zs.c revision 1.7
1/*	$NetBSD: zs.c,v 1.7 1995/06/28 04:30:42 cgd Exp $	*/
2
3/*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 *    must display the following acknowledgement:
28 *	This product includes software developed by the University of
29 *	California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 *    may be used to endorse or promote products derived from this software
32 *    without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47 */
48
49/*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56#include <sys/param.h>
57#include <sys/proc.h>
58#include <sys/device.h>
59#include <sys/conf.h>
60#include <sys/file.h>
61#include <sys/ioctl.h>
62#include <sys/tty.h>
63#include <sys/time.h>
64#include <sys/kernel.h>
65#include <sys/syslog.h>
66
67#include <machine/cpu.h>
68#include <machine/iomap.h>
69#include <machine/scu.h>
70#include <machine/mfp.h>
71
72#include <dev/ic/z8530reg.h>
73#include <atari/dev/zsvar.h>
74#include "zs.h"
75#if NZS > 1
76#error "This driver supports only 1 85C30!"
77#endif
78
79#if NZS > 0
80
81#define PCLK	(8000000)	/* PCLK pin input clock rate */
82
83#define splzs	spl5
84
85/*
86 * Software state per found chip.
87 */
88struct zs_softc {
89    struct	device		zi_dev;    /* base device		  */
90    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
91    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
92};
93
94/*
95 * Define the registers for a closed port
96 */
97static u_char zs_init_regs[16] = {
98/*  0 */	0,
99/*  1 */	0,
100/*  2 */	0x60,
101/*  3 */	0,
102/*  4 */	0,
103/*  5 */	0,
104/*  6 */	0,
105/*  7 */	0,
106/*  8 */	0,
107/*  9 */	ZSWR9_VECTOR_INCL_STAT,
108/* 10 */	ZSWR10_NRZ,
109/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
110/* 12 */	0,
111/* 13 */	0,
112/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
113/* 15 */	0
114};
115
116/*
117 * Define the machine dependant clock frequencies
118 * If BRgen feeds sender/receiver we always use a
119 * divisor 16, therefor the division by 16 can as
120 * well be done here.
121 */
122static u_long zs_freqs_tt[] = {
123	/*
124	 * Atari TT, RTxCB is generated by TT-MFP timer C,
125	 * which is set to 307.2KHz during initialisation
126	 * and never changed afterwards.
127	 */
128	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
129	 229500,	/* BRgen, RTxCA, divisor 16	*/
130	3672000,	/* RTxCA, from PCLK4		*/
131	      0,	/* TRxCA, external		*/
132
133	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134	  19200,	/* BRgen, RTxCB, divisor 16	*/
135	 307200,	/* RTxCB, from TT-MFP TCO	*/
136	2457600		/* TRxCB, from BCLK		*/
137};
138static u_long zs_freqs_falcon[] = {
139	/*
140	 * Atari Falcon, XXX no specs available, this might be wrong
141	 */
142	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
143	 229500,	/* BRgen, RTxCA, divisor 16	*/
144	3672000,	/* RTxCA, ???			*/
145	      0,	/* TRxCA, external		*/
146
147	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
148	 229500,	/* BRgen, RTxCB, divisor 16	*/
149	3672000,	/* RTxCB, ???			*/
150	2457600		/* TRxCB, ???			*/
151};
152static u_long zs_freqs_generic[] = {
153	/*
154	 * other machines, assume only PCLK is available
155	 */
156	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
157	      0,	/* BRgen, RTxCA, divisor 16	*/
158	      0,	/* RTxCA, unknown		*/
159	      0,	/* TRxCA, unknown		*/
160
161	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
162	      0,	/* BRgen, RTxCB, divisor 16	*/
163	      0,	/* RTxCB, unknown		*/
164	      0		/* TRxCB, unknown		*/
165};
166static u_long *zs_frequencies;
167
168/* Definition of the driver for autoconfig. */
169static int	zsmatch __P((struct device *, struct cfdata *, void *));
170static void	zsattach __P((struct device *, struct device *, void *));
171struct cfdriver zscd = {
172	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
173	sizeof(struct zs_softc), NULL, 0 };
174
175/* Interrupt handlers. */
176int		zshard __P((long));
177static int	zssoft __P((long));
178static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
179static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
180static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
181
182static struct zs_chanstate *zslist;
183
184/* Routines called from other code. */
185static void	zsstart __P((struct tty *));
186void		zsstop __P((struct tty *, int));
187static int	zsparam __P((struct tty *, struct termios *));
188static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
189
190/* Routines purely local to this driver. */
191static void	zs_reset __P((volatile struct zschan *, int, int));
192static int	zs_modem __P((struct zs_chanstate *, int, int));
193static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
194
195static int zsshortcuts;	/* number of "shortcut" software interrupts */
196
197static int
198zsmatch(pdp, cfp, auxp)
199struct device	*pdp;
200struct cfdata	*cfp;
201void		*auxp;
202{
203	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
204		return(0);
205	return(1);
206}
207
208/*
209 * Attach a found zs.
210 */
211static void
212zsattach(parent, dev, aux)
213struct device	*parent;
214struct device	*dev;
215void		*aux;
216{
217	register struct zs_softc		*zi;
218	register struct zs_chanstate		*cs;
219	register volatile struct zsdevice	*addr;
220	register struct tty			*tp;
221		 char				tmp;
222
223	addr      = (struct zsdevice *)AD_SCC;
224	zi        = (struct zs_softc *)dev;
225	zi->zi_zs = addr;
226	cs        = zi->zi_cs;
227
228	/*
229	 * Get the command register into a known state.
230	 */
231	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
232	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
233	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
234	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
235
236	/*
237	 * Do a hardware reset.
238	 */
239	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
240	delay(50000);	/*enough ? */
241	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
242
243	/*
244	 * Initialize both channels
245	 */
246	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
247	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
248
249	if(machineid & ATARI_TT) {
250		/*
251		 * ininitialise TT-MFP timer C: 307200Hz
252		 * timer C and D share one control register:
253		 *	bits 0-2 control timer D
254		 *	bits 4-6 control timer C
255		 */
256		int cr = MFP2->mf_tcdcr & 7;
257		MFP2->mf_tcdcr = cr;		/* stop timer C  */
258		MFP2->mf_tcdr  = 1;		/* counter 1     */
259		cr |= T_Q004 << 4;		/* divisor 4     */
260		MFP2->mf_tcdcr = cr;		/* start timer C */
261		/*
262		 * enable scc related interrupts
263		 */
264		SCU->sys_mask |= SCU_SCC;
265
266		zs_frequencies = zs_freqs_tt;
267	} else if (machineid & ATARI_FALCON) {
268		zs_frequencies = zs_freqs_falcon;
269	} else {
270		zs_frequencies = zs_freqs_generic;
271	}
272
273	/* link into interrupt list with order (A,B) (B=A+1) */
274	cs[0].cs_next = &cs[1];
275	cs[1].cs_next = zslist;
276	zslist        = cs;
277
278	cs->cs_unit  = 0;
279	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
280	cs++;
281	cs->cs_unit  = 1;
282	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
283
284	printf(": serial2 on channel a and modem2 on channel b\n");
285}
286
287/*
288 * Open a zs serial port.
289 */
290int
291zsopen(dev, flags, mode, p)
292dev_t		dev;
293int		flags;
294int		mode;
295struct proc	*p;
296{
297	register struct tty		*tp;
298	register struct zs_chanstate	*cs;
299		 struct zs_softc	*zi;
300		 int			unit = ZS_UNIT(dev);
301		 int			zs = unit >> 1;
302		 int			error, s;
303
304	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
305		return (ENXIO);
306	cs = &zi->zi_cs[unit & 1];
307	tp = cs->cs_ttyp;
308	if(tp == NULL) {
309		cs->cs_ttyp  = tp = ttymalloc();
310		tp->t_dev    = dev;
311		tp->t_oproc  = zsstart;
312		tp->t_param  = zsparam;
313	}
314
315	s  = spltty();
316	if((tp->t_state & TS_ISOPEN) == 0) {
317		ttychars(tp);
318		if(tp->t_ispeed == 0) {
319			tp->t_iflag = TTYDEF_IFLAG;
320			tp->t_oflag = TTYDEF_OFLAG;
321			tp->t_cflag = TTYDEF_CFLAG;
322			tp->t_lflag = TTYDEF_LFLAG;
323			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
324		}
325		(void)zsparam(tp, &tp->t_termios);
326		ttsetwater(tp);
327	}
328	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
329			splx(s);
330			return (EBUSY);
331	}
332	error = 0;
333	for(;;) {
334		/* loop, turning on the device, until carrier present */
335		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
336		if(cs->cs_softcar)
337			tp->t_state |= TS_CARR_ON;
338		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
339		    tp->t_state & TS_CARR_ON)
340			break;
341		tp->t_state |= TS_WOPEN;
342		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
343		    ttopen, 0)) {
344			if(!(tp->t_state & TS_ISOPEN)) {
345				zs_modem(cs, 0, DMSET);
346				tp->t_state &= ~TS_WOPEN;
347				ttwakeup(tp);
348			}
349			splx(s);
350			return error;
351		}
352	}
353	splx(s);
354	if(error == 0)
355		error = linesw[tp->t_line].l_open(dev, tp);
356	if(error)
357		zs_modem(cs, 0, DMSET);
358	return(error);
359}
360
361/*
362 * Close a zs serial port.
363 */
364int
365zsclose(dev, flags, mode, p)
366dev_t		dev;
367int		flags;
368int		mode;
369struct proc	*p;
370{
371	register struct zs_chanstate	*cs;
372	register struct tty		*tp;
373		 struct zs_softc	*zi;
374		 int			unit = ZS_UNIT(dev);
375		 int			s;
376
377	zi = zscd.cd_devs[unit >> 1];
378	cs = &zi->zi_cs[unit & 1];
379	tp = cs->cs_ttyp;
380	linesw[tp->t_line].l_close(tp, flags);
381	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
382	    (tp->t_state & TS_ISOPEN) == 0) {
383		zs_modem(cs, 0, DMSET);
384		/* hold low for 1 second */
385		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
386	}
387	if(cs->cs_creg[5] & ZSWR5_BREAK) {
388		s = splzs();
389		cs->cs_preg[5] &= ~ZSWR5_BREAK;
390		cs->cs_creg[5] &= ~ZSWR5_BREAK;
391		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
392		splx(s);
393	}
394	ttyclose(tp);
395
396	/*
397	 * Drop all lines and cancel interrupts
398	 */
399	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
400	return (0);
401}
402
403/*
404 * Read/write zs serial port.
405 */
406int
407zsread(dev, uio, flags)
408dev_t		dev;
409struct uio	*uio;
410int		flags;
411{
412	register struct zs_chanstate	*cs;
413	register struct zs_softc	*zi;
414	register struct tty		*tp;
415		 int			unit;
416
417	unit = ZS_UNIT(dev);
418	zi   = zscd.cd_devs[unit >> 1];
419	cs   = &zi->zi_cs[unit & 1];
420	tp   = cs->cs_ttyp;
421
422	return(linesw[tp->t_line].l_read(tp, uio, flags));
423}
424
425int
426zswrite(dev, uio, flags)
427dev_t		dev;
428struct uio	*uio;
429int		flags;
430{
431	register struct zs_chanstate	*cs;
432	register struct zs_softc	*zi;
433	register struct tty		*tp;
434		 int			unit;
435
436	unit = ZS_UNIT(dev);
437	zi   = zscd.cd_devs[unit >> 1];
438	cs   = &zi->zi_cs[unit & 1];
439	tp   = cs->cs_ttyp;
440
441	return(linesw[tp->t_line].l_write(tp, uio, flags));
442}
443
444struct tty *
445zstty(dev)
446dev_t	dev;
447{
448	register struct zs_chanstate	*cs;
449	register struct zs_softc	*zi;
450		 int			unit;
451
452	unit = ZS_UNIT(dev);
453	zi   = zscd.cd_devs[unit >> 1];
454	cs   = &zi->zi_cs[unit & 1];
455	return(cs->cs_ttyp);
456}
457
458/*
459 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
460 * channels are kept in (A,B) pairs.
461 *
462 * Do just a little, then get out; set a software interrupt if more
463 * work is needed.
464 *
465 * We deliberately ignore the vectoring Zilog gives us, and match up
466 * only the number of `reset interrupt under service' operations, not
467 * the order.
468 */
469int
470zshard(sr)
471long sr;
472{
473	register struct zs_chanstate	*a;
474#define	b (a + 1)
475	register volatile struct zschan *zc;
476	register int			rr3, intflags = 0, v, i;
477
478	for(a = zslist; a != NULL; a = b->cs_next) {
479		rr3 = ZS_READ(a->cs_zc, 3);
480		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
481			intflags |= 2;
482			zc = a->cs_zc;
483			i  = a->cs_rbput;
484			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
485				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
486				intflags |= 1;
487			}
488			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
489				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
490				intflags |= 1;
491			}
492			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
493				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
494				intflags |= 1;
495			}
496			a->cs_rbput = i;
497		}
498		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
499			intflags |= 2;
500			zc = b->cs_zc;
501			i  = b->cs_rbput;
502			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
503				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
504				intflags |= 1;
505			}
506			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
507				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
508				intflags |= 1;
509			}
510			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
511				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
512				intflags |= 1;
513			}
514			b->cs_rbput = i;
515		}
516	}
517#undef b
518
519	if(intflags & 1) {
520		if(BASEPRI(sr)) {
521			spl1();
522			zsshortcuts++;
523			return(zssoft(sr));
524		}
525		else add_sicallback(zssoft, 0, 0);
526	}
527	return(intflags & 2);
528}
529
530static int
531zsrint(cs, zc)
532register struct zs_chanstate	*cs;
533register volatile struct zschan	*zc;
534{
535	register int c = zc->zc_data;
536
537	/* compose receive character and status */
538	c <<= 8;
539	c |= ZS_READ(zc, 1);
540
541	/* clear receive error & interrupt condition */
542	zc->zc_csr = ZSWR0_RESET_ERRORS;
543	zc->zc_csr = ZSWR0_CLR_INTR;
544
545	return(ZRING_MAKE(ZRING_RINT, c));
546}
547
548static int
549zsxint(cs, zc)
550register struct zs_chanstate	*cs;
551register volatile struct zschan	*zc;
552{
553	register int i = cs->cs_tbc;
554
555	if(i == 0) {
556		zc->zc_csr = ZSWR0_RESET_TXINT;
557		zc->zc_csr = ZSWR0_CLR_INTR;
558		return(ZRING_MAKE(ZRING_XINT, 0));
559	}
560	cs->cs_tbc = i - 1;
561	zc->zc_data = *cs->cs_tba++;
562	zc->zc_csr = ZSWR0_CLR_INTR;
563	return (0);
564}
565
566static int
567zssint(cs, zc)
568register struct zs_chanstate	*cs;
569register volatile struct zschan	*zc;
570{
571	register int rr0;
572
573	rr0 = zc->zc_csr;
574	zc->zc_csr = ZSWR0_RESET_STATUS;
575	zc->zc_csr = ZSWR0_CLR_INTR;
576	/*
577	 * The chip's hardware flow control is, as noted in zsreg.h,
578	 * busted---if the DCD line goes low the chip shuts off the
579	 * receiver (!).  If we want hardware CTS flow control but do
580	 * not have it, and carrier is now on, turn HFC on; if we have
581	 * HFC now but carrier has gone low, turn it off.
582	 */
583	if(rr0 & ZSRR0_DCD) {
584		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
585		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
586			cs->cs_creg[3] |= ZSWR3_HFC;
587			ZS_WRITE(zc, 3, cs->cs_creg[3]);
588		}
589	}
590	else {
591		if (cs->cs_creg[3] & ZSWR3_HFC) {
592			cs->cs_creg[3] &= ~ZSWR3_HFC;
593			ZS_WRITE(zc, 3, cs->cs_creg[3]);
594		}
595	}
596	return(ZRING_MAKE(ZRING_SINT, rr0));
597}
598
599/*
600 * Print out a ring or fifo overrun error message.
601 */
602static void
603zsoverrun(unit, ptime, what)
604int	unit;
605long	*ptime;
606char	*what;
607{
608
609	if(*ptime != time.tv_sec) {
610		*ptime = time.tv_sec;
611		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
612		    (unit & 1) + 'a', what);
613	}
614}
615
616/*
617 * ZS software interrupt.  Scan all channels for deferred interrupts.
618 */
619int
620zssoft(sr)
621long sr;
622{
623    register struct zs_chanstate	*cs;
624    register volatile struct zschan	*zc;
625    register struct linesw		*line;
626    register struct tty			*tp;
627    register int			get, n, c, cc, unit, s;
628 	     int			retval = 0;
629
630    s = spltty();
631    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
632	get = cs->cs_rbget;
633again:
634	n = cs->cs_rbput;	/* atomic			*/
635	if(get == n)		/* nothing more on this line	*/
636		continue;
637	retval = 1;
638	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
639	zc     = cs->cs_zc;
640	tp     = cs->cs_ttyp;
641	line   = &linesw[tp->t_line];
642	/*
643	 * Compute the number of interrupts in the receive ring.
644	 * If the count is overlarge, we lost some events, and
645	 * must advance to the first valid one.  It may get
646	 * overwritten if more data are arriving, but this is
647	 * too expensive to check and gains nothing (we already
648	 * lost out; all we can do at this point is trade one
649	 * kind of loss for another).
650	 */
651	n -= get;
652	if(n > ZLRB_RING_SIZE) {
653		zsoverrun(unit, &cs->cs_rotime, "ring");
654		get += n - ZLRB_RING_SIZE;
655		n    = ZLRB_RING_SIZE;
656	}
657	while(--n >= 0) {
658		/* race to keep ahead of incoming interrupts */
659		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
660		switch (ZRING_TYPE(c)) {
661
662		case ZRING_RINT:
663			c = ZRING_VALUE(c);
664			if(c & ZSRR1_DO)
665				zsoverrun(unit, &cs->cs_fotime, "fifo");
666			cc = c >> 8;
667			if(c & ZSRR1_FE)
668				cc |= TTY_FE;
669			if(c & ZSRR1_PE)
670				cc |= TTY_PE;
671			line->l_rint(cc, tp);
672			break;
673
674		case ZRING_XINT:
675			/*
676			 * Transmit done: change registers and resume,
677			 * or clear BUSY.
678			 */
679			if(cs->cs_heldchange) {
680				int sps;
681
682				sps = splzs();
683				c = zc->zc_csr;
684				if((c & ZSRR0_DCD) == 0)
685					cs->cs_preg[3] &= ~ZSWR3_HFC;
686				bcopy((caddr_t)cs->cs_preg,
687				    (caddr_t)cs->cs_creg, 16);
688				zs_loadchannelregs(zc, cs->cs_creg);
689				splx(sps);
690				cs->cs_heldchange = 0;
691				if(cs->cs_heldtbc
692					&& (tp->t_state & TS_TTSTOP) == 0) {
693					cs->cs_tbc = cs->cs_heldtbc - 1;
694					zc->zc_data = *cs->cs_tba++;
695					goto again;
696				}
697			}
698			tp->t_state &= ~TS_BUSY;
699			if(tp->t_state & TS_FLUSH)
700				tp->t_state &= ~TS_FLUSH;
701			else ndflush(&tp->t_outq,cs->cs_tba
702						- (caddr_t)tp->t_outq.c_cf);
703			line->l_start(tp);
704			break;
705
706		case ZRING_SINT:
707			/*
708			 * Status line change.  HFC bit is run in
709			 * hardware interrupt, to avoid locking
710			 * at splzs here.
711			 */
712			c = ZRING_VALUE(c);
713			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
714				cc = (c & ZSRR0_DCD) != 0;
715				if(line->l_modem(tp, cc) == 0)
716					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
717							cc ? DMBIS : DMBIC);
718			}
719			cs->cs_rr0 = c;
720			break;
721
722		default:
723			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
724			    unit >> 1, (unit & 1) + 'a', c);
725			break;
726		}
727	}
728	cs->cs_rbget = get;
729	goto again;
730    }
731    splx(s);
732    return (retval);
733}
734
735int
736zsioctl(dev, cmd, data, flag, p)
737dev_t		dev;
738u_long		cmd;
739caddr_t		data;
740int		flag;
741struct proc	*p;
742{
743		 int			unit = ZS_UNIT(dev);
744		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
745	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
746	register int			error, s;
747	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
748
749	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
750	if(error >= 0)
751		return(error);
752	error = ttioctl(tp, cmd, data, flag, p);
753	if(error >= 0)
754		return (error);
755
756	switch (cmd) {
757	case TIOCSBRK:
758		s = splzs();
759		cs->cs_preg[5] |= ZSWR5_BREAK;
760		cs->cs_creg[5] |= ZSWR5_BREAK;
761		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
762		splx(s);
763		break;
764	case TIOCCBRK:
765		s = splzs();
766		cs->cs_preg[5] &= ~ZSWR5_BREAK;
767		cs->cs_creg[5] &= ~ZSWR5_BREAK;
768		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
769		splx(s);
770		break;
771	case TIOCGFLAGS: {
772		int bits = 0;
773
774		if(cs->cs_softcar)
775			bits |= TIOCFLAG_SOFTCAR;
776		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
777			bits |= TIOCFLAG_CLOCAL;
778		if(cs->cs_creg[3] & ZSWR3_HFC)
779			bits |= TIOCFLAG_CRTSCTS;
780		*(int *)data = bits;
781		break;
782	}
783	case TIOCSFLAGS: {
784		int userbits, driverbits = 0;
785
786		error = suser(p->p_ucred, &p->p_acflag);
787		if(error != 0)
788			return (EPERM);
789
790		userbits = *(int *)data;
791
792		/*
793		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
794		 # defaulting to software flow control.
795		 */
796		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
797			return(EINVAL);
798		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
799			return(ENXIO);
800
801		s = splzs();
802		if((userbits & TIOCFLAG_SOFTCAR)) {
803			cs->cs_softcar = 1;	/* turn on softcar */
804			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
805			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
806			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
807		}
808		else if(userbits & TIOCFLAG_CLOCAL) {
809			cs->cs_softcar = 0; 	/* turn off softcar */
810			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
811			cs->cs_creg[15] |= ZSWR15_DCD_IE;
812			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
813			tp->t_termios.c_cflag |= CLOCAL;
814		}
815		if(userbits & TIOCFLAG_CRTSCTS) {
816			cs->cs_preg[15] |= ZSWR15_CTS_IE;
817			cs->cs_creg[15] |= ZSWR15_CTS_IE;
818			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
819			cs->cs_preg[3] |= ZSWR3_HFC;
820			cs->cs_creg[3] |= ZSWR3_HFC;
821			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
822			tp->t_termios.c_cflag |= CRTSCTS;
823		}
824		else {
825			/* no mdmbuf, so we must want software flow control */
826			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
827			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
828			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
829			cs->cs_preg[3] &= ~ZSWR3_HFC;
830			cs->cs_creg[3] &= ~ZSWR3_HFC;
831			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
832			tp->t_termios.c_cflag &= ~CRTSCTS;
833		}
834		splx(s);
835		break;
836	}
837	case TIOCSDTR:
838		zs_modem(cs, ZSWR5_DTR, DMBIS);
839		break;
840	case TIOCCDTR:
841		zs_modem(cs, ZSWR5_DTR, DMBIC);
842		break;
843	case TIOCMGET:
844		zs_modem(cs, 0, DMGET);
845		break;
846	case TIOCMSET:
847	case TIOCMBIS:
848	case TIOCMBIC:
849	default:
850		return (ENOTTY);
851	}
852	return (0);
853}
854
855/*
856 * Start or restart transmission.
857 */
858static void
859zsstart(tp)
860register struct tty *tp;
861{
862	register struct zs_chanstate	*cs;
863	register int			s, nch;
864		 int			unit = ZS_UNIT(tp->t_dev);
865		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
866
867	cs = &zi->zi_cs[unit & 1];
868	s  = spltty();
869
870	/*
871	 * If currently active or delaying, no need to do anything.
872	 */
873	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
874		goto out;
875
876	/*
877	 * If there are sleepers, and output has drained below low
878	 * water mark, awaken.
879	 */
880	if(tp->t_outq.c_cc <= tp->t_lowat) {
881		if(tp->t_state & TS_ASLEEP) {
882			tp->t_state &= ~TS_ASLEEP;
883			wakeup((caddr_t)&tp->t_outq);
884		}
885		selwakeup(&tp->t_wsel);
886	}
887
888	nch = ndqb(&tp->t_outq, 0);	/* XXX */
889	if(nch) {
890		register char *p = tp->t_outq.c_cf;
891
892		/* mark busy, enable tx done interrupts, & send first byte */
893		tp->t_state |= TS_BUSY;
894		(void) splzs();
895		cs->cs_preg[1] |= ZSWR1_TIE;
896		cs->cs_creg[1] |= ZSWR1_TIE;
897		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
898		cs->cs_zc->zc_data = *p;
899		cs->cs_tba = p + 1;
900		cs->cs_tbc = nch - 1;
901	} else {
902		/*
903		 * Nothing to send, turn off transmit done interrupts.
904		 * This is useful if something is doing polled output.
905		 */
906		(void) splzs();
907		cs->cs_preg[1] &= ~ZSWR1_TIE;
908		cs->cs_creg[1] &= ~ZSWR1_TIE;
909		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
910	}
911out:
912	splx(s);
913}
914
915/*
916 * Stop output, e.g., for ^S or output flush.
917 */
918void
919zsstop(tp, flag)
920register struct tty	*tp;
921	 int		flag;
922{
923	register struct zs_chanstate	*cs;
924	register int			s, unit = ZS_UNIT(tp->t_dev);
925		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
926
927	cs = &zi->zi_cs[unit & 1];
928	s  = splzs();
929	if(tp->t_state & TS_BUSY) {
930		/*
931		 * Device is transmitting; must stop it.
932		 */
933		cs->cs_tbc = 0;
934		if ((tp->t_state & TS_TTSTOP) == 0)
935			tp->t_state |= TS_FLUSH;
936	}
937	splx(s);
938}
939
940/*
941 * Set ZS tty parameters from termios.
942 *
943 * This routine makes use of the fact that only registers
944 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
945 */
946static int
947zsparam(tp, t)
948register struct tty	*tp;
949register struct termios	*t;
950{
951		 int			unit = ZS_UNIT(tp->t_dev);
952		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
953	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
954		 int			cdiv, clkm, brgm, tcon;
955	register int			tmp, tmp5, cflag, s;
956
957	tmp  = t->c_ospeed;
958	tmp5 = t->c_ispeed;
959	if(tmp < 0 || (tmp5 && tmp5 != tmp))
960		return(EINVAL);
961	if(tmp == 0) {
962		/* stty 0 => drop DTR and RTS */
963		zs_modem(cs, 0, DMSET);
964		return(0);
965	}
966	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
967	if (tmp < 0)
968		return(EINVAL);
969	tp->t_ispeed = tp->t_ospeed = tmp;
970
971	cflag = tp->t_cflag = t->c_cflag;
972	if (cflag & CSTOPB)
973		cdiv |= ZSWR4_TWOSB;
974	else
975		cdiv |= ZSWR4_ONESB;
976	if (!(cflag & PARODD))
977		cdiv |= ZSWR4_EVENP;
978	if (cflag & PARENB)
979		cdiv |= ZSWR4_PARENB;
980
981	switch(cflag & CSIZE) {
982	case CS5:
983		tmp  = ZSWR3_RX_5;
984		tmp5 = ZSWR5_TX_5;
985		break;
986	case CS6:
987		tmp  = ZSWR3_RX_6;
988		tmp5 = ZSWR5_TX_6;
989		break;
990	case CS7:
991		tmp  = ZSWR3_RX_7;
992		tmp5 = ZSWR5_TX_7;
993		break;
994	case CS8:
995	default:
996		tmp  = ZSWR3_RX_8;
997		tmp5 = ZSWR5_TX_8;
998		break;
999	}
1000	tmp  |= ZSWR3_RX_ENABLE;
1001	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1002
1003	/*
1004	 * Block interrupts so that state will not
1005	 * be altered until we are done setting it up.
1006	 */
1007	s = splzs();
1008	cs->cs_preg[4]  = cdiv;
1009	cs->cs_preg[11] = clkm;
1010	cs->cs_preg[12] = tcon;
1011	cs->cs_preg[13] = tcon >> 8;
1012	cs->cs_preg[14] = brgm;
1013	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1014	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1015	cs->cs_preg[10] = ZSWR10_NRZ;
1016	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1017
1018	/*
1019	 * Output hardware flow control on the chip is horrendous: if
1020	 * carrier detect drops, the receiver is disabled.  Hence we
1021	 * can only do this when the carrier is on.
1022	 */
1023	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1024		tmp |= ZSWR3_HFC;
1025	cs->cs_preg[3] = tmp;
1026	cs->cs_preg[5] = tmp5;
1027
1028	/*
1029	 * If nothing is being transmitted, set up new current values,
1030	 * else mark them as pending.
1031	 */
1032	if(cs->cs_heldchange == 0) {
1033		if (cs->cs_ttyp->t_state & TS_BUSY) {
1034			cs->cs_heldtbc = cs->cs_tbc;
1035			cs->cs_tbc = 0;
1036			cs->cs_heldchange = 1;
1037		} else {
1038			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1039			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1040		}
1041	}
1042	splx(s);
1043	return (0);
1044}
1045
1046/*
1047 * search for the best matching baudrate
1048 */
1049static int
1050zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1051int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1052{
1053	int	bestdiff, bestbps, source;
1054
1055	unit = (unit & 1) << 2;
1056	for (source = 0; source < 4; ++source) {
1057		long	freq = zs_frequencies[unit + source];
1058		int	diff, bps, div, clkm, brgm, tcon;
1059		switch (source) {
1060			case 0:	/* BRgen, PCLK */
1061				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1062				break;
1063			case 1:	/* BRgen, RTxC */
1064				brgm = ZSWR14_BAUD_ENA;
1065				break;
1066			case 2: /* RTxC */
1067				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1068				break;
1069			case 3: /* TRxC */
1070				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1071				break;
1072		}
1073		switch (source) {
1074			case 0:
1075			case 1:
1076				div  = ZSWR4_CLK_X16;
1077				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1078				tcon = BPS_TO_TCONST(freq, wanted);
1079				if (tcon < 0)
1080					tcon = 0;
1081				bps  = TCONST_TO_BPS(freq, tcon);
1082				break;
1083			case 2:
1084			case 3:
1085			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1086				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1087				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1088
1089				if (d1 < d2 && d1 < d3) {
1090					div = ZSWR4_CLK_X16;
1091					bps = b1;
1092				} else if (d2 < d3 && d2 < d1) {
1093					div = ZSWR4_CLK_X32;
1094					bps = b2;
1095				} else {
1096					div = ZSWR4_CLK_X64;
1097					bps = b3;
1098				}
1099				brgm = tcon = 0;
1100				break;
1101			}
1102		}
1103		diff = abs(bps - wanted);
1104		if (!source || diff < bestdiff) {
1105			*divisor   = div;
1106			*clockmode = clkm;
1107			*brgenmode = brgm;
1108			*timeconst = tcon;
1109			bestbps    = bps;
1110			bestdiff   = diff;
1111			if (diff == 0)
1112				break;
1113		}
1114	}
1115	/* Allow deviations upto 5% */
1116	if (20 * bestdiff > wanted)
1117		return -1;
1118	return bestbps;
1119}
1120
1121/*
1122 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1123 * in transmission, the change is deferred.
1124 */
1125static int
1126zs_modem(cs, bits, how)
1127struct zs_chanstate	*cs;
1128int			bits, how;
1129{
1130	int s, mbits;
1131
1132	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1133
1134	s = splzs();
1135	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1136
1137	switch(how) {
1138		case DMSET:
1139				mbits  = bits;
1140				break;
1141		case DMBIS:
1142				mbits |= bits;
1143				break;
1144		case DMBIC:
1145				mbits &= ~bits;
1146				break;
1147		case DMGET:
1148				splx(s);
1149				return(mbits);
1150	}
1151
1152	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1153	if(cs->cs_heldchange == 0) {
1154		if(cs->cs_ttyp->t_state & TS_BUSY) {
1155			cs->cs_heldtbc = cs->cs_tbc;
1156			cs->cs_tbc = 0;
1157			cs->cs_heldchange = 1;
1158		}
1159		else {
1160			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1161		}
1162	}
1163	splx(s);
1164	return(0);
1165}
1166
1167/*
1168 * Write the given register set to the given zs channel in the proper order.
1169 * The channel must not be transmitting at the time.  The receiver will
1170 * be disabled for the time it takes to write all the registers.
1171 */
1172static void
1173zs_loadchannelregs(zc, reg)
1174volatile struct zschan	*zc;
1175u_char			*reg;
1176{
1177	int i;
1178
1179	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1180	i = zc->zc_data;		/* drain fifo */
1181	i = zc->zc_data;
1182	i = zc->zc_data;
1183	ZS_WRITE(zc,  4, reg[4]);
1184	ZS_WRITE(zc, 10, reg[10]);
1185	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1186	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1187	ZS_WRITE(zc,  1, reg[1]);
1188	ZS_WRITE(zc,  9, reg[9]);
1189	ZS_WRITE(zc, 11, reg[11]);
1190	ZS_WRITE(zc, 12, reg[12]);
1191	ZS_WRITE(zc, 13, reg[13]);
1192	ZS_WRITE(zc, 14, reg[14]);
1193	ZS_WRITE(zc, 15, reg[15]);
1194	ZS_WRITE(zc,  3, reg[3]);
1195	ZS_WRITE(zc,  5, reg[5]);
1196}
1197#endif /* NZS > 1 */
1198