zs.c revision 1.45
1/*	$NetBSD: zs.c,v 1.45 2005/12/11 12:16:54 christos Exp $	*/
2
3/*
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 *	This product includes software developed by the University of
15 *	California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
42 */
43
44/*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
47 *
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 *    notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 *    notice, this list of conditions and the following disclaimer in the
58 *    documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of The NetBSD Foundation nor the names of its
60 *    contributors may be used to endorse or promote products derived
61 *    from this software without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
64 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76/*
77 * Zilog Z8530 (ZSCC) driver.
78 *
79 * Runs two tty ports (modem2 and serial2) on zs0.
80 *
81 * This driver knows far too much about chip to usage mappings.
82 */
83
84#include <sys/cdefs.h>
85__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.45 2005/12/11 12:16:54 christos Exp $");
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/proc.h>
90#include <sys/device.h>
91#include <sys/conf.h>
92#include <sys/file.h>
93#include <sys/ioctl.h>
94#include <sys/malloc.h>
95#include <sys/tty.h>
96#include <sys/time.h>
97#include <sys/kernel.h>
98#include <sys/syslog.h>
99
100#include <machine/cpu.h>
101#include <machine/iomap.h>
102#include <machine/scu.h>
103#include <machine/mfp.h>
104#include <atari/dev/ym2149reg.h>
105
106#include <dev/ic/z8530reg.h>
107#include <atari/dev/zsvar.h>
108#include "zs.h"
109#if NZS > 1
110#error "This driver supports only 1 85C30!"
111#endif
112
113#if NZS > 0
114
115#define PCLK	(8053976)	/* PCLK pin input clock rate */
116#define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
117
118#define splzs	spl5
119
120/*
121 * Software state per found chip.
122 */
123struct zs_softc {
124    struct	device		zi_dev;    /* base device		  */
125    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
126    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
127};
128
129static u_char	cb_scheduled = 0;	/* Already asked for callback? */
130/*
131 * Define the registers for a closed port
132 */
133static u_char zs_init_regs[16] = {
134/*  0 */	0,
135/*  1 */	0,
136/*  2 */	0x60,
137/*  3 */	0,
138/*  4 */	0,
139/*  5 */	0,
140/*  6 */	0,
141/*  7 */	0,
142/*  8 */	0,
143/*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
144/* 10 */	ZSWR10_NRZ,
145/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
146/* 12 */	0,
147/* 13 */	0,
148/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
149/* 15 */	0
150};
151
152/*
153 * Define the machine dependant clock frequencies
154 * If BRgen feeds sender/receiver we always use a
155 * divisor 16, therefor the division by 16 can as
156 * well be done here.
157 */
158static u_long zs_freqs_tt[] = {
159	/*
160	 * Atari TT, RTxCB is generated by TT-MFP timer C,
161	 * which is set to 307.2KHz during initialisation
162	 * and never changed afterwards.
163	 */
164	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
165	 229500,	/* BRgen, RTxCA, divisor 16	*/
166	3672000,	/* RTxCA, from PCLK4		*/
167	      0,	/* TRxCA, external		*/
168
169	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
170	  19200,	/* BRgen, RTxCB, divisor 16	*/
171	 307200,	/* RTxCB, from TT-MFP TCO	*/
172	2457600		/* TRxCB, from BCLK		*/
173};
174
175static u_long zs_freqs_falcon[] = {
176	/*
177	 * Atari Falcon, XXX no specs available, this might be wrong
178	 */
179	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
180	 229500,	/* BRgen, RTxCA, divisor 16	*/
181	3672000,	/* RTxCA, ???			*/
182	      0,	/* TRxCA, external		*/
183
184	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
185	 229500,	/* BRgen, RTxCB, divisor 16	*/
186	3672000,	/* RTxCB, ???			*/
187	2457600		/* TRxCB, ???			*/
188};
189
190static u_long zs_freqs_hades[] = {
191	/*
192	 * XXX: Channel-A unchecked!!!!!
193	 */
194     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
195	 229500,	/* BRgen, RTxCA, divisor 16	*/
196	3672000,	/* RTxCA, from PCLK4		*/
197	      0,	/* TRxCA, external		*/
198
199     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
200	 235550,	/* BRgen, RTxCB, divisor 16	*/
201	3768800,	/* RTxCB, 3.7688MHz		*/
202	3768800		/* TRxCB, 3.7688MHz		*/
203};
204
205static u_long zs_freqs_generic[] = {
206	/*
207	 * other machines, assume only PCLK is available
208	 */
209	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
210	      0,	/* BRgen, RTxCA, divisor 16	*/
211	      0,	/* RTxCA, unknown		*/
212	      0,	/* TRxCA, unknown		*/
213
214	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
215	      0,	/* BRgen, RTxCB, divisor 16	*/
216	      0,	/* RTxCB, unknown		*/
217	      0		/* TRxCB, unknown		*/
218};
219static u_long *zs_frequencies;
220
221/* Definition of the driver for autoconfig. */
222static int	zsmatch __P((struct device *, struct cfdata *, void *));
223static void	zsattach __P((struct device *, struct device *, void *));
224
225CFATTACH_DECL(zs, sizeof(struct zs_softc),
226    zsmatch, zsattach, NULL, NULL);
227
228extern struct cfdriver zs_cd;
229
230/* {b,c}devsw[] function prototypes */
231dev_type_open(zsopen);
232dev_type_close(zsclose);
233dev_type_read(zsread);
234dev_type_write(zswrite);
235dev_type_ioctl(zsioctl);
236dev_type_stop(zsstop);
237dev_type_tty(zstty);
238dev_type_poll(zspoll);
239
240const struct cdevsw zs_cdevsw = {
241	zsopen, zsclose, zsread, zswrite, zsioctl,
242	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
243};
244
245/* Interrupt handlers. */
246int		zshard __P((long));
247static int	zssoft __P((long));
248static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
249static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
250static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
251
252static struct zs_chanstate *zslist;
253
254/* Routines called from other code. */
255static void	zsstart __P((struct tty *));
256
257/* Routines purely local to this driver. */
258static void	zsoverrun __P((int, long *, const char *));
259static int	zsparam __P((struct tty *, struct termios *));
260static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
261static int	zs_modem __P((struct zs_chanstate *, int, int));
262static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
263static void	zs_shutdown __P((struct zs_chanstate *));
264
265static int zsshortcuts;	/* number of "shortcut" software interrupts */
266
267static int
268zsmatch(pdp, cfp, auxp)
269struct device	*pdp;
270struct cfdata	*cfp;
271void		*auxp;
272{
273	static int	zs_matched = 0;
274
275	if(strcmp("zs", auxp) || zs_matched)
276		return(0);
277	zs_matched = 1;
278	return(1);
279}
280
281/*
282 * Attach a found zs.
283 */
284static void
285zsattach(parent, dev, aux)
286struct device	*parent;
287struct device	*dev;
288void		*aux;
289{
290	register struct zs_softc		*zi;
291	register struct zs_chanstate		*cs;
292	register volatile struct zsdevice	*addr;
293		 char				tmp;
294
295	addr      = (struct zsdevice *)AD_SCC;
296	zi        = (struct zs_softc *)dev;
297	zi->zi_zs = addr;
298	cs        = zi->zi_cs;
299
300	/*
301	 * Get the command register into a known state.
302	 */
303	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
304	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
305	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
306	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
307
308	/*
309	 * Do a hardware reset.
310	 */
311	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
312	delay(50000);	/*enough ? */
313	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
314
315	/*
316	 * Initialize both channels
317	 */
318	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
319	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
320
321	if(machineid & ATARI_TT) {
322		/*
323		 * ininitialise TT-MFP timer C: 307200Hz
324		 * timer C and D share one control register:
325		 *	bits 0-2 control timer D
326		 *	bits 4-6 control timer C
327		 */
328		int cr = MFP2->mf_tcdcr & 7;
329		MFP2->mf_tcdcr = cr;		/* stop timer C  */
330		MFP2->mf_tcdr  = 1;		/* counter 1     */
331		cr |= T_Q004 << 4;		/* divisor 4     */
332		MFP2->mf_tcdcr = cr;		/* start timer C */
333		/*
334		 * enable scc related interrupts
335		 */
336		SCU->vme_mask |= SCU_SCC;
337
338		zs_frequencies = zs_freqs_tt;
339	} else if (machineid & ATARI_FALCON) {
340		zs_frequencies = zs_freqs_falcon;
341	} else if (machineid & ATARI_HADES) {
342		zs_frequencies = zs_freqs_hades;
343	} else {
344		zs_frequencies = zs_freqs_generic;
345	}
346
347	/* link into interrupt list with order (A,B) (B=A+1) */
348	cs[0].cs_next = &cs[1];
349	cs[1].cs_next = zslist;
350	zslist        = cs;
351
352	cs->cs_unit  = 0;
353	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
354	cs++;
355	cs->cs_unit  = 1;
356	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
357
358	printf(": serial2 on channel a and modem2 on channel b\n");
359}
360
361/*
362 * Open a zs serial port.
363 */
364int
365zsopen(dev, flags, mode, l)
366dev_t		dev;
367int		flags;
368int		mode;
369struct lwp	*l;
370{
371	register struct tty		*tp;
372	register struct zs_chanstate	*cs;
373		 struct zs_softc	*zi;
374		 int			unit = ZS_UNIT(dev);
375		 int			zs = unit >> 1;
376		 int			error, s;
377
378	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
379		return (ENXIO);
380	cs = &zi->zi_cs[unit & 1];
381
382	/*
383	 * When port A (ser02) is selected on the TT, make sure
384	 * the port is enabled.
385	 */
386	if((machineid & ATARI_TT) && !(unit & 1))
387		ym2149_ser2(1);
388
389	if (cs->cs_rbuf == NULL) {
390		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
391								   M_WAITOK);
392	}
393
394	tp = cs->cs_ttyp;
395	if(tp == NULL) {
396		cs->cs_ttyp = tp = ttymalloc();
397		tty_attach(tp);
398		tp->t_dev   = dev;
399		tp->t_oproc = zsstart;
400		tp->t_param = zsparam;
401	}
402
403	if ((tp->t_state & TS_ISOPEN) &&
404	    (tp->t_state & TS_XCLUDE) &&
405	    suser(l->l_proc->p_ucred, &l->l_proc->p_acflag) != 0)
406		return (EBUSY);
407
408	s  = spltty();
409
410	/*
411	 * Do the following iff this is a first open.
412	 */
413	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
414		if(tp->t_ispeed == 0) {
415			tp->t_iflag = TTYDEF_IFLAG;
416			tp->t_oflag = TTYDEF_OFLAG;
417			tp->t_cflag = TTYDEF_CFLAG;
418			tp->t_lflag = TTYDEF_LFLAG;
419			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
420		}
421		ttychars(tp);
422		ttsetwater(tp);
423
424		(void)zsparam(tp, &tp->t_termios);
425
426		/*
427		 * Turn on DTR.  We must always do this, even if carrier is not
428		 * present, because otherwise we'd have to use TIOCSDTR
429		 * immediately after setting CLOCAL, which applications do not
430		 * expect.  We always assert DTR while the device is open
431		 * unless explicitly requested to deassert it.
432		 */
433		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
434		/* May never get a status intr. if DCD already on. -gwr */
435		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
436			tp->t_state |= TS_CARR_ON;
437		if(cs->cs_softcar)
438			tp->t_state |= TS_CARR_ON;
439	}
440
441	splx(s);
442
443	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
444	if (error)
445		goto bad;
446
447	error = tp->t_linesw->l_open(dev, tp);
448	if(error)
449		goto bad;
450	return (0);
451
452bad:
453	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
454		/*
455		 * We failed to open the device, and nobody else had it opened.
456		 * Clean up the state as appropriate.
457		 */
458		zs_shutdown(cs);
459	}
460	return(error);
461}
462
463/*
464 * Close a zs serial port.
465 */
466int
467zsclose(dev, flags, mode, l)
468dev_t		dev;
469int		flags;
470int		mode;
471struct lwp	*l;
472{
473	register struct zs_chanstate	*cs;
474	register struct tty		*tp;
475		 struct zs_softc	*zi;
476		 int			unit = ZS_UNIT(dev);
477
478	zi = zs_cd.cd_devs[unit >> 1];
479	cs = &zi->zi_cs[unit & 1];
480	tp = cs->cs_ttyp;
481
482	tp->t_linesw->l_close(tp, flags);
483	ttyclose(tp);
484
485	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
486		/*
487		 * Although we got a last close, the device may still be in
488		 * use; e.g. if this was the dialout node, and there are still
489		 * processes waiting for carrier on the non-dialout node.
490		 */
491		zs_shutdown(cs);
492	}
493	return (0);
494}
495
496/*
497 * Read/write zs serial port.
498 */
499int
500zsread(dev, uio, flags)
501dev_t		dev;
502struct uio	*uio;
503int		flags;
504{
505	register struct zs_chanstate	*cs;
506	register struct zs_softc	*zi;
507	register struct tty		*tp;
508		 int			unit;
509
510	unit = ZS_UNIT(dev);
511	zi   = zs_cd.cd_devs[unit >> 1];
512	cs   = &zi->zi_cs[unit & 1];
513	tp   = cs->cs_ttyp;
514
515	return(tp->t_linesw->l_read(tp, uio, flags));
516}
517
518int
519zswrite(dev, uio, flags)
520dev_t		dev;
521struct uio	*uio;
522int		flags;
523{
524	register struct zs_chanstate	*cs;
525	register struct zs_softc	*zi;
526	register struct tty		*tp;
527		 int			unit;
528
529	unit = ZS_UNIT(dev);
530	zi   = zs_cd.cd_devs[unit >> 1];
531	cs   = &zi->zi_cs[unit & 1];
532	tp   = cs->cs_ttyp;
533
534	return(tp->t_linesw->l_write(tp, uio, flags));
535}
536
537int
538zspoll(dev, events, l)
539dev_t		dev;
540int		events;
541struct lwp	*l;
542{
543	register struct zs_chanstate	*cs;
544	register struct zs_softc	*zi;
545	register struct tty		*tp;
546		 int			unit;
547
548	unit = ZS_UNIT(dev);
549	zi   = zs_cd.cd_devs[unit >> 1];
550	cs   = &zi->zi_cs[unit & 1];
551	tp   = cs->cs_ttyp;
552
553	return ((*tp->t_linesw->l_poll)(tp, events, l));
554}
555
556struct tty *
557zstty(dev)
558dev_t	dev;
559{
560	register struct zs_chanstate	*cs;
561	register struct zs_softc	*zi;
562		 int			unit;
563
564	unit = ZS_UNIT(dev);
565	zi   = zs_cd.cd_devs[unit >> 1];
566	cs   = &zi->zi_cs[unit & 1];
567	return(cs->cs_ttyp);
568}
569
570/*
571 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
572 * channels are kept in (A,B) pairs.
573 *
574 * Do just a little, then get out; set a software interrupt if more
575 * work is needed.
576 *
577 * We deliberately ignore the vectoring Zilog gives us, and match up
578 * only the number of `reset interrupt under service' operations, not
579 * the order.
580 */
581
582int
583zshard(sr)
584long sr;
585{
586	register struct zs_chanstate	*a;
587#define	b (a + 1)
588	register volatile struct zschan *zc;
589	register int			rr3, intflags = 0, v, i;
590
591	do {
592	    intflags &= ~4;
593	    for(a = zslist; a != NULL; a = b->cs_next) {
594		rr3 = ZS_READ(a->cs_zc, 3);
595		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
596			intflags |= 4|2;
597			zc = a->cs_zc;
598			i  = a->cs_rbput;
599			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
600				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
601				intflags |= 1;
602			}
603			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
604				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
605				intflags |= 1;
606			}
607			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
608				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
609				intflags |= 1;
610			}
611			a->cs_rbput = i;
612		}
613		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
614			intflags |= 4|2;
615			zc = b->cs_zc;
616			i  = b->cs_rbput;
617			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
618				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
619				intflags |= 1;
620			}
621			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
622				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
623				intflags |= 1;
624			}
625			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
626				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
627				intflags |= 1;
628			}
629			b->cs_rbput = i;
630		}
631	    }
632	} while(intflags & 4);
633#undef b
634
635	if(intflags & 1) {
636		if(BASEPRI(sr)) {
637			spl1();
638			zsshortcuts++;
639			return(zssoft(sr));
640		}
641		else if(!cb_scheduled) {
642			cb_scheduled++;
643			add_sicallback((si_farg)zssoft, 0, 0);
644		}
645	}
646	return(intflags & 2);
647}
648
649static int
650zsrint(cs, zc)
651register struct zs_chanstate	*cs;
652register volatile struct zschan	*zc;
653{
654	register int c;
655
656	/*
657	 * First read the status, because read of the received char
658	 * destroy the status of this char.
659	 */
660	c = ZS_READ(zc, 1);
661	c |= (zc->zc_data << 8);
662
663	/* clear receive error & interrupt condition */
664	zc->zc_csr = ZSWR0_RESET_ERRORS;
665	zc->zc_csr = ZSWR0_CLR_INTR;
666
667	return(ZRING_MAKE(ZRING_RINT, c));
668}
669
670static int
671zsxint(cs, zc)
672register struct zs_chanstate	*cs;
673register volatile struct zschan	*zc;
674{
675	register int i = cs->cs_tbc;
676
677	if(i == 0) {
678		zc->zc_csr = ZSWR0_RESET_TXINT;
679		zc->zc_csr = ZSWR0_CLR_INTR;
680		return(ZRING_MAKE(ZRING_XINT, 0));
681	}
682	cs->cs_tbc = i - 1;
683	zc->zc_data = *cs->cs_tba++;
684	zc->zc_csr = ZSWR0_CLR_INTR;
685	return (0);
686}
687
688static int
689zssint(cs, zc)
690register struct zs_chanstate	*cs;
691register volatile struct zschan	*zc;
692{
693	register int rr0;
694
695	rr0 = zc->zc_csr;
696	zc->zc_csr = ZSWR0_RESET_STATUS;
697	zc->zc_csr = ZSWR0_CLR_INTR;
698	/*
699	 * The chip's hardware flow control is, as noted in zsreg.h,
700	 * busted---if the DCD line goes low the chip shuts off the
701	 * receiver (!).  If we want hardware CTS flow control but do
702	 * not have it, and carrier is now on, turn HFC on; if we have
703	 * HFC now but carrier has gone low, turn it off.
704	 */
705	if(rr0 & ZSRR0_DCD) {
706		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
707		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
708			cs->cs_creg[3] |= ZSWR3_HFC;
709			ZS_WRITE(zc, 3, cs->cs_creg[3]);
710		}
711	}
712	else {
713		if (cs->cs_creg[3] & ZSWR3_HFC) {
714			cs->cs_creg[3] &= ~ZSWR3_HFC;
715			ZS_WRITE(zc, 3, cs->cs_creg[3]);
716		}
717	}
718	return(ZRING_MAKE(ZRING_SINT, rr0));
719}
720
721/*
722 * Print out a ring or fifo overrun error message.
723 */
724static void
725zsoverrun(unit, ptime, what)
726int	unit;
727long	*ptime;
728const char *what;
729{
730
731	if(*ptime != time.tv_sec) {
732		*ptime = time.tv_sec;
733		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
734		    (unit & 1) + 'a', what);
735	}
736}
737
738/*
739 * ZS software interrupt.  Scan all channels for deferred interrupts.
740 */
741int
742zssoft(sr)
743long sr;
744{
745    register struct zs_chanstate	*cs;
746    register volatile struct zschan	*zc;
747    register struct linesw		*line;
748    register struct tty			*tp;
749    register int			get, n, c, cc, unit, s;
750 	     int			retval = 0;
751
752    cb_scheduled = 0;
753    s = spltty();
754    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
755	get = cs->cs_rbget;
756again:
757	n = cs->cs_rbput;	/* atomic			*/
758	if(get == n)		/* nothing more on this line	*/
759		continue;
760	retval = 1;
761	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
762	zc     = cs->cs_zc;
763	tp     = cs->cs_ttyp;
764	line   = tp->t_linesw;
765	/*
766	 * Compute the number of interrupts in the receive ring.
767	 * If the count is overlarge, we lost some events, and
768	 * must advance to the first valid one.  It may get
769	 * overwritten if more data are arriving, but this is
770	 * too expensive to check and gains nothing (we already
771	 * lost out; all we can do at this point is trade one
772	 * kind of loss for another).
773	 */
774	n -= get;
775	if(n > ZLRB_RING_SIZE) {
776		zsoverrun(unit, &cs->cs_rotime, "ring");
777		get += n - ZLRB_RING_SIZE;
778		n    = ZLRB_RING_SIZE;
779	}
780	while(--n >= 0) {
781		/* race to keep ahead of incoming interrupts */
782		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
783		switch (ZRING_TYPE(c)) {
784
785		case ZRING_RINT:
786			c = ZRING_VALUE(c);
787			if(c & ZSRR1_DO)
788				zsoverrun(unit, &cs->cs_fotime, "fifo");
789			cc = c >> 8;
790			if(c & ZSRR1_FE)
791				cc |= TTY_FE;
792			if(c & ZSRR1_PE)
793				cc |= TTY_PE;
794			line->l_rint(cc, tp);
795			break;
796
797		case ZRING_XINT:
798			/*
799			 * Transmit done: change registers and resume,
800			 * or clear BUSY.
801			 */
802			if(cs->cs_heldchange) {
803				int sps;
804
805				sps = splzs();
806				c = zc->zc_csr;
807				if((c & ZSRR0_DCD) == 0)
808					cs->cs_preg[3] &= ~ZSWR3_HFC;
809				bcopy((caddr_t)cs->cs_preg,
810				    (caddr_t)cs->cs_creg, 16);
811				zs_loadchannelregs(zc, cs->cs_creg);
812				splx(sps);
813				cs->cs_heldchange = 0;
814				if(cs->cs_heldtbc
815					&& (tp->t_state & TS_TTSTOP) == 0) {
816					cs->cs_tbc = cs->cs_heldtbc - 1;
817					zc->zc_data = *cs->cs_tba++;
818					goto again;
819				}
820			}
821			tp->t_state &= ~TS_BUSY;
822			if(tp->t_state & TS_FLUSH)
823				tp->t_state &= ~TS_FLUSH;
824			else ndflush(&tp->t_outq,cs->cs_tba
825						- (caddr_t)tp->t_outq.c_cf);
826			line->l_start(tp);
827			break;
828
829		case ZRING_SINT:
830			/*
831			 * Status line change.  HFC bit is run in
832			 * hardware interrupt, to avoid locking
833			 * at splzs here.
834			 */
835			c = ZRING_VALUE(c);
836			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
837				cc = (c & ZSRR0_DCD) != 0;
838				if(line->l_modem(tp, cc) == 0)
839					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
840							cc ? DMBIS : DMBIC);
841			}
842			cs->cs_rr0 = c;
843			break;
844
845		default:
846			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
847			    unit >> 1, (unit & 1) + 'a', c);
848			break;
849		}
850	}
851	cs->cs_rbget = get;
852	goto again;
853    }
854    splx(s);
855    return (retval);
856}
857
858int
859zsioctl(dev, cmd, data, flag, l)
860dev_t		dev;
861u_long		cmd;
862caddr_t		data;
863int		flag;
864struct lwp	*l;
865{
866		 int			unit = ZS_UNIT(dev);
867		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
868	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
869	register int			error, s;
870	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
871
872	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
873	if(error != EPASSTHROUGH)
874		return(error);
875
876	error = ttioctl(tp, cmd, data, flag, l);
877	if(error !=EPASSTHROUGH)
878		return (error);
879
880	switch (cmd) {
881	case TIOCSBRK:
882		s = splzs();
883		cs->cs_preg[5] |= ZSWR5_BREAK;
884		cs->cs_creg[5] |= ZSWR5_BREAK;
885		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
886		splx(s);
887		break;
888	case TIOCCBRK:
889		s = splzs();
890		cs->cs_preg[5] &= ~ZSWR5_BREAK;
891		cs->cs_creg[5] &= ~ZSWR5_BREAK;
892		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
893		splx(s);
894		break;
895	case TIOCGFLAGS: {
896		int bits = 0;
897
898		if(cs->cs_softcar)
899			bits |= TIOCFLAG_SOFTCAR;
900		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
901			bits |= TIOCFLAG_CLOCAL;
902		if(cs->cs_creg[3] & ZSWR3_HFC)
903			bits |= TIOCFLAG_CRTSCTS;
904		*(int *)data = bits;
905		break;
906	}
907	case TIOCSFLAGS: {
908		int userbits = 0;
909
910		error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag);
911		if(error != 0)
912			return (EPERM);
913
914		userbits = *(int *)data;
915
916		/*
917		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
918		 # defaulting to software flow control.
919		 */
920		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
921			return(EINVAL);
922		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
923			return(ENODEV);
924
925		s = splzs();
926		if((userbits & TIOCFLAG_SOFTCAR)) {
927			cs->cs_softcar = 1;	/* turn on softcar */
928			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
929			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
930			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
931		}
932		else if(userbits & TIOCFLAG_CLOCAL) {
933			cs->cs_softcar = 0; 	/* turn off softcar */
934			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
935			cs->cs_creg[15] |= ZSWR15_DCD_IE;
936			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
937			tp->t_termios.c_cflag |= CLOCAL;
938		}
939		if(userbits & TIOCFLAG_CRTSCTS) {
940			cs->cs_preg[15] |= ZSWR15_CTS_IE;
941			cs->cs_creg[15] |= ZSWR15_CTS_IE;
942			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
943			cs->cs_preg[3] |= ZSWR3_HFC;
944			cs->cs_creg[3] |= ZSWR3_HFC;
945			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
946			tp->t_termios.c_cflag |= CRTSCTS;
947		}
948		else {
949			/* no mdmbuf, so we must want software flow control */
950			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
951			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
952			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
953			cs->cs_preg[3] &= ~ZSWR3_HFC;
954			cs->cs_creg[3] &= ~ZSWR3_HFC;
955			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
956			tp->t_termios.c_cflag &= ~CRTSCTS;
957		}
958		splx(s);
959		break;
960	}
961	case TIOCSDTR:
962		zs_modem(cs, ZSWR5_DTR, DMBIS);
963		break;
964	case TIOCCDTR:
965		zs_modem(cs, ZSWR5_DTR, DMBIC);
966		break;
967	case TIOCMGET:
968		zs_modem(cs, 0, DMGET);
969		break;
970	case TIOCMSET:
971	case TIOCMBIS:
972	case TIOCMBIC:
973	default:
974		return (EPASSTHROUGH);
975	}
976	return (0);
977}
978
979/*
980 * Start or restart transmission.
981 */
982static void
983zsstart(tp)
984register struct tty *tp;
985{
986	register struct zs_chanstate	*cs;
987	register int			s, nch;
988		 int			unit = ZS_UNIT(tp->t_dev);
989		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
990
991	cs = &zi->zi_cs[unit & 1];
992	s  = spltty();
993
994	/*
995	 * If currently active or delaying, no need to do anything.
996	 */
997	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
998		goto out;
999
1000	/*
1001	 * If there are sleepers, and output has drained below low
1002	 * water mark, awaken.
1003	 */
1004	if(tp->t_outq.c_cc <= tp->t_lowat) {
1005		if(tp->t_state & TS_ASLEEP) {
1006			tp->t_state &= ~TS_ASLEEP;
1007			wakeup((caddr_t)&tp->t_outq);
1008		}
1009		selwakeup(&tp->t_wsel);
1010	}
1011
1012	nch = ndqb(&tp->t_outq, 0);	/* XXX */
1013	if(nch) {
1014		register char *p = tp->t_outq.c_cf;
1015
1016		/* mark busy, enable tx done interrupts, & send first byte */
1017		tp->t_state |= TS_BUSY;
1018		(void) splzs();
1019		cs->cs_preg[1] |= ZSWR1_TIE;
1020		cs->cs_creg[1] |= ZSWR1_TIE;
1021		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1022		cs->cs_zc->zc_data = *p;
1023		cs->cs_tba = p + 1;
1024		cs->cs_tbc = nch - 1;
1025	} else {
1026		/*
1027		 * Nothing to send, turn off transmit done interrupts.
1028		 * This is useful if something is doing polled output.
1029		 */
1030		(void) splzs();
1031		cs->cs_preg[1] &= ~ZSWR1_TIE;
1032		cs->cs_creg[1] &= ~ZSWR1_TIE;
1033		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1034	}
1035out:
1036	splx(s);
1037}
1038
1039/*
1040 * Stop output, e.g., for ^S or output flush.
1041 */
1042void
1043zsstop(tp, flag)
1044register struct tty	*tp;
1045	 int		flag;
1046{
1047	register struct zs_chanstate	*cs;
1048	register int			s, unit = ZS_UNIT(tp->t_dev);
1049		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1050
1051	cs = &zi->zi_cs[unit & 1];
1052	s  = splzs();
1053	if(tp->t_state & TS_BUSY) {
1054		/*
1055		 * Device is transmitting; must stop it.
1056		 */
1057		cs->cs_tbc = 0;
1058		if ((tp->t_state & TS_TTSTOP) == 0)
1059			tp->t_state |= TS_FLUSH;
1060	}
1061	splx(s);
1062}
1063
1064static void
1065zs_shutdown(cs)
1066	struct zs_chanstate	*cs;
1067{
1068	struct tty	*tp = cs->cs_ttyp;
1069	int		s;
1070
1071	s = splzs();
1072
1073	/*
1074	 * Hang up if necessary.  Wait a bit, so the other side has time to
1075	 * notice even if we immediately open the port again.
1076	 */
1077	if(tp->t_cflag & HUPCL) {
1078		zs_modem(cs, 0, DMSET);
1079		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1080	}
1081
1082	/* Clear any break condition set with TIOCSBRK. */
1083	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1084		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1085		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1086		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1087	}
1088
1089	/*
1090	 * Drop all lines and cancel interrupts
1091	 */
1092	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1093	splx(s);
1094}
1095
1096/*
1097 * Set ZS tty parameters from termios.
1098 *
1099 * This routine makes use of the fact that only registers
1100 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1101 */
1102static int
1103zsparam(tp, t)
1104register struct tty	*tp;
1105register struct termios	*t;
1106{
1107		 int			unit = ZS_UNIT(tp->t_dev);
1108		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1109	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1110		 int			cdiv, clkm, brgm, tcon;
1111	register int			tmp, tmp5, cflag, s;
1112
1113	tmp  = t->c_ospeed;
1114	tmp5 = t->c_ispeed;
1115	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1116		return(EINVAL);
1117	if(tmp == 0) {
1118		/* stty 0 => drop DTR and RTS */
1119		zs_modem(cs, 0, DMSET);
1120		return(0);
1121	}
1122	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1123	if (tmp < 0)
1124		return(EINVAL);
1125	tp->t_ispeed = tp->t_ospeed = tmp;
1126
1127	cflag = tp->t_cflag = t->c_cflag;
1128	if (cflag & CSTOPB)
1129		cdiv |= ZSWR4_TWOSB;
1130	else
1131		cdiv |= ZSWR4_ONESB;
1132	if (!(cflag & PARODD))
1133		cdiv |= ZSWR4_EVENP;
1134	if (cflag & PARENB)
1135		cdiv |= ZSWR4_PARENB;
1136
1137	switch(cflag & CSIZE) {
1138	case CS5:
1139		tmp  = ZSWR3_RX_5;
1140		tmp5 = ZSWR5_TX_5;
1141		break;
1142	case CS6:
1143		tmp  = ZSWR3_RX_6;
1144		tmp5 = ZSWR5_TX_6;
1145		break;
1146	case CS7:
1147		tmp  = ZSWR3_RX_7;
1148		tmp5 = ZSWR5_TX_7;
1149		break;
1150	case CS8:
1151	default:
1152		tmp  = ZSWR3_RX_8;
1153		tmp5 = ZSWR5_TX_8;
1154		break;
1155	}
1156	tmp  |= ZSWR3_RX_ENABLE;
1157	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1158
1159	/*
1160	 * Block interrupts so that state will not
1161	 * be altered until we are done setting it up.
1162	 */
1163	s = splzs();
1164	cs->cs_preg[4]  = cdiv;
1165	cs->cs_preg[11] = clkm;
1166	cs->cs_preg[12] = tcon;
1167	cs->cs_preg[13] = tcon >> 8;
1168	cs->cs_preg[14] = brgm;
1169	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1170	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1171	cs->cs_preg[10] = ZSWR10_NRZ;
1172	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1173
1174	/*
1175	 * Output hardware flow control on the chip is horrendous: if
1176	 * carrier detect drops, the receiver is disabled.  Hence we
1177	 * can only do this when the carrier is on.
1178	 */
1179	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1180		tmp |= ZSWR3_HFC;
1181	cs->cs_preg[3] = tmp;
1182	cs->cs_preg[5] = tmp5;
1183
1184	/*
1185	 * If nothing is being transmitted, set up new current values,
1186	 * else mark them as pending.
1187	 */
1188	if(cs->cs_heldchange == 0) {
1189		if (cs->cs_ttyp->t_state & TS_BUSY) {
1190			cs->cs_heldtbc = cs->cs_tbc;
1191			cs->cs_tbc = 0;
1192			cs->cs_heldchange = 1;
1193		} else {
1194			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1195			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1196		}
1197	}
1198	splx(s);
1199	return (0);
1200}
1201
1202/*
1203 * search for the best matching baudrate
1204 */
1205static int
1206zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1207int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1208{
1209	int	bestdiff, bestbps, source;
1210
1211	bestdiff = bestbps = 0;
1212	unit = (unit & 1) << 2;
1213	for (source = 0; source < 4; ++source) {
1214		long	freq = zs_frequencies[unit + source];
1215		int	diff, bps, div, clkm, brgm, tcon;
1216
1217		bps = div = clkm = brgm = tcon = 0;
1218		switch (source) {
1219			case 0:	/* BRgen, PCLK */
1220				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1221				break;
1222			case 1:	/* BRgen, RTxC */
1223				brgm = ZSWR14_BAUD_ENA;
1224				break;
1225			case 2: /* RTxC */
1226				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1227				break;
1228			case 3: /* TRxC */
1229				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1230				break;
1231		}
1232		switch (source) {
1233			case 0:
1234			case 1:
1235				div  = ZSWR4_CLK_X16;
1236				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1237				tcon = BPS_TO_TCONST(freq, wanted);
1238				if (tcon < 0)
1239					tcon = 0;
1240				bps  = TCONST_TO_BPS(freq, tcon);
1241				break;
1242			case 2:
1243			case 3:
1244			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1245				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1246				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1247
1248				if (d1 < d2 && d1 < d3) {
1249					div = ZSWR4_CLK_X16;
1250					bps = b1;
1251				} else if (d2 < d3 && d2 < d1) {
1252					div = ZSWR4_CLK_X32;
1253					bps = b2;
1254				} else {
1255					div = ZSWR4_CLK_X64;
1256					bps = b3;
1257				}
1258				brgm = tcon = 0;
1259				break;
1260			}
1261		}
1262		diff = abs(bps - wanted);
1263		if (!source || diff < bestdiff) {
1264			*divisor   = div;
1265			*clockmode = clkm;
1266			*brgenmode = brgm;
1267			*timeconst = tcon;
1268			bestbps    = bps;
1269			bestdiff   = diff;
1270			if (diff == 0)
1271				break;
1272		}
1273	}
1274	/* Allow deviations upto 5% */
1275	if (20 * bestdiff > wanted)
1276		return -1;
1277	return bestbps;
1278}
1279
1280/*
1281 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1282 * in transmission, the change is deferred.
1283 */
1284static int
1285zs_modem(cs, bits, how)
1286struct zs_chanstate	*cs;
1287int			bits, how;
1288{
1289	int s, mbits;
1290
1291	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1292
1293	s = splzs();
1294	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1295
1296	switch(how) {
1297		case DMSET:
1298				mbits  = bits;
1299				break;
1300		case DMBIS:
1301				mbits |= bits;
1302				break;
1303		case DMBIC:
1304				mbits &= ~bits;
1305				break;
1306		case DMGET:
1307				splx(s);
1308				return(mbits);
1309	}
1310
1311	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1312	if(cs->cs_heldchange == 0) {
1313		if(cs->cs_ttyp->t_state & TS_BUSY) {
1314			cs->cs_heldtbc = cs->cs_tbc;
1315			cs->cs_tbc = 0;
1316			cs->cs_heldchange = 1;
1317		}
1318		else {
1319			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1320		}
1321	}
1322	splx(s);
1323	return(0);
1324}
1325
1326/*
1327 * Write the given register set to the given zs channel in the proper order.
1328 * The channel must not be transmitting at the time.  The receiver will
1329 * be disabled for the time it takes to write all the registers.
1330 */
1331static void
1332zs_loadchannelregs(zc, reg)
1333volatile struct zschan	*zc;
1334u_char			*reg;
1335{
1336	int i;
1337
1338	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1339	i = zc->zc_data;		/* drain fifo */
1340	i = zc->zc_data;
1341	i = zc->zc_data;
1342	ZS_WRITE(zc,  4, reg[4]);
1343	ZS_WRITE(zc, 10, reg[10]);
1344	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1345	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1346	ZS_WRITE(zc,  1, reg[1]);
1347	ZS_WRITE(zc,  9, reg[9]);
1348	ZS_WRITE(zc, 11, reg[11]);
1349	ZS_WRITE(zc, 12, reg[12]);
1350	ZS_WRITE(zc, 13, reg[13]);
1351	ZS_WRITE(zc, 14, reg[14]);
1352	ZS_WRITE(zc, 15, reg[15]);
1353	ZS_WRITE(zc,  3, reg[3]);
1354	ZS_WRITE(zc,  5, reg[5]);
1355}
1356#endif /* NZS > 1 */
1357