0;
199	}
200
201	sc->sc_dmat = haa->ha_dmat;
202
203	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
204	    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
205	    BUS_DMA_NOWAIT)) != 0) {
206		printf(": unable to allocate control data, error = %d\n", err);
207		goto fail_0;
208	}
209
210	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
211	    sizeof(struct sq_control), (void **)&sc->sc_control,
212	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
213		printf(": unable to map control data, error = %d\n", err);
214		goto fail_1;
215	}
216
217	if ((err = bus_dmamap_create(sc->sc_dmat,
218	    sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
219	    BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
220		printf(": unable to create DMA map for control data, error "
221		    "= %d\n", err);
222		goto fail_2;
223	}
224
225	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
226	    sc->sc_control, sizeof(struct sq_control), NULL,
227	    BUS_DMA_NOWAIT)) != 0) {
228		printf(": unable to load DMA map for control data, error "
229		    "= %d\n", err);
230		goto fail_3;
231	}
232
233	memset(sc->sc_control, 0, sizeof(struct sq_control));
234
235	/* Create transmit buffer DMA maps */
236	for (i = 0; i < SQ_NTXDESC; i++) {
237		if ((err = bus_dmamap_create(sc->sc_dmat,
238		    MCLBYTES, 1, MCLBYTES, 0,
239		    BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
240			printf(": unable to create tx DMA map %d, error = %d\n",
241			    i, err);
242			goto fail_4;
243		}
244	}
245
246	/* Create receive buffer DMA maps */
247	for (i = 0; i < SQ_NRXDESC; i++) {
248		if ((err = bus_dmamap_create(sc->sc_dmat,
249		    MCLBYTES, 1, MCLBYTES, 0,
250		    BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
251			printf(": unable to create rx DMA map %d, error = %d\n",
252			    i, err);
253			goto fail_5;
254		}
255	}
256
257	/* Pre-allocate the receive buffers.  */
258	for (i = 0; i < SQ_NRXDESC; i++) {
259		if ((err = sq_add_rxbuf(sc, i)) != 0) {
260			printf(": unable to allocate or map rx buffer %d\n,"
261			    " error = %d\n", i, err);
262			goto fail_6;
263		}
264	}
265
266	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
267	    ETHER_ADDR_LEN);
268
269	/*
270	 * If our mac address is bogus, obtain it from ARCBIOS. This will
271	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
272	 * but rather the DS1386 RTC's battery-backed ram is used.
273	 */
274	if (sc->sc_enaddr[0] != SGI_OUI_0 ||
275	    sc->sc_enaddr[1] != SGI_OUI_1 ||
276	    sc->sc_enaddr[2] != SGI_OUI_2) {
277		macaddr = arcbios_GetEnvironmentVariable("eaddr");
278		if (macaddr == NULL) {
279			printf(": unable to get MAC address!\n");
280			goto fail_6;
281		}
282		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
283	}
284
285	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
286	    device_xname(self), "intr");
287
288	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
289		printf(": unable to establish interrupt!\n");
290		goto fail_6;
291	}
292
293	/* Reset the chip to a known state. */
294	sq_reset(sc);
295
296	/*
297	 * Determine if we're an 8003 or 80c03 by setting the first
298	 * MAC address register to non-zero, and then reading it back.
299	 * If it's zero, we have an 80c03, because we will have read
300	 * the TxCollLSB register.
301	 */
302	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
303	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
304		sc->sc_type = SQ_TYPE_80C03;
305	else
306		sc->sc_type = SQ_TYPE_8003;
307	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
308
309	printf(": SGI Seeq %s\n",
310	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
311
312	printf("%s: Ethernet address %s\n",
313	    device_xname(self), ether_sprintf(sc->sc_enaddr));
314
315	strcpy(ifp->if_xname, device_xname(self));
316	ifp->if_softc = sc;
317	ifp->if_mtu = ETHERMTU;
318	ifp->if_init = sq_init;
319	ifp->if_stop = sq_stop;
320	ifp->if_start = sq_start;
321	ifp->if_ioctl = sq_ioctl;
322	ifp->if_watchdog = sq_watchdog;
323	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
324	IFQ_SET_READY(&ifp->if_snd);
325
326	if_attach(ifp);
327	if_deferred_start_init(ifp, NULL);
328	ether_ifattach(ifp, sc->sc_enaddr);
329
330	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
331	/* Done! */
332	return;
333
334	/*
335	 * Free any resources we've allocated during the failed attach
336	 * attempt.  Do this in reverse order and fall through.
337	 */
338 fail_6:
339	for (i = 0; i < SQ_NRXDESC; i++) {
340		if (sc->sc_rxmbuf[i] != NULL) {
341			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
342			m_freem(sc->sc_rxmbuf[i]);
343		}
344	}
345 fail_5:
346	for (i = 0; i < SQ_NRXDESC; i++) {
347		if (sc->sc_rxmap[i] != NULL)
348			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
349	}
350 fail_4:
351	for (i = 0; i < SQ_NTXDESC; i++) {
352		if (sc->sc_txmap[i] !=  NULL)
353			bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
354	}
355	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
356 fail_3:
357	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
358 fail_2:
359	bus_dmamem_unmap(sc->sc_dmat,
360	    (void *)sc->sc_control, sizeof(struct sq_control));
361 fail_1:
362	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
363 fail_0:
364	return;
365}
366
367/* Set up data to get the interface up and running. */
368int
369sq_init(struct ifnet *ifp)
370{
371	int i;
372	struct sq_softc *sc = ifp->if_softc;
373
374	/* Cancel any in-progress I/O */
375	sq_stop(ifp, 0);
376
377	sc->sc_nextrx = 0;
378
379	sc->sc_nfreetx = SQ_NTXDESC;
380	sc->sc_nexttx = sc->sc_prevtx = 0;
381
382	SQ_TRACE(SQ_RESET, sc, 0, 0);
383
384	/* Set into 8003 mode, bank 0 to program ethernet address */
385	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
386
387	/* Now write the address */
388	for (i = 0; i < ETHER_ADDR_LEN; i++)
389		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
390
391	sc->sc_rxcmd =
392	    RXCMD_IE_CRC |
393	    RXCMD_IE_DRIB |
394	    RXCMD_IE_SHORT |
395	    RXCMD_IE_END |
396	    RXCMD_IE_GOOD;
397
398	/*
399	 * Set the receive filter -- this will add some bits to the
400	 * prototype RXCMD register.  Do this before setting the
401	 * transmit config register, since we might need to switch
402	 * banks.
403	 */
404	sq_set_filter(sc);
405
406	/* Set up Seeq transmit command register */
407	sq_seeq_write(sc, SEEQ_TXCMD,
408	    TXCMD_IE_UFLOW |
409	    TXCMD_IE_COLL |
410	    TXCMD_IE_16COLL |
411	    TXCMD_IE_GOOD);
412
413	/* Now write the receive command register. */
414	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
415
416	/*
417	 * Set up HPC ethernet PIO and DMA configurations.
418	 *
419	 * The PROM appears to do most of this for the onboard HPC3, but
420	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
421	 * chip is configured and assume that it's correct for both.
422	 */
423	if (sc->hpc_regs->revision == 3) {
424		uint32_t dmareg, pioreg;
425
426		pioreg =
427		    HPC3_ENETR_PIOCFG_P1(1) |
428		    HPC3_ENETR_PIOCFG_P2(6) |
429		    HPC3_ENETR_PIOCFG_P3(1);
430
431		dmareg =
432		    HPC3_ENETR_DMACFG_D1(6) |
433		    HPC3_ENETR_DMACFG_D2(2) |
434		    HPC3_ENETR_DMACFG_D3(0) |
435		    HPC3_ENETR_DMACFG_FIX_RXDC |
436		    HPC3_ENETR_DMACFG_FIX_INTR |
437		    HPC3_ENETR_DMACFG_FIX_EOP |
438		    HPC3_ENETR_DMACFG_TIMEOUT;
439
440		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
441		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
442	}
443
444	/* Pass the start of the receive ring to the HPC */
445	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
446
447	/* And turn on the HPC ethernet receive channel */
448	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
449	    sc->hpc_regs->enetr_ctl_active);
450
451	/*
452	 * Turn off delayed receive interrupts on HPC1.
453	 * (see Hollywood HPC Specification 2.1.4.3)
454	 */
455	if (sc->hpc_regs->revision != 3)
456		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
457
458	ifp->if_flags |= IFF_RUNNING;
459	ifp->if_flags &= ~IFF_OACTIVE;
460
461	return 0;
462}
463
464static void
465sq_set_filter(struct sq_softc *sc)
466{
467	struct ethercom *ec = &sc->sc_ethercom;
468	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
469	struct ether_multi *enm;
470	struct ether_multistep step;
471
472	/*
473	 * Check for promiscuous mode.  Also implies
474	 * all-multicast.
475	 */
476	if (ifp->if_flags & IFF_PROMISC) {
477		sc->sc_rxcmd |= RXCMD_REC_ALL;
478		ifp->if_flags |= IFF_ALLMULTI;
479		return;
480	}
481
482	/*
483	 * The 8003 has no hash table.  If we have any multicast
484	 * addresses on the list, enable reception of all multicast
485	 * frames.
486	 *
487	 * XXX The 80c03 has a hash table.  We should use it.
488	 */
489
490	ETHER_FIRST_MULTI(step, ec, enm);
491
492	if (enm == NULL) {
493		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
494		sc->sc_rxcmd |= RXCMD_REC_BROAD;
495
496		ifp->if_flags &= ~IFF_ALLMULTI;
497		return;
498	}
499
500	sc->sc_rxcmd |= RXCMD_REC_MULTI;
501	ifp->if_flags |= IFF_ALLMULTI;
502}
503
504int
505sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
506{
507	int s, error = 0;
508
509	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
510
511	s = splnet();
512
513	error = ether_ioctl(ifp, cmd, data);
514	if (error == ENETRESET) {
515		/*
516		 * Multicast list has changed; set the hardware filter
517		 * accordingly.
518		 */
519		if (ifp->if_flags & IFF_RUNNING)
520			error = sq_init(ifp);
521		else
522			error = 0;
523	}
524
525	splx(s);
526	return error;
527}
528
529void
530sq_start(struct ifnet *ifp)
531{
532	struct sq_softc *sc = ifp->if_softc;
533	uint32_t status;
534	struct mbuf *m0, *m;
535	bus_dmamap_t dmamap;
536	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
537
538	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
539		return;
540
541	/*
542	 * Remember the previous number of free descriptors and
543	 * the first descriptor we'll use.
544	 */
545	ofree = sc->sc_nfreetx;
546	firsttx = sc->sc_nexttx;
547
548	/*
549	 * Loop through the send queue, setting up transmit descriptors
550	 * until we drain the queue, or use up all available transmit
551	 * descriptors.
552	 */
553	while (sc->sc_nfreetx != 0) {
554		/*
555		 * Grab a packet off the queue.
556		 */
557		IFQ_POLL(&ifp->if_snd, m0);
558		if (m0 == NULL)
559			break;
560		m = NULL;
561
562		dmamap = sc->sc_txmap[sc->sc_nexttx];
563
564		/*
565		 * Load the DMA map.  If this fails, the packet either
566		 * didn't fit in the alloted number of segments, or we were
567		 * short on resources.  In this case, we'll copy and try
568		 * again.
569		 * Also copy it if we need to pad, so that we are sure there
570		 * is room for the pad buffer.
571		 * XXX the right way of doing this is to use a static buffer
572		 * for padding and adding it to the transmit descriptor (see
573		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
574		 * because we can't send packets with more than one fragment.
575		 */
576		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
577		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
578		    BUS_DMA_NOWAIT) != 0) {
579			MGETHDR(m, M_DONTWAIT, MT_DATA);
580			if (m == NULL) {
581				printf("%s: unable to allocate Tx mbuf\n",
582				    device_xname(sc->sc_dev));
583				break;
584			}
585			if (m0->m_pkthdr.len > MHLEN) {
586				MCLGET(m, M_DONTWAIT);
587				if ((m->m_flags & M_EXT) == 0) {
588					printf("%s: unable to allocate Tx "
589					    "cluster\n",
590					    device_xname(sc->sc_dev));
591					m_freem(m);
592					break;
593				}
594			}
595
596			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
597			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
598				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
599				    ETHER_PAD_LEN - m0->m_pkthdr.len);
600				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
601			} else
602				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
603
604			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
605			    m, BUS_DMA_NOWAIT)) != 0) {
606				printf("%s: unable to load Tx buffer, "
607				    "error = %d\n",
608				    device_xname(sc->sc_dev), err);
609				break;
610			}
611		}
612
613		/*
614		 * Ensure we have enough descriptors free to describe
615		 * the packet.
616		 */
617		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
618			/*
619			 * Not enough free descriptors to transmit this
620			 * packet.  We haven't committed to anything yet,
621			 * so just unload the DMA map, put the packet
622			 * back on the queue, and punt.  Notify the upper
623			 * layer that there are no more slots left.
624			 *
625			 * XXX We could allocate an mbuf and copy, but
626			 * XXX it is worth it?
627			 */
628			ifp->if_flags |= IFF_OACTIVE;
629			bus_dmamap_unload(sc->sc_dmat, dmamap);
630			if (m != NULL)
631				m_freem(m);
632			break;
633		}
634
635		IFQ_DEQUEUE(&ifp->if_snd, m0);
636		/*
637		 * Pass the packet to any BPF listeners.
638		 */
639		bpf_mtap(ifp, m0, BPF_D_OUT);
640		if (m != NULL) {
641			m_freem(m0);
642			m0 = m;
643		}
644
645		/*
646		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
647		 */
648
649		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
650
651		/* Sync the DMA map. */
652		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
653		    BUS_DMASYNC_PREWRITE);
654
655		/*
656		 * Initialize the transmit descriptors.
657		 */
658		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
659		     seg < dmamap->dm_nsegs;
660		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
661			if (sc->hpc_regs->revision == 3) {
662				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
663				    dmamap->dm_segs[seg].ds_addr;
664				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
665				    dmamap->dm_segs[seg].ds_len;
666			} else {
667				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
668				    dmamap->dm_segs[seg].ds_addr;
669				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
670				    dmamap->dm_segs[seg].ds_len;
671			}
672			sc->sc_txdesc[nexttx].hdd_descptr =
673			    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
674			lasttx = nexttx;
675			totlen += dmamap->dm_segs[seg].ds_len;
676		}
677
678		/* Last descriptor gets end-of-packet */
679		KASSERT(lasttx != -1);
680		if (sc->hpc_regs->revision == 3)
681			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
682			    HPC3_HDD_CTL_EOPACKET;
683		else
684			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
685			    HPC1_HDD_CTL_EOPACKET;
686
687		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
688		    device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
689
690		if (ifp->if_flags & IFF_DEBUG) {
691			printf("     transmit chain:\n");
692			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
693				printf("     descriptor %d:\n", seg);
694				printf("       hdd_bufptr:      0x%08x\n",
695				    (sc->hpc_regs->revision == 3) ?
696				    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
697				    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
698				printf("       hdd_ctl: 0x%08x\n",
699				    (sc->hpc_regs->revision == 3) ?
700				    sc->sc_txdesc[seg].hpc3_hdd_ctl:
701				    sc->sc_txdesc[seg].hpc1_hdd_ctl);
702				printf("       hdd_descptr:      0x%08x\n",
703				    sc->sc_txdesc[seg].hdd_descptr);
704
705				if (seg == lasttx)
706					break;
707			}
708		}
709
710		/* Sync the descriptors we're using. */
711		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
712		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
713
714		/* Store a pointer to the packet so we can free it later */
715		sc->sc_txmbuf[sc->sc_nexttx] = m0;
716
717		/* Advance the tx pointer. */
718		sc->sc_nfreetx -= dmamap->dm_nsegs;
719		sc->sc_nexttx = nexttx;
720	}
721
722	/* All transmit descriptors used up, let upper layers know */
723	if (sc->sc_nfreetx == 0)
724		ifp->if_flags |= IFF_OACTIVE;
725
726	if (sc->sc_nfreetx != ofree) {
727		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
728		    device_xname(sc->sc_dev), lasttx - firsttx + 1,
729		    firsttx, lasttx));
730
731		/*
732		 * Cause a transmit interrupt to happen on the
733		 * last packet we enqueued, mark it as the last
734		 * descriptor.
735		 *
736		 * HPC1_HDD_CTL_INTR will generate an interrupt on
737		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
738		 * addition to HPC3_HDD_CTL_INTR to interrupt.
739		 */
740		KASSERT(lasttx != -1);
741		if (sc->hpc_regs->revision == 3) {
742			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
743			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
744		} else {
745			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
746			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
747			    HPC1_HDD_CTL_EOCHAIN;
748		}
749
750		SQ_CDTXSYNC(sc, lasttx, 1,
751		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
752
753		/*
754		 * There is a potential race condition here if the HPC
755		 * DMA channel is active and we try and either update
756		 * the 'next descriptor' pointer in the HPC PIO space
757		 * or the 'next descriptor' pointer in a previous desc-
758		 * riptor.
759		 *
760		 * To avoid this, if the channel is active, we rely on
761		 * the transmit interrupt routine noticing that there
762		 * are more packets to send and restarting the HPC DMA
763		 * engine, rather than mucking with the DMA state here.
764		 */
765		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
766
767		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
768			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
769
770			/*
771			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
772			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
773			 */
774			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
775			    ~HPC3_HDD_CTL_EOCHAIN;
776
777			if (sc->hpc_regs->revision != 3)
778				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
779				    &= ~HPC1_HDD_CTL_INTR;
780
781			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
782			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
783		} else if (sc->hpc_regs->revision == 3) {
784			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
785
786			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
787			    firsttx));
788
789			/* Kick DMA channel into life */
790			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
791		} else {
792			/*
793			 * In the HPC1 case where transmit DMA is
794			 * inactive, we can either kick off if
795			 * the ring was previously empty, or call
796			 * our transmit interrupt handler to
797			 * figure out if the ring stopped short
798			 * and restart at the right place.
799			 */
800			if (ofree == SQ_NTXDESC) {
801				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
802
803				sq_hpc_write(sc, HPC1_ENETX_NDBP,
804				    SQ_CDTXADDR(sc, firsttx));
805				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
806				    SQ_CDTXADDR(sc, firsttx));
807				sq_hpc_write(sc, HPC1_ENETX_CBP,
808				    SQ_CDTXADDR(sc, firsttx));
809
810				/* Kick DMA channel into life */
811				sq_hpc_write(sc, HPC1_ENETX_CTL,
812				    HPC1_ENETX_CTL_ACTIVE);
813			} else
814				sq_txring_hpc1(sc);
815		}
816
817		/* Set a watchdog timer in case the chip flakes out. */
818		ifp->if_timer = 5;
819	}
820}
821
822void
823sq_stop(struct ifnet *ifp, int disable)
824{
825	int i;
826	struct sq_softc *sc = ifp->if_softc;
827
828	for (i = 0; i < SQ_NTXDESC; i++) {
829		if (sc->sc_txmbuf[i] != NULL) {
830			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
831			m_freem(sc->sc_txmbuf[i]);
832			sc->sc_txmbuf[i] = NULL;
833		}
834	}
835
836	/* Clear Seeq transmit/receive command registers */
837	sq_seeq_write(sc, SEEQ_TXCMD, 0);
838	sq_seeq_write(sc, SEEQ_RXCMD, 0);
839
840	sq_reset(sc);
841
842	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
843	ifp->if_timer = 0;
844}
845
846/* Device timeout/watchdog routine. */
847void
848sq_watchdog(struct ifnet *ifp)
849{
850	uint32_t status;
851	struct sq_softc *sc = ifp->if_softc;
852
853	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
854	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
855	    "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
856	    sc->sc_nexttx, sc->sc_nfreetx, status);
857
858	sq_trace_dump(sc);
859
860	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
861	sc->sq_trace_idx = 0;
862
863	++ifp->if_oerrors;
864
865	sq_init(ifp);
866}
867
868static void
869sq_trace_dump(struct sq_softc *sc)
870{
871	int i;
872	const char *act;
873
874	for (i = 0; i < sc->sq_trace_idx; i++) {
875		switch (sc->sq_trace[i].action) {
876		case SQ_RESET:		act = "SQ_RESET";		break;
877		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
878		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
879		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
880		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
881		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
882		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
883		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
884		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
885		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
886		default:		act = "UNKNOWN";
887		}
888
889		printf("%s: [%03d] action %-16s buf %03d free %03d "
890		    "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
891		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
892		    sc->sq_trace[i].status, sc->sq_trace[i].line);
893	}
894}
895
896static int
897sq_intr(void *arg)
898{
899	struct sq_softc *sc = arg;
900	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
901	int handled = 0;
902	uint32_t stat;
903
904	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
905
906	if ((stat & 2) == 0)
907		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
908		    device_xname(sc->sc_dev)));
909	else
910		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
911
912	/*
913	 * If the interface isn't running, the interrupt couldn't
914	 * possibly have come from us.
915	 */
916	if ((ifp->if_flags & IFF_RUNNING) == 0)
917		return 0;
918
919	sc->sq_intrcnt.ev_count++;
920
921	/* Always check for received packets */
922	if (sq_rxintr(sc) != 0)
923		handled++;
924
925	/* Only handle transmit interrupts if we actually sent something */
926	if (sc->sc_nfreetx < SQ_NTXDESC) {
927		sq_txintr(sc);
928		handled++;
929	}
930
931	if (handled)
932		rnd_add_uint32(&sc->rnd_source, stat);
933	return handled;
934}
935
936static int
937sq_rxintr(struct sq_softc *sc)
938{
939	int count = 0;
940	struct mbuf* m;
941	int i, framelen;
942	uint8_t pktstat;
943	uint32_t status;
944	uint32_t ctl_reg;
945	int new_end, orig_end;
946	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
947
948	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
949		SQ_CDRXSYNC(sc, i,
950		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
951
952		/*
953		 * If this is a CPU-owned buffer, we're at the end of the list.
954		 */
955		if (sc->hpc_regs->revision == 3)
956			ctl_reg =
957			    sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
958		else
959			ctl_reg =
960			    sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
961
962		if (ctl_reg) {
963#if defined(SQ_DEBUG)
964			uint32_t reg;
965
966			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
967			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
968			    device_xname(sc->sc_dev), i, reg));
969#endif
970			break;
971		}
972
973		count++;
974
975		m = sc->sc_rxmbuf[i];
976		framelen = m->m_ext.ext_size - 3;
977		if (sc->hpc_regs->revision == 3)
978		    framelen -=
979			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
980		else
981		    framelen -=
982			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
983
984		/* Now sync the actual packet data */
985		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
986		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
987
988		pktstat = *((uint8_t *)m->m_data + framelen + 2);
989
990		if ((pktstat & RXSTAT_GOOD) == 0) {
991			ifp->if_ierrors++;
992
993			if (pktstat & RXSTAT_OFLOW)
994				printf("%s: receive FIFO overflow\n",
995				    device_xname(sc->sc_dev));
996
997			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
998			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
999			SQ_INIT_RXDESC(sc, i);
1000			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
1001			    device_xname(sc->sc_dev), i));
1002			continue;
1003		}
1004
1005		if (sq_add_rxbuf(sc, i) != 0) {
1006			ifp->if_ierrors++;
1007			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1008			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
1009			SQ_INIT_RXDESC(sc, i);
1010			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1011			    "failed\n", device_xname(sc->sc_dev), i));
1012			continue;
1013		}
1014
1015
1016		m->m_data += 2;
1017		m_set_rcvif(m, ifp);
1018		m->m_pkthdr.len = m->m_len = framelen;
1019
1020		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1021		    device_xname(sc->sc_dev), i, framelen));
1022
1023		if_percpuq_enqueue(ifp->if_percpuq, m);
1024	}
1025
1026
1027	/* If anything happened, move ring start/end pointers to new spot */
1028	if (i != sc->sc_nextrx) {
1029		/*
1030		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1031		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1032		 */
1033
1034		new_end = SQ_PREVRX(i);
1035		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1036		SQ_CDRXSYNC(sc, new_end,
1037		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1038
1039		orig_end = SQ_PREVRX(sc->sc_nextrx);
1040		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1041		SQ_CDRXSYNC(sc, orig_end,
1042		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1043
1044		sc->sc_nextrx = i;
1045	}
1046
1047	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1048
1049	/* If receive channel is stopped, restart it... */
1050	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1051		/* Pass the start of the receive ring to the HPC */
1052		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
1053		    SQ_CDRXADDR(sc, sc->sc_nextrx));
1054
1055		/* And turn on the HPC ethernet receive channel */
1056		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1057		    sc->hpc_regs->enetr_ctl_active);
1058	}
1059
1060	return count;
1061}
1062
1063static int
1064sq_txintr(struct sq_softc *sc)
1065{
1066	int shift = 0;
1067	uint32_t status, tmp;
1068	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1069
1070	if (sc->hpc_regs->revision != 3)
1071		shift = 16;
1072
1073	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1074
1075	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1076
1077	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1078	if ((status & tmp) == 0) {
1079		if (status & TXSTAT_COLL)
1080			ifp->if_collisions++;
1081
1082		if (status & TXSTAT_UFLOW) {
1083			printf("%s: transmit underflow\n",
1084			    device_xname(sc->sc_dev));
1085			ifp->if_oerrors++;
1086		}
1087
1088		if (status & TXSTAT_16COLL) {
1089			printf("%s: max collisions reached\n",
1090			    device_xname(sc->sc_dev));
1091			ifp->if_oerrors++;
1092			ifp->if_collisions += 16;
1093		}
1094	}
1095
1096	/* prevtx now points to next xmit packet not yet finished */
1097	if (sc->hpc_regs->revision == 3)
1098		sq_txring_hpc3(sc);
1099	else
1100		sq_txring_hpc1(sc);
1101
1102	/* If we have buffers free, let upper layers know */
1103	if (sc->sc_nfreetx > 0)
1104		ifp->if_flags &= ~IFF_OACTIVE;
1105
1106	/* If all packets have left the coop, cancel watchdog */
1107	if (sc->sc_nfreetx == SQ_NTXDESC)
1108		ifp->if_timer = 0;
1109
1110	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1111	if_schedule_deferred_start(ifp);
1112
1113	return 1;
1114}
1115
1116/*
1117 * Reclaim used transmit descriptors and restart the transmit DMA
1118 * engine if necessary.
1119 */
1120static void
1121sq_txring_hpc1(struct sq_softc *sc)
1122{
1123	/*
1124	 * HPC1 doesn't tag transmitted descriptors, however,
1125	 * the NDBP register points to the next descriptor that
1126	 * has not yet been processed. If DMA is not in progress,
1127	 * we can safely reclaim all descriptors up to NDBP, and,
1128	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1129	 * is active, we can only safely reclaim up to CBP.
1130	 *
1131	 * For now, we'll only reclaim on inactive DMA and assume
1132	 * that a sufficiently large ring keeps us out of trouble.
1133	 */
1134	uint32_t reclaimto, status;
1135	int reclaimall, i = sc->sc_prevtx;
1136	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1137
1138	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1139	if (status & HPC1_ENETX_CTL_ACTIVE) {
1140		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1141		return;
1142	} else
1143		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1144
1145	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1146		reclaimall = 1;
1147	else
1148		reclaimall = 0;
1149
1150	while (sc->sc_nfreetx < SQ_NTXDESC) {
1151		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1152			break;
1153
1154		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1155		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1156
1157		/* Sync the packet data, unload DMA map, free mbuf */
1158		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1159		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1160		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1161		m_freem(sc->sc_txmbuf[i]);
1162		sc->sc_txmbuf[i] = NULL;
1163
1164		ifp->if_opackets++;
1165		sc->sc_nfreetx++;
1166
1167		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1168
1169		i = SQ_NEXTTX(i);
1170	}
1171
1172	if (sc->sc_nfreetx < SQ_NTXDESC) {
1173		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1174
1175		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1176
1177		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1178		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1179
1180		/* Kick DMA channel into life */
1181		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1182
1183		/*
1184		 * Set a watchdog timer in case the chip
1185		 * flakes out.
1186		 */
1187		ifp->if_timer = 5;
1188	}
1189
1190	sc->sc_prevtx = i;
1191}
1192
1193/*
1194 * Reclaim used transmit descriptors and restart the transmit DMA
1195 * engine if necessary.
1196 */
1197static void
1198sq_txring_hpc3(struct sq_softc *sc)
1199{
1200	/*
1201	 * HPC3 tags descriptors with a bit once they've been
1202	 * transmitted. We need only free each XMITDONE'd
1203	 * descriptor, and restart the DMA engine if any
1204	 * descriptors are left over.
1205	 */
1206	int i;
1207	uint32_t status = 0;
1208	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1209
1210	i = sc->sc_prevtx;
1211	while (sc->sc_nfreetx < SQ_NTXDESC) {
1212		/*
1213		 * Check status first so we don't end up with a case of
1214		 * the buffer not being finished while the DMA channel
1215		 * has gone idle.
1216		 */
1217		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1218
1219		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1220		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1221
1222		/* Check for used descriptor and restart DMA chain if needed */
1223		if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
1224		    HPC3_HDD_CTL_XMITDONE) == 0) {
1225			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1226				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1227
1228				sq_hpc_write(sc, HPC3_ENETX_NDBP,
1229				    SQ_CDTXADDR(sc, i));
1230
1231				/* Kick DMA channel into life */
1232				sq_hpc_write(sc, HPC3_ENETX_CTL,
1233				    HPC3_ENETX_CTL_ACTIVE);
1234
1235				/*
1236				 * Set a watchdog timer in case the chip
1237				 * flakes out.
1238				 */
1239				ifp->if_timer = 5;
1240			} else
1241				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1242			break;
1243		}
1244
1245		/* Sync the packet data, unload DMA map, free mbuf */
1246		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1247		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1248		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1249		m_freem(sc->sc_txmbuf[i]);
1250		sc->sc_txmbuf[i] = NULL;
1251
1252		ifp->if_opackets++;
1253		sc->sc_nfreetx++;
1254
1255		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1256		i = SQ_NEXTTX(i);
1257	}
1258
1259	sc->sc_prevtx = i;
1260}
1261
1262void
1263sq_reset(struct sq_softc *sc)
1264{
1265
1266	/* Stop HPC dma channels */
1267	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1268	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1269
1270	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1271	delay(20);
1272	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1273}
1274
1275/* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1276int
1277sq_add_rxbuf(struct sq_softc *sc, int idx)
1278{
1279	int err;
1280	struct mbuf *m;
1281
1282	MGETHDR(m, M_DONTWAIT, MT_DATA);
1283	if (m == NULL)
1284		return ENOBUFS;
1285
1286	MCLGET(m, M_DONTWAIT);
1287	if ((m->m_flags & M_EXT) == 0) {
1288		m_freem(m);
1289		return ENOBUFS;
1290	}
1291
1292	if (sc->sc_rxmbuf[idx] != NULL)
1293		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1294
1295	sc->sc_rxmbuf[idx] = m;
1296
1297	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1298	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
1299		printf("%s: can't load rx DMA map %d, error = %d\n",
1300		    device_xname(sc->sc_dev), idx, err);
1301		panic("sq_add_rxbuf");	/* XXX */
1302	}
1303
1304	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
1305	    0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1306
1307	SQ_INIT_RXDESC(sc, idx);
1308
1309	return 0;
1310}
1311
1312void
1313sq_dump_buffer(paddr_t addr, psize_t len)
1314{
1315	u_int i;
1316	uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
1317
1318	if (len == 0)
1319		return;
1320
1321	printf("%p: ", physaddr);
1322
1323	for (i = 0; i < len; i++) {
1324		printf("%02x ", *(physaddr + i) & 0xff);
1325		if ((i % 16) ==  15 && i != len - 1)
1326		    printf("\n%p: ", physaddr + i);
1327	}
1328
1329	printf("\n");
1330}
1331