zs.c revision 1.55
1/*	$NetBSD: zs.c,v 1.55 2008/01/08 18:04:16 joerg Exp $	*/
2
3/*
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 *	This product includes software developed by the University of
15 *	California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
42 */
43
44/*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 *    notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 *    notice, this list of conditions and the following disclaimer in the
58 *    documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of The NetBSD Foundation nor the names of its
60 *    contributors may be used to endorse or promote products derived
61 *    from this software without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76/*
77 * Zilog Z8530 (ZSCC) driver.
78 *
79 * Runs two tty ports (modem2 and serial2) on zs0.
80 *
81 * This driver knows far too much about chip to usage mappings.
82 */
83
84#include <sys/cdefs.h>
85__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.55 2008/01/08 18:04:16 joerg Exp $");
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/proc.h>
90#include <sys/device.h>
91#include <sys/conf.h>
92#include <sys/file.h>
93#include <sys/ioctl.h>
94#include <sys/malloc.h>
95#include <sys/tty.h>
96#include <sys/time.h>
97#include <sys/kernel.h>
98#include <sys/syslog.h>
99#include <sys/kauth.h>
100
101#include <machine/cpu.h>
102#include <machine/iomap.h>
103#include <machine/scu.h>
104#include <machine/mfp.h>
105#include <atari/dev/ym2149reg.h>
106
107#include <dev/ic/z8530reg.h>
108#include <atari/dev/zsvar.h>
109#include "zs.h"
110#if NZS > 1
111#error "This driver supports only 1 85C30!"
112#endif
113
114#if NZS > 0
115
116#define PCLK	(8053976)	/* PCLK pin input clock rate */
117#define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
118
119#define splzs	spl5
120
121/*
122 * Software state per found chip.
123 */
124struct zs_softc {
125    struct	device		zi_dev;    /* base device		  */
126    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
127    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
128};
129
130static u_char	cb_scheduled = 0;	/* Already asked for callback? */
131/*
132 * Define the registers for a closed port
133 */
134static u_char zs_init_regs[16] = {
135/*  0 */	0,
136/*  1 */	0,
137/*  2 */	0x60,
138/*  3 */	0,
139/*  4 */	0,
140/*  5 */	0,
141/*  6 */	0,
142/*  7 */	0,
143/*  8 */	0,
144/*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
145/* 10 */	ZSWR10_NRZ,
146/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
147/* 12 */	0,
148/* 13 */	0,
149/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
150/* 15 */	0
151};
152
153/*
154 * Define the machine dependant clock frequencies
155 * If BRgen feeds sender/receiver we always use a
156 * divisor 16, therefor the division by 16 can as
157 * well be done here.
158 */
159static u_long zs_freqs_tt[] = {
160	/*
161	 * Atari TT, RTxCB is generated by TT-MFP timer C,
162	 * which is set to 307.2 kHz during initialisation
163	 * and never changed afterwards.
164	 */
165	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
166	 229500,	/* BRgen, RTxCA, divisor 16	*/
167	3672000,	/* RTxCA, from PCLK4		*/
168	      0,	/* TRxCA, external		*/
169
170	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
171	  19200,	/* BRgen, RTxCB, divisor 16	*/
172	 307200,	/* RTxCB, from TT-MFP TCO	*/
173	2457600		/* TRxCB, from BCLK		*/
174};
175
176static u_long zs_freqs_falcon[] = {
177	/*
178	 * Atari Falcon, XXX no specs available, this might be wrong
179	 */
180	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
181	 229500,	/* BRgen, RTxCA, divisor 16	*/
182	3672000,	/* RTxCA, ???			*/
183	      0,	/* TRxCA, external		*/
184
185	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
186	 229500,	/* BRgen, RTxCB, divisor 16	*/
187	3672000,	/* RTxCB, ???			*/
188	2457600		/* TRxCB, ???			*/
189};
190
191static u_long zs_freqs_hades[] = {
192	/*
193	 * XXX: Channel-A unchecked!!!!!
194	 */
195     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
196	 229500,	/* BRgen, RTxCA, divisor 16	*/
197	3672000,	/* RTxCA, from PCLK4		*/
198	      0,	/* TRxCA, external		*/
199
200     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
201	 235550,	/* BRgen, RTxCB, divisor 16	*/
202	3768800,	/* RTxCB, 3.7688MHz		*/
203	3768800		/* TRxCB, 3.7688MHz		*/
204};
205
206static u_long zs_freqs_generic[] = {
207	/*
208	 * other machines, assume only PCLK is available
209	 */
210	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
211	      0,	/* BRgen, RTxCA, divisor 16	*/
212	      0,	/* RTxCA, unknown		*/
213	      0,	/* TRxCA, unknown		*/
214
215	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
216	      0,	/* BRgen, RTxCB, divisor 16	*/
217	      0,	/* RTxCB, unknown		*/
218	      0		/* TRxCB, unknown		*/
219};
220static u_long *zs_frequencies;
221
222/* Definition of the driver for autoconfig. */
223static int	zsmatch __P((struct device *, struct cfdata *, void *));
224static void	zsattach __P((struct device *, struct device *, void *));
225
226CFATTACH_DECL(zs, sizeof(struct zs_softc),
227    zsmatch, zsattach, NULL, NULL);
228
229extern struct cfdriver zs_cd;
230
231/* {b,c}devsw[] function prototypes */
232dev_type_open(zsopen);
233dev_type_close(zsclose);
234dev_type_read(zsread);
235dev_type_write(zswrite);
236dev_type_ioctl(zsioctl);
237dev_type_stop(zsstop);
238dev_type_tty(zstty);
239dev_type_poll(zspoll);
240
241const struct cdevsw zs_cdevsw = {
242	zsopen, zsclose, zsread, zswrite, zsioctl,
243	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
244};
245
246/* Interrupt handlers. */
247int		zshard __P((long));
248static int	zssoft __P((long));
249static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
250static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
251static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
252
253static struct zs_chanstate *zslist;
254
255/* Routines called from other code. */
256static void	zsstart __P((struct tty *));
257
258/* Routines purely local to this driver. */
259static void	zsoverrun __P((int, long *, const char *));
260static int	zsparam __P((struct tty *, struct termios *));
261static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
262static int	zs_modem __P((struct zs_chanstate *, int, int));
263static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
264static void	zs_shutdown __P((struct zs_chanstate *));
265
266static int zsshortcuts;	/* number of "shortcut" software interrupts */
267
268static int
269zsmatch(pdp, cfp, auxp)
270struct device	*pdp;
271struct cfdata	*cfp;
272void		*auxp;
273{
274	static int	zs_matched = 0;
275
276	if(strcmp("zs", auxp) || zs_matched)
277		return(0);
278	zs_matched = 1;
279	return(1);
280}
281
282/*
283 * Attach a found zs.
284 */
285static void
286zsattach(parent, dev, aux)
287struct device	*parent;
288struct device	*dev;
289void		*aux;
290{
291	register struct zs_softc		*zi;
292	register struct zs_chanstate		*cs;
293	register volatile struct zsdevice	*addr;
294		 char				tmp;
295
296	addr      = (struct zsdevice *)AD_SCC;
297	zi        = (struct zs_softc *)dev;
298	zi->zi_zs = addr;
299	cs        = zi->zi_cs;
300
301	/*
302	 * Get the command register into a known state.
303	 */
304	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
306	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
308
309	/*
310	 * Do a hardware reset.
311	 */
312	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
313	delay(50000);	/*enough ? */
314	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
315
316	/*
317	 * Initialize both channels
318	 */
319	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
320	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
321
322	if(machineid & ATARI_TT) {
323		/*
324		 * ininitialise TT-MFP timer C: 307200Hz
325		 * timer C and D share one control register:
326		 *	bits 0-2 control timer D
327		 *	bits 4-6 control timer C
328		 */
329		int cr = MFP2->mf_tcdcr & 7;
330		MFP2->mf_tcdcr = cr;		/* stop timer C  */
331		MFP2->mf_tcdr  = 1;		/* counter 1     */
332		cr |= T_Q004 << 4;		/* divisor 4     */
333		MFP2->mf_tcdcr = cr;		/* start timer C */
334		/*
335		 * enable scc related interrupts
336		 */
337		SCU->vme_mask |= SCU_SCC;
338
339		zs_frequencies = zs_freqs_tt;
340	} else if (machineid & ATARI_FALCON) {
341		zs_frequencies = zs_freqs_falcon;
342	} else if (machineid & ATARI_HADES) {
343		zs_frequencies = zs_freqs_hades;
344	} else {
345		zs_frequencies = zs_freqs_generic;
346	}
347
348	/* link into interrupt list with order (A,B) (B=A+1) */
349	cs[0].cs_next = &cs[1];
350	cs[1].cs_next = zslist;
351	zslist        = cs;
352
353	cs->cs_unit  = 0;
354	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
355	cs++;
356	cs->cs_unit  = 1;
357	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
358
359	printf(": serial2 on channel a and modem2 on channel b\n");
360}
361
362/*
363 * Open a zs serial port.
364 */
365int
366zsopen(dev, flags, mode, l)
367dev_t		dev;
368int		flags;
369int		mode;
370struct lwp	*l;
371{
372	register struct tty		*tp;
373	register struct zs_chanstate	*cs;
374		 struct zs_softc	*zi;
375		 int			unit = ZS_UNIT(dev);
376		 int			zs = unit >> 1;
377		 int			error, s;
378
379	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
380		return (ENXIO);
381	cs = &zi->zi_cs[unit & 1];
382
383	/*
384	 * When port A (ser02) is selected on the TT, make sure
385	 * the port is enabled.
386	 */
387	if((machineid & ATARI_TT) && !(unit & 1))
388		ym2149_ser2(1);
389
390	if (cs->cs_rbuf == NULL) {
391		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
392								   M_WAITOK);
393	}
394
395	tp = cs->cs_ttyp;
396	if(tp == NULL) {
397		cs->cs_ttyp = tp = ttymalloc();
398		tty_attach(tp);
399		tp->t_dev   = dev;
400		tp->t_oproc = zsstart;
401		tp->t_param = zsparam;
402	}
403
404	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
405		return (EBUSY);
406
407	s  = spltty();
408
409	/*
410	 * Do the following iff this is a first open.
411	 */
412	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
413		if(tp->t_ispeed == 0) {
414			tp->t_iflag = TTYDEF_IFLAG;
415			tp->t_oflag = TTYDEF_OFLAG;
416			tp->t_cflag = TTYDEF_CFLAG;
417			tp->t_lflag = TTYDEF_LFLAG;
418			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
419		}
420		ttychars(tp);
421		ttsetwater(tp);
422
423		(void)zsparam(tp, &tp->t_termios);
424
425		/*
426		 * Turn on DTR.  We must always do this, even if carrier is not
427		 * present, because otherwise we'd have to use TIOCSDTR
428		 * immediately after setting CLOCAL, which applications do not
429		 * expect.  We always assert DTR while the device is open
430		 * unless explicitly requested to deassert it.
431		 */
432		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
433		/* May never get a status intr. if DCD already on. -gwr */
434		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
435			tp->t_state |= TS_CARR_ON;
436		if(cs->cs_softcar)
437			tp->t_state |= TS_CARR_ON;
438	}
439
440	splx(s);
441
442	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
443	if (error)
444		goto bad;
445
446	error = tp->t_linesw->l_open(dev, tp);
447	if(error)
448		goto bad;
449	return (0);
450
451bad:
452	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
453		/*
454		 * We failed to open the device, and nobody else had it opened.
455		 * Clean up the state as appropriate.
456		 */
457		zs_shutdown(cs);
458	}
459	return(error);
460}
461
462/*
463 * Close a zs serial port.
464 */
465int
466zsclose(dev, flags, mode, l)
467dev_t		dev;
468int		flags;
469int		mode;
470struct lwp	*l;
471{
472	register struct zs_chanstate	*cs;
473	register struct tty		*tp;
474		 struct zs_softc	*zi;
475		 int			unit = ZS_UNIT(dev);
476
477	zi = zs_cd.cd_devs[unit >> 1];
478	cs = &zi->zi_cs[unit & 1];
479	tp = cs->cs_ttyp;
480
481	tp->t_linesw->l_close(tp, flags);
482	ttyclose(tp);
483
484	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
485		/*
486		 * Although we got a last close, the device may still be in
487		 * use; e.g. if this was the dialout node, and there are still
488		 * processes waiting for carrier on the non-dialout node.
489		 */
490		zs_shutdown(cs);
491	}
492	return (0);
493}
494
495/*
496 * Read/write zs serial port.
497 */
498int
499zsread(dev, uio, flags)
500dev_t		dev;
501struct uio	*uio;
502int		flags;
503{
504	register struct zs_chanstate	*cs;
505	register struct zs_softc	*zi;
506	register struct tty		*tp;
507		 int			unit;
508
509	unit = ZS_UNIT(dev);
510	zi   = zs_cd.cd_devs[unit >> 1];
511	cs   = &zi->zi_cs[unit & 1];
512	tp   = cs->cs_ttyp;
513
514	return(tp->t_linesw->l_read(tp, uio, flags));
515}
516
517int
518zswrite(dev, uio, flags)
519dev_t		dev;
520struct uio	*uio;
521int		flags;
522{
523	register struct zs_chanstate	*cs;
524	register struct zs_softc	*zi;
525	register struct tty		*tp;
526		 int			unit;
527
528	unit = ZS_UNIT(dev);
529	zi   = zs_cd.cd_devs[unit >> 1];
530	cs   = &zi->zi_cs[unit & 1];
531	tp   = cs->cs_ttyp;
532
533	return(tp->t_linesw->l_write(tp, uio, flags));
534}
535
536int
537zspoll(dev, events, l)
538dev_t		dev;
539int		events;
540struct lwp	*l;
541{
542	register struct zs_chanstate	*cs;
543	register struct zs_softc	*zi;
544	register struct tty		*tp;
545		 int			unit;
546
547	unit = ZS_UNIT(dev);
548	zi   = zs_cd.cd_devs[unit >> 1];
549	cs   = &zi->zi_cs[unit & 1];
550	tp   = cs->cs_ttyp;
551
552	return ((*tp->t_linesw->l_poll)(tp, events, l));
553}
554
555struct tty *
556zstty(dev)
557dev_t	dev;
558{
559	register struct zs_chanstate	*cs;
560	register struct zs_softc	*zi;
561		 int			unit;
562
563	unit = ZS_UNIT(dev);
564	zi   = zs_cd.cd_devs[unit >> 1];
565	cs   = &zi->zi_cs[unit & 1];
566	return(cs->cs_ttyp);
567}
568
569/*
570 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
571 * channels are kept in (A,B) pairs.
572 *
573 * Do just a little, then get out; set a software interrupt if more
574 * work is needed.
575 *
576 * We deliberately ignore the vectoring Zilog gives us, and match up
577 * only the number of `reset interrupt under service' operations, not
578 * the order.
579 */
580
581int
582zshard(sr)
583long sr;
584{
585	register struct zs_chanstate	*a;
586#define	b (a + 1)
587	register volatile struct zschan *zc;
588	register int			rr3, intflags = 0, v, i;
589
590	do {
591	    intflags &= ~4;
592	    for(a = zslist; a != NULL; a = b->cs_next) {
593		rr3 = ZS_READ(a->cs_zc, 3);
594		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
595			intflags |= 4|2;
596			zc = a->cs_zc;
597			i  = a->cs_rbput;
598			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
599				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600				intflags |= 1;
601			}
602			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
603				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
604				intflags |= 1;
605			}
606			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
607				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
608				intflags |= 1;
609			}
610			a->cs_rbput = i;
611		}
612		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
613			intflags |= 4|2;
614			zc = b->cs_zc;
615			i  = b->cs_rbput;
616			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
617				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
618				intflags |= 1;
619			}
620			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
621				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
622				intflags |= 1;
623			}
624			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
625				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
626				intflags |= 1;
627			}
628			b->cs_rbput = i;
629		}
630	    }
631	} while(intflags & 4);
632#undef b
633
634	if(intflags & 1) {
635		if(BASEPRI(sr)) {
636			spl1();
637			zsshortcuts++;
638			return(zssoft(sr));
639		}
640		else if(!cb_scheduled) {
641			cb_scheduled++;
642			add_sicallback((si_farg)zssoft, 0, 0);
643		}
644	}
645	return(intflags & 2);
646}
647
648static int
649zsrint(cs, zc)
650register struct zs_chanstate	*cs;
651register volatile struct zschan	*zc;
652{
653	register int c;
654
655	/*
656	 * First read the status, because read of the received char
657	 * destroy the status of this char.
658	 */
659	c = ZS_READ(zc, 1);
660	c |= (zc->zc_data << 8);
661
662	/* clear receive error & interrupt condition */
663	zc->zc_csr = ZSWR0_RESET_ERRORS;
664	zc->zc_csr = ZSWR0_CLR_INTR;
665
666	return(ZRING_MAKE(ZRING_RINT, c));
667}
668
669static int
670zsxint(cs, zc)
671register struct zs_chanstate	*cs;
672register volatile struct zschan	*zc;
673{
674	register int i = cs->cs_tbc;
675
676	if(i == 0) {
677		zc->zc_csr = ZSWR0_RESET_TXINT;
678		zc->zc_csr = ZSWR0_CLR_INTR;
679		return(ZRING_MAKE(ZRING_XINT, 0));
680	}
681	cs->cs_tbc = i - 1;
682	zc->zc_data = *cs->cs_tba++;
683	zc->zc_csr = ZSWR0_CLR_INTR;
684	return (0);
685}
686
687static int
688zssint(cs, zc)
689register struct zs_chanstate	*cs;
690register volatile struct zschan	*zc;
691{
692	register int rr0;
693
694	rr0 = zc->zc_csr;
695	zc->zc_csr = ZSWR0_RESET_STATUS;
696	zc->zc_csr = ZSWR0_CLR_INTR;
697	/*
698	 * The chip's hardware flow control is, as noted in zsreg.h,
699	 * busted---if the DCD line goes low the chip shuts off the
700	 * receiver (!).  If we want hardware CTS flow control but do
701	 * not have it, and carrier is now on, turn HFC on; if we have
702	 * HFC now but carrier has gone low, turn it off.
703	 */
704	if(rr0 & ZSRR0_DCD) {
705		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
706		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
707			cs->cs_creg[3] |= ZSWR3_HFC;
708			ZS_WRITE(zc, 3, cs->cs_creg[3]);
709		}
710	}
711	else {
712		if (cs->cs_creg[3] & ZSWR3_HFC) {
713			cs->cs_creg[3] &= ~ZSWR3_HFC;
714			ZS_WRITE(zc, 3, cs->cs_creg[3]);
715		}
716	}
717	return(ZRING_MAKE(ZRING_SINT, rr0));
718}
719
720/*
721 * Print out a ring or fifo overrun error message.
722 */
723static void
724zsoverrun(unit, ptime, what)
725int	unit;
726long	*ptime;
727const char *what;
728{
729	time_t cur_sec = time_second;
730
731	if(*ptime != cur_sec) {
732		*ptime = cur_sec;
733		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
734		    (unit & 1) + 'a', what);
735	}
736}
737
738/*
739 * ZS software interrupt.  Scan all channels for deferred interrupts.
740 */
741int
742zssoft(sr)
743long sr;
744{
745    register struct zs_chanstate	*cs;
746    register volatile struct zschan	*zc;
747    register struct linesw		*line;
748    register struct tty			*tp;
749    register int			get, n, c, cc, unit, s;
750 	     int			retval = 0;
751
752    cb_scheduled = 0;
753    s = spltty();
754    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
755	get = cs->cs_rbget;
756again:
757	n = cs->cs_rbput;	/* atomic			*/
758	if(get == n)		/* nothing more on this line	*/
759		continue;
760	retval = 1;
761	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
762	zc     = cs->cs_zc;
763	tp     = cs->cs_ttyp;
764	line   = tp->t_linesw;
765	/*
766	 * Compute the number of interrupts in the receive ring.
767	 * If the count is overlarge, we lost some events, and
768	 * must advance to the first valid one.  It may get
769	 * overwritten if more data are arriving, but this is
770	 * too expensive to check and gains nothing (we already
771	 * lost out; all we can do at this point is trade one
772	 * kind of loss for another).
773	 */
774	n -= get;
775	if(n > ZLRB_RING_SIZE) {
776		zsoverrun(unit, &cs->cs_rotime, "ring");
777		get += n - ZLRB_RING_SIZE;
778		n    = ZLRB_RING_SIZE;
779	}
780	while(--n >= 0) {
781		/* race to keep ahead of incoming interrupts */
782		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
783		switch (ZRING_TYPE(c)) {
784
785		case ZRING_RINT:
786			c = ZRING_VALUE(c);
787			if(c & ZSRR1_DO)
788				zsoverrun(unit, &cs->cs_fotime, "fifo");
789			cc = c >> 8;
790			if(c & ZSRR1_FE)
791				cc |= TTY_FE;
792			if(c & ZSRR1_PE)
793				cc |= TTY_PE;
794			line->l_rint(cc, tp);
795			break;
796
797		case ZRING_XINT:
798			/*
799			 * Transmit done: change registers and resume,
800			 * or clear BUSY.
801			 */
802			if(cs->cs_heldchange) {
803				int sps;
804
805				sps = splzs();
806				c = zc->zc_csr;
807				if((c & ZSRR0_DCD) == 0)
808					cs->cs_preg[3] &= ~ZSWR3_HFC;
809				bcopy((void *)cs->cs_preg,
810				    (void *)cs->cs_creg, 16);
811				zs_loadchannelregs(zc, cs->cs_creg);
812				splx(sps);
813				cs->cs_heldchange = 0;
814				if(cs->cs_heldtbc
815					&& (tp->t_state & TS_TTSTOP) == 0) {
816					cs->cs_tbc = cs->cs_heldtbc - 1;
817					zc->zc_data = *cs->cs_tba++;
818					goto again;
819				}
820			}
821			tp->t_state &= ~TS_BUSY;
822			if(tp->t_state & TS_FLUSH)
823				tp->t_state &= ~TS_FLUSH;
824			else ndflush(&tp->t_outq,cs->cs_tba
825						- tp->t_outq.c_cf);
826			line->l_start(tp);
827			break;
828
829		case ZRING_SINT:
830			/*
831			 * Status line change.  HFC bit is run in
832			 * hardware interrupt, to avoid locking
833			 * at splzs here.
834			 */
835			c = ZRING_VALUE(c);
836			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
837				cc = (c & ZSRR0_DCD) != 0;
838				if(line->l_modem(tp, cc) == 0)
839					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
840							cc ? DMBIS : DMBIC);
841			}
842			cs->cs_rr0 = c;
843			break;
844
845		default:
846			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
847			    unit >> 1, (unit & 1) + 'a', c);
848			break;
849		}
850	}
851	cs->cs_rbget = get;
852	goto again;
853    }
854    splx(s);
855    return (retval);
856}
857
858int
859zsioctl(dev, cmd, data, flag, l)
860dev_t		dev;
861u_long		cmd;
862void *		data;
863int		flag;
864struct lwp	*l;
865{
866		 int			unit = ZS_UNIT(dev);
867		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
868	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
869	register int			error, s;
870	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
871
872	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
873	if(error != EPASSTHROUGH)
874		return(error);
875
876	error = ttioctl(tp, cmd, data, flag, l);
877	if(error !=EPASSTHROUGH)
878		return (error);
879
880	switch (cmd) {
881	case TIOCSBRK:
882		s = splzs();
883		cs->cs_preg[5] |= ZSWR5_BREAK;
884		cs->cs_creg[5] |= ZSWR5_BREAK;
885		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
886		splx(s);
887		break;
888	case TIOCCBRK:
889		s = splzs();
890		cs->cs_preg[5] &= ~ZSWR5_BREAK;
891		cs->cs_creg[5] &= ~ZSWR5_BREAK;
892		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
893		splx(s);
894		break;
895	case TIOCGFLAGS: {
896		int bits = 0;
897
898		if(cs->cs_softcar)
899			bits |= TIOCFLAG_SOFTCAR;
900		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
901			bits |= TIOCFLAG_CLOCAL;
902		if(cs->cs_creg[3] & ZSWR3_HFC)
903			bits |= TIOCFLAG_CRTSCTS;
904		*(int *)data = bits;
905		break;
906	}
907	case TIOCSFLAGS: {
908		int userbits = 0;
909
910		error = kauth_authorize_device_tty(l->l_cred,
911		    KAUTH_DEVICE_TTY_PRIVSET, tp);
912		if(error != 0)
913			return (EPERM);
914
915		userbits = *(int *)data;
916
917		/*
918		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
919		 # defaulting to software flow control.
920		 */
921		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
922			return(EINVAL);
923		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
924			return(ENODEV);
925
926		s = splzs();
927		if((userbits & TIOCFLAG_SOFTCAR)) {
928			cs->cs_softcar = 1;	/* turn on softcar */
929			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
930			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
931			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
932		}
933		else if(userbits & TIOCFLAG_CLOCAL) {
934			cs->cs_softcar = 0; 	/* turn off softcar */
935			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
936			cs->cs_creg[15] |= ZSWR15_DCD_IE;
937			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
938			tp->t_termios.c_cflag |= CLOCAL;
939		}
940		if(userbits & TIOCFLAG_CRTSCTS) {
941			cs->cs_preg[15] |= ZSWR15_CTS_IE;
942			cs->cs_creg[15] |= ZSWR15_CTS_IE;
943			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
944			cs->cs_preg[3] |= ZSWR3_HFC;
945			cs->cs_creg[3] |= ZSWR3_HFC;
946			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
947			tp->t_termios.c_cflag |= CRTSCTS;
948		}
949		else {
950			/* no mdmbuf, so we must want software flow control */
951			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
952			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
953			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
954			cs->cs_preg[3] &= ~ZSWR3_HFC;
955			cs->cs_creg[3] &= ~ZSWR3_HFC;
956			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
957			tp->t_termios.c_cflag &= ~CRTSCTS;
958		}
959		splx(s);
960		break;
961	}
962	case TIOCSDTR:
963		zs_modem(cs, ZSWR5_DTR, DMBIS);
964		break;
965	case TIOCCDTR:
966		zs_modem(cs, ZSWR5_DTR, DMBIC);
967		break;
968	case TIOCMGET:
969		zs_modem(cs, 0, DMGET);
970		break;
971	case TIOCMSET:
972	case TIOCMBIS:
973	case TIOCMBIC:
974	default:
975		return (EPASSTHROUGH);
976	}
977	return (0);
978}
979
980/*
981 * Start or restart transmission.
982 */
983static void
984zsstart(tp)
985register struct tty *tp;
986{
987	register struct zs_chanstate	*cs;
988	register int			s, nch;
989		 int			unit = ZS_UNIT(tp->t_dev);
990		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
991
992	cs = &zi->zi_cs[unit & 1];
993	s  = spltty();
994
995	/*
996	 * If currently active or delaying, no need to do anything.
997	 */
998	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
999		goto out;
1000
1001	/*
1002	 * If there are sleepers, and output has drained below low
1003	 * water mark, awaken.
1004	 */
1005	ttypull(tp);
1006
1007	nch = ndqb(&tp->t_outq, 0);	/* XXX */
1008	if(nch) {
1009		register char *p = tp->t_outq.c_cf;
1010
1011		/* mark busy, enable tx done interrupts, & send first byte */
1012		tp->t_state |= TS_BUSY;
1013		(void) splzs();
1014		cs->cs_preg[1] |= ZSWR1_TIE;
1015		cs->cs_creg[1] |= ZSWR1_TIE;
1016		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1017		cs->cs_zc->zc_data = *p;
1018		cs->cs_tba = p + 1;
1019		cs->cs_tbc = nch - 1;
1020	} else {
1021		/*
1022		 * Nothing to send, turn off transmit done interrupts.
1023		 * This is useful if something is doing polled output.
1024		 */
1025		(void) splzs();
1026		cs->cs_preg[1] &= ~ZSWR1_TIE;
1027		cs->cs_creg[1] &= ~ZSWR1_TIE;
1028		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1029	}
1030out:
1031	splx(s);
1032}
1033
1034/*
1035 * Stop output, e.g., for ^S or output flush.
1036 */
1037void
1038zsstop(tp, flag)
1039register struct tty	*tp;
1040	 int		flag;
1041{
1042	register struct zs_chanstate	*cs;
1043	register int			s, unit = ZS_UNIT(tp->t_dev);
1044		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1045
1046	cs = &zi->zi_cs[unit & 1];
1047	s  = splzs();
1048	if(tp->t_state & TS_BUSY) {
1049		/*
1050		 * Device is transmitting; must stop it.
1051		 */
1052		cs->cs_tbc = 0;
1053		if ((tp->t_state & TS_TTSTOP) == 0)
1054			tp->t_state |= TS_FLUSH;
1055	}
1056	splx(s);
1057}
1058
1059static void
1060zs_shutdown(cs)
1061	struct zs_chanstate	*cs;
1062{
1063	struct tty	*tp = cs->cs_ttyp;
1064	int		s;
1065
1066	s = splzs();
1067
1068	/*
1069	 * Hang up if necessary.  Wait a bit, so the other side has time to
1070	 * notice even if we immediately open the port again.
1071	 */
1072	if(tp->t_cflag & HUPCL) {
1073		zs_modem(cs, 0, DMSET);
1074		(void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1075	}
1076
1077	/* Clear any break condition set with TIOCSBRK. */
1078	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1079		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1080		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1081		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1082	}
1083
1084	/*
1085	 * Drop all lines and cancel interrupts
1086	 */
1087	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1088	splx(s);
1089}
1090
1091/*
1092 * Set ZS tty parameters from termios.
1093 *
1094 * This routine makes use of the fact that only registers
1095 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1096 */
1097static int
1098zsparam(tp, t)
1099register struct tty	*tp;
1100register struct termios	*t;
1101{
1102		 int			unit = ZS_UNIT(tp->t_dev);
1103		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1104	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1105		 int			cdiv = 0,	/* XXX gcc4 -Wuninitialized */
1106					clkm = 0,	/* XXX gcc4 -Wuninitialized */
1107					brgm = 0,	/* XXX gcc4 -Wuninitialized */
1108					tcon = 0;	/* XXX gcc4 -Wuninitialized */
1109	register int			tmp, tmp5, cflag, s;
1110
1111	tmp  = t->c_ospeed;
1112	tmp5 = t->c_ispeed;
1113	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1114		return(EINVAL);
1115	if(tmp == 0) {
1116		/* stty 0 => drop DTR and RTS */
1117		zs_modem(cs, 0, DMSET);
1118		return(0);
1119	}
1120	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1121	if (tmp < 0)
1122		return(EINVAL);
1123	tp->t_ispeed = tp->t_ospeed = tmp;
1124
1125	cflag = tp->t_cflag = t->c_cflag;
1126	if (cflag & CSTOPB)
1127		cdiv |= ZSWR4_TWOSB;
1128	else
1129		cdiv |= ZSWR4_ONESB;
1130	if (!(cflag & PARODD))
1131		cdiv |= ZSWR4_EVENP;
1132	if (cflag & PARENB)
1133		cdiv |= ZSWR4_PARENB;
1134
1135	switch(cflag & CSIZE) {
1136	case CS5:
1137		tmp  = ZSWR3_RX_5;
1138		tmp5 = ZSWR5_TX_5;
1139		break;
1140	case CS6:
1141		tmp  = ZSWR3_RX_6;
1142		tmp5 = ZSWR5_TX_6;
1143		break;
1144	case CS7:
1145		tmp  = ZSWR3_RX_7;
1146		tmp5 = ZSWR5_TX_7;
1147		break;
1148	case CS8:
1149	default:
1150		tmp  = ZSWR3_RX_8;
1151		tmp5 = ZSWR5_TX_8;
1152		break;
1153	}
1154	tmp  |= ZSWR3_RX_ENABLE;
1155	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1156
1157	/*
1158	 * Block interrupts so that state will not
1159	 * be altered until we are done setting it up.
1160	 */
1161	s = splzs();
1162	cs->cs_preg[4]  = cdiv;
1163	cs->cs_preg[11] = clkm;
1164	cs->cs_preg[12] = tcon;
1165	cs->cs_preg[13] = tcon >> 8;
1166	cs->cs_preg[14] = brgm;
1167	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1168	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1169	cs->cs_preg[10] = ZSWR10_NRZ;
1170	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1171
1172	/*
1173	 * Output hardware flow control on the chip is horrendous: if
1174	 * carrier detect drops, the receiver is disabled.  Hence we
1175	 * can only do this when the carrier is on.
1176	 */
1177	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1178		tmp |= ZSWR3_HFC;
1179	cs->cs_preg[3] = tmp;
1180	cs->cs_preg[5] = tmp5;
1181
1182	/*
1183	 * If nothing is being transmitted, set up new current values,
1184	 * else mark them as pending.
1185	 */
1186	if(cs->cs_heldchange == 0) {
1187		if (cs->cs_ttyp->t_state & TS_BUSY) {
1188			cs->cs_heldtbc = cs->cs_tbc;
1189			cs->cs_tbc = 0;
1190			cs->cs_heldchange = 1;
1191		} else {
1192			bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1193			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1194		}
1195	}
1196	splx(s);
1197	return (0);
1198}
1199
1200/*
1201 * search for the best matching baudrate
1202 */
1203static int
1204zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1205int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1206{
1207	int	bestdiff, bestbps, source;
1208
1209	bestdiff = bestbps = 0;
1210	unit = (unit & 1) << 2;
1211	for (source = 0; source < 4; ++source) {
1212		long	freq = zs_frequencies[unit + source];
1213		int	diff, bps, div, clkm, brgm, tcon;
1214
1215		bps = div = clkm = brgm = tcon = 0;
1216		switch (source) {
1217			case 0:	/* BRgen, PCLK */
1218				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1219				break;
1220			case 1:	/* BRgen, RTxC */
1221				brgm = ZSWR14_BAUD_ENA;
1222				break;
1223			case 2: /* RTxC */
1224				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1225				break;
1226			case 3: /* TRxC */
1227				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1228				break;
1229		}
1230		switch (source) {
1231			case 0:
1232			case 1:
1233				div  = ZSWR4_CLK_X16;
1234				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1235				tcon = BPS_TO_TCONST(freq, wanted);
1236				if (tcon < 0)
1237					tcon = 0;
1238				bps  = TCONST_TO_BPS(freq, tcon);
1239				break;
1240			case 2:
1241			case 3:
1242			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1243				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1244				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1245
1246				if (d1 < d2 && d1 < d3) {
1247					div = ZSWR4_CLK_X16;
1248					bps = b1;
1249				} else if (d2 < d3 && d2 < d1) {
1250					div = ZSWR4_CLK_X32;
1251					bps = b2;
1252				} else {
1253					div = ZSWR4_CLK_X64;
1254					bps = b3;
1255				}
1256				brgm = tcon = 0;
1257				break;
1258			}
1259		}
1260		diff = abs(bps - wanted);
1261		if (!source || diff < bestdiff) {
1262			*divisor   = div;
1263			*clockmode = clkm;
1264			*brgenmode = brgm;
1265			*timeconst = tcon;
1266			bestbps    = bps;
1267			bestdiff   = diff;
1268			if (diff == 0)
1269				break;
1270		}
1271	}
1272	/* Allow deviations upto 5% */
1273	if (20 * bestdiff > wanted)
1274		return -1;
1275	return bestbps;
1276}
1277
1278/*
1279 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1280 * in transmission, the change is deferred.
1281 */
1282static int
1283zs_modem(cs, bits, how)
1284struct zs_chanstate	*cs;
1285int			bits, how;
1286{
1287	int s, mbits;
1288
1289	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1290
1291	s = splzs();
1292	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1293
1294	switch(how) {
1295		case DMSET:
1296				mbits  = bits;
1297				break;
1298		case DMBIS:
1299				mbits |= bits;
1300				break;
1301		case DMBIC:
1302				mbits &= ~bits;
1303				break;
1304		case DMGET:
1305				splx(s);
1306				return(mbits);
1307	}
1308
1309	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1310	if(cs->cs_heldchange == 0) {
1311		if(cs->cs_ttyp->t_state & TS_BUSY) {
1312			cs->cs_heldtbc = cs->cs_tbc;
1313			cs->cs_tbc = 0;
1314			cs->cs_heldchange = 1;
1315		}
1316		else {
1317			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1318		}
1319	}
1320	splx(s);
1321	return(0);
1322}
1323
1324/*
1325 * Write the given register set to the given zs channel in the proper order.
1326 * The channel must not be transmitting at the time.  The receiver will
1327 * be disabled for the time it takes to write all the registers.
1328 */
1329static void
1330zs_loadchannelregs(zc, reg)
1331volatile struct zschan	*zc;
1332u_char			*reg;
1333{
1334	int i;
1335
1336	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1337	i = zc->zc_data;		/* drain fifo */
1338	i = zc->zc_data;
1339	i = zc->zc_data;
1340	ZS_WRITE(zc,  4, reg[4]);
1341	ZS_WRITE(zc, 10, reg[10]);
1342	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1343	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1344	ZS_WRITE(zc,  1, reg[1]);
1345	ZS_WRITE(zc,  9, reg[9]);
1346	ZS_WRITE(zc, 11, reg[11]);
1347	ZS_WRITE(zc, 12, reg[12]);
1348	ZS_WRITE(zc, 13, reg[13]);
1349	ZS_WRITE(zc, 14, reg[14]);
1350	ZS_WRITE(zc, 15, reg[15]);
1351	ZS_WRITE(zc,  3, reg[3]);
1352	ZS_WRITE(zc,  5, reg[5]);
1353}
1354#endif /* NZS > 1 */
1355