zs.c revision 1.23
1/*	$NetBSD: zs.c,v 1.23 1996/10/13 04:11:14 christos Exp $	*/
2
3/*
4 * Copyright (c) 1995 L. Weppelman (Atari modifications)
5 * Copyright (c) 1992, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Lawrence Berkeley Laboratory.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 * 3. All advertising materials mentioning features or use of this software
27 *    must display the following acknowledgement:
28 *	This product includes software developed by the University of
29 *	California, Berkeley and its contributors.
30 * 4. Neither the name of the University nor the names of its contributors
31 *    may be used to endorse or promote products derived from this software
32 *    without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 * SUCH DAMAGE.
45 *
46 *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47 */
48
49/*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (modem2 and serial2) on zs0.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/device.h>
60#include <sys/conf.h>
61#include <sys/file.h>
62#include <sys/ioctl.h>
63#include <sys/malloc.h>
64#include <sys/tty.h>
65#include <sys/time.h>
66#include <sys/kernel.h>
67#include <sys/syslog.h>
68
69#include <machine/cpu.h>
70#include <machine/iomap.h>
71#include <machine/scu.h>
72#include <machine/mfp.h>
73#include <atari/dev/ym2149reg.h>
74
75#include <dev/ic/z8530reg.h>
76#include <atari/dev/zsvar.h>
77#include "zs.h"
78#if NZS > 1
79#error "This driver supports only 1 85C30!"
80#endif
81
82#if NZS > 0
83
84#define PCLK	(8053976)	/* PCLK pin input clock rate */
85
86#define splzs	spl5
87
88/*
89 * Software state per found chip.
90 */
91struct zs_softc {
92    struct	device		zi_dev;    /* base device		  */
93    volatile struct zsdevice	*zi_zs;    /* chip registers		  */
94    struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
95};
96
97static u_char	cb_scheduled = 0;	/* Already asked for callback? */
98/*
99 * Define the registers for a closed port
100 */
101static u_char zs_init_regs[16] = {
102/*  0 */	0,
103/*  1 */	0,
104/*  2 */	0x60,
105/*  3 */	0,
106/*  4 */	0,
107/*  5 */	0,
108/*  6 */	0,
109/*  7 */	0,
110/*  8 */	0,
111/*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112/* 10 */	ZSWR10_NRZ,
113/* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114/* 12 */	0,
115/* 13 */	0,
116/* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117/* 15 */	0
118};
119
120/*
121 * Define the machine dependant clock frequencies
122 * If BRgen feeds sender/receiver we always use a
123 * divisor 16, therefor the division by 16 can as
124 * well be done here.
125 */
126static u_long zs_freqs_tt[] = {
127	/*
128	 * Atari TT, RTxCB is generated by TT-MFP timer C,
129	 * which is set to 307.2KHz during initialisation
130	 * and never changed afterwards.
131	 */
132	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
133	 229500,	/* BRgen, RTxCA, divisor 16	*/
134	3672000,	/* RTxCA, from PCLK4		*/
135	      0,	/* TRxCA, external		*/
136
137	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
138	  19200,	/* BRgen, RTxCB, divisor 16	*/
139	 307200,	/* RTxCB, from TT-MFP TCO	*/
140	2457600		/* TRxCB, from BCLK		*/
141};
142static u_long zs_freqs_falcon[] = {
143	/*
144	 * Atari Falcon, XXX no specs available, this might be wrong
145	 */
146	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
147	 229500,	/* BRgen, RTxCA, divisor 16	*/
148	3672000,	/* RTxCA, ???			*/
149	      0,	/* TRxCA, external		*/
150
151	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
152	 229500,	/* BRgen, RTxCB, divisor 16	*/
153	3672000,	/* RTxCB, ???			*/
154	2457600		/* TRxCB, ???			*/
155};
156static u_long zs_freqs_generic[] = {
157	/*
158	 * other machines, assume only PCLK is available
159	 */
160	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
161	      0,	/* BRgen, RTxCA, divisor 16	*/
162	      0,	/* RTxCA, unknown		*/
163	      0,	/* TRxCA, unknown		*/
164
165	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
166	      0,	/* BRgen, RTxCB, divisor 16	*/
167	      0,	/* RTxCB, unknown		*/
168	      0		/* TRxCB, unknown		*/
169};
170static u_long *zs_frequencies;
171
172/* Definition of the driver for autoconfig. */
173static int	zsmatch __P((struct device *, void *, void *));
174static void	zsattach __P((struct device *, struct device *, void *));
175
176struct cfattach zs_ca = {
177	sizeof(struct zs_softc), zsmatch, zsattach
178};
179
180struct cfdriver zs_cd = {
181	NULL, "zs", DV_TTY, NULL, 0
182};
183
184/* {b,c}devsw[] function prototypes */
185dev_type_open(zsopen);
186dev_type_close(zsclose);
187dev_type_read(zsread);
188dev_type_write(zswrite);
189dev_type_ioctl(zsioctl);
190dev_type_tty(zstty);
191
192/* Interrupt handlers. */
193int		zshard __P((long));
194static int	zssoft __P((long));
195static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
196static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
197static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
198
199static struct zs_chanstate *zslist;
200
201/* Routines called from other code. */
202static void	zsstart __P((struct tty *));
203void		zsstop __P((struct tty *, int));
204
205/* Routines purely local to this driver. */
206static void	zsoverrun __P((int, long *, char *));
207static int	zsparam __P((struct tty *, struct termios *));
208static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
209static int	zs_modem __P((struct zs_chanstate *, int, int));
210static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
211
212static int zsshortcuts;	/* number of "shortcut" software interrupts */
213
214static int
215zsmatch(pdp, match, auxp)
216struct device	*pdp;
217void		*match, *auxp;
218{
219	struct cfdata *cfp = match;
220
221	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
222		return(0);
223	return(1);
224}
225
226/*
227 * Attach a found zs.
228 */
229static void
230zsattach(parent, dev, aux)
231struct device	*parent;
232struct device	*dev;
233void		*aux;
234{
235	register struct zs_softc		*zi;
236	register struct zs_chanstate		*cs;
237	register volatile struct zsdevice	*addr;
238		 char				tmp;
239
240	addr      = (struct zsdevice *)AD_SCC;
241	zi        = (struct zs_softc *)dev;
242	zi->zi_zs = addr;
243	cs        = zi->zi_cs;
244
245	/*
246	 * Get the command register into a known state.
247	 */
248	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
249	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
250	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
251	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
252
253	/*
254	 * Do a hardware reset.
255	 */
256	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
257	delay(50000);	/*enough ? */
258	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
259
260	/*
261	 * Initialize both channels
262	 */
263	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
264	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
265
266	if(machineid & ATARI_TT) {
267		/*
268		 * ininitialise TT-MFP timer C: 307200Hz
269		 * timer C and D share one control register:
270		 *	bits 0-2 control timer D
271		 *	bits 4-6 control timer C
272		 */
273		int cr = MFP2->mf_tcdcr & 7;
274		MFP2->mf_tcdcr = cr;		/* stop timer C  */
275		MFP2->mf_tcdr  = 1;		/* counter 1     */
276		cr |= T_Q004 << 4;		/* divisor 4     */
277		MFP2->mf_tcdcr = cr;		/* start timer C */
278		/*
279		 * enable scc related interrupts
280		 */
281		SCU->sys_mask |= SCU_SCC;
282
283		zs_frequencies = zs_freqs_tt;
284	} else if (machineid & ATARI_FALCON) {
285		zs_frequencies = zs_freqs_falcon;
286	} else {
287		zs_frequencies = zs_freqs_generic;
288	}
289
290	/* link into interrupt list with order (A,B) (B=A+1) */
291	cs[0].cs_next = &cs[1];
292	cs[1].cs_next = zslist;
293	zslist        = cs;
294
295	cs->cs_unit  = 0;
296	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
297	cs++;
298	cs->cs_unit  = 1;
299	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
300
301	printf(": serial2 on channel a and modem2 on channel b\n");
302}
303
304/*
305 * Open a zs serial port.
306 */
307int
308zsopen(dev, flags, mode, p)
309dev_t		dev;
310int		flags;
311int		mode;
312struct proc	*p;
313{
314	register struct tty		*tp;
315	register struct zs_chanstate	*cs;
316		 struct zs_softc	*zi;
317		 int			unit = ZS_UNIT(dev);
318		 int			zs = unit >> 1;
319		 int			error, s;
320
321	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
322		return (ENXIO);
323	cs = &zi->zi_cs[unit & 1];
324
325	/*
326	 * When port A (ser02) is selected on the TT, make sure
327	 * the port is enabled.
328	 */
329	if((machineid & ATARI_TT) && !(unit & 1))
330		ym2149_ser2_select();
331
332	if (cs->cs_rbuf == NULL) {
333		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
334								   M_WAITOK);
335	}
336
337	tp = cs->cs_ttyp;
338	if(tp == NULL) {
339		cs->cs_ttyp = tp = ttymalloc();
340		tty_attach(tp);
341		tp->t_dev   = dev;
342		tp->t_oproc = zsstart;
343		tp->t_param = zsparam;
344	}
345
346	s  = spltty();
347	if((tp->t_state & TS_ISOPEN) == 0) {
348		ttychars(tp);
349		if(tp->t_ispeed == 0) {
350			tp->t_iflag = TTYDEF_IFLAG;
351			tp->t_oflag = TTYDEF_OFLAG;
352			tp->t_cflag = TTYDEF_CFLAG;
353			tp->t_lflag = TTYDEF_LFLAG;
354			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
355		}
356		(void)zsparam(tp, &tp->t_termios);
357		ttsetwater(tp);
358	}
359	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
360			splx(s);
361			return (EBUSY);
362	}
363	error = 0;
364	for(;;) {
365		/* loop, turning on the device, until carrier present */
366		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
367
368		/* May never get a status intr. if DCD already on. -gwr */
369		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
370			tp->t_state |= TS_CARR_ON;
371		if(cs->cs_softcar)
372			tp->t_state |= TS_CARR_ON;
373		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
374		    tp->t_state & TS_CARR_ON)
375			break;
376		tp->t_state |= TS_WOPEN;
377		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
378		    ttopen, 0)) != 0) {
379			if(!(tp->t_state & TS_ISOPEN)) {
380				zs_modem(cs, 0, DMSET);
381				tp->t_state &= ~TS_WOPEN;
382				ttwakeup(tp);
383			}
384			splx(s);
385			return error;
386		}
387	}
388	splx(s);
389	if(error == 0)
390		error = linesw[tp->t_line].l_open(dev, tp);
391	if(error)
392		zs_modem(cs, 0, DMSET);
393	return(error);
394}
395
396/*
397 * Close a zs serial port.
398 */
399int
400zsclose(dev, flags, mode, p)
401dev_t		dev;
402int		flags;
403int		mode;
404struct proc	*p;
405{
406	register struct zs_chanstate	*cs;
407	register struct tty		*tp;
408		 struct zs_softc	*zi;
409		 int			unit = ZS_UNIT(dev);
410		 int			s;
411
412	zi = zs_cd.cd_devs[unit >> 1];
413	cs = &zi->zi_cs[unit & 1];
414	tp = cs->cs_ttyp;
415	linesw[tp->t_line].l_close(tp, flags);
416	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
417	    (tp->t_state & TS_ISOPEN) == 0) {
418		zs_modem(cs, 0, DMSET);
419		/* hold low for 1 second */
420		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
421	}
422	if(cs->cs_creg[5] & ZSWR5_BREAK) {
423		s = splzs();
424		cs->cs_preg[5] &= ~ZSWR5_BREAK;
425		cs->cs_creg[5] &= ~ZSWR5_BREAK;
426		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
427		splx(s);
428	}
429	ttyclose(tp);
430
431	/*
432	 * Drop all lines and cancel interrupts
433	 */
434	s = splzs();
435	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
436	splx(s);
437	return (0);
438}
439
440/*
441 * Read/write zs serial port.
442 */
443int
444zsread(dev, uio, flags)
445dev_t		dev;
446struct uio	*uio;
447int		flags;
448{
449	register struct zs_chanstate	*cs;
450	register struct zs_softc	*zi;
451	register struct tty		*tp;
452		 int			unit;
453
454	unit = ZS_UNIT(dev);
455	zi   = zs_cd.cd_devs[unit >> 1];
456	cs   = &zi->zi_cs[unit & 1];
457	tp   = cs->cs_ttyp;
458
459	return(linesw[tp->t_line].l_read(tp, uio, flags));
460}
461
462int
463zswrite(dev, uio, flags)
464dev_t		dev;
465struct uio	*uio;
466int		flags;
467{
468	register struct zs_chanstate	*cs;
469	register struct zs_softc	*zi;
470	register struct tty		*tp;
471		 int			unit;
472
473	unit = ZS_UNIT(dev);
474	zi   = zs_cd.cd_devs[unit >> 1];
475	cs   = &zi->zi_cs[unit & 1];
476	tp   = cs->cs_ttyp;
477
478	return(linesw[tp->t_line].l_write(tp, uio, flags));
479}
480
481struct tty *
482zstty(dev)
483dev_t	dev;
484{
485	register struct zs_chanstate	*cs;
486	register struct zs_softc	*zi;
487		 int			unit;
488
489	unit = ZS_UNIT(dev);
490	zi   = zs_cd.cd_devs[unit >> 1];
491	cs   = &zi->zi_cs[unit & 1];
492	return(cs->cs_ttyp);
493}
494
495/*
496 * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
497 * channels are kept in (A,B) pairs.
498 *
499 * Do just a little, then get out; set a software interrupt if more
500 * work is needed.
501 *
502 * We deliberately ignore the vectoring Zilog gives us, and match up
503 * only the number of `reset interrupt under service' operations, not
504 * the order.
505 */
506
507int
508zshard(sr)
509long sr;
510{
511	register struct zs_chanstate	*a;
512#define	b (a + 1)
513	register volatile struct zschan *zc;
514	register int			rr3, intflags = 0, v, i;
515
516	do {
517	    intflags &= ~4;
518	    for(a = zslist; a != NULL; a = b->cs_next) {
519		rr3 = ZS_READ(a->cs_zc, 3);
520		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
521			intflags |= 4|2;
522			zc = a->cs_zc;
523			i  = a->cs_rbput;
524			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
525				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
526				intflags |= 1;
527			}
528			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
529				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
530				intflags |= 1;
531			}
532			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
533				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
534				intflags |= 1;
535			}
536			a->cs_rbput = i;
537		}
538		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
539			intflags |= 4|2;
540			zc = b->cs_zc;
541			i  = b->cs_rbput;
542			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
543				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
544				intflags |= 1;
545			}
546			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
547				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
548				intflags |= 1;
549			}
550			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
551				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
552				intflags |= 1;
553			}
554			b->cs_rbput = i;
555		}
556	    }
557	} while(intflags & 4);
558#undef b
559
560	if(intflags & 1) {
561		if(BASEPRI(sr)) {
562			spl1();
563			zsshortcuts++;
564			return(zssoft(sr));
565		}
566		else if(!cb_scheduled) {
567			cb_scheduled++;
568			add_sicallback((si_farg)zssoft, 0, 0);
569		}
570	}
571	return(intflags & 2);
572}
573
574static int
575zsrint(cs, zc)
576register struct zs_chanstate	*cs;
577register volatile struct zschan	*zc;
578{
579	register int c;
580
581	/*
582	 * First read the status, because read of the received char
583	 * destroy the status of this char.
584	 */
585	c = ZS_READ(zc, 1);
586	c |= (zc->zc_data << 8);
587
588	/* clear receive error & interrupt condition */
589	zc->zc_csr = ZSWR0_RESET_ERRORS;
590	zc->zc_csr = ZSWR0_CLR_INTR;
591
592	return(ZRING_MAKE(ZRING_RINT, c));
593}
594
595static int
596zsxint(cs, zc)
597register struct zs_chanstate	*cs;
598register volatile struct zschan	*zc;
599{
600	register int i = cs->cs_tbc;
601
602	if(i == 0) {
603		zc->zc_csr = ZSWR0_RESET_TXINT;
604		zc->zc_csr = ZSWR0_CLR_INTR;
605		return(ZRING_MAKE(ZRING_XINT, 0));
606	}
607	cs->cs_tbc = i - 1;
608	zc->zc_data = *cs->cs_tba++;
609	zc->zc_csr = ZSWR0_CLR_INTR;
610	return (0);
611}
612
613static int
614zssint(cs, zc)
615register struct zs_chanstate	*cs;
616register volatile struct zschan	*zc;
617{
618	register int rr0;
619
620	rr0 = zc->zc_csr;
621	zc->zc_csr = ZSWR0_RESET_STATUS;
622	zc->zc_csr = ZSWR0_CLR_INTR;
623	/*
624	 * The chip's hardware flow control is, as noted in zsreg.h,
625	 * busted---if the DCD line goes low the chip shuts off the
626	 * receiver (!).  If we want hardware CTS flow control but do
627	 * not have it, and carrier is now on, turn HFC on; if we have
628	 * HFC now but carrier has gone low, turn it off.
629	 */
630	if(rr0 & ZSRR0_DCD) {
631		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
632		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
633			cs->cs_creg[3] |= ZSWR3_HFC;
634			ZS_WRITE(zc, 3, cs->cs_creg[3]);
635		}
636	}
637	else {
638		if (cs->cs_creg[3] & ZSWR3_HFC) {
639			cs->cs_creg[3] &= ~ZSWR3_HFC;
640			ZS_WRITE(zc, 3, cs->cs_creg[3]);
641		}
642	}
643	return(ZRING_MAKE(ZRING_SINT, rr0));
644}
645
646/*
647 * Print out a ring or fifo overrun error message.
648 */
649static void
650zsoverrun(unit, ptime, what)
651int	unit;
652long	*ptime;
653char	*what;
654{
655
656	if(*ptime != time.tv_sec) {
657		*ptime = time.tv_sec;
658		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
659		    (unit & 1) + 'a', what);
660	}
661}
662
663/*
664 * ZS software interrupt.  Scan all channels for deferred interrupts.
665 */
666int
667zssoft(sr)
668long sr;
669{
670    register struct zs_chanstate	*cs;
671    register volatile struct zschan	*zc;
672    register struct linesw		*line;
673    register struct tty			*tp;
674    register int			get, n, c, cc, unit, s;
675 	     int			retval = 0;
676
677    cb_scheduled = 0;
678    s = spltty();
679    for(cs = zslist; cs != NULL; cs = cs->cs_next) {
680	get = cs->cs_rbget;
681again:
682	n = cs->cs_rbput;	/* atomic			*/
683	if(get == n)		/* nothing more on this line	*/
684		continue;
685	retval = 1;
686	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
687	zc     = cs->cs_zc;
688	tp     = cs->cs_ttyp;
689	line   = &linesw[tp->t_line];
690	/*
691	 * Compute the number of interrupts in the receive ring.
692	 * If the count is overlarge, we lost some events, and
693	 * must advance to the first valid one.  It may get
694	 * overwritten if more data are arriving, but this is
695	 * too expensive to check and gains nothing (we already
696	 * lost out; all we can do at this point is trade one
697	 * kind of loss for another).
698	 */
699	n -= get;
700	if(n > ZLRB_RING_SIZE) {
701		zsoverrun(unit, &cs->cs_rotime, "ring");
702		get += n - ZLRB_RING_SIZE;
703		n    = ZLRB_RING_SIZE;
704	}
705	while(--n >= 0) {
706		/* race to keep ahead of incoming interrupts */
707		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
708		switch (ZRING_TYPE(c)) {
709
710		case ZRING_RINT:
711			c = ZRING_VALUE(c);
712			if(c & ZSRR1_DO)
713				zsoverrun(unit, &cs->cs_fotime, "fifo");
714			cc = c >> 8;
715			if(c & ZSRR1_FE)
716				cc |= TTY_FE;
717			if(c & ZSRR1_PE)
718				cc |= TTY_PE;
719			line->l_rint(cc, tp);
720			break;
721
722		case ZRING_XINT:
723			/*
724			 * Transmit done: change registers and resume,
725			 * or clear BUSY.
726			 */
727			if(cs->cs_heldchange) {
728				int sps;
729
730				sps = splzs();
731				c = zc->zc_csr;
732				if((c & ZSRR0_DCD) == 0)
733					cs->cs_preg[3] &= ~ZSWR3_HFC;
734				bcopy((caddr_t)cs->cs_preg,
735				    (caddr_t)cs->cs_creg, 16);
736				zs_loadchannelregs(zc, cs->cs_creg);
737				splx(sps);
738				cs->cs_heldchange = 0;
739				if(cs->cs_heldtbc
740					&& (tp->t_state & TS_TTSTOP) == 0) {
741					cs->cs_tbc = cs->cs_heldtbc - 1;
742					zc->zc_data = *cs->cs_tba++;
743					goto again;
744				}
745			}
746			tp->t_state &= ~TS_BUSY;
747			if(tp->t_state & TS_FLUSH)
748				tp->t_state &= ~TS_FLUSH;
749			else ndflush(&tp->t_outq,cs->cs_tba
750						- (caddr_t)tp->t_outq.c_cf);
751			line->l_start(tp);
752			break;
753
754		case ZRING_SINT:
755			/*
756			 * Status line change.  HFC bit is run in
757			 * hardware interrupt, to avoid locking
758			 * at splzs here.
759			 */
760			c = ZRING_VALUE(c);
761			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
762				cc = (c & ZSRR0_DCD) != 0;
763				if(line->l_modem(tp, cc) == 0)
764					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
765							cc ? DMBIS : DMBIC);
766			}
767			cs->cs_rr0 = c;
768			break;
769
770		default:
771			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
772			    unit >> 1, (unit & 1) + 'a', c);
773			break;
774		}
775	}
776	cs->cs_rbget = get;
777	goto again;
778    }
779    splx(s);
780    return (retval);
781}
782
783int
784zsioctl(dev, cmd, data, flag, p)
785dev_t		dev;
786u_long		cmd;
787caddr_t		data;
788int		flag;
789struct proc	*p;
790{
791		 int			unit = ZS_UNIT(dev);
792		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
793	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
794	register int			error, s;
795	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
796
797	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
798	if(error >= 0)
799		return(error);
800	error = ttioctl(tp, cmd, data, flag, p);
801	if(error >= 0)
802		return (error);
803
804	switch (cmd) {
805	case TIOCSBRK:
806		s = splzs();
807		cs->cs_preg[5] |= ZSWR5_BREAK;
808		cs->cs_creg[5] |= ZSWR5_BREAK;
809		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
810		splx(s);
811		break;
812	case TIOCCBRK:
813		s = splzs();
814		cs->cs_preg[5] &= ~ZSWR5_BREAK;
815		cs->cs_creg[5] &= ~ZSWR5_BREAK;
816		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
817		splx(s);
818		break;
819	case TIOCGFLAGS: {
820		int bits = 0;
821
822		if(cs->cs_softcar)
823			bits |= TIOCFLAG_SOFTCAR;
824		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
825			bits |= TIOCFLAG_CLOCAL;
826		if(cs->cs_creg[3] & ZSWR3_HFC)
827			bits |= TIOCFLAG_CRTSCTS;
828		*(int *)data = bits;
829		break;
830	}
831	case TIOCSFLAGS: {
832		int userbits = 0;
833
834		error = suser(p->p_ucred, &p->p_acflag);
835		if(error != 0)
836			return (EPERM);
837
838		userbits = *(int *)data;
839
840		/*
841		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
842		 # defaulting to software flow control.
843		 */
844		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
845			return(EINVAL);
846		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
847			return(ENODEV);
848
849		s = splzs();
850		if((userbits & TIOCFLAG_SOFTCAR)) {
851			cs->cs_softcar = 1;	/* turn on softcar */
852			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
853			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
854			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
855		}
856		else if(userbits & TIOCFLAG_CLOCAL) {
857			cs->cs_softcar = 0; 	/* turn off softcar */
858			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
859			cs->cs_creg[15] |= ZSWR15_DCD_IE;
860			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
861			tp->t_termios.c_cflag |= CLOCAL;
862		}
863		if(userbits & TIOCFLAG_CRTSCTS) {
864			cs->cs_preg[15] |= ZSWR15_CTS_IE;
865			cs->cs_creg[15] |= ZSWR15_CTS_IE;
866			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
867			cs->cs_preg[3] |= ZSWR3_HFC;
868			cs->cs_creg[3] |= ZSWR3_HFC;
869			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
870			tp->t_termios.c_cflag |= CRTSCTS;
871		}
872		else {
873			/* no mdmbuf, so we must want software flow control */
874			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
875			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
876			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
877			cs->cs_preg[3] &= ~ZSWR3_HFC;
878			cs->cs_creg[3] &= ~ZSWR3_HFC;
879			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
880			tp->t_termios.c_cflag &= ~CRTSCTS;
881		}
882		splx(s);
883		break;
884	}
885	case TIOCSDTR:
886		zs_modem(cs, ZSWR5_DTR, DMBIS);
887		break;
888	case TIOCCDTR:
889		zs_modem(cs, ZSWR5_DTR, DMBIC);
890		break;
891	case TIOCMGET:
892		zs_modem(cs, 0, DMGET);
893		break;
894	case TIOCMSET:
895	case TIOCMBIS:
896	case TIOCMBIC:
897	default:
898		return (ENOTTY);
899	}
900	return (0);
901}
902
903/*
904 * Start or restart transmission.
905 */
906static void
907zsstart(tp)
908register struct tty *tp;
909{
910	register struct zs_chanstate	*cs;
911	register int			s, nch;
912		 int			unit = ZS_UNIT(tp->t_dev);
913		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
914
915	cs = &zi->zi_cs[unit & 1];
916	s  = spltty();
917
918	/*
919	 * If currently active or delaying, no need to do anything.
920	 */
921	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
922		goto out;
923
924	/*
925	 * If there are sleepers, and output has drained below low
926	 * water mark, awaken.
927	 */
928	if(tp->t_outq.c_cc <= tp->t_lowat) {
929		if(tp->t_state & TS_ASLEEP) {
930			tp->t_state &= ~TS_ASLEEP;
931			wakeup((caddr_t)&tp->t_outq);
932		}
933		selwakeup(&tp->t_wsel);
934	}
935
936	nch = ndqb(&tp->t_outq, 0);	/* XXX */
937	if(nch) {
938		register char *p = tp->t_outq.c_cf;
939
940		/* mark busy, enable tx done interrupts, & send first byte */
941		tp->t_state |= TS_BUSY;
942		(void) splzs();
943		cs->cs_preg[1] |= ZSWR1_TIE;
944		cs->cs_creg[1] |= ZSWR1_TIE;
945		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
946		cs->cs_zc->zc_data = *p;
947		cs->cs_tba = p + 1;
948		cs->cs_tbc = nch - 1;
949	} else {
950		/*
951		 * Nothing to send, turn off transmit done interrupts.
952		 * This is useful if something is doing polled output.
953		 */
954		(void) splzs();
955		cs->cs_preg[1] &= ~ZSWR1_TIE;
956		cs->cs_creg[1] &= ~ZSWR1_TIE;
957		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
958	}
959out:
960	splx(s);
961}
962
963/*
964 * Stop output, e.g., for ^S or output flush.
965 */
966void
967zsstop(tp, flag)
968register struct tty	*tp;
969	 int		flag;
970{
971	register struct zs_chanstate	*cs;
972	register int			s, unit = ZS_UNIT(tp->t_dev);
973		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
974
975	cs = &zi->zi_cs[unit & 1];
976	s  = splzs();
977	if(tp->t_state & TS_BUSY) {
978		/*
979		 * Device is transmitting; must stop it.
980		 */
981		cs->cs_tbc = 0;
982		if ((tp->t_state & TS_TTSTOP) == 0)
983			tp->t_state |= TS_FLUSH;
984	}
985	splx(s);
986}
987
988/*
989 * Set ZS tty parameters from termios.
990 *
991 * This routine makes use of the fact that only registers
992 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
993 */
994static int
995zsparam(tp, t)
996register struct tty	*tp;
997register struct termios	*t;
998{
999		 int			unit = ZS_UNIT(tp->t_dev);
1000		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1001	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1002		 int			cdiv, clkm, brgm, tcon;
1003	register int			tmp, tmp5, cflag, s;
1004
1005	tmp  = t->c_ospeed;
1006	tmp5 = t->c_ispeed;
1007	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1008		return(EINVAL);
1009	if(tmp == 0) {
1010		/* stty 0 => drop DTR and RTS */
1011		zs_modem(cs, 0, DMSET);
1012		return(0);
1013	}
1014	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1015	if (tmp < 0)
1016		return(EINVAL);
1017	tp->t_ispeed = tp->t_ospeed = tmp;
1018
1019	cflag = tp->t_cflag = t->c_cflag;
1020	if (cflag & CSTOPB)
1021		cdiv |= ZSWR4_TWOSB;
1022	else
1023		cdiv |= ZSWR4_ONESB;
1024	if (!(cflag & PARODD))
1025		cdiv |= ZSWR4_EVENP;
1026	if (cflag & PARENB)
1027		cdiv |= ZSWR4_PARENB;
1028
1029	switch(cflag & CSIZE) {
1030	case CS5:
1031		tmp  = ZSWR3_RX_5;
1032		tmp5 = ZSWR5_TX_5;
1033		break;
1034	case CS6:
1035		tmp  = ZSWR3_RX_6;
1036		tmp5 = ZSWR5_TX_6;
1037		break;
1038	case CS7:
1039		tmp  = ZSWR3_RX_7;
1040		tmp5 = ZSWR5_TX_7;
1041		break;
1042	case CS8:
1043	default:
1044		tmp  = ZSWR3_RX_8;
1045		tmp5 = ZSWR5_TX_8;
1046		break;
1047	}
1048	tmp  |= ZSWR3_RX_ENABLE;
1049	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1050
1051	/*
1052	 * Block interrupts so that state will not
1053	 * be altered until we are done setting it up.
1054	 */
1055	s = splzs();
1056	cs->cs_preg[4]  = cdiv;
1057	cs->cs_preg[11] = clkm;
1058	cs->cs_preg[12] = tcon;
1059	cs->cs_preg[13] = tcon >> 8;
1060	cs->cs_preg[14] = brgm;
1061	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1062	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1063	cs->cs_preg[10] = ZSWR10_NRZ;
1064	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1065
1066	/*
1067	 * Output hardware flow control on the chip is horrendous: if
1068	 * carrier detect drops, the receiver is disabled.  Hence we
1069	 * can only do this when the carrier is on.
1070	 */
1071	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1072		tmp |= ZSWR3_HFC;
1073	cs->cs_preg[3] = tmp;
1074	cs->cs_preg[5] = tmp5;
1075
1076	/*
1077	 * If nothing is being transmitted, set up new current values,
1078	 * else mark them as pending.
1079	 */
1080	if(cs->cs_heldchange == 0) {
1081		if (cs->cs_ttyp->t_state & TS_BUSY) {
1082			cs->cs_heldtbc = cs->cs_tbc;
1083			cs->cs_tbc = 0;
1084			cs->cs_heldchange = 1;
1085		} else {
1086			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1087			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1088		}
1089	}
1090	splx(s);
1091	return (0);
1092}
1093
1094/*
1095 * search for the best matching baudrate
1096 */
1097static int
1098zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1099int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1100{
1101	int	bestdiff, bestbps, source;
1102
1103	bestdiff = bestbps = 0;
1104	unit = (unit & 1) << 2;
1105	for (source = 0; source < 4; ++source) {
1106		long	freq = zs_frequencies[unit + source];
1107		int	diff, bps, div, clkm, brgm, tcon;
1108
1109		bps = div = clkm = brgm = tcon = 0;
1110		switch (source) {
1111			case 0:	/* BRgen, PCLK */
1112				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1113				break;
1114			case 1:	/* BRgen, RTxC */
1115				brgm = ZSWR14_BAUD_ENA;
1116				break;
1117			case 2: /* RTxC */
1118				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1119				break;
1120			case 3: /* TRxC */
1121				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1122				break;
1123		}
1124		switch (source) {
1125			case 0:
1126			case 1:
1127				div  = ZSWR4_CLK_X16;
1128				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1129				tcon = BPS_TO_TCONST(freq, wanted);
1130				if (tcon < 0)
1131					tcon = 0;
1132				bps  = TCONST_TO_BPS(freq, tcon);
1133				break;
1134			case 2:
1135			case 3:
1136			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1137				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1138				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1139
1140				if (d1 < d2 && d1 < d3) {
1141					div = ZSWR4_CLK_X16;
1142					bps = b1;
1143				} else if (d2 < d3 && d2 < d1) {
1144					div = ZSWR4_CLK_X32;
1145					bps = b2;
1146				} else {
1147					div = ZSWR4_CLK_X64;
1148					bps = b3;
1149				}
1150				brgm = tcon = 0;
1151				break;
1152			}
1153		}
1154		diff = abs(bps - wanted);
1155		if (!source || diff < bestdiff) {
1156			*divisor   = div;
1157			*clockmode = clkm;
1158			*brgenmode = brgm;
1159			*timeconst = tcon;
1160			bestbps    = bps;
1161			bestdiff   = diff;
1162			if (diff == 0)
1163				break;
1164		}
1165	}
1166	/* Allow deviations upto 5% */
1167	if (20 * bestdiff > wanted)
1168		return -1;
1169	return bestbps;
1170}
1171
1172/*
1173 * Raise or lower modem control (DTR/RTS) signals.  If a character is
1174 * in transmission, the change is deferred.
1175 */
1176static int
1177zs_modem(cs, bits, how)
1178struct zs_chanstate	*cs;
1179int			bits, how;
1180{
1181	int s, mbits;
1182
1183	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1184
1185	s = splzs();
1186	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1187
1188	switch(how) {
1189		case DMSET:
1190				mbits  = bits;
1191				break;
1192		case DMBIS:
1193				mbits |= bits;
1194				break;
1195		case DMBIC:
1196				mbits &= ~bits;
1197				break;
1198		case DMGET:
1199				splx(s);
1200				return(mbits);
1201	}
1202
1203	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1204	if(cs->cs_heldchange == 0) {
1205		if(cs->cs_ttyp->t_state & TS_BUSY) {
1206			cs->cs_heldtbc = cs->cs_tbc;
1207			cs->cs_tbc = 0;
1208			cs->cs_heldchange = 1;
1209		}
1210		else {
1211			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1212		}
1213	}
1214	splx(s);
1215	return(0);
1216}
1217
1218/*
1219 * Write the given register set to the given zs channel in the proper order.
1220 * The channel must not be transmitting at the time.  The receiver will
1221 * be disabled for the time it takes to write all the registers.
1222 */
1223static void
1224zs_loadchannelregs(zc, reg)
1225volatile struct zschan	*zc;
1226u_char			*reg;
1227{
1228	int i;
1229
1230	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1231	i = zc->zc_data;		/* drain fifo */
1232	i = zc->zc_data;
1233	i = zc->zc_data;
1234	ZS_WRITE(zc,  4, reg[4]);
1235	ZS_WRITE(zc, 10, reg[10]);
1236	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1237	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1238	ZS_WRITE(zc,  1, reg[1]);
1239	ZS_WRITE(zc,  9, reg[9]);
1240	ZS_WRITE(zc, 11, reg[11]);
1241	ZS_WRITE(zc, 12, reg[12]);
1242	ZS_WRITE(zc, 13, reg[13]);
1243	ZS_WRITE(zc, 14, reg[14]);
1244	ZS_WRITE(zc, 15, reg[15]);
1245	ZS_WRITE(zc,  3, reg[3]);
1246	ZS_WRITE(zc,  5, reg[5]);
1247}
1248#endif /* NZS > 1 */
1249