1/*	$NetBSD: pmap.c,v 1.110 2024/02/01 22:02:18 andvar Exp $	*/
2
3/*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *      This product includes software developed for the NetBSD Project by
20 *      Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 *    must display the following acknowledgement:
53 *	This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 *    derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69#include <sys/cdefs.h>
70__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.110 2024/02/01 22:02:18 andvar Exp $");
71
72#ifdef _KERNEL_OPT
73#include "opt_ddb.h"
74#include "opt_pmap.h"
75#endif
76
77#include <sys/param.h>
78#include <sys/cpu.h>
79#include <sys/device.h>
80#include <sys/kmem.h>
81#include <sys/pool.h>
82#include <sys/proc.h>
83#include <sys/queue.h>
84#include <sys/systm.h>
85
86#include <uvm/uvm.h>
87
88#include <machine/powerpc.h>
89
90#include <powerpc/pcb.h>
91
92#include <powerpc/spr.h>
93#include <powerpc/ibm4xx/spr.h>
94
95#include <powerpc/ibm4xx/cpu.h>
96#include <powerpc/ibm4xx/tlb.h>
97
98/*
99 * kernmap is an array of PTEs large enough to map in
100 * 4GB.  At 16KB/page it is 256K entries or 2MB.
101 */
102#define KERNMAP_SIZE	((0xffffffffU / PAGE_SIZE) + 1)
103void *kernmap;
104
105#define MINCTX		2
106#define NUMCTX		256
107
108volatile struct pmap *ctxbusy[NUMCTX];
109
110#define TLBF_USED	0x1
111#define	TLBF_REF	0x2
112#define	TLBF_LOCKED	0x4
113#define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
114
115typedef struct tlb_info_s {
116	char	ti_flags;
117	char	ti_ctx;		/* TLB_PID assiciated with the entry */
118	u_int	ti_va;
119} tlb_info_t;
120
121volatile tlb_info_t tlb_info[NTLB];
122/* We'll use a modified FIFO replacement policy cause it's cheap */
123volatile int tlbnext;
124
125static int tlb_nreserved = 0;
126static int pmap_bootstrap_done = 0;
127
128/* Event counters */
129struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
130    NULL, "cpu", "tlbmiss");
131struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
132    NULL, "cpu", "tlbflush");
133struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
134    NULL, "cpu", "tlbenter");
135EVCNT_ATTACH_STATIC(tlbmiss_ev);
136EVCNT_ATTACH_STATIC(tlbflush_ev);
137EVCNT_ATTACH_STATIC(tlbenter_ev);
138
139struct pmap kernel_pmap_;
140struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
141
142static int npgs;
143static u_int nextavail;
144#ifndef MSGBUFADDR
145extern paddr_t msgbuf_paddr;
146#endif
147
148static struct mem_region *mem, *avail;
149
150/*
151 * This is a cache of referenced/modified bits.
152 * Bits herein are shifted by ATTRSHFT.
153 */
154static char *pmap_attrib;
155
156#define PV_WIRED	0x1
157#define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
158#define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
159#define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
160#define PV_VA(pv)	((pv)->pv_va & ~PV_WIRED)
161#define PV_CMPVA(va,pv)	(!(PV_VA(pv) ^ (va)))
162
163struct pv_entry {
164	struct pv_entry *pv_next;	/* Linked list of mappings */
165	struct pmap *pv_pm;
166	vaddr_t pv_va;			/* virtual address of mapping */
167};
168
169/* Each index corresponds to TLB_SIZE_* value. */
170static size_t tlbsize[] = {
171	1024, 		/* TLB_SIZE_1K */
172	4096, 		/* TLB_SIZE_4K */
173	16384, 		/* TLB_SIZE_16K */
174	65536, 		/* TLB_SIZE_64K */
175	262144, 	/* TLB_SIZE_256K */
176	1048576, 	/* TLB_SIZE_1M */
177	4194304, 	/* TLB_SIZE_4M */
178	16777216, 	/* TLB_SIZE_16M */
179};
180
181struct pv_entry *pv_table;
182static struct pool pv_pool;
183
184static int pmap_initialized;
185
186static void ctx_flush(int);
187
188struct pv_entry *pa_to_pv(paddr_t);
189static inline char *pa_to_attr(paddr_t);
190
191static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
192static inline int pte_enter(struct pmap *, vaddr_t, u_int);
193
194static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
195static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
196
197static inline void tlb_invalidate_entry(int);
198
199static int ppc4xx_tlb_size_mask(size_t, int *, int *);
200
201
202struct pv_entry *
203pa_to_pv(paddr_t pa)
204{
205	uvm_physseg_t bank;
206	psize_t pg;
207
208	bank = uvm_physseg_find(atop(pa), &pg);
209	if (bank == UVM_PHYSSEG_TYPE_INVALID)
210		return NULL;
211	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
212}
213
214static inline char *
215pa_to_attr(paddr_t pa)
216{
217	uvm_physseg_t bank;
218	psize_t pg;
219
220	bank = uvm_physseg_find(atop(pa), &pg);
221	if (bank == UVM_PHYSSEG_TYPE_INVALID)
222		return NULL;
223	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
224}
225
226/*
227 * Insert PTE into page table.
228 */
229static inline int
230pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
231{
232	int seg = STIDX(va), ptn = PTIDX(va);
233	u_int oldpte;
234
235	if (!pm->pm_ptbl[seg]) {
236		/* Don't allocate a page to clear a non-existent mapping. */
237		if (!pte)
238			return 0;
239
240		vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
241		    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
242
243		if (__predict_false(km == 0))
244			return ENOMEM;
245
246		pm->pm_ptbl[seg] = (u_int *)km;
247	}
248	oldpte = pm->pm_ptbl[seg][ptn];
249	pm->pm_ptbl[seg][ptn] = pte;
250
251	/* Flush entry. */
252	ppc4xx_tlb_flush(va, pm->pm_ctx);
253	if (oldpte != pte) {
254		if (pte == 0)
255			pm->pm_stats.resident_count--;
256		else
257			pm->pm_stats.resident_count++;
258	}
259	return 0;
260}
261
262/*
263 * Get a pointer to a PTE in a page table.
264 */
265volatile u_int *
266pte_find(struct pmap *pm, vaddr_t va)
267{
268	int seg = STIDX(va), ptn = PTIDX(va);
269
270	if (pm->pm_ptbl[seg])
271		return &pm->pm_ptbl[seg][ptn];
272
273	return NULL;
274}
275
276/*
277 * This is called during initppc, before the system is really initialized.
278 */
279void
280pmap_bootstrap(u_int kernelstart, u_int kernelend)
281{
282	struct mem_region *mp, *mp1;
283	int cnt, i;
284	u_int s, e, sz;
285
286	tlbnext = tlb_nreserved;
287
288	/*
289	 * Allocate the kernel page table at the end of
290	 * kernel space so it's in the locked TTE.
291	 */
292	kernmap = (void *)kernelend;
293
294	/*
295	 * Initialize kernel page table.
296	 */
297	for (i = 0; i < STSZ; i++)
298		pmap_kernel()->pm_ptbl[i] = NULL;
299	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
300
301	/*
302	 * Announce page-size to the VM-system
303	 */
304	uvmexp.pagesize = NBPG;
305	uvm_md_init();
306
307	/*
308	 * Get memory.
309	 */
310	mem_regions(&mem, &avail);
311	for (mp = mem; mp->size; mp++) {
312		physmem += btoc(mp->size);
313		printf("+%lx,", mp->size);
314	}
315	printf("\n");
316	ppc4xx_tlb_init();
317	/*
318	 * Count the number of available entries.
319	 */
320	for (cnt = 0, mp = avail; mp->size; mp++)
321		cnt++;
322
323	/*
324	 * Page align all regions.
325	 * Non-page aligned memory isn't very interesting to us.
326	 * Also, sort the entries for ascending addresses.
327	 */
328	kernelstart &= ~PGOFSET;
329	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
330	for (mp = avail; mp->size; mp++) {
331		s = mp->start;
332		e = mp->start + mp->size;
333		printf("%08x-%08x -> ", s, e);
334		/*
335		 * Check whether this region holds all of the kernel.
336		 */
337		if (s < kernelstart && e > kernelend) {
338			avail[cnt].start = kernelend;
339			avail[cnt++].size = e - kernelend;
340			e = kernelstart;
341		}
342		/*
343		 * Look whether this regions starts within the kernel.
344		 */
345		if (s >= kernelstart && s < kernelend) {
346			if (e <= kernelend)
347				goto empty;
348			s = kernelend;
349		}
350		/*
351		 * Now look whether this region ends within the kernel.
352		 */
353		if (e > kernelstart && e <= kernelend) {
354			if (s >= kernelstart)
355				goto empty;
356			e = kernelstart;
357		}
358		/*
359		 * Now page align the start and size of the region.
360		 */
361		s = round_page(s);
362		e = trunc_page(e);
363		if (e < s)
364			e = s;
365		sz = e - s;
366		printf("%08x-%08x = %x\n", s, e, sz);
367		/*
368		 * Check whether some memory is left here.
369		 */
370		if (sz == 0) {
371 empty:
372			memmove(mp, mp + 1,
373			    (cnt - (mp - avail)) * sizeof(*mp));
374			cnt--;
375			mp--;
376			continue;
377		}
378		/*
379		 * Do an insertion sort.
380		 */
381		npgs += btoc(sz);
382		for (mp1 = avail; mp1 < mp; mp1++)
383			if (s < mp1->start)
384				break;
385		if (mp1 < mp) {
386			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
387			mp1->start = s;
388			mp1->size = sz;
389		} else {
390			mp->start = s;
391			mp->size = sz;
392		}
393	}
394
395	/*
396	 * We cannot do pmap_steal_memory here,
397	 * since we don't run with translation enabled yet.
398	 */
399#ifndef MSGBUFADDR
400	/*
401	 * allow for msgbuf
402	 */
403	sz = round_page(MSGBUFSIZE);
404	mp = NULL;
405	for (mp1 = avail; mp1->size; mp1++)
406		if (mp1->size >= sz)
407			mp = mp1;
408	if (mp == NULL)
409		panic("not enough memory?");
410
411	npgs -= btoc(sz);
412	msgbuf_paddr = mp->start + mp->size - sz;
413	mp->size -= sz;
414	if (mp->size <= 0)
415		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
416#endif
417
418	for (mp = avail; mp->size; mp++)
419		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
420		    atop(mp->start), atop(mp->start + mp->size),
421		    VM_FREELIST_DEFAULT);
422
423	/*
424	 * Initialize kernel pmap and hardware.
425	 */
426	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
427	pmap_kernel()->pm_ctx = KERNEL_PID;
428	nextavail = avail->start;
429
430	pmap_bootstrap_done = 1;
431}
432
433/*
434 * Restrict given range to physical memory
435 *
436 * (Used by /dev/mem)
437 */
438void
439pmap_real_memory(paddr_t *start, psize_t *size)
440{
441	struct mem_region *mp;
442
443	for (mp = mem; mp->size; mp++) {
444		if (*start + *size > mp->start &&
445		    *start < mp->start + mp->size) {
446			if (*start < mp->start) {
447				*size -= mp->start - *start;
448				*start = mp->start;
449			}
450			if (*start + *size > mp->start + mp->size)
451				*size = mp->start + mp->size - *start;
452			return;
453		}
454	}
455	*size = 0;
456}
457
458/*
459 * Initialize anything else for pmap handling.
460 * Called during vm_init().
461 */
462void
463pmap_init(void)
464{
465	struct pv_entry *pv;
466	vsize_t sz;
467	vaddr_t addr;
468	int bank, i, s;
469	char *attr;
470
471	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
472	sz = round_page(sz);
473	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
474
475	s = splvm();
476
477	pv = pv_table = (struct pv_entry *)addr;
478	for (i = npgs; --i >= 0;)
479		pv++->pv_pm = NULL;
480	pmap_attrib = (char *)pv;
481	memset(pv, 0, npgs);
482
483	pv = pv_table;
484	attr = pmap_attrib;
485	for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
486	     bank = uvm_physseg_get_next(bank)) {
487		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
488		uvm_physseg_get_pmseg(bank)->pvent = pv;
489		uvm_physseg_get_pmseg(bank)->attrs = attr;
490		pv += sz;
491		attr += sz;
492	}
493
494	pmap_initialized = 1;
495
496	splx(s);
497
498	/* Setup a pool for additional pvlist structures */
499	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
500	    NULL, IPL_VM);
501}
502
503/*
504 * How much virtual space is available to the kernel?
505 */
506void
507pmap_virtual_space(vaddr_t *start, vaddr_t *end)
508{
509
510	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
511	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
512}
513
514#ifdef PMAP_GROWKERNEL
515/*
516 * Preallocate kernel page tables to a specified VA.
517 * This simply loops through the first TTE for each
518 * page table from the beginning of the kernel pmap,
519 * reads the entry, and if the result is
520 * zero (either invalid entry or no page table) it stores
521 * a zero there, populating page tables in the process.
522 * This is not the most efficient technique but i don't
523 * expect it to be called that often.
524 */
525extern struct vm_page *vm_page_alloc1(void);
526extern void vm_page_free1(struct vm_page *);
527
528vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
529
530vaddr_t
531pmap_growkernel(vaddr_t maxkvaddr)
532{
533	struct pmap *pm = pmap_kernel();
534	paddr_t pg;
535	int seg, s;
536
537	s = splvm();
538
539	/* Align with the start of a page table */
540	for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
541		seg = STIDX(kbreak);
542
543		if (pte_find(pm, kbreak))
544			continue;
545
546		if (uvm.page_init_done)
547			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
548		else if (!uvm_page_physget(&pg))
549			panic("pmap_growkernel: no memory");
550		if (!pg)
551			panic("pmap_growkernel: no pages");
552		pmap_zero_page((paddr_t)pg);
553
554		/* XXX This is based on all phymem being addressable */
555		pm->pm_ptbl[seg] = (u_int *)pg;
556	}
557
558	splx(s);
559
560	return kbreak;
561}
562
563/*
564 *	vm_page_alloc1:
565 *
566 *	Allocate and return a memory cell with no associated object.
567 */
568struct vm_page *
569vm_page_alloc1(void)
570{
571	struct vm_page *pg;
572
573	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
574	if (pg) {
575		pg->wire_count = 1;	/* no mappings yet */
576		pg->flags &= ~PG_BUSY;	/* never busy */
577	}
578	return pg;
579}
580
581/*
582 *	vm_page_free1:
583 *
584 *	Returns the given page to the free list,
585 *	disassociating it with any VM object.
586 *
587 *	Object and page must be locked prior to entry.
588 */
589void
590vm_page_free1(struct vm_page *pg)
591{
592
593	KASSERTMSG(pg->flags == (PG_CLEAN | PG_FAKE),
594	    "invalid page pg = %p, pa = %" PRIxPADDR,
595	    pg, VM_PAGE_TO_PHYS(pg));
596
597	pg->flags |= PG_BUSY;
598	pg->wire_count = 0;
599	uvm_pagefree(pg);
600}
601#endif
602
603/*
604 * Create and return a physical map.
605 */
606struct pmap *
607pmap_create(void)
608{
609	struct pmap *pm;
610
611	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
612	memset(pm, 0, sizeof(*pm));
613	pm->pm_refs = 1;
614	return pm;
615}
616
617/*
618 * Add a reference to the given pmap.
619 */
620void
621pmap_reference(struct pmap *pm)
622{
623
624	pm->pm_refs++;
625}
626
627/*
628 * Retire the given pmap from service.
629 * Should only be called if the map contains no valid mappings.
630 */
631void
632pmap_destroy(struct pmap *pm)
633{
634	int i;
635
636	if (--pm->pm_refs > 0)
637		return;
638	KASSERT(pm->pm_stats.resident_count == 0);
639	KASSERT(pm->pm_stats.wired_count == 0);
640	for (i = 0; i < STSZ; i++)
641		if (pm->pm_ptbl[i]) {
642			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
643			    PAGE_SIZE, UVM_KMF_WIRED);
644			pm->pm_ptbl[i] = NULL;
645		}
646	if (pm->pm_ctx)
647		ctx_free(pm);
648	kmem_free(pm, sizeof(*pm));
649}
650
651/*
652 * Copy the range specified by src_addr/len
653 * from the source map to the range dst_addr/len
654 * in the destination map.
655 *
656 * This routine is only advisory and need not do anything.
657 */
658void
659pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
660	  vsize_t len, vaddr_t src_addr)
661{
662}
663
664/*
665 * Require that all active physical maps contain no
666 * incorrect entries NOW.
667 */
668void
669pmap_update(struct pmap *pmap)
670{
671}
672
673/*
674 * Fill the given physical page with zeroes.
675 */
676void
677pmap_zero_page(paddr_t pa)
678{
679	int i;
680
681#ifdef PPC_4XX_NOCACHE
682	memset((void *)pa, 0, PAGE_SIZE);
683#else
684
685	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
686		__asm volatile ("dcbz 0,%0" : : "r" (pa));
687		pa += CACHELINESIZE;
688	}
689#endif
690}
691
692/*
693 * Copy the given physical source page to its destination.
694 */
695void
696pmap_copy_page(paddr_t src, paddr_t dst)
697{
698
699	memcpy((void *)dst, (void *)src, PAGE_SIZE);
700	dcache_wbinv_page(dst);
701}
702
703static inline int
704pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
705{
706	struct pv_entry *pv, *npv;
707	int s;
708
709	KASSERT(pmap_initialized);
710
711	s = splvm();
712
713	pv = pa_to_pv(pa);
714	if (!pv->pv_pm) {
715		/*
716		 * No entries yet, use header as the first entry.
717		 */
718		pv->pv_va = va;
719		pv->pv_pm = pm;
720		pv->pv_next = NULL;
721	} else {
722		/*
723		 * There is at least one other VA mapping this page.
724		 * Place this entry after the header.
725		 */
726		npv = pool_get(&pv_pool, PR_NOWAIT);
727		if (npv == NULL) {
728			if ((flags & PMAP_CANFAIL) == 0)
729				panic("pmap_enter_pv: failed");
730			splx(s);
731			return ENOMEM;
732		}
733		npv->pv_va = va;
734		npv->pv_pm = pm;
735		npv->pv_next = pv->pv_next;
736		pv->pv_next = npv;
737		pv = npv;
738	}
739	if (flags & PMAP_WIRED) {
740		PV_WIRE(pv);
741		pm->pm_stats.wired_count++;
742	}
743
744	splx(s);
745
746	return 0;
747}
748
749static void
750pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
751{
752	struct pv_entry *pv, *npv;
753
754	/*
755	 * Remove from the PV table.
756	 */
757	pv = pa_to_pv(pa);
758	if (!pv)
759		return;
760
761	/*
762	 * If it is the first entry on the list, it is actually
763	 * in the header and we must copy the following entry up
764	 * to the header.  Otherwise we must search the list for
765	 * the entry.  In either case we free the now unused entry.
766	 */
767	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
768		if (PV_ISWIRED(pv))
769			pm->pm_stats.wired_count--;
770		if ((npv = pv->pv_next)) {
771			*pv = *npv;
772			pool_put(&pv_pool, npv);
773		} else
774			pv->pv_pm = NULL;
775	} else {
776		for (; (npv = pv->pv_next) != NULL; pv = npv)
777			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
778				break;
779		if (npv) {
780			pv->pv_next = npv->pv_next;
781			if (PV_ISWIRED(npv)) {
782				pm->pm_stats.wired_count--;
783			}
784			pool_put(&pv_pool, npv);
785		}
786	}
787}
788
789/*
790 * Insert physical page at pa into the given pmap at virtual address va.
791 */
792int
793pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
794{
795	u_int tte;
796	bool managed;
797	int s;
798
799	/*
800	 * Have to remove any existing mapping first.
801	 */
802	pmap_remove(pm, va, va + PAGE_SIZE);
803
804	if (flags & PMAP_WIRED)
805		flags |= prot;
806
807	managed = uvm_pageismanaged(pa);
808
809	/*
810	 * Generate TTE.
811	 */
812	tte = TTE_PA(pa);
813	/* XXXX -- need to support multiple page sizes. */
814	tte |= TTE_SZ_16K;
815
816	KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
817	    (PMAP_NOCACHE | PME_WRITETHROUG));
818
819	if (flags & PMAP_NOCACHE) {
820		/* Must be I/O mapping */
821		tte |= TTE_I | TTE_G;
822	}
823#ifdef PPC_4XX_NOCACHE
824	tte |= TTE_I;
825#else
826	else if (flags & PME_WRITETHROUG) {
827		/* Uncached and writethrough are not compatible */
828		tte |= TTE_W;
829	}
830#endif
831
832	if (pm == pmap_kernel())
833		tte |= TTE_ZONE(ZONE_PRIV);
834	else
835		tte |= TTE_ZONE(ZONE_USER);
836
837	if (flags & VM_PROT_WRITE)
838		tte |= TTE_WR;
839
840	if (flags & VM_PROT_EXECUTE)
841		tte |= TTE_EX;
842
843	/*
844	 * Now record mapping for later back-translation.
845	 */
846	if (pmap_initialized && managed) {
847		char *attr;
848
849		if (pmap_enter_pv(pm, va, pa, flags)) {
850			/* Could not enter pv on a managed page */
851			return ENOMEM;
852		}
853
854		/* Now set attributes. */
855		attr = pa_to_attr(pa);
856		KASSERT(attr);
857		if (flags & VM_PROT_ALL)
858			*attr |= PMAP_ATTR_REF;
859		if (flags & VM_PROT_WRITE)
860			*attr |= PMAP_ATTR_CHG;
861	}
862
863	s = splvm();
864
865	/* Insert page into page table. */
866	if (__predict_false(pte_enter(pm, va, tte))) {
867		if (__predict_false((flags & PMAP_CANFAIL) == 0))
868			panic("%s: pte_enter", __func__);
869		splx(s);
870		return ENOMEM;
871	}
872
873	/* If this is a real fault, enter it in the tlb */
874	if (tte && ((flags & PMAP_WIRED) == 0)) {
875		int s2 = splhigh();
876		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
877		splx(s2);
878	}
879
880	splx(s);
881
882	/* Flush the real memory from the instruction cache. */
883	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
884		__syncicache((void *)pa, PAGE_SIZE);
885
886	return 0;
887}
888
889void
890pmap_unwire(struct pmap *pm, vaddr_t va)
891{
892	struct pv_entry *pv;
893	paddr_t pa;
894	int s;
895
896	if (!pmap_extract(pm, va, &pa))
897		return;
898
899	pv = pa_to_pv(pa);
900	if (!pv)
901		return;
902
903	s = splvm();
904
905	while (pv != NULL) {
906		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
907			if (PV_ISWIRED(pv)) {
908				PV_UNWIRE(pv);
909				pm->pm_stats.wired_count--;
910			}
911			break;
912		}
913		pv = pv->pv_next;
914	}
915
916	splx(s);
917}
918
919void
920pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
921{
922	struct pmap *pm = pmap_kernel();
923	u_int tte;
924	int s;
925
926	/*
927	 * Generate TTE.
928	 *
929	 * XXXX
930	 *
931	 * Since the kernel does not handle execution privileges properly,
932	 * we will handle read and execute permissions together.
933	 */
934	tte = 0;
935	if (prot & VM_PROT_ALL) {
936		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
937		/* XXXX -- need to support multiple page sizes. */
938		tte |= TTE_SZ_16K;
939
940		KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
941		    (PMAP_NOCACHE | PME_WRITETHROUG));
942
943		if (flags & PMAP_NOCACHE)
944			/* Must be I/O mapping */
945			tte |= TTE_I | TTE_G;
946#ifdef PPC_4XX_NOCACHE
947		tte |= TTE_I;
948#else
949		else if (prot & PME_WRITETHROUG) {
950			/* Uncached and writethrough are not compatible */
951			tte |= TTE_W;
952		}
953#endif
954		if (prot & VM_PROT_WRITE)
955			tte |= TTE_WR;
956	}
957
958	s = splvm();
959
960	/* Insert page into page table. */
961	if (__predict_false(pte_enter(pm, va, tte)))
962		panic("%s: pte_enter", __func__);
963
964	splx(s);
965}
966
967void
968pmap_kremove(vaddr_t va, vsize_t len)
969{
970
971	while (len > 0) {
972		(void)pte_enter(pmap_kernel(), va, 0);	/* never fail */
973		va += PAGE_SIZE;
974		len -= PAGE_SIZE;
975	}
976}
977
978/*
979 * Remove the given range of mapping entries.
980 */
981void
982pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
983{
984	paddr_t pa;
985	volatile u_int *ptp;
986	int s;
987
988	s = splvm();
989
990	while (va < endva) {
991		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
992			pa = TTE_PA(pa);
993			pmap_remove_pv(pm, va, pa);
994			*ptp = 0;
995			ppc4xx_tlb_flush(va, pm->pm_ctx);
996			pm->pm_stats.resident_count--;
997		}
998		va += PAGE_SIZE;
999	}
1000
1001	splx(s);
1002}
1003
1004/*
1005 * Get the physical page address for the given pmap/virtual address.
1006 */
1007bool
1008pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1009{
1010	int seg = STIDX(va), ptn = PTIDX(va);
1011	u_int pa = 0;
1012	int s;
1013
1014	s = splvm();
1015
1016	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
1017		*pap = TTE_PA(pa) | (va & PGOFSET);
1018
1019	splx(s);
1020
1021	return pa != 0;
1022}
1023
1024/*
1025 * Lower the protection on the specified range of this pmap.
1026 *
1027 * There are only two cases: either the protection is going to 0,
1028 * or it is going to read-only.
1029 */
1030void
1031pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1032{
1033	volatile u_int *ptp;
1034	int s, bic;
1035
1036	if ((prot & VM_PROT_READ) == 0) {
1037		pmap_remove(pm, sva, eva);
1038		return;
1039	}
1040	bic = 0;
1041	if ((prot & VM_PROT_WRITE) == 0)
1042		bic |= TTE_WR;
1043	if ((prot & VM_PROT_EXECUTE) == 0)
1044		bic |= TTE_EX;
1045	if (bic == 0)
1046		return;
1047
1048	s = splvm();
1049
1050	while (sva < eva) {
1051		if ((ptp = pte_find(pm, sva)) != NULL) {
1052			*ptp &= ~bic;
1053			ppc4xx_tlb_flush(sva, pm->pm_ctx);
1054		}
1055		sva += PAGE_SIZE;
1056	}
1057
1058	splx(s);
1059}
1060
1061bool
1062pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1063{
1064	paddr_t pa;
1065	char *attr;
1066	int s, rv;
1067
1068	/*
1069	 * First modify bits in cache.
1070	 */
1071	pa = VM_PAGE_TO_PHYS(pg);
1072	attr = pa_to_attr(pa);
1073	if (attr == NULL)
1074		return false;
1075
1076	s = splvm();
1077
1078	rv = (*attr & mask) != 0;
1079	if (clear) {
1080		*attr &= ~mask;
1081		pmap_page_protect(pg,
1082		    mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1083	}
1084
1085	splx(s);
1086
1087	return rv;
1088}
1089
1090
1091/*
1092 * Lower the protection on the specified physical page.
1093 *
1094 * There are only two cases: either the protection is going to 0,
1095 * or it is going to read-only.
1096 */
1097void
1098pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1099{
1100	struct pv_entry *pvh, *pv, *npv;
1101	struct pmap *pm;
1102	paddr_t pa = VM_PAGE_TO_PHYS(pg);
1103	vaddr_t va;
1104
1105	pvh = pa_to_pv(pa);
1106	if (pvh == NULL)
1107		return;
1108
1109	/* Handle extra pvs which may be deleted in the operation */
1110	for (pv = pvh->pv_next; pv; pv = npv) {
1111		npv = pv->pv_next;
1112
1113		pm = pv->pv_pm;
1114		va = PV_VA(pv);
1115		pmap_protect(pm, va, va + PAGE_SIZE, prot);
1116	}
1117
1118	/* Now check the head pv */
1119	if (pvh->pv_pm) {
1120		pv = pvh;
1121		pm = pv->pv_pm;
1122		va = PV_VA(pv);
1123		pmap_protect(pm, va, va + PAGE_SIZE, prot);
1124	}
1125}
1126
1127/*
1128 * Activate the address space for the specified process.  If the process
1129 * is the current process, load the new MMU context.
1130 */
1131void
1132pmap_activate(struct lwp *l)
1133{
1134#if 0
1135	struct pcb *pcb = lwp_getpcb(l);
1136	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1137
1138	/*
1139	 * XXX Normally performed in cpu_lwp_fork().
1140	 */
1141	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1142	pcb->pcb_pm = pmap;
1143#endif
1144}
1145
1146/*
1147 * Deactivate the specified process's address space.
1148 */
1149void
1150pmap_deactivate(struct lwp *l)
1151{
1152}
1153
1154/*
1155 * Synchronize caches corresponding to [addr, addr+len) in p.
1156 */
1157void
1158pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1159{
1160	struct pmap *pm = p->p_vmspace->vm_map.pmap;
1161
1162	if (__predict_true(p == curproc)) {
1163		int msr, ctx, pid;
1164
1165		/*
1166		 * Take it easy! TLB miss handler takes care of us.
1167		 */
1168
1169		/*
1170	 	 * Need to turn off IMMU and switch to user context.
1171		 * (icbi uses DMMU).
1172		 */
1173
1174		if (!(ctx = pm->pm_ctx)) {
1175			/* No context -- assign it one */
1176			ctx_alloc(pm);
1177			ctx = pm->pm_ctx;
1178		}
1179
1180		__asm volatile (
1181			"mfmsr	%[msr];"
1182			"li	%[pid],0x20;"		/* Turn off IMMU */
1183			"andc	%[pid],%[msr],%[pid];"
1184			"ori	%[pid],%[pid],0x10;" /* Turn on DMMU for sure */
1185			"mtmsr	%[pid];"
1186			"isync;"
1187			MFPID(%[pid])
1188			MTPID(%[ctx])
1189			"isync;"
1190		"1:"
1191			"dcbst	0,%[va];"
1192			"icbi	0,%[va];"
1193			"add	%[va],%[va],%[size];"
1194			"sub.	%[len],%[len],%[size];"
1195			"bge	1b;"
1196			"sync;"
1197			MTPID(%[pid])
1198			"mtmsr	%[msr];"
1199			"isync;"
1200			: [msr] "=&r" (msr), [pid] "=&r" (pid)
1201			: [ctx] "r" (ctx), [va] "r" (va), [len] "r" (len),
1202			  [size] "r" (CACHELINESIZE));
1203	} else {
1204		paddr_t pa;
1205		vaddr_t tva, eva;
1206		int tlen;
1207
1208		/*
1209		 * For p != curproc, we cannot rely upon TLB miss handler in
1210		 * user context. Therefore, extract pa and operate against it.
1211		 *
1212		 * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
1213		 * direct mapping.
1214		 */
1215
1216		for (tva = va; len > 0; tva = eva, len -= tlen) {
1217			eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
1218			tlen = eva - tva;
1219			if (!pmap_extract(pm, tva, &pa)) {
1220				/* XXX should be already unmapped */
1221				continue;
1222			}
1223			__syncicache((void *)pa, tlen);
1224		}
1225	}
1226}
1227
1228static inline void
1229tlb_invalidate_entry(int i)
1230{
1231#ifdef PMAP_TLBDEBUG
1232	/*
1233	 * Clear only TLBHI[V] bit so that we can track invalidated entry.
1234	 */
1235	register_t msr, pid, hi;
1236
1237	KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1238
1239	__asm volatile (
1240		"mfmsr	%[msr];"
1241		"li	%[pid],0;"
1242		"mtmsr	%[pid];"
1243		MFPID(%[pid])
1244		"tlbre	%[hi],%[i],0;"
1245		"andc	%[hi],%[hi],%[valid];"
1246		"tlbwe	%[hi],%[i],0;"
1247		MTPID(%[pid])
1248		"mtmsr	%[msr];"
1249		"isync;"
1250		: [msr] "=&r" (msr), [pid] "=&r" (pid), [hi] "=&r" (hi)
1251		: [i] "r" (i), [valid] "r" (TLB_VALID));
1252#else
1253	/*
1254	 * Just clear entire TLBHI register.
1255	 */
1256	__asm volatile (
1257		"tlbwe	%0,%1,0;"
1258		"isync;"
1259		: : "r" (0), "r" (i));
1260#endif
1261
1262	tlb_info[i].ti_ctx = 0;
1263	tlb_info[i].ti_flags = 0;
1264}
1265
1266/* This has to be done in real mode !!! */
1267void
1268ppc4xx_tlb_flush(vaddr_t va, int pid)
1269{
1270	u_long msr, i, found;
1271
1272	/* If there's no context then it can't be mapped. */
1273	if (!pid)
1274		return;
1275
1276	__asm volatile (
1277		MFPID(%[found])		/* Save PID */
1278		"mfmsr	%[msr];"	/* Save MSR */
1279		"li	%[i],0;"	/* Now clear MSR */
1280		"mtmsr	%[i];"
1281		"isync;"
1282		MTPID(%[pid])		/* Set PID */
1283		"isync;"
1284		"tlbsx.	%[i],0,%[va];"	/* Search TLB */
1285		"isync;"
1286		MTPID(%[found])		/* Restore PID */
1287		"mtmsr	%[msr];"	/* Restore MSR */
1288		"isync;"
1289		"li	%[found],1;"
1290		"beq	1f;"
1291		"li	%[found],0;"
1292	"1:"
1293		: [i] "=&r" (i), [found] "=&r" (found), [msr] "=&r" (msr)
1294		: [va] "r" (va), [pid] "r" (pid));
1295
1296	if (found && !TLB_LOCKED(i)) {
1297		/* Now flush translation */
1298		tlb_invalidate_entry(i);
1299		tlbnext = i;
1300		/* Successful flushes */
1301		tlbflush_ev.ev_count++;
1302	}
1303}
1304
1305void
1306ppc4xx_tlb_flush_all(void)
1307{
1308	u_long i;
1309
1310	for (i = 0; i < NTLB; i++)
1311		if (!TLB_LOCKED(i))
1312			tlb_invalidate_entry(i);
1313
1314	__asm volatile ("isync");
1315}
1316
1317/* Find a TLB entry to evict. */
1318static int
1319ppc4xx_tlb_find_victim(void)
1320{
1321	int flags;
1322
1323	for (;;) {
1324		if (++tlbnext >= NTLB)
1325			tlbnext = tlb_nreserved;
1326		flags = tlb_info[tlbnext].ti_flags;
1327		if (!(flags & TLBF_USED) ||
1328		    (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1329			u_long va, stack = (u_long)&va;
1330
1331			if (!((tlb_info[tlbnext].ti_va ^ stack) &
1332				(~PGOFSET)) &&
1333			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1334			    (flags & TLBF_USED)) {
1335				/* Kernel stack page */
1336				flags |= TLBF_REF;
1337				tlb_info[tlbnext].ti_flags = flags;
1338			} else {
1339				/* Found it! */
1340				return tlbnext;
1341			}
1342		} else
1343			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1344	}
1345}
1346
1347void
1348ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1349{
1350	u_long hi, lo, i;
1351	paddr_t pa;
1352	int msr, pid, sz;
1353
1354	tlbenter_ev.ev_count++;
1355
1356	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1357	pa = (pte & TTE_RPN_MASK(sz));
1358	hi = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1359	lo = (pte & ~TLB_RPN_MASK) | pa;
1360	lo |= ppc4xx_tlbflags(va, pa);
1361
1362	i = ppc4xx_tlb_find_victim();
1363
1364	KASSERTMSG(i >= tlb_nreserved && i < NTLB,
1365	    "invalid entry %ld", i);
1366
1367	tlb_info[i].ti_va = (va & TLB_EPN_MASK);
1368	tlb_info[i].ti_ctx = ctx;
1369	tlb_info[i].ti_flags = TLBF_USED | TLBF_REF;
1370
1371	__asm volatile (
1372		"mfmsr	%[msr];"		/* Save MSR */
1373		"li	%[pid],0;"
1374		"mtmsr	%[pid];"		/* Clear MSR */
1375		"isync;"
1376		"tlbwe	%[pid],%[i],0;"		/* Invalidate old entry. */
1377		MFPID(%[pid])			/* Save old PID */
1378		MTPID(%[ctx])			/* Load translation ctx */
1379		"isync;"
1380		"tlbwe	%[lo],%[i],1;"		/* Set TLB */
1381		"tlbwe	%[hi],%[i],0;"
1382		"isync;"
1383		MTPID(%[pid])			/* Restore PID */
1384		"mtmsr	%[msr];"		/* and MSR */
1385		"isync;"
1386		: [msr] "=&r" (msr), [pid] "=&r" (pid)
1387		: [ctx] "r" (ctx), [i] "r" (i), [lo] "r" (lo), [hi] "r" (hi));
1388}
1389
1390void
1391ppc4xx_tlb_init(void)
1392{
1393	int i;
1394
1395	/* Mark reserved TLB entries */
1396	for (i = 0; i < tlb_nreserved; i++) {
1397		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1398		tlb_info[i].ti_ctx = KERNEL_PID;
1399	}
1400
1401	/* Setup security zones */
1402	/* Z0 - accessible by kernel only if TLB entry permissions allow
1403	 * Z1,Z2 - access is controlled by TLB entry permissions
1404	 * Z3 - full access regardless of TLB entry permissions
1405	 */
1406
1407	__asm volatile (
1408		"mtspr	%0,%1;"
1409		"isync;"
1410		: : "K" (SPR_ZPR), "r" (0x1b000000));
1411}
1412
1413/*
1414 * ppc4xx_tlb_size_mask:
1415 *
1416 * 	Roundup size to supported page size, return TLBHI mask and real size.
1417 */
1418static int
1419ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1420{
1421	int i;
1422
1423	for (i = 0; i < __arraycount(tlbsize); i++)
1424		if (size <= tlbsize[i]) {
1425			*mask = (i << TLB_SIZE_SHFT);
1426			*rsiz = tlbsize[i];
1427			return 0;
1428		}
1429	return EINVAL;
1430}
1431
1432/*
1433 * ppc4xx_tlb_mapiodev:
1434 *
1435 * 	Lookup virtual address of mapping previously entered via
1436 * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
1437 * 	need to waste extra storage for reserved mappings. Note
1438 * 	that reading TLBHI also sets PID, but all reserved mappings
1439 * 	use KERNEL_PID, so the side effect is nil.
1440 */
1441void *
1442ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1443{
1444	paddr_t pa;
1445	vaddr_t va;
1446	u_int lo, hi, sz;
1447	int i;
1448
1449	/* tlb_nreserved is only allowed to grow, so this is safe. */
1450	for (i = 0; i < tlb_nreserved; i++) {
1451		__asm volatile (
1452			"tlbre	%[lo],%[i],1;" 	/* TLBLO */
1453			"tlbre	%[hi],%[i],0;" 	/* TLBHI */
1454			: [lo] "=&r" (lo), [hi] "=&r" (hi)
1455			: [i] "r" (i));
1456
1457		KASSERT(hi & TLB_VALID);
1458		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1459
1460		pa = (lo & TLB_RPN_MASK);
1461		if (base < pa)
1462			continue;
1463
1464		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1465		if (base + len > pa + sz)
1466			continue;
1467
1468		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
1469		return (void *)va;
1470	}
1471
1472	return NULL;
1473}
1474
1475/*
1476 * ppc4xx_tlb_reserve:
1477 *
1478 * 	Map physical range to kernel virtual chunk via reserved TLB entry.
1479 */
1480void
1481ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1482{
1483	u_int lo, hi;
1484	int szmask, rsize;
1485
1486	/* Called before pmap_bootstrap(), va outside kernel space. */
1487	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1488	KASSERT(!pmap_bootstrap_done);
1489	KASSERT(tlb_nreserved < NTLB);
1490
1491	/* Resolve size. */
1492	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1493		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1494		    size, tlb_nreserved);
1495
1496	/* Real size will be power of two >= 1024, so this is OK. */
1497	pa &= ~(rsize - 1); 	/* RPN */
1498	va &= ~(rsize - 1); 	/* EPN */
1499
1500	lo = pa | TLB_WR | flags;
1501	hi = va | TLB_VALID | szmask;
1502
1503#ifdef PPC_4XX_NOCACHE
1504	lo |= TLB_I;
1505#endif
1506
1507	__asm volatile (
1508		"tlbwe	%[lo],%[i],1;"	/* write TLBLO */
1509		"tlbwe	%[hi],%[i],0;"	/* write TLBHI */
1510		"isync;"
1511		: : [i] "r" (tlb_nreserved), [lo] "r" (lo), [hi] "r" (hi));
1512
1513	tlb_nreserved++;
1514}
1515
1516/*
1517 * We should pass the ctx in from trap code.
1518 */
1519int
1520pmap_tlbmiss(vaddr_t va, int ctx)
1521{
1522	volatile u_int *pte;
1523	u_long tte;
1524
1525	tlbmiss_ev.ev_count++;
1526
1527	/*
1528	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1529	 * Physical RAM is expected to live in this range, care must be taken
1530	 * to not clobber 0 upto ${physmem} with device mappings in machdep
1531	 * code.
1532	 */
1533	if (ctx != KERNEL_PID ||
1534	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1535		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1536		if (pte == NULL) {
1537			/*
1538			 * Map unmanaged addresses directly for
1539			 * kernel access
1540			 */
1541			return 1;
1542		}
1543		tte = *pte;
1544		if (tte == 0)
1545			return 1;
1546	} else {
1547		/* Create a 16MB writable mapping. */
1548		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1549#ifdef PPC_4XX_NOCACHE
1550		tte |= TTE_I;
1551#endif
1552	}
1553	ppc4xx_tlb_enter(ctx, va, tte);
1554
1555	return 0;
1556}
1557
1558/*
1559 * Flush all the entries matching a context from the TLB.
1560 */
1561static void
1562ctx_flush(int cnum)
1563{
1564	int i;
1565
1566	/* We gotta steal this context */
1567	for (i = tlb_nreserved; i < NTLB; i++) {
1568		if (tlb_info[i].ti_ctx == cnum) {
1569			/* Can't steal ctx if it has locked/reserved entry. */
1570			KASSERTMSG(!TLB_LOCKED(i) && i >= tlb_nreserved,
1571			    "locked/reserved entry %d for ctx %d",
1572			    i, cnum);
1573			/*
1574			 * Invalidate particular TLB entry regardless of
1575			 * locked status
1576			 */
1577			tlb_invalidate_entry(i);
1578		}
1579	}
1580}
1581
1582/*
1583 * Allocate a context.  If necessary, steal one from someone else.
1584 *
1585 * The new context is flushed from the TLB before returning.
1586 */
1587int
1588ctx_alloc(struct pmap *pm)
1589{
1590	static int next = MINCTX;
1591	int cnum, s;
1592
1593	KASSERT(pm != pmap_kernel());
1594
1595	s = splvm();
1596
1597	/* Find a likely context. */
1598	cnum = next;
1599	do {
1600		if (++cnum >= NUMCTX)
1601			cnum = MINCTX;
1602	} while (ctxbusy[cnum] != NULL && cnum != next);
1603
1604	/* Now clean it out */
1605	if (cnum < MINCTX)
1606		cnum = MINCTX; /* Never steal ctx 0 or 1 */
1607	ctx_flush(cnum);
1608
1609	if (ctxbusy[cnum]) {
1610#ifdef DEBUG
1611		/* We should identify this pmap and clear it */
1612		printf("Warning: stealing context %d\n", cnum);
1613#endif
1614		ctxbusy[cnum]->pm_ctx = 0;
1615	}
1616	ctxbusy[cnum] = pm;
1617	next = cnum;
1618
1619	splx(s);
1620
1621	pm->pm_ctx = cnum;
1622
1623	return cnum;
1624}
1625
1626/*
1627 * Give away a context.
1628 */
1629void
1630ctx_free(struct pmap *pm)
1631{
1632	int oldctx;
1633
1634	oldctx = pm->pm_ctx;
1635
1636	if (oldctx == 0)
1637		panic("ctx_free: freeing kernel context");
1638
1639	KASSERTMSG(ctxbusy[oldctx] == pm,
1640	    "ctxbusy[%d] = %p, pm->pm_ctx = %p",
1641	    oldctx, ctxbusy[oldctx], pm);
1642
1643	/* We should verify it has not been stolen and reallocated... */
1644	ctxbusy[oldctx] = NULL;
1645	ctx_flush(oldctx);
1646}
1647
1648#ifdef DEBUG
1649/*
1650 * Test ref/modify handling.
1651 */
1652void pmap_testout(void);
1653void
1654pmap_testout(void)
1655{
1656	struct vm_page *pg;
1657	vaddr_t va;
1658	paddr_t pa;
1659	volatile int *loc;
1660	int ref, mod, val = 0;
1661
1662	/* Allocate a page */
1663	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1664	    UVM_KMF_WIRED | UVM_KMF_ZERO);
1665	loc = (int *)va;
1666
1667	pmap_extract(pmap_kernel(), va, &pa);
1668	pg = PHYS_TO_VM_PAGE(pa);
1669	pmap_unwire(pmap_kernel(), va);
1670
1671	pmap_kremove(va, PAGE_SIZE);
1672	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1673	pmap_update(pmap_kernel());
1674
1675	/* Now clear reference and modify */
1676	ref = pmap_clear_reference(pg);
1677	mod = pmap_clear_modify(pg);
1678	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1679	    (void *)(u_long)va, (long)pa, ref, mod);
1680
1681	/* Check it's properly cleared */
1682	ref = pmap_is_referenced(pg);
1683	mod = pmap_is_modified(pg);
1684	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1685
1686	/* Reference page */
1687	val = *loc;
1688
1689	ref = pmap_is_referenced(pg);
1690	mod = pmap_is_modified(pg);
1691	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1692
1693	/* Now clear reference and modify */
1694	ref = pmap_clear_reference(pg);
1695	mod = pmap_clear_modify(pg);
1696	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1697	    (void *)(u_long)va, (long)pa, ref, mod);
1698
1699	/* Modify page */
1700	*loc = 1;
1701
1702	ref = pmap_is_referenced(pg);
1703	mod = pmap_is_modified(pg);
1704	printf("Modified page: ref %d, mod %d\n", ref, mod);
1705
1706	/* Now clear reference and modify */
1707	ref = pmap_clear_reference(pg);
1708	mod = pmap_clear_modify(pg);
1709	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1710	    (void *)(u_long)va, (long)pa, ref, mod);
1711
1712	/* Check it's properly cleared */
1713	ref = pmap_is_referenced(pg);
1714	mod = pmap_is_modified(pg);
1715	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1716
1717	/* Modify page */
1718	*loc = 1;
1719
1720	ref = pmap_is_referenced(pg);
1721	mod = pmap_is_modified(pg);
1722	printf("Modified page: ref %d, mod %d\n", ref, mod);
1723
1724	/* Check pmap_protect() */
1725	pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_READ);
1726	pmap_update(pmap_kernel());
1727	ref = pmap_is_referenced(pg);
1728	mod = pmap_is_modified(pg);
1729	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
1730
1731	/* Now clear reference and modify */
1732	ref = pmap_clear_reference(pg);
1733	mod = pmap_clear_modify(pg);
1734	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1735	    (void *)(u_long)va, (long)pa, ref, mod);
1736
1737	/* Reference page */
1738	val = *loc;
1739
1740	ref = pmap_is_referenced(pg);
1741	mod = pmap_is_modified(pg);
1742	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1743
1744	/* Now clear reference and modify */
1745	ref = pmap_clear_reference(pg);
1746	mod = pmap_clear_modify(pg);
1747	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1748	    (void *)(u_long)va, (long)pa, ref, mod);
1749
1750	/* Modify page */
1751#if 0
1752	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1753	pmap_update(pmap_kernel());
1754#endif
1755	*loc = 1;
1756
1757	ref = pmap_is_referenced(pg);
1758	mod = pmap_is_modified(pg);
1759	printf("Modified page: ref %d, mod %d\n", ref, mod);
1760
1761	/* Check pmap_protect() */
1762	pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_NONE);
1763	pmap_update(pmap_kernel());
1764	ref = pmap_is_referenced(pg);
1765	mod = pmap_is_modified(pg);
1766	printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
1767
1768	/* Now clear reference and modify */
1769	ref = pmap_clear_reference(pg);
1770	mod = pmap_clear_modify(pg);
1771	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1772	    (void *)(u_long)va, (long)pa, ref, mod);
1773
1774	/* Reference page */
1775	val = *loc;
1776
1777	ref = pmap_is_referenced(pg);
1778	mod = pmap_is_modified(pg);
1779	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1780
1781	/* Now clear reference and modify */
1782	ref = pmap_clear_reference(pg);
1783	mod = pmap_clear_modify(pg);
1784	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1785	    (void *)(u_long)va, (long)pa, ref, mod);
1786
1787	/* Modify page */
1788#if 0
1789	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1790	pmap_update(pmap_kernel());
1791#endif
1792	*loc = 1;
1793
1794	ref = pmap_is_referenced(pg);
1795	mod = pmap_is_modified(pg);
1796	printf("Modified page: ref %d, mod %d\n", ref, mod);
1797
1798	/* Check pmap_pag_protect() */
1799	pmap_page_protect(pg, VM_PROT_READ);
1800	ref = pmap_is_referenced(pg);
1801	mod = pmap_is_modified(pg);
1802	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
1803
1804	/* Now clear reference and modify */
1805	ref = pmap_clear_reference(pg);
1806	mod = pmap_clear_modify(pg);
1807	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1808	    (void *)(u_long)va, (long)pa, ref, mod);
1809
1810	/* Reference page */
1811	val = *loc;
1812
1813	ref = pmap_is_referenced(pg);
1814	mod = pmap_is_modified(pg);
1815	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1816
1817	/* Now clear reference and modify */
1818	ref = pmap_clear_reference(pg);
1819	mod = pmap_clear_modify(pg);
1820	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1821	    (void *)(u_long)va, (long)pa, ref, mod);
1822
1823	/* Modify page */
1824#if 0
1825	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1826	pmap_update(pmap_kernel());
1827#endif
1828	*loc = 1;
1829
1830	ref = pmap_is_referenced(pg);
1831	mod = pmap_is_modified(pg);
1832	printf("Modified page: ref %d, mod %d\n", ref, mod);
1833
1834	/* Check pmap_pag_protect() */
1835	pmap_page_protect(pg, VM_PROT_NONE);
1836	ref = pmap_is_referenced(pg);
1837	mod = pmap_is_modified(pg);
1838	printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
1839
1840	/* Now clear reference and modify */
1841	ref = pmap_clear_reference(pg);
1842	mod = pmap_clear_modify(pg);
1843	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1844	    (void *)(u_long)va, (long)pa, ref, mod);
1845
1846
1847	/* Reference page */
1848	val = *loc;
1849
1850	ref = pmap_is_referenced(pg);
1851	mod = pmap_is_modified(pg);
1852	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1853
1854	/* Now clear reference and modify */
1855	ref = pmap_clear_reference(pg);
1856	mod = pmap_clear_modify(pg);
1857	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1858	    (void *)(u_long)va, (long)pa, ref, mod);
1859
1860	/* Modify page */
1861#if 0
1862	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1863	pmap_update(pmap_kernel());
1864#endif
1865	*loc = 1;
1866
1867	ref = pmap_is_referenced(pg);
1868	mod = pmap_is_modified(pg);
1869	printf("Modified page: ref %d, mod %d\n", ref, mod);
1870
1871	/* Unmap page */
1872	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1873	pmap_update(pmap_kernel());
1874	ref = pmap_is_referenced(pg);
1875	mod = pmap_is_modified(pg);
1876	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1877
1878	/* Now clear reference and modify */
1879	ref = pmap_clear_reference(pg);
1880	mod = pmap_clear_modify(pg);
1881	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1882	    (void *)(u_long)va, (long)pa, ref, mod);
1883
1884	/* Check it's properly cleared */
1885	ref = pmap_is_referenced(pg);
1886	mod = pmap_is_modified(pg);
1887	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1888
1889	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1890	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1891	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1892}
1893#endif
1894