zs.c revision 1.40
1/*	$NetBSD: zs.c,v 1.40 2003/07/15 01:19:53 lukem Exp $	*/
2
3/*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 *    must display the following acknowledgement:
28 *	This product includes software developed by the University of
29 *	California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 *    may be used to endorse or promote products derived from this software
32 *    without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47 */
48
49/*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56
57#include <sys/cdefs.h>
58__KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.40 2003/07/15 01:19:53 lukem Exp $");
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/proc.h>
63#include <sys/device.h>
64#include <sys/conf.h>
65#include <sys/file.h>
66#include <sys/ioctl.h>
67#include <sys/malloc.h>
68#include <sys/tty.h>
69#include <sys/time.h>
70#include <sys/kernel.h>
71#include <sys/syslog.h>
72
73#include <machine/cpu.h>
74#include <machine/iomap.h>
75#include <machine/scu.h>
76#include <machine/mfp.h>
77#include <atari/dev/ym2149reg.h>
78
79#include <dev/ic/z8530reg.h>
80#include <atari/dev/zsvar.h>
81#include "zs.h"
82#if NZS > 1
83#error "This driver supports only 1 85C30!"
84#endif
85
86#if NZS > 0
87
88#define PCLK	(8053976)	/* PCLK pin input clock rate */
89#define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
90
91#define splzs	spl5
92
93/*
94 * Software state per found chip.
95 */
96struct zs_softc {
97    struct	device		zi_dev;    /* base device		  */
98    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
99    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
100};
101
102static u_char	cb_scheduled = 0;	/* Already asked for callback? */
103/*
104 * Define the registers for a closed port
105 */
106static u_char zs_init_regs[16] = {
107/*  0 */	0,
108/*  1 */	0,
109/*  2 */	0x60,
110/*  3 */	0,
111/*  4 */	0,
112/*  5 */	0,
113/*  6 */	0,
114/*  7 */	0,
115/*  8 */	0,
116/*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
117/* 10 */	ZSWR10_NRZ,
118/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
119/* 12 */	0,
120/* 13 */	0,
121/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
122/* 15 */	0
123};
124
125/*
126 * Define the machine dependant clock frequencies
127 * If BRgen feeds sender/receiver we always use a
128 * divisor 16, therefor the division by 16 can as
129 * well be done here.
130 */
131static u_long zs_freqs_tt[] = {
132	/*
133	 * Atari TT, RTxCB is generated by TT-MFP timer C,
134	 * which is set to 307.2KHz during initialisation
135	 * and never changed afterwards.
136	 */
137	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
138	 229500,	/* BRgen, RTxCA, divisor 16	*/
139	3672000,	/* RTxCA, from PCLK4		*/
140	      0,	/* TRxCA, external		*/
141
142	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
143	  19200,	/* BRgen, RTxCB, divisor 16	*/
144	 307200,	/* RTxCB, from TT-MFP TCO	*/
145	2457600		/* TRxCB, from BCLK		*/
146};
147
148static u_long zs_freqs_falcon[] = {
149	/*
150	 * Atari Falcon, XXX no specs available, this might be wrong
151	 */
152	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
153	 229500,	/* BRgen, RTxCA, divisor 16	*/
154	3672000,	/* RTxCA, ???			*/
155	      0,	/* TRxCA, external		*/
156
157	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
158	 229500,	/* BRgen, RTxCB, divisor 16	*/
159	3672000,	/* RTxCB, ???			*/
160	2457600		/* TRxCB, ???			*/
161};
162
163static u_long zs_freqs_hades[] = {
164	/*
165	 * XXX: Channel-A unchecked!!!!!
166	 */
167     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
168	 229500,	/* BRgen, RTxCA, divisor 16	*/
169	3672000,	/* RTxCA, from PCLK4		*/
170	      0,	/* TRxCA, external		*/
171
172     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
173	 235550,	/* BRgen, RTxCB, divisor 16	*/
174	3768800,	/* RTxCB, 3.7688MHz		*/
175	3768800		/* TRxCB, 3.7688MHz		*/
176};
177
178static u_long zs_freqs_generic[] = {
179	/*
180	 * other machines, assume only PCLK is available
181	 */
182	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
183	      0,	/* BRgen, RTxCA, divisor 16	*/
184	      0,	/* RTxCA, unknown		*/
185	      0,	/* TRxCA, unknown		*/
186
187	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
188	      0,	/* BRgen, RTxCB, divisor 16	*/
189	      0,	/* RTxCB, unknown		*/
190	      0		/* TRxCB, unknown		*/
191};
192static u_long *zs_frequencies;
193
194/* Definition of the driver for autoconfig. */
195static int	zsmatch __P((struct device *, struct cfdata *, void *));
196static void	zsattach __P((struct device *, struct device *, void *));
197
198CFATTACH_DECL(zs, sizeof(struct zs_softc),
199    zsmatch, zsattach, NULL, NULL);
200
201extern struct cfdriver zs_cd;
202
203/* {b,c}devsw[] function prototypes */
204dev_type_open(zsopen);
205dev_type_close(zsclose);
206dev_type_read(zsread);
207dev_type_write(zswrite);
208dev_type_ioctl(zsioctl);
209dev_type_stop(zsstop);
210dev_type_tty(zstty);
211dev_type_poll(zspoll);
212
213const struct cdevsw zs_cdevsw = {
214	zsopen, zsclose, zsread, zswrite, zsioctl,
215	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
216};
217
218/* Interrupt handlers. */
219int		zshard __P((long));
220static int	zssoft __P((long));
221static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
222static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
223static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
224
225static struct zs_chanstate *zslist;
226
227/* Routines called from other code. */
228static void	zsstart __P((struct tty *));
229
230/* Routines purely local to this driver. */
231static void	zsoverrun __P((int, long *, char *));
232static int	zsparam __P((struct tty *, struct termios *));
233static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
234static int	zs_modem __P((struct zs_chanstate *, int, int));
235static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
236static void	zs_shutdown __P((struct zs_chanstate *));
237
238static int zsshortcuts;	/* number of "shortcut" software interrupts */
239
240static int
241zsmatch(pdp, cfp, auxp)
242struct device	*pdp;
243struct cfdata	*cfp;
244void		*auxp;
245{
246	static int	zs_matched = 0;
247
248	if(strcmp("zs", auxp) || zs_matched)
249		return(0);
250	zs_matched = 1;
251	return(1);
252}
253
254/*
255 * Attach a found zs.
256 */
257static void
258zsattach(parent, dev, aux)
259struct device	*parent;
260struct device	*dev;
261void		*aux;
262{
263	register struct zs_softc		*zi;
264	register struct zs_chanstate		*cs;
265	register volatile struct zsdevice	*addr;
266		 char				tmp;
267
268	addr      = (struct zsdevice *)AD_SCC;
269	zi        = (struct zs_softc *)dev;
270	zi->zi_zs = addr;
271	cs        = zi->zi_cs;
272
273	/*
274	 * Get the command register into a known state.
275	 */
276	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
277	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
278	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
279	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
280
281	/*
282	 * Do a hardware reset.
283	 */
284	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
285	delay(50000);	/*enough ? */
286	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
287
288	/*
289	 * Initialize both channels
290	 */
291	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
292	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
293
294	if(machineid & ATARI_TT) {
295		/*
296		 * ininitialise TT-MFP timer C: 307200Hz
297		 * timer C and D share one control register:
298		 *	bits 0-2 control timer D
299		 *	bits 4-6 control timer C
300		 */
301		int cr = MFP2->mf_tcdcr & 7;
302		MFP2->mf_tcdcr = cr;		/* stop timer C  */
303		MFP2->mf_tcdr  = 1;		/* counter 1     */
304		cr |= T_Q004 << 4;		/* divisor 4     */
305		MFP2->mf_tcdcr = cr;		/* start timer C */
306		/*
307		 * enable scc related interrupts
308		 */
309		SCU->vme_mask |= SCU_SCC;
310
311		zs_frequencies = zs_freqs_tt;
312	} else if (machineid & ATARI_FALCON) {
313		zs_frequencies = zs_freqs_falcon;
314	} else if (machineid & ATARI_HADES) {
315		zs_frequencies = zs_freqs_hades;
316	} else {
317		zs_frequencies = zs_freqs_generic;
318	}
319
320	/* link into interrupt list with order (A,B) (B=A+1) */
321	cs[0].cs_next = &cs[1];
322	cs[1].cs_next = zslist;
323	zslist        = cs;
324
325	cs->cs_unit  = 0;
326	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
327	cs++;
328	cs->cs_unit  = 1;
329	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
330
331	printf(": serial2 on channel a and modem2 on channel b\n");
332}
333
334/*
335 * Open a zs serial port.
336 */
337int
338zsopen(dev, flags, mode, p)
339dev_t		dev;
340int		flags;
341int		mode;
342struct proc	*p;
343{
344	register struct tty		*tp;
345	register struct zs_chanstate	*cs;
346		 struct zs_softc	*zi;
347		 int			unit = ZS_UNIT(dev);
348		 int			zs = unit >> 1;
349		 int			error, s;
350
351	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
352		return (ENXIO);
353	cs = &zi->zi_cs[unit & 1];
354
355	/*
356	 * When port A (ser02) is selected on the TT, make sure
357	 * the port is enabled.
358	 */
359	if((machineid & ATARI_TT) && !(unit & 1))
360		ym2149_ser2(1);
361
362	if (cs->cs_rbuf == NULL) {
363		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
364								   M_WAITOK);
365	}
366
367	tp = cs->cs_ttyp;
368	if(tp == NULL) {
369		cs->cs_ttyp = tp = ttymalloc();
370		tty_attach(tp);
371		tp->t_dev   = dev;
372		tp->t_oproc = zsstart;
373		tp->t_param = zsparam;
374	}
375
376	if ((tp->t_state & TS_ISOPEN) &&
377	    (tp->t_state & TS_XCLUDE) &&
378	    p->p_ucred->cr_uid != 0)
379		return (EBUSY);
380
381	s  = spltty();
382
383	/*
384	 * Do the following iff this is a first open.
385	 */
386	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
387		if(tp->t_ispeed == 0) {
388			tp->t_iflag = TTYDEF_IFLAG;
389			tp->t_oflag = TTYDEF_OFLAG;
390			tp->t_cflag = TTYDEF_CFLAG;
391			tp->t_lflag = TTYDEF_LFLAG;
392			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
393		}
394		ttychars(tp);
395		ttsetwater(tp);
396
397		(void)zsparam(tp, &tp->t_termios);
398
399		/*
400		 * Turn on DTR.  We must always do this, even if carrier is not
401		 * present, because otherwise we'd have to use TIOCSDTR
402		 * immediately after setting CLOCAL, which applications do not
403		 * expect.  We always assert DTR while the device is open
404		 * unless explicitly requested to deassert it.
405		 */
406		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
407		/* May never get a status intr. if DCD already on. -gwr */
408		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
409			tp->t_state |= TS_CARR_ON;
410		if(cs->cs_softcar)
411			tp->t_state |= TS_CARR_ON;
412	}
413
414	splx(s);
415
416	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
417	if (error)
418		goto bad;
419
420	error = tp->t_linesw->l_open(dev, tp);
421	if(error)
422		goto bad;
423	return (0);
424
425bad:
426	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
427		/*
428		 * We failed to open the device, and nobody else had it opened.
429		 * Clean up the state as appropriate.
430		 */
431		zs_shutdown(cs);
432	}
433	return(error);
434}
435
436/*
437 * Close a zs serial port.
438 */
439int
440zsclose(dev, flags, mode, p)
441dev_t		dev;
442int		flags;
443int		mode;
444struct proc	*p;
445{
446	register struct zs_chanstate	*cs;
447	register struct tty		*tp;
448		 struct zs_softc	*zi;
449		 int			unit = ZS_UNIT(dev);
450
451	zi = zs_cd.cd_devs[unit >> 1];
452	cs = &zi->zi_cs[unit & 1];
453	tp = cs->cs_ttyp;
454
455	tp->t_linesw->l_close(tp, flags);
456	ttyclose(tp);
457
458	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
459		/*
460		 * Although we got a last close, the device may still be in
461		 * use; e.g. if this was the dialout node, and there are still
462		 * processes waiting for carrier on the non-dialout node.
463		 */
464		zs_shutdown(cs);
465	}
466	return (0);
467}
468
469/*
470 * Read/write zs serial port.
471 */
472int
473zsread(dev, uio, flags)
474dev_t		dev;
475struct uio	*uio;
476int		flags;
477{
478	register struct zs_chanstate	*cs;
479	register struct zs_softc	*zi;
480	register struct tty		*tp;
481		 int			unit;
482
483	unit = ZS_UNIT(dev);
484	zi   = zs_cd.cd_devs[unit >> 1];
485	cs   = &zi->zi_cs[unit & 1];
486	tp   = cs->cs_ttyp;
487
488	return(tp->t_linesw->l_read(tp, uio, flags));
489}
490
491int
492zswrite(dev, uio, flags)
493dev_t		dev;
494struct uio	*uio;
495int		flags;
496{
497	register struct zs_chanstate	*cs;
498	register struct zs_softc	*zi;
499	register struct tty		*tp;
500		 int			unit;
501
502	unit = ZS_UNIT(dev);
503	zi   = zs_cd.cd_devs[unit >> 1];
504	cs   = &zi->zi_cs[unit & 1];
505	tp   = cs->cs_ttyp;
506
507	return(tp->t_linesw->l_write(tp, uio, flags));
508}
509
510int
511zspoll(dev, events, p)
512dev_t		dev;
513int		events;
514struct proc	*p;
515{
516	register struct zs_chanstate	*cs;
517	register struct zs_softc	*zi;
518	register struct tty		*tp;
519		 int			unit;
520
521	unit = ZS_UNIT(dev);
522	zi   = zs_cd.cd_devs[unit >> 1];
523	cs   = &zi->zi_cs[unit & 1];
524	tp   = cs->cs_ttyp;
525
526	return ((*tp->t_linesw->l_poll)(tp, events, p));
527}
528
529struct tty *
530zstty(dev)
531dev_t	dev;
532{
533	register struct zs_chanstate	*cs;
534	register struct zs_softc	*zi;
535		 int			unit;
536
537	unit = ZS_UNIT(dev);
538	zi   = zs_cd.cd_devs[unit >> 1];
539	cs   = &zi->zi_cs[unit & 1];
540	return(cs->cs_ttyp);
541}
542
543/*
544 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
545 * channels are kept in (A,B) pairs.
546 *
547 * Do just a little, then get out; set a software interrupt if more
548 * work is needed.
549 *
550 * We deliberately ignore the vectoring Zilog gives us, and match up
551 * only the number of `reset interrupt under service' operations, not
552 * the order.
553 */
554
555int
556zshard(sr)
557long sr;
558{
559	register struct zs_chanstate	*a;
560#define	b (a + 1)
561	register volatile struct zschan *zc;
562	register int			rr3, intflags = 0, v, i;
563
564	do {
565	    intflags &= ~4;
566	    for(a = zslist; a != NULL; a = b->cs_next) {
567		rr3 = ZS_READ(a->cs_zc, 3);
568		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
569			intflags |= 4|2;
570			zc = a->cs_zc;
571			i  = a->cs_rbput;
572			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
573				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574				intflags |= 1;
575			}
576			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
577				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578				intflags |= 1;
579			}
580			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
581				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
582				intflags |= 1;
583			}
584			a->cs_rbput = i;
585		}
586		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
587			intflags |= 4|2;
588			zc = b->cs_zc;
589			i  = b->cs_rbput;
590			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
591				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592				intflags |= 1;
593			}
594			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
595				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596				intflags |= 1;
597			}
598			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
599				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600				intflags |= 1;
601			}
602			b->cs_rbput = i;
603		}
604	    }
605	} while(intflags & 4);
606#undef b
607
608	if(intflags & 1) {
609		if(BASEPRI(sr)) {
610			spl1();
611			zsshortcuts++;
612			return(zssoft(sr));
613		}
614		else if(!cb_scheduled) {
615			cb_scheduled++;
616			add_sicallback((si_farg)zssoft, 0, 0);
617		}
618	}
619	return(intflags & 2);
620}
621
622static int
623zsrint(cs, zc)
624register struct zs_chanstate	*cs;
625register volatile struct zschan	*zc;
626{
627	register int c;
628
629	/*
630	 * First read the status, because read of the received char
631	 * destroy the status of this char.
632	 */
633	c = ZS_READ(zc, 1);
634	c |= (zc->zc_data << 8);
635
636	/* clear receive error & interrupt condition */
637	zc->zc_csr = ZSWR0_RESET_ERRORS;
638	zc->zc_csr = ZSWR0_CLR_INTR;
639
640	return(ZRING_MAKE(ZRING_RINT, c));
641}
642
643static int
644zsxint(cs, zc)
645register struct zs_chanstate	*cs;
646register volatile struct zschan	*zc;
647{
648	register int i = cs->cs_tbc;
649
650	if(i == 0) {
651		zc->zc_csr = ZSWR0_RESET_TXINT;
652		zc->zc_csr = ZSWR0_CLR_INTR;
653		return(ZRING_MAKE(ZRING_XINT, 0));
654	}
655	cs->cs_tbc = i - 1;
656	zc->zc_data = *cs->cs_tba++;
657	zc->zc_csr = ZSWR0_CLR_INTR;
658	return (0);
659}
660
661static int
662zssint(cs, zc)
663register struct zs_chanstate	*cs;
664register volatile struct zschan	*zc;
665{
666	register int rr0;
667
668	rr0 = zc->zc_csr;
669	zc->zc_csr = ZSWR0_RESET_STATUS;
670	zc->zc_csr = ZSWR0_CLR_INTR;
671	/*
672	 * The chip's hardware flow control is, as noted in zsreg.h,
673	 * busted---if the DCD line goes low the chip shuts off the
674	 * receiver (!).  If we want hardware CTS flow control but do
675	 * not have it, and carrier is now on, turn HFC on; if we have
676	 * HFC now but carrier has gone low, turn it off.
677	 */
678	if(rr0 & ZSRR0_DCD) {
679		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
680		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
681			cs->cs_creg[3] |= ZSWR3_HFC;
682			ZS_WRITE(zc, 3, cs->cs_creg[3]);
683		}
684	}
685	else {
686		if (cs->cs_creg[3] & ZSWR3_HFC) {
687			cs->cs_creg[3] &= ~ZSWR3_HFC;
688			ZS_WRITE(zc, 3, cs->cs_creg[3]);
689		}
690	}
691	return(ZRING_MAKE(ZRING_SINT, rr0));
692}
693
694/*
695 * Print out a ring or fifo overrun error message.
696 */
697static void
698zsoverrun(unit, ptime, what)
699int	unit;
700long	*ptime;
701char	*what;
702{
703
704	if(*ptime != time.tv_sec) {
705		*ptime = time.tv_sec;
706		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
707		    (unit & 1) + 'a', what);
708	}
709}
710
711/*
712 * ZS software interrupt.  Scan all channels for deferred interrupts.
713 */
714int
715zssoft(sr)
716long sr;
717{
718    register struct zs_chanstate	*cs;
719    register volatile struct zschan	*zc;
720    register struct linesw		*line;
721    register struct tty			*tp;
722    register int			get, n, c, cc, unit, s;
723 	     int			retval = 0;
724
725    cb_scheduled = 0;
726    s = spltty();
727    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
728	get = cs->cs_rbget;
729again:
730	n = cs->cs_rbput;	/* atomic			*/
731	if(get == n)		/* nothing more on this line	*/
732		continue;
733	retval = 1;
734	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
735	zc     = cs->cs_zc;
736	tp     = cs->cs_ttyp;
737	line   = tp->t_linesw;
738	/*
739	 * Compute the number of interrupts in the receive ring.
740	 * If the count is overlarge, we lost some events, and
741	 * must advance to the first valid one.  It may get
742	 * overwritten if more data are arriving, but this is
743	 * too expensive to check and gains nothing (we already
744	 * lost out; all we can do at this point is trade one
745	 * kind of loss for another).
746	 */
747	n -= get;
748	if(n > ZLRB_RING_SIZE) {
749		zsoverrun(unit, &cs->cs_rotime, "ring");
750		get += n - ZLRB_RING_SIZE;
751		n    = ZLRB_RING_SIZE;
752	}
753	while(--n >= 0) {
754		/* race to keep ahead of incoming interrupts */
755		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
756		switch (ZRING_TYPE(c)) {
757
758		case ZRING_RINT:
759			c = ZRING_VALUE(c);
760			if(c & ZSRR1_DO)
761				zsoverrun(unit, &cs->cs_fotime, "fifo");
762			cc = c >> 8;
763			if(c & ZSRR1_FE)
764				cc |= TTY_FE;
765			if(c & ZSRR1_PE)
766				cc |= TTY_PE;
767			line->l_rint(cc, tp);
768			break;
769
770		case ZRING_XINT:
771			/*
772			 * Transmit done: change registers and resume,
773			 * or clear BUSY.
774			 */
775			if(cs->cs_heldchange) {
776				int sps;
777
778				sps = splzs();
779				c = zc->zc_csr;
780				if((c & ZSRR0_DCD) == 0)
781					cs->cs_preg[3] &= ~ZSWR3_HFC;
782				bcopy((caddr_t)cs->cs_preg,
783				    (caddr_t)cs->cs_creg, 16);
784				zs_loadchannelregs(zc, cs->cs_creg);
785				splx(sps);
786				cs->cs_heldchange = 0;
787				if(cs->cs_heldtbc
788					&& (tp->t_state & TS_TTSTOP) == 0) {
789					cs->cs_tbc = cs->cs_heldtbc - 1;
790					zc->zc_data = *cs->cs_tba++;
791					goto again;
792				}
793			}
794			tp->t_state &= ~TS_BUSY;
795			if(tp->t_state & TS_FLUSH)
796				tp->t_state &= ~TS_FLUSH;
797			else ndflush(&tp->t_outq,cs->cs_tba
798						- (caddr_t)tp->t_outq.c_cf);
799			line->l_start(tp);
800			break;
801
802		case ZRING_SINT:
803			/*
804			 * Status line change.  HFC bit is run in
805			 * hardware interrupt, to avoid locking
806			 * at splzs here.
807			 */
808			c = ZRING_VALUE(c);
809			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
810				cc = (c & ZSRR0_DCD) != 0;
811				if(line->l_modem(tp, cc) == 0)
812					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
813							cc ? DMBIS : DMBIC);
814			}
815			cs->cs_rr0 = c;
816			break;
817
818		default:
819			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
820			    unit >> 1, (unit & 1) + 'a', c);
821			break;
822		}
823	}
824	cs->cs_rbget = get;
825	goto again;
826    }
827    splx(s);
828    return (retval);
829}
830
831int
832zsioctl(dev, cmd, data, flag, p)
833dev_t		dev;
834u_long		cmd;
835caddr_t		data;
836int		flag;
837struct proc	*p;
838{
839		 int			unit = ZS_UNIT(dev);
840		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
841	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
842	register int			error, s;
843	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
844
845	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
846	if(error != EPASSTHROUGH)
847		return(error);
848
849	error = ttioctl(tp, cmd, data, flag, p);
850	if(error !=EPASSTHROUGH)
851		return (error);
852
853	switch (cmd) {
854	case TIOCSBRK:
855		s = splzs();
856		cs->cs_preg[5] |= ZSWR5_BREAK;
857		cs->cs_creg[5] |= ZSWR5_BREAK;
858		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
859		splx(s);
860		break;
861	case TIOCCBRK:
862		s = splzs();
863		cs->cs_preg[5] &= ~ZSWR5_BREAK;
864		cs->cs_creg[5] &= ~ZSWR5_BREAK;
865		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
866		splx(s);
867		break;
868	case TIOCGFLAGS: {
869		int bits = 0;
870
871		if(cs->cs_softcar)
872			bits |= TIOCFLAG_SOFTCAR;
873		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
874			bits |= TIOCFLAG_CLOCAL;
875		if(cs->cs_creg[3] & ZSWR3_HFC)
876			bits |= TIOCFLAG_CRTSCTS;
877		*(int *)data = bits;
878		break;
879	}
880	case TIOCSFLAGS: {
881		int userbits = 0;
882
883		error = suser(p->p_ucred, &p->p_acflag);
884		if(error != 0)
885			return (EPERM);
886
887		userbits = *(int *)data;
888
889		/*
890		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
891		 # defaulting to software flow control.
892		 */
893		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
894			return(EINVAL);
895		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
896			return(ENODEV);
897
898		s = splzs();
899		if((userbits & TIOCFLAG_SOFTCAR)) {
900			cs->cs_softcar = 1;	/* turn on softcar */
901			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
902			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
903			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
904		}
905		else if(userbits & TIOCFLAG_CLOCAL) {
906			cs->cs_softcar = 0; 	/* turn off softcar */
907			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
908			cs->cs_creg[15] |= ZSWR15_DCD_IE;
909			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
910			tp->t_termios.c_cflag |= CLOCAL;
911		}
912		if(userbits & TIOCFLAG_CRTSCTS) {
913			cs->cs_preg[15] |= ZSWR15_CTS_IE;
914			cs->cs_creg[15] |= ZSWR15_CTS_IE;
915			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
916			cs->cs_preg[3] |= ZSWR3_HFC;
917			cs->cs_creg[3] |= ZSWR3_HFC;
918			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
919			tp->t_termios.c_cflag |= CRTSCTS;
920		}
921		else {
922			/* no mdmbuf, so we must want software flow control */
923			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
924			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
925			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
926			cs->cs_preg[3] &= ~ZSWR3_HFC;
927			cs->cs_creg[3] &= ~ZSWR3_HFC;
928			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
929			tp->t_termios.c_cflag &= ~CRTSCTS;
930		}
931		splx(s);
932		break;
933	}
934	case TIOCSDTR:
935		zs_modem(cs, ZSWR5_DTR, DMBIS);
936		break;
937	case TIOCCDTR:
938		zs_modem(cs, ZSWR5_DTR, DMBIC);
939		break;
940	case TIOCMGET:
941		zs_modem(cs, 0, DMGET);
942		break;
943	case TIOCMSET:
944	case TIOCMBIS:
945	case TIOCMBIC:
946	default:
947		return (EPASSTHROUGH);
948	}
949	return (0);
950}
951
952/*
953 * Start or restart transmission.
954 */
955static void
956zsstart(tp)
957register struct tty *tp;
958{
959	register struct zs_chanstate	*cs;
960	register int			s, nch;
961		 int			unit = ZS_UNIT(tp->t_dev);
962		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
963
964	cs = &zi->zi_cs[unit & 1];
965	s  = spltty();
966
967	/*
968	 * If currently active or delaying, no need to do anything.
969	 */
970	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
971		goto out;
972
973	/*
974	 * If there are sleepers, and output has drained below low
975	 * water mark, awaken.
976	 */
977	if(tp->t_outq.c_cc <= tp->t_lowat) {
978		if(tp->t_state & TS_ASLEEP) {
979			tp->t_state &= ~TS_ASLEEP;
980			wakeup((caddr_t)&tp->t_outq);
981		}
982		selwakeup(&tp->t_wsel);
983	}
984
985	nch = ndqb(&tp->t_outq, 0);	/* XXX */
986	if(nch) {
987		register char *p = tp->t_outq.c_cf;
988
989		/* mark busy, enable tx done interrupts, & send first byte */
990		tp->t_state |= TS_BUSY;
991		(void) splzs();
992		cs->cs_preg[1] |= ZSWR1_TIE;
993		cs->cs_creg[1] |= ZSWR1_TIE;
994		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
995		cs->cs_zc->zc_data = *p;
996		cs->cs_tba = p + 1;
997		cs->cs_tbc = nch - 1;
998	} else {
999		/*
1000		 * Nothing to send, turn off transmit done interrupts.
1001		 * This is useful if something is doing polled output.
1002		 */
1003		(void) splzs();
1004		cs->cs_preg[1] &= ~ZSWR1_TIE;
1005		cs->cs_creg[1] &= ~ZSWR1_TIE;
1006		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1007	}
1008out:
1009	splx(s);
1010}
1011
1012/*
1013 * Stop output, e.g., for ^S or output flush.
1014 */
1015void
1016zsstop(tp, flag)
1017register struct tty	*tp;
1018	 int		flag;
1019{
1020	register struct zs_chanstate	*cs;
1021	register int			s, unit = ZS_UNIT(tp->t_dev);
1022		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1023
1024	cs = &zi->zi_cs[unit & 1];
1025	s  = splzs();
1026	if(tp->t_state & TS_BUSY) {
1027		/*
1028		 * Device is transmitting; must stop it.
1029		 */
1030		cs->cs_tbc = 0;
1031		if ((tp->t_state & TS_TTSTOP) == 0)
1032			tp->t_state |= TS_FLUSH;
1033	}
1034	splx(s);
1035}
1036
1037static void
1038zs_shutdown(cs)
1039	struct zs_chanstate	*cs;
1040{
1041	struct tty	*tp = cs->cs_ttyp;
1042	int		s;
1043
1044	s = splzs();
1045
1046	/*
1047	 * Hang up if necessary.  Wait a bit, so the other side has time to
1048	 * notice even if we immediately open the port again.
1049	 */
1050	if(tp->t_cflag & HUPCL) {
1051		zs_modem(cs, 0, DMSET);
1052		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1053	}
1054
1055	/* Clear any break condition set with TIOCSBRK. */
1056	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1057		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1058		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1059		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1060	}
1061
1062	/*
1063	 * Drop all lines and cancel interrupts
1064	 */
1065	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1066	splx(s);
1067}
1068
1069/*
1070 * Set ZS tty parameters from termios.
1071 *
1072 * This routine makes use of the fact that only registers
1073 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1074 */
1075static int
1076zsparam(tp, t)
1077register struct tty	*tp;
1078register struct termios	*t;
1079{
1080		 int			unit = ZS_UNIT(tp->t_dev);
1081		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1082	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1083		 int			cdiv, clkm, brgm, tcon;
1084	register int			tmp, tmp5, cflag, s;
1085
1086	tmp  = t->c_ospeed;
1087	tmp5 = t->c_ispeed;
1088	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1089		return(EINVAL);
1090	if(tmp == 0) {
1091		/* stty 0 => drop DTR and RTS */
1092		zs_modem(cs, 0, DMSET);
1093		return(0);
1094	}
1095	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1096	if (tmp < 0)
1097		return(EINVAL);
1098	tp->t_ispeed = tp->t_ospeed = tmp;
1099
1100	cflag = tp->t_cflag = t->c_cflag;
1101	if (cflag & CSTOPB)
1102		cdiv |= ZSWR4_TWOSB;
1103	else
1104		cdiv |= ZSWR4_ONESB;
1105	if (!(cflag & PARODD))
1106		cdiv |= ZSWR4_EVENP;
1107	if (cflag & PARENB)
1108		cdiv |= ZSWR4_PARENB;
1109
1110	switch(cflag & CSIZE) {
1111	case CS5:
1112		tmp  = ZSWR3_RX_5;
1113		tmp5 = ZSWR5_TX_5;
1114		break;
1115	case CS6:
1116		tmp  = ZSWR3_RX_6;
1117		tmp5 = ZSWR5_TX_6;
1118		break;
1119	case CS7:
1120		tmp  = ZSWR3_RX_7;
1121		tmp5 = ZSWR5_TX_7;
1122		break;
1123	case CS8:
1124	default:
1125		tmp  = ZSWR3_RX_8;
1126		tmp5 = ZSWR5_TX_8;
1127		break;
1128	}
1129	tmp  |= ZSWR3_RX_ENABLE;
1130	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1131
1132	/*
1133	 * Block interrupts so that state will not
1134	 * be altered until we are done setting it up.
1135	 */
1136	s = splzs();
1137	cs->cs_preg[4]  = cdiv;
1138	cs->cs_preg[11] = clkm;
1139	cs->cs_preg[12] = tcon;
1140	cs->cs_preg[13] = tcon >> 8;
1141	cs->cs_preg[14] = brgm;
1142	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1143	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1144	cs->cs_preg[10] = ZSWR10_NRZ;
1145	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1146
1147	/*
1148	 * Output hardware flow control on the chip is horrendous: if
1149	 * carrier detect drops, the receiver is disabled.  Hence we
1150	 * can only do this when the carrier is on.
1151	 */
1152	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1153		tmp |= ZSWR3_HFC;
1154	cs->cs_preg[3] = tmp;
1155	cs->cs_preg[5] = tmp5;
1156
1157	/*
1158	 * If nothing is being transmitted, set up new current values,
1159	 * else mark them as pending.
1160	 */
1161	if(cs->cs_heldchange == 0) {
1162		if (cs->cs_ttyp->t_state & TS_BUSY) {
1163			cs->cs_heldtbc = cs->cs_tbc;
1164			cs->cs_tbc = 0;
1165			cs->cs_heldchange = 1;
1166		} else {
1167			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1168			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1169		}
1170	}
1171	splx(s);
1172	return (0);
1173}
1174
1175/*
1176 * search for the best matching baudrate
1177 */
1178static int
1179zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1180int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1181{
1182	int	bestdiff, bestbps, source;
1183
1184	bestdiff = bestbps = 0;
1185	unit = (unit & 1) << 2;
1186	for (source = 0; source < 4; ++source) {
1187		long	freq = zs_frequencies[unit + source];
1188		int	diff, bps, div, clkm, brgm, tcon;
1189
1190		bps = div = clkm = brgm = tcon = 0;
1191		switch (source) {
1192			case 0:	/* BRgen, PCLK */
1193				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1194				break;
1195			case 1:	/* BRgen, RTxC */
1196				brgm = ZSWR14_BAUD_ENA;
1197				break;
1198			case 2: /* RTxC */
1199				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1200				break;
1201			case 3: /* TRxC */
1202				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1203				break;
1204		}
1205		switch (source) {
1206			case 0:
1207			case 1:
1208				div  = ZSWR4_CLK_X16;
1209				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1210				tcon = BPS_TO_TCONST(freq, wanted);
1211				if (tcon < 0)
1212					tcon = 0;
1213				bps  = TCONST_TO_BPS(freq, tcon);
1214				break;
1215			case 2:
1216			case 3:
1217			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1218				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1219				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1220
1221				if (d1 < d2 && d1 < d3) {
1222					div = ZSWR4_CLK_X16;
1223					bps = b1;
1224				} else if (d2 < d3 && d2 < d1) {
1225					div = ZSWR4_CLK_X32;
1226					bps = b2;
1227				} else {
1228					div = ZSWR4_CLK_X64;
1229					bps = b3;
1230				}
1231				brgm = tcon = 0;
1232				break;
1233			}
1234		}
1235		diff = abs(bps - wanted);
1236		if (!source || diff < bestdiff) {
1237			*divisor   = div;
1238			*clockmode = clkm;
1239			*brgenmode = brgm;
1240			*timeconst = tcon;
1241			bestbps    = bps;
1242			bestdiff   = diff;
1243			if (diff == 0)
1244				break;
1245		}
1246	}
1247	/* Allow deviations upto 5% */
1248	if (20 * bestdiff > wanted)
1249		return -1;
1250	return bestbps;
1251}
1252
1253/*
1254 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1255 * in transmission, the change is deferred.
1256 */
1257static int
1258zs_modem(cs, bits, how)
1259struct zs_chanstate	*cs;
1260int			bits, how;
1261{
1262	int s, mbits;
1263
1264	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1265
1266	s = splzs();
1267	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1268
1269	switch(how) {
1270		case DMSET:
1271				mbits  = bits;
1272				break;
1273		case DMBIS:
1274				mbits |= bits;
1275				break;
1276		case DMBIC:
1277				mbits &= ~bits;
1278				break;
1279		case DMGET:
1280				splx(s);
1281				return(mbits);
1282	}
1283
1284	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1285	if(cs->cs_heldchange == 0) {
1286		if(cs->cs_ttyp->t_state & TS_BUSY) {
1287			cs->cs_heldtbc = cs->cs_tbc;
1288			cs->cs_tbc = 0;
1289			cs->cs_heldchange = 1;
1290		}
1291		else {
1292			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1293		}
1294	}
1295	splx(s);
1296	return(0);
1297}
1298
1299/*
1300 * Write the given register set to the given zs channel in the proper order.
1301 * The channel must not be transmitting at the time.  The receiver will
1302 * be disabled for the time it takes to write all the registers.
1303 */
1304static void
1305zs_loadchannelregs(zc, reg)
1306volatile struct zschan	*zc;
1307u_char			*reg;
1308{
1309	int i;
1310
1311	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1312	i = zc->zc_data;		/* drain fifo */
1313	i = zc->zc_data;
1314	i = zc->zc_data;
1315	ZS_WRITE(zc,  4, reg[4]);
1316	ZS_WRITE(zc, 10, reg[10]);
1317	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1318	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1319	ZS_WRITE(zc,  1, reg[1]);
1320	ZS_WRITE(zc,  9, reg[9]);
1321	ZS_WRITE(zc, 11, reg[11]);
1322	ZS_WRITE(zc, 12, reg[12]);
1323	ZS_WRITE(zc, 13, reg[13]);
1324	ZS_WRITE(zc, 14, reg[14]);
1325	ZS_WRITE(zc, 15, reg[15]);
1326	ZS_WRITE(zc,  3, reg[3]);
1327	ZS_WRITE(zc,  5, reg[5]);
1328}
1329#endif /* NZS > 1 */
1330