if_sq.c revision 1.45
1/*	$NetBSD: if_sq.c,v 1.45 2016/02/09 08:32:10 ozaki-r Exp $	*/
2
3/*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 *    derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.45 2016/02/09 08:32:10 ozaki-r Exp $");
37
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/device.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50
51#include <uvm/uvm_extern.h>
52
53#include <machine/endian.h>
54
55#include <net/if.h>
56#include <net/if_dl.h>
57#include <net/if_media.h>
58#include <net/if_ether.h>
59
60#include <net/bpf.h>
61
62#include <sys/bus.h>
63#include <machine/intr.h>
64#include <machine/sysconf.h>
65
66#include <dev/ic/seeq8003reg.h>
67
68#include <sgimips/hpc/sqvar.h>
69#include <sgimips/hpc/hpcvar.h>
70#include <sgimips/hpc/hpcreg.h>
71
72#include <dev/arcbios/arcbios.h>
73#include <dev/arcbios/arcbiosvar.h>
74
75#define static
76
77/*
78 * Short TODO list:
79 *	(1) Do counters for bad-RX packets.
80 *	(2) Allow multi-segment transmits, instead of copying to a single,
81 *	    contiguous mbuf.
82 *	(3) Verify sq_stop() turns off enough stuff; I was still getting
83 *	    seeq interrupts after sq_stop().
84 *	(4) Implement EDLC modes: especially packet auto-pad and simplex
85 *	    mode.
86 *	(5) Should the driver filter out its own transmissions in non-EDLC
87 *	    mode?
88 *	(6) Multicast support -- multicast filter, address management, ...
89 *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
90 *	    to figure out if RB0 is read-only as stated in one spot in the
91 *	    HPC spec or read-write (ie, is the 'write a one to clear it')
92 *	    the correct thing?
93 */
94
95#if defined(SQ_DEBUG)
96 int sq_debug = 0;
97 #define SQ_DPRINTF(x) if (sq_debug) printf x
98#else
99 #define SQ_DPRINTF(x)
100#endif
101
102static int	sq_match(device_t, cfdata_t, void *);
103static void	sq_attach(device_t, device_t, void *);
104static int	sq_init(struct ifnet *);
105static void	sq_start(struct ifnet *);
106static void	sq_stop(struct ifnet *, int);
107static void	sq_watchdog(struct ifnet *);
108static int	sq_ioctl(struct ifnet *, u_long, void *);
109
110static void	sq_set_filter(struct sq_softc *);
111static int	sq_intr(void *);
112static int	sq_rxintr(struct sq_softc *);
113static int	sq_txintr(struct sq_softc *);
114static void	sq_txring_hpc1(struct sq_softc *);
115static void	sq_txring_hpc3(struct sq_softc *);
116static void	sq_reset(struct sq_softc *);
117static int	sq_add_rxbuf(struct sq_softc *, int);
118static void	sq_dump_buffer(paddr_t addr, psize_t len);
119static void	sq_trace_dump(struct sq_softc *);
120
121CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
122    sq_match, sq_attach, NULL, NULL);
123
124#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
125
126#define sq_seeq_read(sc, off) \
127	bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
128#define sq_seeq_write(sc, off, val) \
129	bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
130
131#define sq_hpc_read(sc, off) \
132	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
133#define sq_hpc_write(sc, off, val) \
134	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
135
136/* MAC address offset for non-onboard implementations */
137#define SQ_HPC_EEPROM_ENADDR	250
138
139#define SGI_OUI_0		0x08
140#define SGI_OUI_1		0x00
141#define SGI_OUI_2		0x69
142
143static int
144sq_match(device_t parent, cfdata_t cf, void *aux)
145{
146	struct hpc_attach_args *ha = aux;
147
148	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
149		vaddr_t reset, txstat;
150
151		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
152		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
153		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
155
156		if (platform.badaddr((void *)reset, sizeof(reset)))
157			return 0;
158
159		*(volatile uint32_t *)reset = 0x1;
160		delay(20);
161		*(volatile uint32_t *)reset = 0x0;
162
163		if (platform.badaddr((void *)txstat, sizeof(txstat)))
164			return 0;
165
166		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
167			return 1;
168	}
169
170	return 0;
171}
172
173static void
174sq_attach(device_t parent, device_t self, void *aux)
175{
176	int i, err;
177	const char* macaddr;
178	struct sq_softc *sc = device_private(self);
179	struct hpc_attach_args *haa = aux;
180	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
181
182	sc->sc_dev = self;
183	sc->sc_hpct = haa->ha_st;
184	sc->hpc_regs = haa->hpc_regs;      /* HPC register definitions */
185
186	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
187	    haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
188	    &sc->sc_hpch)) != 0) {
189		printf(": unable to map HPC DMA registers, error = %d\n", err);
190		goto fail_0;
191	}
192
193	sc->sc_regt = haa->ha_st;
194	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
195	    haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
196	    &sc->sc_regh)) != 0) {
197		printf(": unable to map Seeq registers, error = %d\n", err);
198		goto fail_0;
199	}
200
201	sc->sc_dmat = haa->ha_dmat;
202
203	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
204	    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
205	    BUS_DMA_NOWAIT)) != 0) {
206		printf(": unable to allocate control data, error = %d\n", err);
207		goto fail_0;
208	}
209
210	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
211	    sizeof(struct sq_control), (void **)&sc->sc_control,
212	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
213		printf(": unable to map control data, error = %d\n", err);
214		goto fail_1;
215	}
216
217	if ((err = bus_dmamap_create(sc->sc_dmat,
218	    sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
219	    BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
220		printf(": unable to create DMA map for control data, error "
221		    "= %d\n", err);
222		goto fail_2;
223	}
224
225	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
226	    sc->sc_control, sizeof(struct sq_control), NULL,
227	    BUS_DMA_NOWAIT)) != 0) {
228		printf(": unable to load DMA map for control data, error "
229		    "= %d\n", err);
230		goto fail_3;
231	}
232
233	memset(sc->sc_control, 0, sizeof(struct sq_control));
234
235	/* Create transmit buffer DMA maps */
236	for (i = 0; i < SQ_NTXDESC; i++) {
237		if ((err = bus_dmamap_create(sc->sc_dmat,
238		    MCLBYTES, 1, MCLBYTES, 0,
239		    BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
240			printf(": unable to create tx DMA map %d, error = %d\n",
241			    i, err);
242			goto fail_4;
243		}
244	}
245
246	/* Create receive buffer DMA maps */
247	for (i = 0; i < SQ_NRXDESC; i++) {
248		if ((err = bus_dmamap_create(sc->sc_dmat,
249		    MCLBYTES, 1, MCLBYTES, 0,
250		    BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
251			printf(": unable to create rx DMA map %d, error = %d\n",
252			    i, err);
253			goto fail_5;
254		}
255	}
256
257	/* Pre-allocate the receive buffers.  */
258	for (i = 0; i < SQ_NRXDESC; i++) {
259		if ((err = sq_add_rxbuf(sc, i)) != 0) {
260			printf(": unable to allocate or map rx buffer %d\n,"
261			    " error = %d\n", i, err);
262			goto fail_6;
263		}
264	}
265
266	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
267	    ETHER_ADDR_LEN);
268
269	/*
270	 * If our mac address is bogus, obtain it from ARCBIOS. This will
271	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
272	 * but rather the DS1386 RTC's battery-backed ram is used.
273	 */
274	if (sc->sc_enaddr[0] != SGI_OUI_0 ||
275	    sc->sc_enaddr[1] != SGI_OUI_1 ||
276	    sc->sc_enaddr[2] != SGI_OUI_2) {
277		macaddr = arcbios_GetEnvironmentVariable("eaddr");
278		if (macaddr == NULL) {
279			printf(": unable to get MAC address!\n");
280			goto fail_6;
281		}
282		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
283	}
284
285	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
286	    device_xname(self), "intr");
287
288	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
289		printf(": unable to establish interrupt!\n");
290		goto fail_6;
291	}
292
293	/* Reset the chip to a known state. */
294	sq_reset(sc);
295
296	/*
297	 * Determine if we're an 8003 or 80c03 by setting the first
298	 * MAC address register to non-zero, and then reading it back.
299	 * If it's zero, we have an 80c03, because we will have read
300	 * the TxCollLSB register.
301	 */
302	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
303	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
304		sc->sc_type = SQ_TYPE_80C03;
305	else
306		sc->sc_type = SQ_TYPE_8003;
307	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
308
309	printf(": SGI Seeq %s\n",
310	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
311
312	printf("%s: Ethernet address %s\n",
313	    device_xname(self), ether_sprintf(sc->sc_enaddr));
314
315	strcpy(ifp->if_xname, device_xname(self));
316	ifp->if_softc = sc;
317	ifp->if_mtu = ETHERMTU;
318	ifp->if_init = sq_init;
319	ifp->if_stop = sq_stop;
320	ifp->if_start = sq_start;
321	ifp->if_ioctl = sq_ioctl;
322	ifp->if_watchdog = sq_watchdog;
323	ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
324	IFQ_SET_READY(&ifp->if_snd);
325
326	if_attach(ifp);
327	ether_ifattach(ifp, sc->sc_enaddr);
328
329	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
330	/* Done! */
331	return;
332
333	/*
334	 * Free any resources we've allocated during the failed attach
335	 * attempt.  Do this in reverse order and fall through.
336	 */
337 fail_6:
338	for (i = 0; i < SQ_NRXDESC; i++) {
339		if (sc->sc_rxmbuf[i] != NULL) {
340			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
341			m_freem(sc->sc_rxmbuf[i]);
342		}
343	}
344 fail_5:
345	for (i = 0; i < SQ_NRXDESC; i++) {
346		if (sc->sc_rxmap[i] != NULL)
347			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
348	}
349 fail_4:
350	for (i = 0; i < SQ_NTXDESC; i++) {
351		if (sc->sc_txmap[i] !=  NULL)
352			bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
353	}
354	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
355 fail_3:
356	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
357 fail_2:
358	bus_dmamem_unmap(sc->sc_dmat,
359	    (void *)sc->sc_control, sizeof(struct sq_control));
360 fail_1:
361	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
362 fail_0:
363	return;
364}
365
366/* Set up data to get the interface up and running. */
367int
368sq_init(struct ifnet *ifp)
369{
370	int i;
371	struct sq_softc *sc = ifp->if_softc;
372
373	/* Cancel any in-progress I/O */
374	sq_stop(ifp, 0);
375
376	sc->sc_nextrx = 0;
377
378	sc->sc_nfreetx = SQ_NTXDESC;
379	sc->sc_nexttx = sc->sc_prevtx = 0;
380
381	SQ_TRACE(SQ_RESET, sc, 0, 0);
382
383	/* Set into 8003 mode, bank 0 to program ethernet address */
384	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
385
386	/* Now write the address */
387	for (i = 0; i < ETHER_ADDR_LEN; i++)
388		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
389
390	sc->sc_rxcmd =
391	    RXCMD_IE_CRC |
392	    RXCMD_IE_DRIB |
393	    RXCMD_IE_SHORT |
394	    RXCMD_IE_END |
395	    RXCMD_IE_GOOD;
396
397	/*
398	 * Set the receive filter -- this will add some bits to the
399	 * prototype RXCMD register.  Do this before setting the
400	 * transmit config register, since we might need to switch
401	 * banks.
402	 */
403	sq_set_filter(sc);
404
405	/* Set up Seeq transmit command register */
406	sq_seeq_write(sc, SEEQ_TXCMD,
407	    TXCMD_IE_UFLOW |
408	    TXCMD_IE_COLL |
409	    TXCMD_IE_16COLL |
410	    TXCMD_IE_GOOD);
411
412	/* Now write the receive command register. */
413	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
414
415	/*
416	 * Set up HPC ethernet PIO and DMA configurations.
417	 *
418	 * The PROM appears to do most of this for the onboard HPC3, but
419	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
420	 * chip is configured and assume that it's correct for both.
421	 */
422	if (sc->hpc_regs->revision == 3) {
423		uint32_t dmareg, pioreg;
424
425		pioreg =
426		    HPC3_ENETR_PIOCFG_P1(1) |
427		    HPC3_ENETR_PIOCFG_P2(6) |
428		    HPC3_ENETR_PIOCFG_P3(1);
429
430		dmareg =
431		    HPC3_ENETR_DMACFG_D1(6) |
432		    HPC3_ENETR_DMACFG_D2(2) |
433		    HPC3_ENETR_DMACFG_D3(0) |
434		    HPC3_ENETR_DMACFG_FIX_RXDC |
435		    HPC3_ENETR_DMACFG_FIX_INTR |
436		    HPC3_ENETR_DMACFG_FIX_EOP |
437		    HPC3_ENETR_DMACFG_TIMEOUT;
438
439		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
440		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
441	}
442
443	/* Pass the start of the receive ring to the HPC */
444	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
445
446	/* And turn on the HPC ethernet receive channel */
447	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
448	    sc->hpc_regs->enetr_ctl_active);
449
450	/*
451	 * Turn off delayed receive interrupts on HPC1.
452	 * (see Hollywood HPC Specification 2.1.4.3)
453	 */
454	if (sc->hpc_regs->revision != 3)
455		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
456
457	ifp->if_flags |= IFF_RUNNING;
458	ifp->if_flags &= ~IFF_OACTIVE;
459
460	return 0;
461}
462
463static void
464sq_set_filter(struct sq_softc *sc)
465{
466	struct ethercom *ec = &sc->sc_ethercom;
467	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468	struct ether_multi *enm;
469	struct ether_multistep step;
470
471	/*
472	 * Check for promiscuous mode.  Also implies
473	 * all-multicast.
474	 */
475	if (ifp->if_flags & IFF_PROMISC) {
476		sc->sc_rxcmd |= RXCMD_REC_ALL;
477		ifp->if_flags |= IFF_ALLMULTI;
478		return;
479	}
480
481	/*
482	 * The 8003 has no hash table.  If we have any multicast
483	 * addresses on the list, enable reception of all multicast
484	 * frames.
485	 *
486	 * XXX The 80c03 has a hash table.  We should use it.
487	 */
488
489	ETHER_FIRST_MULTI(step, ec, enm);
490
491	if (enm == NULL) {
492		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
493		sc->sc_rxcmd |= RXCMD_REC_BROAD;
494
495		ifp->if_flags &= ~IFF_ALLMULTI;
496		return;
497	}
498
499	sc->sc_rxcmd |= RXCMD_REC_MULTI;
500	ifp->if_flags |= IFF_ALLMULTI;
501}
502
503int
504sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
505{
506	int s, error = 0;
507
508	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
509
510	s = splnet();
511
512	error = ether_ioctl(ifp, cmd, data);
513	if (error == ENETRESET) {
514		/*
515		 * Multicast list has changed; set the hardware filter
516		 * accordingly.
517		 */
518		if (ifp->if_flags & IFF_RUNNING)
519			error = sq_init(ifp);
520		else
521			error = 0;
522	}
523
524	splx(s);
525	return error;
526}
527
528void
529sq_start(struct ifnet *ifp)
530{
531	struct sq_softc *sc = ifp->if_softc;
532	uint32_t status;
533	struct mbuf *m0, *m;
534	bus_dmamap_t dmamap;
535	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
536
537	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
538		return;
539
540	/*
541	 * Remember the previous number of free descriptors and
542	 * the first descriptor we'll use.
543	 */
544	ofree = sc->sc_nfreetx;
545	firsttx = sc->sc_nexttx;
546
547	/*
548	 * Loop through the send queue, setting up transmit descriptors
549	 * until we drain the queue, or use up all available transmit
550	 * descriptors.
551	 */
552	while (sc->sc_nfreetx != 0) {
553		/*
554		 * Grab a packet off the queue.
555		 */
556		IFQ_POLL(&ifp->if_snd, m0);
557		if (m0 == NULL)
558			break;
559		m = NULL;
560
561		dmamap = sc->sc_txmap[sc->sc_nexttx];
562
563		/*
564		 * Load the DMA map.  If this fails, the packet either
565		 * didn't fit in the alloted number of segments, or we were
566		 * short on resources.  In this case, we'll copy and try
567		 * again.
568		 * Also copy it if we need to pad, so that we are sure there
569		 * is room for the pad buffer.
570		 * XXX the right way of doing this is to use a static buffer
571		 * for padding and adding it to the transmit descriptor (see
572		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
573		 * because we can't send packets with more than one fragment.
574		 */
575		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
576		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
577		    BUS_DMA_NOWAIT) != 0) {
578			MGETHDR(m, M_DONTWAIT, MT_DATA);
579			if (m == NULL) {
580				printf("%s: unable to allocate Tx mbuf\n",
581				    device_xname(sc->sc_dev));
582				break;
583			}
584			if (m0->m_pkthdr.len > MHLEN) {
585				MCLGET(m, M_DONTWAIT);
586				if ((m->m_flags & M_EXT) == 0) {
587					printf("%s: unable to allocate Tx "
588					    "cluster\n",
589					    device_xname(sc->sc_dev));
590					m_freem(m);
591					break;
592				}
593			}
594
595			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
596			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
597				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
598				    ETHER_PAD_LEN - m0->m_pkthdr.len);
599				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
600			} else
601				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
602
603			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
604			    m, BUS_DMA_NOWAIT)) != 0) {
605				printf("%s: unable to load Tx buffer, "
606				    "error = %d\n",
607				    device_xname(sc->sc_dev), err);
608				break;
609			}
610		}
611
612		/*
613		 * Ensure we have enough descriptors free to describe
614		 * the packet.
615		 */
616		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
617			/*
618			 * Not enough free descriptors to transmit this
619			 * packet.  We haven't committed to anything yet,
620			 * so just unload the DMA map, put the packet
621			 * back on the queue, and punt.  Notify the upper
622			 * layer that there are no more slots left.
623			 *
624			 * XXX We could allocate an mbuf and copy, but
625			 * XXX it is worth it?
626			 */
627			ifp->if_flags |= IFF_OACTIVE;
628			bus_dmamap_unload(sc->sc_dmat, dmamap);
629			if (m != NULL)
630				m_freem(m);
631			break;
632		}
633
634		IFQ_DEQUEUE(&ifp->if_snd, m0);
635		/*
636		 * Pass the packet to any BPF listeners.
637		 */
638		bpf_mtap(ifp, m0);
639		if (m != NULL) {
640			m_freem(m0);
641			m0 = m;
642		}
643
644		/*
645		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
646		 */
647
648		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
649
650		/* Sync the DMA map. */
651		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
652		    BUS_DMASYNC_PREWRITE);
653
654		/*
655		 * Initialize the transmit descriptors.
656		 */
657		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
658		     seg < dmamap->dm_nsegs;
659		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
660			if (sc->hpc_regs->revision == 3) {
661				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
662				    dmamap->dm_segs[seg].ds_addr;
663				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
664				    dmamap->dm_segs[seg].ds_len;
665			} else {
666				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
667				    dmamap->dm_segs[seg].ds_addr;
668				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
669				    dmamap->dm_segs[seg].ds_len;
670			}
671			sc->sc_txdesc[nexttx].hdd_descptr =
672			    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
673			lasttx = nexttx;
674			totlen += dmamap->dm_segs[seg].ds_len;
675		}
676
677		/* Last descriptor gets end-of-packet */
678		KASSERT(lasttx != -1);
679		if (sc->hpc_regs->revision == 3)
680			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
681			    HPC3_HDD_CTL_EOPACKET;
682		else
683			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
684			    HPC1_HDD_CTL_EOPACKET;
685
686		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
687		    device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
688
689		if (ifp->if_flags & IFF_DEBUG) {
690			printf("     transmit chain:\n");
691			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
692				printf("     descriptor %d:\n", seg);
693				printf("       hdd_bufptr:      0x%08x\n",
694				    (sc->hpc_regs->revision == 3) ?
695				    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
696				    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
697				printf("       hdd_ctl: 0x%08x\n",
698				    (sc->hpc_regs->revision == 3) ?
699				    sc->sc_txdesc[seg].hpc3_hdd_ctl:
700				    sc->sc_txdesc[seg].hpc1_hdd_ctl);
701				printf("       hdd_descptr:      0x%08x\n",
702				    sc->sc_txdesc[seg].hdd_descptr);
703
704				if (seg == lasttx)
705					break;
706			}
707		}
708
709		/* Sync the descriptors we're using. */
710		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
711		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712
713		/* Store a pointer to the packet so we can free it later */
714		sc->sc_txmbuf[sc->sc_nexttx] = m0;
715
716		/* Advance the tx pointer. */
717		sc->sc_nfreetx -= dmamap->dm_nsegs;
718		sc->sc_nexttx = nexttx;
719	}
720
721	/* All transmit descriptors used up, let upper layers know */
722	if (sc->sc_nfreetx == 0)
723		ifp->if_flags |= IFF_OACTIVE;
724
725	if (sc->sc_nfreetx != ofree) {
726		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
727		    device_xname(sc->sc_dev), lasttx - firsttx + 1,
728		    firsttx, lasttx));
729
730		/*
731		 * Cause a transmit interrupt to happen on the
732		 * last packet we enqueued, mark it as the last
733		 * descriptor.
734		 *
735		 * HPC1_HDD_CTL_INTR will generate an interrupt on
736		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
737		 * addition to HPC3_HDD_CTL_INTR to interrupt.
738		 */
739		KASSERT(lasttx != -1);
740		if (sc->hpc_regs->revision == 3) {
741			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
742			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
743		} else {
744			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
745			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
746			    HPC1_HDD_CTL_EOCHAIN;
747		}
748
749		SQ_CDTXSYNC(sc, lasttx, 1,
750		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
751
752		/*
753		 * There is a potential race condition here if the HPC
754		 * DMA channel is active and we try and either update
755		 * the 'next descriptor' pointer in the HPC PIO space
756		 * or the 'next descriptor' pointer in a previous desc-
757		 * riptor.
758		 *
759		 * To avoid this, if the channel is active, we rely on
760		 * the transmit interrupt routine noticing that there
761		 * are more packets to send and restarting the HPC DMA
762		 * engine, rather than mucking with the DMA state here.
763		 */
764		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
765
766		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
767			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
768
769			/*
770			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
771			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
772			 */
773			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
774			    ~HPC3_HDD_CTL_EOCHAIN;
775
776			if (sc->hpc_regs->revision != 3)
777				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
778				    &= ~HPC1_HDD_CTL_INTR;
779
780			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
781			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
782		} else if (sc->hpc_regs->revision == 3) {
783			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
784
785			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
786			    firsttx));
787
788			/* Kick DMA channel into life */
789			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
790		} else {
791			/*
792			 * In the HPC1 case where transmit DMA is
793			 * inactive, we can either kick off if
794			 * the ring was previously empty, or call
795			 * our transmit interrupt handler to
796			 * figure out if the ring stopped short
797			 * and restart at the right place.
798			 */
799			if (ofree == SQ_NTXDESC) {
800				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
801
802				sq_hpc_write(sc, HPC1_ENETX_NDBP,
803				    SQ_CDTXADDR(sc, firsttx));
804				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
805				    SQ_CDTXADDR(sc, firsttx));
806				sq_hpc_write(sc, HPC1_ENETX_CBP,
807				    SQ_CDTXADDR(sc, firsttx));
808
809				/* Kick DMA channel into life */
810				sq_hpc_write(sc, HPC1_ENETX_CTL,
811				    HPC1_ENETX_CTL_ACTIVE);
812			} else
813				sq_txring_hpc1(sc);
814		}
815
816		/* Set a watchdog timer in case the chip flakes out. */
817		ifp->if_timer = 5;
818	}
819}
820
821void
822sq_stop(struct ifnet *ifp, int disable)
823{
824	int i;
825	struct sq_softc *sc = ifp->if_softc;
826
827	for (i = 0; i < SQ_NTXDESC; i++) {
828		if (sc->sc_txmbuf[i] != NULL) {
829			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
830			m_freem(sc->sc_txmbuf[i]);
831			sc->sc_txmbuf[i] = NULL;
832		}
833	}
834
835	/* Clear Seeq transmit/receive command registers */
836	sq_seeq_write(sc, SEEQ_TXCMD, 0);
837	sq_seeq_write(sc, SEEQ_RXCMD, 0);
838
839	sq_reset(sc);
840
841	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
842	ifp->if_timer = 0;
843}
844
845/* Device timeout/watchdog routine. */
846void
847sq_watchdog(struct ifnet *ifp)
848{
849	uint32_t status;
850	struct sq_softc *sc = ifp->if_softc;
851
852	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
853	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
854	    "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
855	    sc->sc_nexttx, sc->sc_nfreetx, status);
856
857	sq_trace_dump(sc);
858
859	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
860	sc->sq_trace_idx = 0;
861
862	++ifp->if_oerrors;
863
864	sq_init(ifp);
865}
866
867static void
868sq_trace_dump(struct sq_softc *sc)
869{
870	int i;
871	const char *act;
872
873	for (i = 0; i < sc->sq_trace_idx; i++) {
874		switch (sc->sq_trace[i].action) {
875		case SQ_RESET:		act = "SQ_RESET";		break;
876		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
877		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
878		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
879		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
880		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
881		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
882		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
883		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
884		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
885		default:		act = "UNKNOWN";
886		}
887
888		printf("%s: [%03d] action %-16s buf %03d free %03d "
889		    "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
890		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
891		    sc->sq_trace[i].status, sc->sq_trace[i].line);
892	}
893}
894
895static int
896sq_intr(void *arg)
897{
898	struct sq_softc *sc = arg;
899	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
900	int handled = 0;
901	uint32_t stat;
902
903	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
904
905	if ((stat & 2) == 0)
906		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
907		    device_xname(sc->sc_dev)));
908	else
909		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
910
911	/*
912	 * If the interface isn't running, the interrupt couldn't
913	 * possibly have come from us.
914	 */
915	if ((ifp->if_flags & IFF_RUNNING) == 0)
916		return 0;
917
918	sc->sq_intrcnt.ev_count++;
919
920	/* Always check for received packets */
921	if (sq_rxintr(sc) != 0)
922		handled++;
923
924	/* Only handle transmit interrupts if we actually sent something */
925	if (sc->sc_nfreetx < SQ_NTXDESC) {
926		sq_txintr(sc);
927		handled++;
928	}
929
930	if (handled)
931		rnd_add_uint32(&sc->rnd_source, stat);
932	return handled;
933}
934
935static int
936sq_rxintr(struct sq_softc *sc)
937{
938	int count = 0;
939	struct mbuf* m;
940	int i, framelen;
941	uint8_t pktstat;
942	uint32_t status;
943	uint32_t ctl_reg;
944	int new_end, orig_end;
945	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
946
947	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
948		SQ_CDRXSYNC(sc, i,
949		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
950
951		/*
952		 * If this is a CPU-owned buffer, we're at the end of the list.
953		 */
954		if (sc->hpc_regs->revision == 3)
955			ctl_reg =
956			    sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
957		else
958			ctl_reg =
959			    sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
960
961		if (ctl_reg) {
962#if defined(SQ_DEBUG)
963			uint32_t reg;
964
965			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
966			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
967			    device_xname(sc->sc_dev), i, reg));
968#endif
969			break;
970		}
971
972		count++;
973
974		m = sc->sc_rxmbuf[i];
975		framelen = m->m_ext.ext_size - 3;
976		if (sc->hpc_regs->revision == 3)
977		    framelen -=
978			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
979		else
980		    framelen -=
981			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
982
983		/* Now sync the actual packet data */
984		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
985		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
986
987		pktstat = *((uint8_t *)m->m_data + framelen + 2);
988
989		if ((pktstat & RXSTAT_GOOD) == 0) {
990			ifp->if_ierrors++;
991
992			if (pktstat & RXSTAT_OFLOW)
993				printf("%s: receive FIFO overflow\n",
994				    device_xname(sc->sc_dev));
995
996			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
997			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
998			SQ_INIT_RXDESC(sc, i);
999			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
1000			    device_xname(sc->sc_dev), i));
1001			continue;
1002		}
1003
1004		if (sq_add_rxbuf(sc, i) != 0) {
1005			ifp->if_ierrors++;
1006			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1007			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
1008			SQ_INIT_RXDESC(sc, i);
1009			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1010			    "failed\n", device_xname(sc->sc_dev), i));
1011			continue;
1012		}
1013
1014
1015		m->m_data += 2;
1016		m->m_pkthdr.rcvif = ifp;
1017		m->m_pkthdr.len = m->m_len = framelen;
1018
1019		ifp->if_ipackets++;
1020
1021		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1022		    device_xname(sc->sc_dev), i, framelen));
1023
1024		bpf_mtap(ifp, m);
1025		if_percpuq_enqueue(ifp->if_percpuq, m);
1026	}
1027
1028
1029	/* If anything happened, move ring start/end pointers to new spot */
1030	if (i != sc->sc_nextrx) {
1031		/*
1032		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1033		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1034		 */
1035
1036		new_end = SQ_PREVRX(i);
1037		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1038		SQ_CDRXSYNC(sc, new_end,
1039		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1040
1041		orig_end = SQ_PREVRX(sc->sc_nextrx);
1042		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1043		SQ_CDRXSYNC(sc, orig_end,
1044		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1045
1046		sc->sc_nextrx = i;
1047	}
1048
1049	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1050
1051	/* If receive channel is stopped, restart it... */
1052	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1053		/* Pass the start of the receive ring to the HPC */
1054		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
1055		    SQ_CDRXADDR(sc, sc->sc_nextrx));
1056
1057		/* And turn on the HPC ethernet receive channel */
1058		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1059		    sc->hpc_regs->enetr_ctl_active);
1060	}
1061
1062	return count;
1063}
1064
1065static int
1066sq_txintr(struct sq_softc *sc)
1067{
1068	int shift = 0;
1069	uint32_t status, tmp;
1070	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1071
1072	if (sc->hpc_regs->revision != 3)
1073		shift = 16;
1074
1075	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1076
1077	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1078
1079	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1080	if ((status & tmp) == 0) {
1081		if (status & TXSTAT_COLL)
1082			ifp->if_collisions++;
1083
1084		if (status & TXSTAT_UFLOW) {
1085			printf("%s: transmit underflow\n",
1086			    device_xname(sc->sc_dev));
1087			ifp->if_oerrors++;
1088		}
1089
1090		if (status & TXSTAT_16COLL) {
1091			printf("%s: max collisions reached\n",
1092			    device_xname(sc->sc_dev));
1093			ifp->if_oerrors++;
1094			ifp->if_collisions += 16;
1095		}
1096	}
1097
1098	/* prevtx now points to next xmit packet not yet finished */
1099	if (sc->hpc_regs->revision == 3)
1100		sq_txring_hpc3(sc);
1101	else
1102		sq_txring_hpc1(sc);
1103
1104	/* If we have buffers free, let upper layers know */
1105	if (sc->sc_nfreetx > 0)
1106		ifp->if_flags &= ~IFF_OACTIVE;
1107
1108	/* If all packets have left the coop, cancel watchdog */
1109	if (sc->sc_nfreetx == SQ_NTXDESC)
1110		ifp->if_timer = 0;
1111
1112	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1113	sq_start(ifp);
1114
1115	return 1;
1116}
1117
1118/*
1119 * Reclaim used transmit descriptors and restart the transmit DMA
1120 * engine if necessary.
1121 */
1122static void
1123sq_txring_hpc1(struct sq_softc *sc)
1124{
1125	/*
1126	 * HPC1 doesn't tag transmitted descriptors, however,
1127	 * the NDBP register points to the next descriptor that
1128	 * has not yet been processed. If DMA is not in progress,
1129	 * we can safely reclaim all descriptors up to NDBP, and,
1130	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1131	 * is active, we can only safely reclaim up to CBP.
1132	 *
1133	 * For now, we'll only reclaim on inactive DMA and assume
1134	 * that a sufficiently large ring keeps us out of trouble.
1135	 */
1136	uint32_t reclaimto, status;
1137	int reclaimall, i = sc->sc_prevtx;
1138	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1139
1140	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1141	if (status & HPC1_ENETX_CTL_ACTIVE) {
1142		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1143		return;
1144	} else
1145		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1146
1147	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1148		reclaimall = 1;
1149	else
1150		reclaimall = 0;
1151
1152	while (sc->sc_nfreetx < SQ_NTXDESC) {
1153		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1154			break;
1155
1156		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1157		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1158
1159		/* Sync the packet data, unload DMA map, free mbuf */
1160		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1161		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1162		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1163		m_freem(sc->sc_txmbuf[i]);
1164		sc->sc_txmbuf[i] = NULL;
1165
1166		ifp->if_opackets++;
1167		sc->sc_nfreetx++;
1168
1169		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1170
1171		i = SQ_NEXTTX(i);
1172	}
1173
1174	if (sc->sc_nfreetx < SQ_NTXDESC) {
1175		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1176
1177		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1178
1179		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1180		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1181
1182		/* Kick DMA channel into life */
1183		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1184
1185		/*
1186		 * Set a watchdog timer in case the chip
1187		 * flakes out.
1188		 */
1189		ifp->if_timer = 5;
1190	}
1191
1192	sc->sc_prevtx = i;
1193}
1194
1195/*
1196 * Reclaim used transmit descriptors and restart the transmit DMA
1197 * engine if necessary.
1198 */
1199static void
1200sq_txring_hpc3(struct sq_softc *sc)
1201{
1202	/*
1203	 * HPC3 tags descriptors with a bit once they've been
1204	 * transmitted. We need only free each XMITDONE'd
1205	 * descriptor, and restart the DMA engine if any
1206	 * descriptors are left over.
1207	 */
1208	int i;
1209	uint32_t status = 0;
1210	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1211
1212	i = sc->sc_prevtx;
1213	while (sc->sc_nfreetx < SQ_NTXDESC) {
1214		/*
1215		 * Check status first so we don't end up with a case of
1216		 * the buffer not being finished while the DMA channel
1217		 * has gone idle.
1218		 */
1219		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1220
1221		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1222		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1223
1224		/* Check for used descriptor and restart DMA chain if needed */
1225		if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
1226		    HPC3_HDD_CTL_XMITDONE) == 0) {
1227			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1228				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1229
1230				sq_hpc_write(sc, HPC3_ENETX_NDBP,
1231				    SQ_CDTXADDR(sc, i));
1232
1233				/* Kick DMA channel into life */
1234				sq_hpc_write(sc, HPC3_ENETX_CTL,
1235				    HPC3_ENETX_CTL_ACTIVE);
1236
1237				/*
1238				 * Set a watchdog timer in case the chip
1239				 * flakes out.
1240				 */
1241				ifp->if_timer = 5;
1242			} else
1243				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1244			break;
1245		}
1246
1247		/* Sync the packet data, unload DMA map, free mbuf */
1248		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1249		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1250		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1251		m_freem(sc->sc_txmbuf[i]);
1252		sc->sc_txmbuf[i] = NULL;
1253
1254		ifp->if_opackets++;
1255		sc->sc_nfreetx++;
1256
1257		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1258		i = SQ_NEXTTX(i);
1259	}
1260
1261	sc->sc_prevtx = i;
1262}
1263
1264void
1265sq_reset(struct sq_softc *sc)
1266{
1267
1268	/* Stop HPC dma channels */
1269	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1270	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1271
1272	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1273	delay(20);
1274	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1275}
1276
1277/* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1278int
1279sq_add_rxbuf(struct sq_softc *sc, int idx)
1280{
1281	int err;
1282	struct mbuf *m;
1283
1284	MGETHDR(m, M_DONTWAIT, MT_DATA);
1285	if (m == NULL)
1286		return ENOBUFS;
1287
1288	MCLGET(m, M_DONTWAIT);
1289	if ((m->m_flags & M_EXT) == 0) {
1290		m_freem(m);
1291		return ENOBUFS;
1292	}
1293
1294	if (sc->sc_rxmbuf[idx] != NULL)
1295		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1296
1297	sc->sc_rxmbuf[idx] = m;
1298
1299	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1300	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
1301		printf("%s: can't load rx DMA map %d, error = %d\n",
1302		    device_xname(sc->sc_dev), idx, err);
1303		panic("sq_add_rxbuf");	/* XXX */
1304	}
1305
1306	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
1307	    0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1308
1309	SQ_INIT_RXDESC(sc, idx);
1310
1311	return 0;
1312}
1313
1314void
1315sq_dump_buffer(paddr_t addr, psize_t len)
1316{
1317	u_int i;
1318	uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
1319
1320	if (len == 0)
1321		return;
1322
1323	printf("%p: ", physaddr);
1324
1325	for (i = 0; i < len; i++) {
1326		printf("%02x ", *(physaddr + i) & 0xff);
1327		if ((i % 16) ==  15 && i != len - 1)
1328		    printf("\n%p: ", physaddr + i);
1329	}
1330
1331	printf("\n");
1332}
1333