zs.c revision 1.28
1/*	$NetBSD: zs.c,v 1.28 1998/01/12 18:04:17 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 *    must display the following acknowledgement:
28 *	This product includes software developed by the University of
29 *	California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 *    may be used to endorse or promote products derived from this software
32 *    without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47 */
48
49/*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/device.h>
60#include <sys/conf.h>
61#include <sys/file.h>
62#include <sys/ioctl.h>
63#include <sys/malloc.h>
64#include <sys/tty.h>
65#include <sys/time.h>
66#include <sys/kernel.h>
67#include <sys/syslog.h>
68
69#include <machine/cpu.h>
70#include <machine/iomap.h>
71#include <machine/scu.h>
72#include <machine/mfp.h>
73#include <atari/dev/ym2149reg.h>
74
75#include <dev/ic/z8530reg.h>
76#include <atari/dev/zsvar.h>
77#include "zs.h"
78#if NZS > 1
79#error "This driver supports only 1 85C30!"
80#endif
81
82#if NZS > 0
83
84#define PCLK	(8053976)	/* PCLK pin input clock rate */
85#define PCLK_HD	(14745600)	/* PCLK on Hades pin input clock rate */
86
87#define splzs	spl5
88
89/*
90 * Software state per found chip.
91 */
92struct zs_softc {
93    struct	device		zi_dev;    /* base device		  */
94    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96};
97
98static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99/*
100 * Define the registers for a closed port
101 */
102static u_char zs_init_regs[16] = {
103/*  0 */	0,
104/*  1 */	0,
105/*  2 */	0x60,
106/*  3 */	0,
107/*  4 */	0,
108/*  5 */	0,
109/*  6 */	0,
110/*  7 */	0,
111/*  8 */	0,
112/*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113/* 10 */	ZSWR10_NRZ,
114/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115/* 12 */	0,
116/* 13 */	0,
117/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118/* 15 */	0
119};
120
121/*
122 * Define the machine dependant clock frequencies
123 * If BRgen feeds sender/receiver we always use a
124 * divisor 16, therefor the division by 16 can as
125 * well be done here.
126 */
127static u_long zs_freqs_tt[] = {
128	/*
129	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130	 * which is set to 307.2KHz during initialisation
131	 * and never changed afterwards.
132	 */
133	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134	 229500,	/* BRgen, RTxCA, divisor 16	*/
135	3672000,	/* RTxCA, from PCLK4		*/
136	      0,	/* TRxCA, external		*/
137
138	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139	  19200,	/* BRgen, RTxCB, divisor 16	*/
140	 307200,	/* RTxCB, from TT-MFP TCO	*/
141	2457600		/* TRxCB, from BCLK		*/
142};
143
144static u_long zs_freqs_falcon[] = {
145	/*
146	 * Atari Falcon, XXX no specs available, this might be wrong
147	 */
148	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149	 229500,	/* BRgen, RTxCA, divisor 16	*/
150	3672000,	/* RTxCA, ???			*/
151	      0,	/* TRxCA, external		*/
152
153	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154	 229500,	/* BRgen, RTxCB, divisor 16	*/
155	3672000,	/* RTxCB, ???			*/
156	2457600		/* TRxCB, ???			*/
157};
158
159static u_long zs_freqs_hades[] = {
160	/*
161	 * XXX: Channel-A unchecked!!!!!
162	 */
163     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164	 229500,	/* BRgen, RTxCA, divisor 16	*/
165	3672000,	/* RTxCA, from PCLK4		*/
166	      0,	/* TRxCA, external		*/
167
168     PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169	 235550,	/* BRgen, RTxCB, divisor 16	*/
170	3768800,	/* RTxCB, 3.7688MHz		*/
171	3768800		/* TRxCB, 3.7688MHz		*/
172};
173
174static u_long zs_freqs_generic[] = {
175	/*
176	 * other machines, assume only PCLK is available
177	 */
178	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179	      0,	/* BRgen, RTxCA, divisor 16	*/
180	      0,	/* RTxCA, unknown		*/
181	      0,	/* TRxCA, unknown		*/
182
183	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184	      0,	/* BRgen, RTxCB, divisor 16	*/
185	      0,	/* RTxCB, unknown		*/
186	      0		/* TRxCB, unknown		*/
187};
188static u_long *zs_frequencies;
189
190/* Definition of the driver for autoconfig. */
191static int	zsmatch __P((struct device *, struct cfdata *, void *));
192static void	zsattach __P((struct device *, struct device *, void *));
193
194struct cfattach zs_ca = {
195	sizeof(struct zs_softc), zsmatch, zsattach
196};
197
198extern struct cfdriver zs_cd;
199
200/* {b,c}devsw[] function prototypes */
201dev_type_open(zsopen);
202dev_type_close(zsclose);
203dev_type_read(zsread);
204dev_type_write(zswrite);
205dev_type_ioctl(zsioctl);
206dev_type_tty(zstty);
207
208/* Interrupt handlers. */
209int		zshard __P((long));
210static int	zssoft __P((long));
211static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
212static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
213static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
214
215static struct zs_chanstate *zslist;
216
217/* Routines called from other code. */
218static void	zsstart __P((struct tty *));
219void		zsstop __P((struct tty *, int));
220
221/* Routines purely local to this driver. */
222static void	zsoverrun __P((int, long *, char *));
223static int	zsparam __P((struct tty *, struct termios *));
224static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
225static int	zs_modem __P((struct zs_chanstate *, int, int));
226static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
227
228static int zsshortcuts;	/* number of "shortcut" software interrupts */
229
230static int
231zsmatch(pdp, cfp, auxp)
232struct device	*pdp;
233struct cfdata	*cfp;
234void		*auxp;
235{
236	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
237		return(0);
238	return(1);
239}
240
241/*
242 * Attach a found zs.
243 */
244static void
245zsattach(parent, dev, aux)
246struct device	*parent;
247struct device	*dev;
248void		*aux;
249{
250	register struct zs_softc		*zi;
251	register struct zs_chanstate		*cs;
252	register volatile struct zsdevice	*addr;
253		 char				tmp;
254
255	addr      = (struct zsdevice *)AD_SCC;
256	zi        = (struct zs_softc *)dev;
257	zi->zi_zs = addr;
258	cs        = zi->zi_cs;
259
260	/*
261	 * Get the command register into a known state.
262	 */
263	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
264	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
265	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
266	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
267
268	/*
269	 * Do a hardware reset.
270	 */
271	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
272	delay(50000);	/*enough ? */
273	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
274
275	/*
276	 * Initialize both channels
277	 */
278	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
279	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
280
281	if(machineid & ATARI_TT) {
282		/*
283		 * ininitialise TT-MFP timer C: 307200Hz
284		 * timer C and D share one control register:
285		 *	bits 0-2 control timer D
286		 *	bits 4-6 control timer C
287		 */
288		int cr = MFP2->mf_tcdcr & 7;
289		MFP2->mf_tcdcr = cr;		/* stop timer C  */
290		MFP2->mf_tcdr  = 1;		/* counter 1     */
291		cr |= T_Q004 << 4;		/* divisor 4     */
292		MFP2->mf_tcdcr = cr;		/* start timer C */
293		/*
294		 * enable scc related interrupts
295		 */
296		SCU->vme_mask |= SCU_SCC;
297
298		zs_frequencies = zs_freqs_tt;
299	} else if (machineid & ATARI_FALCON) {
300		zs_frequencies = zs_freqs_falcon;
301	} else if (machineid & ATARI_HADES) {
302		zs_frequencies = zs_freqs_hades;
303	} else {
304		zs_frequencies = zs_freqs_generic;
305	}
306
307	/* link into interrupt list with order (A,B) (B=A+1) */
308	cs[0].cs_next = &cs[1];
309	cs[1].cs_next = zslist;
310	zslist        = cs;
311
312	cs->cs_unit  = 0;
313	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
314	cs++;
315	cs->cs_unit  = 1;
316	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
317
318	printf(": serial2 on channel a and modem2 on channel b\n");
319}
320
321/*
322 * Open a zs serial port.
323 */
324int
325zsopen(dev, flags, mode, p)
326dev_t		dev;
327int		flags;
328int		mode;
329struct proc	*p;
330{
331	register struct tty		*tp;
332	register struct zs_chanstate	*cs;
333		 struct zs_softc	*zi;
334		 int			unit = ZS_UNIT(dev);
335		 int			zs = unit >> 1;
336		 int			error, s;
337
338	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
339		return (ENXIO);
340	cs = &zi->zi_cs[unit & 1];
341
342	/*
343	 * When port A (ser02) is selected on the TT, make sure
344	 * the port is enabled.
345	 */
346	if((machineid & ATARI_TT) && !(unit & 1))
347		ym2149_ser2(1);
348
349	if (cs->cs_rbuf == NULL) {
350		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
351								   M_WAITOK);
352	}
353
354	tp = cs->cs_ttyp;
355	if(tp == NULL) {
356		cs->cs_ttyp = tp = ttymalloc();
357		tty_attach(tp);
358		tp->t_dev   = dev;
359		tp->t_oproc = zsstart;
360		tp->t_param = zsparam;
361	}
362
363	s  = spltty();
364	if((tp->t_state & TS_ISOPEN) == 0) {
365		ttychars(tp);
366		if(tp->t_ispeed == 0) {
367			tp->t_iflag = TTYDEF_IFLAG;
368			tp->t_oflag = TTYDEF_OFLAG;
369			tp->t_cflag = TTYDEF_CFLAG;
370			tp->t_lflag = TTYDEF_LFLAG;
371			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
372		}
373		(void)zsparam(tp, &tp->t_termios);
374		ttsetwater(tp);
375	}
376	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
377			splx(s);
378			return (EBUSY);
379	}
380	error = 0;
381	for(;;) {
382		/* loop, turning on the device, until carrier present */
383		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
384
385		/* May never get a status intr. if DCD already on. -gwr */
386		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
387			tp->t_state |= TS_CARR_ON;
388		if(cs->cs_softcar)
389			tp->t_state |= TS_CARR_ON;
390		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
391		    tp->t_state & TS_CARR_ON)
392			break;
393		tp->t_state |= TS_WOPEN;
394		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
395		    ttopen, 0)) != 0) {
396			if(!(tp->t_state & TS_ISOPEN)) {
397				zs_modem(cs, 0, DMSET);
398				tp->t_state &= ~TS_WOPEN;
399				ttwakeup(tp);
400			}
401			splx(s);
402			return error;
403		}
404	}
405	splx(s);
406	if(error == 0)
407		error = linesw[tp->t_line].l_open(dev, tp);
408	if(error)
409		zs_modem(cs, 0, DMSET);
410	return(error);
411}
412
413/*
414 * Close a zs serial port.
415 */
416int
417zsclose(dev, flags, mode, p)
418dev_t		dev;
419int		flags;
420int		mode;
421struct proc	*p;
422{
423	register struct zs_chanstate	*cs;
424	register struct tty		*tp;
425		 struct zs_softc	*zi;
426		 int			unit = ZS_UNIT(dev);
427		 int			s;
428
429	zi = zs_cd.cd_devs[unit >> 1];
430	cs = &zi->zi_cs[unit & 1];
431	tp = cs->cs_ttyp;
432	linesw[tp->t_line].l_close(tp, flags);
433	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
434	    (tp->t_state & TS_ISOPEN) == 0) {
435		zs_modem(cs, 0, DMSET);
436		/* hold low for 1 second */
437		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
438	}
439	if(cs->cs_creg[5] & ZSWR5_BREAK) {
440		s = splzs();
441		cs->cs_preg[5] &= ~ZSWR5_BREAK;
442		cs->cs_creg[5] &= ~ZSWR5_BREAK;
443		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
444		splx(s);
445	}
446	ttyclose(tp);
447
448	/*
449	 * Drop all lines and cancel interrupts
450	 */
451	s = splzs();
452	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
453	splx(s);
454	return (0);
455}
456
457/*
458 * Read/write zs serial port.
459 */
460int
461zsread(dev, uio, flags)
462dev_t		dev;
463struct uio	*uio;
464int		flags;
465{
466	register struct zs_chanstate	*cs;
467	register struct zs_softc	*zi;
468	register struct tty		*tp;
469		 int			unit;
470
471	unit = ZS_UNIT(dev);
472	zi   = zs_cd.cd_devs[unit >> 1];
473	cs   = &zi->zi_cs[unit & 1];
474	tp   = cs->cs_ttyp;
475
476	return(linesw[tp->t_line].l_read(tp, uio, flags));
477}
478
479int
480zswrite(dev, uio, flags)
481dev_t		dev;
482struct uio	*uio;
483int		flags;
484{
485	register struct zs_chanstate	*cs;
486	register struct zs_softc	*zi;
487	register struct tty		*tp;
488		 int			unit;
489
490	unit = ZS_UNIT(dev);
491	zi   = zs_cd.cd_devs[unit >> 1];
492	cs   = &zi->zi_cs[unit & 1];
493	tp   = cs->cs_ttyp;
494
495	return(linesw[tp->t_line].l_write(tp, uio, flags));
496}
497
498struct tty *
499zstty(dev)
500dev_t	dev;
501{
502	register struct zs_chanstate	*cs;
503	register struct zs_softc	*zi;
504		 int			unit;
505
506	unit = ZS_UNIT(dev);
507	zi   = zs_cd.cd_devs[unit >> 1];
508	cs   = &zi->zi_cs[unit & 1];
509	return(cs->cs_ttyp);
510}
511
512/*
513 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
514 * channels are kept in (A,B) pairs.
515 *
516 * Do just a little, then get out; set a software interrupt if more
517 * work is needed.
518 *
519 * We deliberately ignore the vectoring Zilog gives us, and match up
520 * only the number of `reset interrupt under service' operations, not
521 * the order.
522 */
523
524int
525zshard(sr)
526long sr;
527{
528	register struct zs_chanstate	*a;
529#define	b (a + 1)
530	register volatile struct zschan *zc;
531	register int			rr3, intflags = 0, v, i;
532
533	do {
534	    intflags &= ~4;
535	    for(a = zslist; a != NULL; a = b->cs_next) {
536		rr3 = ZS_READ(a->cs_zc, 3);
537		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
538			intflags |= 4|2;
539			zc = a->cs_zc;
540			i  = a->cs_rbput;
541			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
542				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
543				intflags |= 1;
544			}
545			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
546				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
547				intflags |= 1;
548			}
549			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
550				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
551				intflags |= 1;
552			}
553			a->cs_rbput = i;
554		}
555		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
556			intflags |= 4|2;
557			zc = b->cs_zc;
558			i  = b->cs_rbput;
559			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
560				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
561				intflags |= 1;
562			}
563			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
564				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
565				intflags |= 1;
566			}
567			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
568				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
569				intflags |= 1;
570			}
571			b->cs_rbput = i;
572		}
573	    }
574	} while(intflags & 4);
575#undef b
576
577	if(intflags & 1) {
578		if(BASEPRI(sr)) {
579			spl1();
580			zsshortcuts++;
581			return(zssoft(sr));
582		}
583		else if(!cb_scheduled) {
584			cb_scheduled++;
585			add_sicallback((si_farg)zssoft, 0, 0);
586		}
587	}
588	return(intflags & 2);
589}
590
591static int
592zsrint(cs, zc)
593register struct zs_chanstate	*cs;
594register volatile struct zschan	*zc;
595{
596	register int c;
597
598	/*
599	 * First read the status, because read of the received char
600	 * destroy the status of this char.
601	 */
602	c = ZS_READ(zc, 1);
603	c |= (zc->zc_data << 8);
604
605	/* clear receive error & interrupt condition */
606	zc->zc_csr = ZSWR0_RESET_ERRORS;
607	zc->zc_csr = ZSWR0_CLR_INTR;
608
609	return(ZRING_MAKE(ZRING_RINT, c));
610}
611
612static int
613zsxint(cs, zc)
614register struct zs_chanstate	*cs;
615register volatile struct zschan	*zc;
616{
617	register int i = cs->cs_tbc;
618
619	if(i == 0) {
620		zc->zc_csr = ZSWR0_RESET_TXINT;
621		zc->zc_csr = ZSWR0_CLR_INTR;
622		return(ZRING_MAKE(ZRING_XINT, 0));
623	}
624	cs->cs_tbc = i - 1;
625	zc->zc_data = *cs->cs_tba++;
626	zc->zc_csr = ZSWR0_CLR_INTR;
627	return (0);
628}
629
630static int
631zssint(cs, zc)
632register struct zs_chanstate	*cs;
633register volatile struct zschan	*zc;
634{
635	register int rr0;
636
637	rr0 = zc->zc_csr;
638	zc->zc_csr = ZSWR0_RESET_STATUS;
639	zc->zc_csr = ZSWR0_CLR_INTR;
640	/*
641	 * The chip's hardware flow control is, as noted in zsreg.h,
642	 * busted---if the DCD line goes low the chip shuts off the
643	 * receiver (!).  If we want hardware CTS flow control but do
644	 * not have it, and carrier is now on, turn HFC on; if we have
645	 * HFC now but carrier has gone low, turn it off.
646	 */
647	if(rr0 & ZSRR0_DCD) {
648		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
649		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
650			cs->cs_creg[3] |= ZSWR3_HFC;
651			ZS_WRITE(zc, 3, cs->cs_creg[3]);
652		}
653	}
654	else {
655		if (cs->cs_creg[3] & ZSWR3_HFC) {
656			cs->cs_creg[3] &= ~ZSWR3_HFC;
657			ZS_WRITE(zc, 3, cs->cs_creg[3]);
658		}
659	}
660	return(ZRING_MAKE(ZRING_SINT, rr0));
661}
662
663/*
664 * Print out a ring or fifo overrun error message.
665 */
666static void
667zsoverrun(unit, ptime, what)
668int	unit;
669long	*ptime;
670char	*what;
671{
672
673	if(*ptime != time.tv_sec) {
674		*ptime = time.tv_sec;
675		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
676		    (unit & 1) + 'a', what);
677	}
678}
679
680/*
681 * ZS software interrupt.  Scan all channels for deferred interrupts.
682 */
683int
684zssoft(sr)
685long sr;
686{
687    register struct zs_chanstate	*cs;
688    register volatile struct zschan	*zc;
689    register struct linesw		*line;
690    register struct tty			*tp;
691    register int			get, n, c, cc, unit, s;
692 	     int			retval = 0;
693
694    cb_scheduled = 0;
695    s = spltty();
696    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
697	get = cs->cs_rbget;
698again:
699	n = cs->cs_rbput;	/* atomic			*/
700	if(get == n)		/* nothing more on this line	*/
701		continue;
702	retval = 1;
703	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
704	zc     = cs->cs_zc;
705	tp     = cs->cs_ttyp;
706	line   = &linesw[tp->t_line];
707	/*
708	 * Compute the number of interrupts in the receive ring.
709	 * If the count is overlarge, we lost some events, and
710	 * must advance to the first valid one.  It may get
711	 * overwritten if more data are arriving, but this is
712	 * too expensive to check and gains nothing (we already
713	 * lost out; all we can do at this point is trade one
714	 * kind of loss for another).
715	 */
716	n -= get;
717	if(n > ZLRB_RING_SIZE) {
718		zsoverrun(unit, &cs->cs_rotime, "ring");
719		get += n - ZLRB_RING_SIZE;
720		n    = ZLRB_RING_SIZE;
721	}
722	while(--n >= 0) {
723		/* race to keep ahead of incoming interrupts */
724		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
725		switch (ZRING_TYPE(c)) {
726
727		case ZRING_RINT:
728			c = ZRING_VALUE(c);
729			if(c & ZSRR1_DO)
730				zsoverrun(unit, &cs->cs_fotime, "fifo");
731			cc = c >> 8;
732			if(c & ZSRR1_FE)
733				cc |= TTY_FE;
734			if(c & ZSRR1_PE)
735				cc |= TTY_PE;
736			line->l_rint(cc, tp);
737			break;
738
739		case ZRING_XINT:
740			/*
741			 * Transmit done: change registers and resume,
742			 * or clear BUSY.
743			 */
744			if(cs->cs_heldchange) {
745				int sps;
746
747				sps = splzs();
748				c = zc->zc_csr;
749				if((c & ZSRR0_DCD) == 0)
750					cs->cs_preg[3] &= ~ZSWR3_HFC;
751				bcopy((caddr_t)cs->cs_preg,
752				    (caddr_t)cs->cs_creg, 16);
753				zs_loadchannelregs(zc, cs->cs_creg);
754				splx(sps);
755				cs->cs_heldchange = 0;
756				if(cs->cs_heldtbc
757					&& (tp->t_state & TS_TTSTOP) == 0) {
758					cs->cs_tbc = cs->cs_heldtbc - 1;
759					zc->zc_data = *cs->cs_tba++;
760					goto again;
761				}
762			}
763			tp->t_state &= ~TS_BUSY;
764			if(tp->t_state & TS_FLUSH)
765				tp->t_state &= ~TS_FLUSH;
766			else ndflush(&tp->t_outq,cs->cs_tba
767						- (caddr_t)tp->t_outq.c_cf);
768			line->l_start(tp);
769			break;
770
771		case ZRING_SINT:
772			/*
773			 * Status line change.  HFC bit is run in
774			 * hardware interrupt, to avoid locking
775			 * at splzs here.
776			 */
777			c = ZRING_VALUE(c);
778			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
779				cc = (c & ZSRR0_DCD) != 0;
780				if(line->l_modem(tp, cc) == 0)
781					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
782							cc ? DMBIS : DMBIC);
783			}
784			cs->cs_rr0 = c;
785			break;
786
787		default:
788			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
789			    unit >> 1, (unit & 1) + 'a', c);
790			break;
791		}
792	}
793	cs->cs_rbget = get;
794	goto again;
795    }
796    splx(s);
797    return (retval);
798}
799
800int
801zsioctl(dev, cmd, data, flag, p)
802dev_t		dev;
803u_long		cmd;
804caddr_t		data;
805int		flag;
806struct proc	*p;
807{
808		 int			unit = ZS_UNIT(dev);
809		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
810	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
811	register int			error, s;
812	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
813
814	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
815	if(error >= 0)
816		return(error);
817	error = ttioctl(tp, cmd, data, flag, p);
818	if(error >= 0)
819		return (error);
820
821	switch (cmd) {
822	case TIOCSBRK:
823		s = splzs();
824		cs->cs_preg[5] |= ZSWR5_BREAK;
825		cs->cs_creg[5] |= ZSWR5_BREAK;
826		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
827		splx(s);
828		break;
829	case TIOCCBRK:
830		s = splzs();
831		cs->cs_preg[5] &= ~ZSWR5_BREAK;
832		cs->cs_creg[5] &= ~ZSWR5_BREAK;
833		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
834		splx(s);
835		break;
836	case TIOCGFLAGS: {
837		int bits = 0;
838
839		if(cs->cs_softcar)
840			bits |= TIOCFLAG_SOFTCAR;
841		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
842			bits |= TIOCFLAG_CLOCAL;
843		if(cs->cs_creg[3] & ZSWR3_HFC)
844			bits |= TIOCFLAG_CRTSCTS;
845		*(int *)data = bits;
846		break;
847	}
848	case TIOCSFLAGS: {
849		int userbits = 0;
850
851		error = suser(p->p_ucred, &p->p_acflag);
852		if(error != 0)
853			return (EPERM);
854
855		userbits = *(int *)data;
856
857		/*
858		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
859		 # defaulting to software flow control.
860		 */
861		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
862			return(EINVAL);
863		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
864			return(ENODEV);
865
866		s = splzs();
867		if((userbits & TIOCFLAG_SOFTCAR)) {
868			cs->cs_softcar = 1;	/* turn on softcar */
869			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
870			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
871			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
872		}
873		else if(userbits & TIOCFLAG_CLOCAL) {
874			cs->cs_softcar = 0; 	/* turn off softcar */
875			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
876			cs->cs_creg[15] |= ZSWR15_DCD_IE;
877			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
878			tp->t_termios.c_cflag |= CLOCAL;
879		}
880		if(userbits & TIOCFLAG_CRTSCTS) {
881			cs->cs_preg[15] |= ZSWR15_CTS_IE;
882			cs->cs_creg[15] |= ZSWR15_CTS_IE;
883			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
884			cs->cs_preg[3] |= ZSWR3_HFC;
885			cs->cs_creg[3] |= ZSWR3_HFC;
886			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
887			tp->t_termios.c_cflag |= CRTSCTS;
888		}
889		else {
890			/* no mdmbuf, so we must want software flow control */
891			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
892			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
893			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894			cs->cs_preg[3] &= ~ZSWR3_HFC;
895			cs->cs_creg[3] &= ~ZSWR3_HFC;
896			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
897			tp->t_termios.c_cflag &= ~CRTSCTS;
898		}
899		splx(s);
900		break;
901	}
902	case TIOCSDTR:
903		zs_modem(cs, ZSWR5_DTR, DMBIS);
904		break;
905	case TIOCCDTR:
906		zs_modem(cs, ZSWR5_DTR, DMBIC);
907		break;
908	case TIOCMGET:
909		zs_modem(cs, 0, DMGET);
910		break;
911	case TIOCMSET:
912	case TIOCMBIS:
913	case TIOCMBIC:
914	default:
915		return (ENOTTY);
916	}
917	return (0);
918}
919
920/*
921 * Start or restart transmission.
922 */
923static void
924zsstart(tp)
925register struct tty *tp;
926{
927	register struct zs_chanstate	*cs;
928	register int			s, nch;
929		 int			unit = ZS_UNIT(tp->t_dev);
930		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
931
932	cs = &zi->zi_cs[unit & 1];
933	s  = spltty();
934
935	/*
936	 * If currently active or delaying, no need to do anything.
937	 */
938	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
939		goto out;
940
941	/*
942	 * If there are sleepers, and output has drained below low
943	 * water mark, awaken.
944	 */
945	if(tp->t_outq.c_cc <= tp->t_lowat) {
946		if(tp->t_state & TS_ASLEEP) {
947			tp->t_state &= ~TS_ASLEEP;
948			wakeup((caddr_t)&tp->t_outq);
949		}
950		selwakeup(&tp->t_wsel);
951	}
952
953	nch = ndqb(&tp->t_outq, 0);	/* XXX */
954	if(nch) {
955		register char *p = tp->t_outq.c_cf;
956
957		/* mark busy, enable tx done interrupts, & send first byte */
958		tp->t_state |= TS_BUSY;
959		(void) splzs();
960		cs->cs_preg[1] |= ZSWR1_TIE;
961		cs->cs_creg[1] |= ZSWR1_TIE;
962		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
963		cs->cs_zc->zc_data = *p;
964		cs->cs_tba = p + 1;
965		cs->cs_tbc = nch - 1;
966	} else {
967		/*
968		 * Nothing to send, turn off transmit done interrupts.
969		 * This is useful if something is doing polled output.
970		 */
971		(void) splzs();
972		cs->cs_preg[1] &= ~ZSWR1_TIE;
973		cs->cs_creg[1] &= ~ZSWR1_TIE;
974		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
975	}
976out:
977	splx(s);
978}
979
980/*
981 * Stop output, e.g., for ^S or output flush.
982 */
983void
984zsstop(tp, flag)
985register struct tty	*tp;
986	 int		flag;
987{
988	register struct zs_chanstate	*cs;
989	register int			s, unit = ZS_UNIT(tp->t_dev);
990		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
991
992	cs = &zi->zi_cs[unit & 1];
993	s  = splzs();
994	if(tp->t_state & TS_BUSY) {
995		/*
996		 * Device is transmitting; must stop it.
997		 */
998		cs->cs_tbc = 0;
999		if ((tp->t_state & TS_TTSTOP) == 0)
1000			tp->t_state |= TS_FLUSH;
1001	}
1002	splx(s);
1003}
1004
1005/*
1006 * Set ZS tty parameters from termios.
1007 *
1008 * This routine makes use of the fact that only registers
1009 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1010 */
1011static int
1012zsparam(tp, t)
1013register struct tty	*tp;
1014register struct termios	*t;
1015{
1016		 int			unit = ZS_UNIT(tp->t_dev);
1017		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1018	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1019		 int			cdiv, clkm, brgm, tcon;
1020	register int			tmp, tmp5, cflag, s;
1021
1022	tmp  = t->c_ospeed;
1023	tmp5 = t->c_ispeed;
1024	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1025		return(EINVAL);
1026	if(tmp == 0) {
1027		/* stty 0 => drop DTR and RTS */
1028		zs_modem(cs, 0, DMSET);
1029		return(0);
1030	}
1031	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1032	if (tmp < 0)
1033		return(EINVAL);
1034	tp->t_ispeed = tp->t_ospeed = tmp;
1035
1036	cflag = tp->t_cflag = t->c_cflag;
1037	if (cflag & CSTOPB)
1038		cdiv |= ZSWR4_TWOSB;
1039	else
1040		cdiv |= ZSWR4_ONESB;
1041	if (!(cflag & PARODD))
1042		cdiv |= ZSWR4_EVENP;
1043	if (cflag & PARENB)
1044		cdiv |= ZSWR4_PARENB;
1045
1046	switch(cflag & CSIZE) {
1047	case CS5:
1048		tmp  = ZSWR3_RX_5;
1049		tmp5 = ZSWR5_TX_5;
1050		break;
1051	case CS6:
1052		tmp  = ZSWR3_RX_6;
1053		tmp5 = ZSWR5_TX_6;
1054		break;
1055	case CS7:
1056		tmp  = ZSWR3_RX_7;
1057		tmp5 = ZSWR5_TX_7;
1058		break;
1059	case CS8:
1060	default:
1061		tmp  = ZSWR3_RX_8;
1062		tmp5 = ZSWR5_TX_8;
1063		break;
1064	}
1065	tmp  |= ZSWR3_RX_ENABLE;
1066	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1067
1068	/*
1069	 * Block interrupts so that state will not
1070	 * be altered until we are done setting it up.
1071	 */
1072	s = splzs();
1073	cs->cs_preg[4]  = cdiv;
1074	cs->cs_preg[11] = clkm;
1075	cs->cs_preg[12] = tcon;
1076	cs->cs_preg[13] = tcon >> 8;
1077	cs->cs_preg[14] = brgm;
1078	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1079	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1080	cs->cs_preg[10] = ZSWR10_NRZ;
1081	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1082
1083	/*
1084	 * Output hardware flow control on the chip is horrendous: if
1085	 * carrier detect drops, the receiver is disabled.  Hence we
1086	 * can only do this when the carrier is on.
1087	 */
1088	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1089		tmp |= ZSWR3_HFC;
1090	cs->cs_preg[3] = tmp;
1091	cs->cs_preg[5] = tmp5;
1092
1093	/*
1094	 * If nothing is being transmitted, set up new current values,
1095	 * else mark them as pending.
1096	 */
1097	if(cs->cs_heldchange == 0) {
1098		if (cs->cs_ttyp->t_state & TS_BUSY) {
1099			cs->cs_heldtbc = cs->cs_tbc;
1100			cs->cs_tbc = 0;
1101			cs->cs_heldchange = 1;
1102		} else {
1103			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1104			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1105		}
1106	}
1107	splx(s);
1108	return (0);
1109}
1110
1111/*
1112 * search for the best matching baudrate
1113 */
1114static int
1115zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1116int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1117{
1118	int	bestdiff, bestbps, source;
1119
1120	bestdiff = bestbps = 0;
1121	unit = (unit & 1) << 2;
1122	for (source = 0; source < 4; ++source) {
1123		long	freq = zs_frequencies[unit + source];
1124		int	diff, bps, div, clkm, brgm, tcon;
1125
1126		bps = div = clkm = brgm = tcon = 0;
1127		switch (source) {
1128			case 0:	/* BRgen, PCLK */
1129				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1130				break;
1131			case 1:	/* BRgen, RTxC */
1132				brgm = ZSWR14_BAUD_ENA;
1133				break;
1134			case 2: /* RTxC */
1135				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1136				break;
1137			case 3: /* TRxC */
1138				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1139				break;
1140		}
1141		switch (source) {
1142			case 0:
1143			case 1:
1144				div  = ZSWR4_CLK_X16;
1145				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1146				tcon = BPS_TO_TCONST(freq, wanted);
1147				if (tcon < 0)
1148					tcon = 0;
1149				bps  = TCONST_TO_BPS(freq, tcon);
1150				break;
1151			case 2:
1152			case 3:
1153			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1154				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1155				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1156
1157				if (d1 < d2 && d1 < d3) {
1158					div = ZSWR4_CLK_X16;
1159					bps = b1;
1160				} else if (d2 < d3 && d2 < d1) {
1161					div = ZSWR4_CLK_X32;
1162					bps = b2;
1163				} else {
1164					div = ZSWR4_CLK_X64;
1165					bps = b3;
1166				}
1167				brgm = tcon = 0;
1168				break;
1169			}
1170		}
1171		diff = abs(bps - wanted);
1172		if (!source || diff < bestdiff) {
1173			*divisor   = div;
1174			*clockmode = clkm;
1175			*brgenmode = brgm;
1176			*timeconst = tcon;
1177			bestbps    = bps;
1178			bestdiff   = diff;
1179			if (diff == 0)
1180				break;
1181		}
1182	}
1183	/* Allow deviations upto 5% */
1184	if (20 * bestdiff > wanted)
1185		return -1;
1186	return bestbps;
1187}
1188
1189/*
1190 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1191 * in transmission, the change is deferred.
1192 */
1193static int
1194zs_modem(cs, bits, how)
1195struct zs_chanstate	*cs;
1196int			bits, how;
1197{
1198	int s, mbits;
1199
1200	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1201
1202	s = splzs();
1203	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1204
1205	switch(how) {
1206		case DMSET:
1207				mbits  = bits;
1208				break;
1209		case DMBIS:
1210				mbits |= bits;
1211				break;
1212		case DMBIC:
1213				mbits &= ~bits;
1214				break;
1215		case DMGET:
1216				splx(s);
1217				return(mbits);
1218	}
1219
1220	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1221	if(cs->cs_heldchange == 0) {
1222		if(cs->cs_ttyp->t_state & TS_BUSY) {
1223			cs->cs_heldtbc = cs->cs_tbc;
1224			cs->cs_tbc = 0;
1225			cs->cs_heldchange = 1;
1226		}
1227		else {
1228			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1229		}
1230	}
1231	splx(s);
1232	return(0);
1233}
1234
1235/*
1236 * Write the given register set to the given zs channel in the proper order.
1237 * The channel must not be transmitting at the time.  The receiver will
1238 * be disabled for the time it takes to write all the registers.
1239 */
1240static void
1241zs_loadchannelregs(zc, reg)
1242volatile struct zschan	*zc;
1243u_char			*reg;
1244{
1245	int i;
1246
1247	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1248	i = zc->zc_data;		/* drain fifo */
1249	i = zc->zc_data;
1250	i = zc->zc_data;
1251	ZS_WRITE(zc,  4, reg[4]);
1252	ZS_WRITE(zc, 10, reg[10]);
1253	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1254	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1255	ZS_WRITE(zc,  1, reg[1]);
1256	ZS_WRITE(zc,  9, reg[9]);
1257	ZS_WRITE(zc, 11, reg[11]);
1258	ZS_WRITE(zc, 12, reg[12]);
1259	ZS_WRITE(zc, 13, reg[13]);
1260	ZS_WRITE(zc, 14, reg[14]);
1261	ZS_WRITE(zc, 15, reg[15]);
1262	ZS_WRITE(zc,  3, reg[3]);
1263	ZS_WRITE(zc,  5, reg[5]);
1264}
1265#endif /* NZS > 1 */
1266