zs.c revision 1.63
1/*	$NetBSD: zs.c,v 1.63 2009/07/19 05:43:23 tsutsui Exp $	*/
2
3/*
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 *	This product includes software developed by the University of
15 *	California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
42 */
43
44/*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 *    notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 *    notice, this list of conditions and the following disclaimer in the
58 *    documentation and/or other materials provided with the distribution.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73/*
74 * Zilog Z8530 (ZSCC) driver.
75 *
76 * Runs two tty ports (modem2 and serial2) on zs0.
77 *
78 * This driver knows far too much about chip to usage mappings.
79 */
80
81#include <sys/cdefs.h>
82__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.63 2009/07/19 05:43:23 tsutsui Exp $");
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/proc.h>
87#include <sys/device.h>
88#include <sys/conf.h>
89#include <sys/file.h>
90#include <sys/ioctl.h>
91#include <sys/malloc.h>
92#include <sys/tty.h>
93#include <sys/time.h>
94#include <sys/kernel.h>
95#include <sys/syslog.h>
96#include <sys/kauth.h>
97
98#include <machine/cpu.h>
99#include <machine/iomap.h>
100#include <machine/scu.h>
101#include <machine/mfp.h>
102#include <atari/dev/ym2149reg.h>
103
104#include <dev/ic/z8530reg.h>
105#include <atari/dev/zsvar.h>
106#include "zs.h"
107#if NZS > 1
108#error "This driver supports only 1 85C30!"
109#endif
110
111#if NZS > 0
112
113#define PCLK	(8053976)	/* PCLK pin input clock rate */
114#define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
115
116#define splzs	spl5
117
118/*
119 * Software state per found chip.
120 */
121struct zs_softc {
122    struct	device		zi_dev;    /* base device		  */
123    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
124    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
125};
126
127static void	*zs_softint_cookie;	/* for callback */
128/*
129 * Define the registers for a closed port
130 */
131static u_char zs_init_regs[16] = {
132/*  0 */	0,
133/*  1 */	0,
134/*  2 */	0x60,
135/*  3 */	0,
136/*  4 */	0,
137/*  5 */	0,
138/*  6 */	0,
139/*  7 */	0,
140/*  8 */	0,
141/*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142/* 10 */	ZSWR10_NRZ,
143/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144/* 12 */	0,
145/* 13 */	0,
146/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147/* 15 */	0
148};
149
150/*
151 * Define the machine dependant clock frequencies
152 * If BRgen feeds sender/receiver we always use a
153 * divisor 16, therefor the division by 16 can as
154 * well be done here.
155 */
156static u_long zs_freqs_tt[] = {
157	/*
158	 * Atari TT, RTxCB is generated by TT-MFP timer C,
159	 * which is set to 307.2 kHz during initialisation
160	 * and never changed afterwards.
161	 */
162	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
163	 229500,	/* BRgen, RTxCA, divisor 16	*/
164	3672000,	/* RTxCA, from PCLK4		*/
165	      0,	/* TRxCA, external		*/
166
167	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
168	  19200,	/* BRgen, RTxCB, divisor 16	*/
169	 307200,	/* RTxCB, from TT-MFP TCO	*/
170	2457600		/* TRxCB, from BCLK		*/
171};
172
173static u_long zs_freqs_falcon[] = {
174	/*
175	 * Atari Falcon, XXX no specs available, this might be wrong
176	 */
177	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
178	 229500,	/* BRgen, RTxCA, divisor 16	*/
179	3672000,	/* RTxCA, ???			*/
180	      0,	/* TRxCA, external		*/
181
182	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
183	 229500,	/* BRgen, RTxCB, divisor 16	*/
184	3672000,	/* RTxCB, ???			*/
185	2457600		/* TRxCB, ???			*/
186};
187
188static u_long zs_freqs_hades[] = {
189	/*
190	 * XXX: Channel-A unchecked!!!!!
191	 */
192     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
193	 229500,	/* BRgen, RTxCA, divisor 16	*/
194	3672000,	/* RTxCA, from PCLK4		*/
195	      0,	/* TRxCA, external		*/
196
197     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
198	 235550,	/* BRgen, RTxCB, divisor 16	*/
199	3768800,	/* RTxCB, 3.7688MHz		*/
200	3768800		/* TRxCB, 3.7688MHz		*/
201};
202
203static u_long zs_freqs_generic[] = {
204	/*
205	 * other machines, assume only PCLK is available
206	 */
207	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
208	      0,	/* BRgen, RTxCA, divisor 16	*/
209	      0,	/* RTxCA, unknown		*/
210	      0,	/* TRxCA, unknown		*/
211
212	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
213	      0,	/* BRgen, RTxCB, divisor 16	*/
214	      0,	/* RTxCB, unknown		*/
215	      0		/* TRxCB, unknown		*/
216};
217static u_long *zs_frequencies;
218
219/* Definition of the driver for autoconfig. */
220static int	zsmatch(struct device *, struct cfdata *, void *);
221static void	zsattach(struct device *, struct device *, void *);
222
223CFATTACH_DECL(zs, sizeof(struct zs_softc),
224    zsmatch, zsattach, NULL, NULL);
225
226extern struct cfdriver zs_cd;
227
228/* {b,c}devsw[] function prototypes */
229dev_type_open(zsopen);
230dev_type_close(zsclose);
231dev_type_read(zsread);
232dev_type_write(zswrite);
233dev_type_ioctl(zsioctl);
234dev_type_stop(zsstop);
235dev_type_tty(zstty);
236dev_type_poll(zspoll);
237
238const struct cdevsw zs_cdevsw = {
239	zsopen, zsclose, zsread, zswrite, zsioctl,
240	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
241};
242
243/* Interrupt handlers. */
244int		zshard(long);
245static int	zssoft(long);
246static int	zsrint(struct zs_chanstate *, volatile struct zschan *);
247static int	zsxint(struct zs_chanstate *, volatile struct zschan *);
248static int	zssint(struct zs_chanstate *, volatile struct zschan *);
249
250static struct zs_chanstate *zslist;
251
252/* Routines called from other code. */
253static void	zsstart(struct tty *);
254
255/* Routines purely local to this driver. */
256static void	zsoverrun(int, long *, const char *);
257static int	zsparam(struct tty *, struct termios *);
258static int	zsbaudrate(int, int, int *, int *, int *, int *);
259static int	zs_modem(struct zs_chanstate *, int, int);
260static void	zs_loadchannelregs(volatile struct zschan *, u_char *);
261static void	zs_shutdown(struct zs_chanstate *);
262
263static int
264zsmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
265{
266	static int	zs_matched = 0;
267
268	if(strcmp("zs", auxp) || zs_matched)
269		return(0);
270	zs_matched = 1;
271	return(1);
272}
273
274/*
275 * Attach a found zs.
276 */
277static void
278zsattach(struct device *parent, struct device *dev, void *aux)
279{
280	register struct zs_softc		*zi;
281	register struct zs_chanstate		*cs;
282	register volatile struct zsdevice	*addr;
283		 char				tmp;
284
285	addr      = (struct zsdevice *)AD_SCC;
286	zi        = (struct zs_softc *)dev;
287	zi->zi_zs = addr;
288	cs        = zi->zi_cs;
289
290	/*
291	 * Get the command register into a known state.
292	 */
293	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
294	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
295	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
296	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
297
298	/*
299	 * Do a hardware reset.
300	 */
301	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
302	delay(50000);	/*enough ? */
303	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
304
305	/*
306	 * Initialize both channels
307	 */
308	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
309	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
310
311	if(machineid & ATARI_TT) {
312		/*
313		 * ininitialise TT-MFP timer C: 307200Hz
314		 * timer C and D share one control register:
315		 *	bits 0-2 control timer D
316		 *	bits 4-6 control timer C
317		 */
318		int cr = MFP2->mf_tcdcr & 7;
319		MFP2->mf_tcdcr = cr;		/* stop timer C  */
320		MFP2->mf_tcdr  = 1;		/* counter 1     */
321		cr |= T_Q004 << 4;		/* divisor 4     */
322		MFP2->mf_tcdcr = cr;		/* start timer C */
323		/*
324		 * enable scc related interrupts
325		 */
326		SCU->vme_mask |= SCU_SCC;
327
328		zs_frequencies = zs_freqs_tt;
329	} else if (machineid & ATARI_FALCON) {
330		zs_frequencies = zs_freqs_falcon;
331	} else if (machineid & ATARI_HADES) {
332		zs_frequencies = zs_freqs_hades;
333	} else {
334		zs_frequencies = zs_freqs_generic;
335	}
336
337	/* link into interrupt list with order (A,B) (B=A+1) */
338	cs[0].cs_next = &cs[1];
339	cs[1].cs_next = zslist;
340	zslist        = cs;
341
342	cs->cs_unit  = 0;
343	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
344	cs++;
345	cs->cs_unit  = 1;
346	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
347
348	zs_softint_cookie = softint_establish(SOFTINT_SERIAL,
349	    (void (*)(void *))zssoft, 0);
350
351	printf(": serial2 on channel a and modem2 on channel b\n");
352}
353
354/*
355 * Open a zs serial port.
356 */
357int
358zsopen(dev_t dev, int flags, int mode, struct lwp *l)
359{
360	register struct tty		*tp;
361	register struct zs_chanstate	*cs;
362		 struct zs_softc	*zi;
363		 int			unit = ZS_UNIT(dev);
364		 int			zs = unit >> 1;
365		 int			error, s;
366
367	zi = device_lookup_private(&zs_cd, zs);
368	if (zi == NULL)
369		return (ENXIO);
370	cs = &zi->zi_cs[unit & 1];
371
372	/*
373	 * When port A (ser02) is selected on the TT, make sure
374	 * the port is enabled.
375	 */
376	if((machineid & ATARI_TT) && !(unit & 1))
377		ym2149_ser2(1);
378
379	if (cs->cs_rbuf == NULL) {
380		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
381								   M_WAITOK);
382	}
383
384	tp = cs->cs_ttyp;
385	if(tp == NULL) {
386		cs->cs_ttyp = tp = ttymalloc();
387		tty_attach(tp);
388		tp->t_dev   = dev;
389		tp->t_oproc = zsstart;
390		tp->t_param = zsparam;
391	}
392
393	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
394		return (EBUSY);
395
396	s  = spltty();
397
398	/*
399	 * Do the following iff this is a first open.
400	 */
401	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
402		if(tp->t_ispeed == 0) {
403			tp->t_iflag = TTYDEF_IFLAG;
404			tp->t_oflag = TTYDEF_OFLAG;
405			tp->t_cflag = TTYDEF_CFLAG;
406			tp->t_lflag = TTYDEF_LFLAG;
407			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
408		}
409		ttychars(tp);
410		ttsetwater(tp);
411
412		(void)zsparam(tp, &tp->t_termios);
413
414		/*
415		 * Turn on DTR.  We must always do this, even if carrier is not
416		 * present, because otherwise we'd have to use TIOCSDTR
417		 * immediately after setting CLOCAL, which applications do not
418		 * expect.  We always assert DTR while the device is open
419		 * unless explicitly requested to deassert it.
420		 */
421		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
422		/* May never get a status intr. if DCD already on. -gwr */
423		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
424			tp->t_state |= TS_CARR_ON;
425		if(cs->cs_softcar)
426			tp->t_state |= TS_CARR_ON;
427	}
428
429	splx(s);
430
431	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
432	if (error)
433		goto bad;
434
435	error = tp->t_linesw->l_open(dev, tp);
436	if(error)
437		goto bad;
438	return (0);
439
440bad:
441	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
442		/*
443		 * We failed to open the device, and nobody else had it opened.
444		 * Clean up the state as appropriate.
445		 */
446		zs_shutdown(cs);
447	}
448	return(error);
449}
450
451/*
452 * Close a zs serial port.
453 */
454int
455zsclose(dev_t dev, int flags, int mode, struct lwp *l)
456{
457	register struct zs_chanstate	*cs;
458	register struct tty		*tp;
459		 struct zs_softc	*zi;
460		 int			unit = ZS_UNIT(dev);
461
462	zi = device_lookup_private(&zs_cd, unit >> 1);
463	cs = &zi->zi_cs[unit & 1];
464	tp = cs->cs_ttyp;
465
466	tp->t_linesw->l_close(tp, flags);
467	ttyclose(tp);
468
469	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
470		/*
471		 * Although we got a last close, the device may still be in
472		 * use; e.g. if this was the dialout node, and there are still
473		 * processes waiting for carrier on the non-dialout node.
474		 */
475		zs_shutdown(cs);
476	}
477	return (0);
478}
479
480/*
481 * Read/write zs serial port.
482 */
483int
484zsread(dev_t dev, struct uio *uio, int flags)
485{
486	register struct zs_chanstate	*cs;
487	register struct zs_softc	*zi;
488	register struct tty		*tp;
489		 int			unit;
490
491	unit = ZS_UNIT(dev);
492	zi   = device_lookup_private(&zs_cd, unit >> 1);
493	cs   = &zi->zi_cs[unit & 1];
494	tp   = cs->cs_ttyp;
495
496	return(tp->t_linesw->l_read(tp, uio, flags));
497}
498
499int
500zswrite(dev_t dev, struct uio *uio, int flags)
501{
502	register struct zs_chanstate	*cs;
503	register struct zs_softc	*zi;
504	register struct tty		*tp;
505		 int			unit;
506
507	unit = ZS_UNIT(dev);
508	zi   = device_lookup_private(&zs_cd, unit >> 1);
509	cs   = &zi->zi_cs[unit & 1];
510	tp   = cs->cs_ttyp;
511
512	return(tp->t_linesw->l_write(tp, uio, flags));
513}
514
515int
516zspoll(dev_t dev, int events, struct lwp *l)
517{
518	register struct zs_chanstate	*cs;
519	register struct zs_softc	*zi;
520	register struct tty		*tp;
521		 int			unit;
522
523	unit = ZS_UNIT(dev);
524	zi   = device_lookup_private(&zs_cd, unit >> 1);
525	cs   = &zi->zi_cs[unit & 1];
526	tp   = cs->cs_ttyp;
527
528	return ((*tp->t_linesw->l_poll)(tp, events, l));
529}
530
531struct tty *
532zstty(dev_t dev)
533{
534	register struct zs_chanstate	*cs;
535	register struct zs_softc	*zi;
536		 int			unit;
537
538	unit = ZS_UNIT(dev);
539	zi   = device_lookup_private(&zs_cd, unit >> 1);
540	cs   = &zi->zi_cs[unit & 1];
541	return(cs->cs_ttyp);
542}
543
544/*
545 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
546 * channels are kept in (A,B) pairs.
547 *
548 * Do just a little, then get out; set a software interrupt if more
549 * work is needed.
550 *
551 * We deliberately ignore the vectoring Zilog gives us, and match up
552 * only the number of `reset interrupt under service' operations, not
553 * the order.
554 */
555
556int
557zshard(long sr)
558{
559	register struct zs_chanstate	*a;
560#define	b (a + 1)
561	register volatile struct zschan *zc;
562	register int			rr3, intflags = 0, v, i;
563
564	do {
565	    intflags &= ~4;
566	    for(a = zslist; a != NULL; a = b->cs_next) {
567		rr3 = ZS_READ(a->cs_zc, 3);
568		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
569			intflags |= 4|2;
570			zc = a->cs_zc;
571			i  = a->cs_rbput;
572			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
573				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574				intflags |= 1;
575			}
576			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
577				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578				intflags |= 1;
579			}
580			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
581				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
582				intflags |= 1;
583			}
584			a->cs_rbput = i;
585		}
586		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
587			intflags |= 4|2;
588			zc = b->cs_zc;
589			i  = b->cs_rbput;
590			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
591				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592				intflags |= 1;
593			}
594			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
595				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596				intflags |= 1;
597			}
598			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
599				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600				intflags |= 1;
601			}
602			b->cs_rbput = i;
603		}
604	    }
605	} while(intflags & 4);
606#undef b
607
608	if(intflags & 1)
609		softint_schedule(zs_softint_cookie);
610
611	return(intflags & 2);
612}
613
614static int
615zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
616{
617	register int c;
618
619	/*
620	 * First read the status, because read of the received char
621	 * destroy the status of this char.
622	 */
623	c = ZS_READ(zc, 1);
624	c |= (zc->zc_data << 8);
625
626	/* clear receive error & interrupt condition */
627	zc->zc_csr = ZSWR0_RESET_ERRORS;
628	zc->zc_csr = ZSWR0_CLR_INTR;
629
630	return(ZRING_MAKE(ZRING_RINT, c));
631}
632
633static int
634zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
635{
636	register int i = cs->cs_tbc;
637
638	if(i == 0) {
639		zc->zc_csr = ZSWR0_RESET_TXINT;
640		zc->zc_csr = ZSWR0_CLR_INTR;
641		return(ZRING_MAKE(ZRING_XINT, 0));
642	}
643	cs->cs_tbc = i - 1;
644	zc->zc_data = *cs->cs_tba++;
645	zc->zc_csr = ZSWR0_CLR_INTR;
646	return (0);
647}
648
649static int
650zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
651{
652	register int rr0;
653
654	rr0 = zc->zc_csr;
655	zc->zc_csr = ZSWR0_RESET_STATUS;
656	zc->zc_csr = ZSWR0_CLR_INTR;
657	/*
658	 * The chip's hardware flow control is, as noted in zsreg.h,
659	 * busted---if the DCD line goes low the chip shuts off the
660	 * receiver (!).  If we want hardware CTS flow control but do
661	 * not have it, and carrier is now on, turn HFC on; if we have
662	 * HFC now but carrier has gone low, turn it off.
663	 */
664	if(rr0 & ZSRR0_DCD) {
665		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
666		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
667			cs->cs_creg[3] |= ZSWR3_HFC;
668			ZS_WRITE(zc, 3, cs->cs_creg[3]);
669		}
670	}
671	else {
672		if (cs->cs_creg[3] & ZSWR3_HFC) {
673			cs->cs_creg[3] &= ~ZSWR3_HFC;
674			ZS_WRITE(zc, 3, cs->cs_creg[3]);
675		}
676	}
677	return(ZRING_MAKE(ZRING_SINT, rr0));
678}
679
680/*
681 * Print out a ring or fifo overrun error message.
682 */
683static void
684zsoverrun(int unit, long *ptime, const char *what)
685{
686	time_t cur_sec = time_second;
687
688	if(*ptime != cur_sec) {
689		*ptime = cur_sec;
690		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
691		    (unit & 1) + 'a', what);
692	}
693}
694
695/*
696 * ZS software interrupt.  Scan all channels for deferred interrupts.
697 */
698int
699zssoft(long sr)
700{
701    register struct zs_chanstate	*cs;
702    register volatile struct zschan	*zc;
703    register struct linesw		*line;
704    register struct tty			*tp;
705    register int			get, n, c, cc, unit, s;
706 	     int			retval = 0;
707
708    s = spltty();
709    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
710	get = cs->cs_rbget;
711again:
712	n = cs->cs_rbput;	/* atomic			*/
713	if(get == n)		/* nothing more on this line	*/
714		continue;
715	retval = 1;
716	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
717	zc     = cs->cs_zc;
718	tp     = cs->cs_ttyp;
719	line   = tp->t_linesw;
720	/*
721	 * Compute the number of interrupts in the receive ring.
722	 * If the count is overlarge, we lost some events, and
723	 * must advance to the first valid one.  It may get
724	 * overwritten if more data are arriving, but this is
725	 * too expensive to check and gains nothing (we already
726	 * lost out; all we can do at this point is trade one
727	 * kind of loss for another).
728	 */
729	n -= get;
730	if(n > ZLRB_RING_SIZE) {
731		zsoverrun(unit, &cs->cs_rotime, "ring");
732		get += n - ZLRB_RING_SIZE;
733		n    = ZLRB_RING_SIZE;
734	}
735	while(--n >= 0) {
736		/* race to keep ahead of incoming interrupts */
737		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
738		switch (ZRING_TYPE(c)) {
739
740		case ZRING_RINT:
741			c = ZRING_VALUE(c);
742			if(c & ZSRR1_DO)
743				zsoverrun(unit, &cs->cs_fotime, "fifo");
744			cc = c >> 8;
745			if(c & ZSRR1_FE)
746				cc |= TTY_FE;
747			if(c & ZSRR1_PE)
748				cc |= TTY_PE;
749			line->l_rint(cc, tp);
750			break;
751
752		case ZRING_XINT:
753			/*
754			 * Transmit done: change registers and resume,
755			 * or clear BUSY.
756			 */
757			if(cs->cs_heldchange) {
758				int sps;
759
760				sps = splzs();
761				c = zc->zc_csr;
762				if((c & ZSRR0_DCD) == 0)
763					cs->cs_preg[3] &= ~ZSWR3_HFC;
764				bcopy((void *)cs->cs_preg,
765				    (void *)cs->cs_creg, 16);
766				zs_loadchannelregs(zc, cs->cs_creg);
767				splx(sps);
768				cs->cs_heldchange = 0;
769				if(cs->cs_heldtbc
770					&& (tp->t_state & TS_TTSTOP) == 0) {
771					cs->cs_tbc = cs->cs_heldtbc - 1;
772					zc->zc_data = *cs->cs_tba++;
773					goto again;
774				}
775			}
776			tp->t_state &= ~TS_BUSY;
777			if(tp->t_state & TS_FLUSH)
778				tp->t_state &= ~TS_FLUSH;
779			else ndflush(&tp->t_outq,cs->cs_tba
780						- tp->t_outq.c_cf);
781			line->l_start(tp);
782			break;
783
784		case ZRING_SINT:
785			/*
786			 * Status line change.  HFC bit is run in
787			 * hardware interrupt, to avoid locking
788			 * at splzs here.
789			 */
790			c = ZRING_VALUE(c);
791			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
792				cc = (c & ZSRR0_DCD) != 0;
793				if(line->l_modem(tp, cc) == 0)
794					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
795							cc ? DMBIS : DMBIC);
796			}
797			cs->cs_rr0 = c;
798			break;
799
800		default:
801			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
802			    unit >> 1, (unit & 1) + 'a', c);
803			break;
804		}
805	}
806	cs->cs_rbget = get;
807	goto again;
808    }
809    splx(s);
810    return (retval);
811}
812
813int
814zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
815{
816		 int			unit = ZS_UNIT(dev);
817		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
818	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
819	register int			error, s;
820	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
821
822	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
823	if(error != EPASSTHROUGH)
824		return(error);
825
826	error = ttioctl(tp, cmd, data, flag, l);
827	if(error !=EPASSTHROUGH)
828		return (error);
829
830	switch (cmd) {
831	case TIOCSBRK:
832		s = splzs();
833		cs->cs_preg[5] |= ZSWR5_BREAK;
834		cs->cs_creg[5] |= ZSWR5_BREAK;
835		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
836		splx(s);
837		break;
838	case TIOCCBRK:
839		s = splzs();
840		cs->cs_preg[5] &= ~ZSWR5_BREAK;
841		cs->cs_creg[5] &= ~ZSWR5_BREAK;
842		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
843		splx(s);
844		break;
845	case TIOCGFLAGS: {
846		int bits = 0;
847
848		if(cs->cs_softcar)
849			bits |= TIOCFLAG_SOFTCAR;
850		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
851			bits |= TIOCFLAG_CLOCAL;
852		if(cs->cs_creg[3] & ZSWR3_HFC)
853			bits |= TIOCFLAG_CRTSCTS;
854		*(int *)data = bits;
855		break;
856	}
857	case TIOCSFLAGS: {
858		int userbits = 0;
859
860		error = kauth_authorize_device_tty(l->l_cred,
861		    KAUTH_DEVICE_TTY_PRIVSET, tp);
862		if(error != 0)
863			return (EPERM);
864
865		userbits = *(int *)data;
866
867		/*
868		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
869		 # defaulting to software flow control.
870		 */
871		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
872			return(EINVAL);
873		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
874			return(ENODEV);
875
876		s = splzs();
877		if((userbits & TIOCFLAG_SOFTCAR)) {
878			cs->cs_softcar = 1;	/* turn on softcar */
879			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
880			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
881			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
882		}
883		else if(userbits & TIOCFLAG_CLOCAL) {
884			cs->cs_softcar = 0; 	/* turn off softcar */
885			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
886			cs->cs_creg[15] |= ZSWR15_DCD_IE;
887			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
888			tp->t_termios.c_cflag |= CLOCAL;
889		}
890		if(userbits & TIOCFLAG_CRTSCTS) {
891			cs->cs_preg[15] |= ZSWR15_CTS_IE;
892			cs->cs_creg[15] |= ZSWR15_CTS_IE;
893			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894			cs->cs_preg[3] |= ZSWR3_HFC;
895			cs->cs_creg[3] |= ZSWR3_HFC;
896			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
897			tp->t_termios.c_cflag |= CRTSCTS;
898		}
899		else {
900			/* no mdmbuf, so we must want software flow control */
901			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
902			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
903			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
904			cs->cs_preg[3] &= ~ZSWR3_HFC;
905			cs->cs_creg[3] &= ~ZSWR3_HFC;
906			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
907			tp->t_termios.c_cflag &= ~CRTSCTS;
908		}
909		splx(s);
910		break;
911	}
912	case TIOCSDTR:
913		zs_modem(cs, ZSWR5_DTR, DMBIS);
914		break;
915	case TIOCCDTR:
916		zs_modem(cs, ZSWR5_DTR, DMBIC);
917		break;
918	case TIOCMGET:
919		zs_modem(cs, 0, DMGET);
920		break;
921	case TIOCMSET:
922	case TIOCMBIS:
923	case TIOCMBIC:
924	default:
925		return (EPASSTHROUGH);
926	}
927	return (0);
928}
929
930/*
931 * Start or restart transmission.
932 */
933static void
934zsstart(register struct tty *tp)
935{
936	register struct zs_chanstate	*cs;
937	register int			s, nch;
938		 int			unit = ZS_UNIT(tp->t_dev);
939		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
940
941	cs = &zi->zi_cs[unit & 1];
942	s  = spltty();
943
944	/*
945	 * If currently active or delaying, no need to do anything.
946	 */
947	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
948		goto out;
949
950	/*
951	 * If there are sleepers, and output has drained below low
952	 * water mark, awaken.
953	 */
954	ttypull(tp);
955
956	nch = ndqb(&tp->t_outq, 0);	/* XXX */
957	if(nch) {
958		register char *p = tp->t_outq.c_cf;
959
960		/* mark busy, enable tx done interrupts, & send first byte */
961		tp->t_state |= TS_BUSY;
962		(void) splzs();
963		cs->cs_preg[1] |= ZSWR1_TIE;
964		cs->cs_creg[1] |= ZSWR1_TIE;
965		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
966		cs->cs_zc->zc_data = *p;
967		cs->cs_tba = p + 1;
968		cs->cs_tbc = nch - 1;
969	} else {
970		/*
971		 * Nothing to send, turn off transmit done interrupts.
972		 * This is useful if something is doing polled output.
973		 */
974		(void) splzs();
975		cs->cs_preg[1] &= ~ZSWR1_TIE;
976		cs->cs_creg[1] &= ~ZSWR1_TIE;
977		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
978	}
979out:
980	splx(s);
981}
982
983/*
984 * Stop output, e.g., for ^S or output flush.
985 */
986void
987zsstop(register struct tty *tp, int flag)
988{
989	register struct zs_chanstate	*cs;
990	register int			s, unit = ZS_UNIT(tp->t_dev);
991		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
992
993	cs = &zi->zi_cs[unit & 1];
994	s  = splzs();
995	if(tp->t_state & TS_BUSY) {
996		/*
997		 * Device is transmitting; must stop it.
998		 */
999		cs->cs_tbc = 0;
1000		if ((tp->t_state & TS_TTSTOP) == 0)
1001			tp->t_state |= TS_FLUSH;
1002	}
1003	splx(s);
1004}
1005
1006static void
1007zs_shutdown(struct zs_chanstate *cs)
1008{
1009	struct tty	*tp = cs->cs_ttyp;
1010	int		s;
1011
1012	s = splzs();
1013
1014	/*
1015	 * Hang up if necessary.  Wait a bit, so the other side has time to
1016	 * notice even if we immediately open the port again.
1017	 */
1018	if(tp->t_cflag & HUPCL) {
1019		zs_modem(cs, 0, DMSET);
1020		(void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1021	}
1022
1023	/* Clear any break condition set with TIOCSBRK. */
1024	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1025		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1026		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1027		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1028	}
1029
1030	/*
1031	 * Drop all lines and cancel interrupts
1032	 */
1033	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1034	splx(s);
1035}
1036
1037/*
1038 * Set ZS tty parameters from termios.
1039 *
1040 * This routine makes use of the fact that only registers
1041 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1042 */
1043static int
1044zsparam(register struct tty *tp, register struct termios *t)
1045{
1046		 int			unit = ZS_UNIT(tp->t_dev);
1047		 struct zs_softc	*zi = device_lookup_private(&zs_cd, unit >> 1);
1048	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1049		 int			cdiv = 0,	/* XXX gcc4 -Wuninitialized */
1050					clkm = 0,	/* XXX gcc4 -Wuninitialized */
1051					brgm = 0,	/* XXX gcc4 -Wuninitialized */
1052					tcon = 0;	/* XXX gcc4 -Wuninitialized */
1053	register int			tmp, tmp5, cflag, s;
1054
1055	tmp  = t->c_ospeed;
1056	tmp5 = t->c_ispeed;
1057	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1058		return(EINVAL);
1059	if(tmp == 0) {
1060		/* stty 0 => drop DTR and RTS */
1061		zs_modem(cs, 0, DMSET);
1062		return(0);
1063	}
1064	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1065	if (tmp < 0)
1066		return(EINVAL);
1067	tp->t_ispeed = tp->t_ospeed = tmp;
1068
1069	cflag = tp->t_cflag = t->c_cflag;
1070	if (cflag & CSTOPB)
1071		cdiv |= ZSWR4_TWOSB;
1072	else
1073		cdiv |= ZSWR4_ONESB;
1074	if (!(cflag & PARODD))
1075		cdiv |= ZSWR4_EVENP;
1076	if (cflag & PARENB)
1077		cdiv |= ZSWR4_PARENB;
1078
1079	switch(cflag & CSIZE) {
1080	case CS5:
1081		tmp  = ZSWR3_RX_5;
1082		tmp5 = ZSWR5_TX_5;
1083		break;
1084	case CS6:
1085		tmp  = ZSWR3_RX_6;
1086		tmp5 = ZSWR5_TX_6;
1087		break;
1088	case CS7:
1089		tmp  = ZSWR3_RX_7;
1090		tmp5 = ZSWR5_TX_7;
1091		break;
1092	case CS8:
1093	default:
1094		tmp  = ZSWR3_RX_8;
1095		tmp5 = ZSWR5_TX_8;
1096		break;
1097	}
1098	tmp  |= ZSWR3_RX_ENABLE;
1099	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1100
1101	/*
1102	 * Block interrupts so that state will not
1103	 * be altered until we are done setting it up.
1104	 */
1105	s = splzs();
1106	cs->cs_preg[4]  = cdiv;
1107	cs->cs_preg[11] = clkm;
1108	cs->cs_preg[12] = tcon;
1109	cs->cs_preg[13] = tcon >> 8;
1110	cs->cs_preg[14] = brgm;
1111	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1112	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1113	cs->cs_preg[10] = ZSWR10_NRZ;
1114	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1115
1116	/*
1117	 * Output hardware flow control on the chip is horrendous: if
1118	 * carrier detect drops, the receiver is disabled.  Hence we
1119	 * can only do this when the carrier is on.
1120	 */
1121	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1122		tmp |= ZSWR3_HFC;
1123	cs->cs_preg[3] = tmp;
1124	cs->cs_preg[5] = tmp5;
1125
1126	/*
1127	 * If nothing is being transmitted, set up new current values,
1128	 * else mark them as pending.
1129	 */
1130	if(cs->cs_heldchange == 0) {
1131		if (cs->cs_ttyp->t_state & TS_BUSY) {
1132			cs->cs_heldtbc = cs->cs_tbc;
1133			cs->cs_tbc = 0;
1134			cs->cs_heldchange = 1;
1135		} else {
1136			memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16);
1137			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1138		}
1139	}
1140	splx(s);
1141	return (0);
1142}
1143
1144/*
1145 * search for the best matching baudrate
1146 */
1147static int
1148zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode, int *timeconst)
1149{
1150	int	bestdiff, bestbps, source;
1151
1152	bestdiff = bestbps = 0;
1153	unit = (unit & 1) << 2;
1154	for (source = 0; source < 4; ++source) {
1155		long	freq = zs_frequencies[unit + source];
1156		int	diff, bps, div, clkm, brgm, tcon;
1157
1158		bps = div = clkm = brgm = tcon = 0;
1159		switch (source) {
1160			case 0:	/* BRgen, PCLK */
1161				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1162				break;
1163			case 1:	/* BRgen, RTxC */
1164				brgm = ZSWR14_BAUD_ENA;
1165				break;
1166			case 2: /* RTxC */
1167				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1168				break;
1169			case 3: /* TRxC */
1170				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1171				break;
1172		}
1173		switch (source) {
1174			case 0:
1175			case 1:
1176				div  = ZSWR4_CLK_X16;
1177				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1178				tcon = BPS_TO_TCONST(freq, wanted);
1179				if (tcon < 0)
1180					tcon = 0;
1181				bps  = TCONST_TO_BPS(freq, tcon);
1182				break;
1183			case 2:
1184			case 3:
1185			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1186				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1187				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1188
1189				if (d1 < d2 && d1 < d3) {
1190					div = ZSWR4_CLK_X16;
1191					bps = b1;
1192				} else if (d2 < d3 && d2 < d1) {
1193					div = ZSWR4_CLK_X32;
1194					bps = b2;
1195				} else {
1196					div = ZSWR4_CLK_X64;
1197					bps = b3;
1198				}
1199				brgm = tcon = 0;
1200				break;
1201			}
1202		}
1203		diff = abs(bps - wanted);
1204		if (!source || diff < bestdiff) {
1205			*divisor   = div;
1206			*clockmode = clkm;
1207			*brgenmode = brgm;
1208			*timeconst = tcon;
1209			bestbps    = bps;
1210			bestdiff   = diff;
1211			if (diff == 0)
1212				break;
1213		}
1214	}
1215	/* Allow deviations upto 5% */
1216	if (20 * bestdiff > wanted)
1217		return -1;
1218	return bestbps;
1219}
1220
1221/*
1222 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1223 * in transmission, the change is deferred.
1224 */
1225static int
1226zs_modem(struct zs_chanstate *cs, int bits, int how)
1227{
1228	int s, mbits;
1229
1230	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1231
1232	s = splzs();
1233	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1234
1235	switch(how) {
1236		case DMSET:
1237				mbits  = bits;
1238				break;
1239		case DMBIS:
1240				mbits |= bits;
1241				break;
1242		case DMBIC:
1243				mbits &= ~bits;
1244				break;
1245		case DMGET:
1246				splx(s);
1247				return(mbits);
1248	}
1249
1250	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1251	if(cs->cs_heldchange == 0) {
1252		if(cs->cs_ttyp->t_state & TS_BUSY) {
1253			cs->cs_heldtbc = cs->cs_tbc;
1254			cs->cs_tbc = 0;
1255			cs->cs_heldchange = 1;
1256		}
1257		else {
1258			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1259		}
1260	}
1261	splx(s);
1262	return(0);
1263}
1264
1265/*
1266 * Write the given register set to the given zs channel in the proper order.
1267 * The channel must not be transmitting at the time.  The receiver will
1268 * be disabled for the time it takes to write all the registers.
1269 */
1270static void
1271zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1272{
1273	int i;
1274
1275	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1276	i = zc->zc_data;		/* drain fifo */
1277	i = zc->zc_data;
1278	i = zc->zc_data;
1279	ZS_WRITE(zc,  4, reg[4]);
1280	ZS_WRITE(zc, 10, reg[10]);
1281	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1282	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1283	ZS_WRITE(zc,  1, reg[1]);
1284	ZS_WRITE(zc,  9, reg[9]);
1285	ZS_WRITE(zc, 11, reg[11]);
1286	ZS_WRITE(zc, 12, reg[12]);
1287	ZS_WRITE(zc, 13, reg[13]);
1288	ZS_WRITE(zc, 14, reg[14]);
1289	ZS_WRITE(zc, 15, reg[15]);
1290	ZS_WRITE(zc,  3, reg[3]);
1291	ZS_WRITE(zc,  5, reg[5]);
1292}
1293#endif /* NZS > 1 */
1294