i80321_icu.c revision 1.19
1/*	$NetBSD: i80321_icu.c,v 1.19 2009/01/05 06:03:39 briggs Exp $	*/
2
3/*
4 * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed for the NetBSD Project by
20 *	Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.19 2009/01/05 06:03:39 briggs Exp $");
40
41#ifndef EVBARM_SPL_NOINLINE
42#define	EVBARM_SPL_NOINLINE
43#endif
44
45/*
46 * Interrupt support for the Intel i80321 I/O Processor.
47 */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/malloc.h>
52
53#include <uvm/uvm_extern.h>
54
55#include <machine/bus.h>
56#include <machine/intr.h>
57
58#include <arm/cpufunc.h>
59
60#include <arm/xscale/i80321reg.h>
61#include <arm/xscale/i80321var.h>
62
63/* Interrupt handler queues. */
64struct intrq intrq[NIRQ];
65
66/* Interrupts to mask at each level. */
67int i80321_imask[NIPL];
68
69/* Interrupts pending. */
70volatile int i80321_ipending;
71
72/* Software copy of the IRQs we have enabled. */
73volatile uint32_t intr_enabled;
74
75/* Mask if interrupts steered to FIQs. */
76uint32_t intr_steer;
77
78/*
79 * Interrupt bit names.
80 */
81const char * const i80321_irqnames[] = {
82	"DMA0 EOT",
83	"DMA0 EOC",
84	"DMA1 EOT",
85	"DMA1 EOC",
86	"irq 4",
87	"irq 5",
88	"AAU EOT",
89	"AAU EOC",
90	"core PMU",
91	"TMR0 (hardclock)",
92	"TMR1",
93	"I2C0",
94	"I2C1",
95	"MU",
96	"BIST",
97	"periph PMU",
98	"XScale PMU",
99	"BIU error",
100	"ATU error",
101	"MCU error",
102	"DMA0 error",
103	"DMA1 error",
104	"irq 22",
105	"AAU error",
106	"MU error",
107	"SSP",
108	"irq 26",
109	"irq 27",
110	"irq 28",
111	"irq 29",
112	"irq 30",
113	"irq 31",
114};
115
116void	i80321_intr_dispatch(struct clockframe *frame);
117
118static inline uint32_t
119i80321_iintsrc_read(void)
120{
121	uint32_t iintsrc;
122
123	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
124		: "=r" (iintsrc));
125
126	/*
127	 * The IINTSRC register shows bits that are active even
128	 * if they are masked in INTCTL, so we have to mask them
129	 * off with the interrupts we consider enabled.
130	 */
131	return (iintsrc & intr_enabled);
132}
133
134static inline void
135i80321_set_intrsteer(void)
136{
137
138	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
139		:
140		: "r" (intr_steer & ICU_INT_HWMASK));
141}
142
143static inline void
144i80321_enable_irq(int irq)
145{
146
147	intr_enabled |= (1U << irq);
148	i80321_set_intrmask();
149}
150
151static inline void
152i80321_disable_irq(int irq)
153{
154
155	intr_enabled &= ~(1U << irq);
156	i80321_set_intrmask();
157}
158
159/*
160 * NOTE: This routine must be called with interrupts disabled in the CPSR.
161 */
162static void
163i80321_intr_calculate_masks(void)
164{
165	struct intrq *iq;
166	struct intrhand *ih;
167	int irq, ipl;
168
169	/* First, figure out which IPLs each IRQ has. */
170	for (irq = 0; irq < NIRQ; irq++) {
171		int levels = 0;
172		iq = &intrq[irq];
173		i80321_disable_irq(irq);
174		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
175		     ih = TAILQ_NEXT(ih, ih_list))
176			levels |= (1U << ih->ih_ipl);
177		iq->iq_levels = levels;
178	}
179
180	/* Next, figure out which IRQs are used by each IPL. */
181	for (ipl = 0; ipl < NIPL; ipl++) {
182		int irqs = 0;
183		for (irq = 0; irq < NIRQ; irq++) {
184			if (intrq[irq].iq_levels & (1U << ipl))
185				irqs |= (1U << irq);
186		}
187		i80321_imask[ipl] = irqs;
188	}
189
190	i80321_imask[IPL_NONE] = 0;
191
192	/*
193	 * Enforce a hierarchy that gives "slow" device (or devices with
194	 * limited input buffer space/"real-time" requirements) a better
195	 * chance at not dropping data.
196	 */
197
198#if 0
199	/*
200	 * This assert might be useful, but only after some interrupts
201	 * are configured.  As it stands now, it will always fire early
202	 * in the initialization phase.  If it's useful enough to re-
203	 * enable, it should be conditionalized on something else like
204	 * having at least something in the levels/irqs above.
205	 */
206	KASSERT(i80321_imask[IPL_VM] != 0);
207#endif
208	i80321_imask[IPL_SCHED] |= i80321_imask[IPL_VM];
209	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
210
211	/*
212	 * Now compute which IRQs must be blocked when servicing any
213	 * given IRQ.
214	 */
215	for (irq = 0; irq < NIRQ; irq++) {
216		int irqs = (1U << irq);
217		iq = &intrq[irq];
218		if (TAILQ_FIRST(&iq->iq_list) != NULL)
219			i80321_enable_irq(irq);
220		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
221		     ih = TAILQ_NEXT(ih, ih_list))
222			irqs |= i80321_imask[ih->ih_ipl];
223		iq->iq_mask = irqs;
224	}
225}
226
227void
228splx(int new)
229{
230	i80321_splx(new);
231}
232
233int
234_spllower(int ipl)
235{
236	return (i80321_spllower(ipl));
237}
238
239int
240_splraise(int ipl)
241{
242	return (i80321_splraise(ipl));
243}
244
245/*
246 * i80321_icu_init:
247 *
248 *	Initialize the i80321 ICU.  Called early in bootstrap
249 *	to make sure the ICU is in a pristine state.
250 */
251void
252i80321_icu_init(void)
253{
254
255	intr_enabled = 0;	/* All interrupts disabled */
256	i80321_set_intrmask();
257
258	intr_steer = 0;		/* All interrupts steered to IRQ */
259	i80321_set_intrsteer();
260}
261
262/*
263 * i80321_intr_init:
264 *
265 *	Initialize the rest of the interrupt subsystem, making it
266 *	ready to handle interrupts from devices.
267 */
268void
269i80321_intr_init(void)
270{
271	struct intrq *iq;
272	int i;
273
274	intr_enabled = 0;
275
276	for (i = 0; i < NIRQ; i++) {
277		iq = &intrq[i];
278		TAILQ_INIT(&iq->iq_list);
279
280		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
281		    NULL, "iop321", i80321_irqnames[i]);
282	}
283
284	i80321_intr_calculate_masks();
285
286	/* Enable IRQs (don't yet use FIQs). */
287	enable_interrupts(I32_bit);
288}
289
290void *
291i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
292{
293	struct intrq *iq;
294	struct intrhand *ih;
295	u_int oldirqstate;
296
297	if (irq < 0 || irq > NIRQ)
298		panic("i80321_intr_establish: IRQ %d out of range", irq);
299
300	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
301	if (ih == NULL)
302		return (NULL);
303
304	ih->ih_func = func;
305	ih->ih_arg = arg;
306	ih->ih_ipl = ipl;
307	ih->ih_irq = irq;
308
309	iq = &intrq[irq];
310
311	/* All IOP321 interrupts are level-triggered. */
312	iq->iq_ist = IST_LEVEL;
313
314	oldirqstate = disable_interrupts(I32_bit);
315
316	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
317
318	i80321_intr_calculate_masks();
319
320	restore_interrupts(oldirqstate);
321
322	return (ih);
323}
324
325void
326i80321_intr_disestablish(void *cookie)
327{
328	struct intrhand *ih = cookie;
329	struct intrq *iq = &intrq[ih->ih_irq];
330	int oldirqstate;
331
332	oldirqstate = disable_interrupts(I32_bit);
333
334	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
335
336	i80321_intr_calculate_masks();
337
338	restore_interrupts(oldirqstate);
339}
340
341/*
342 * Hardware interrupt handler.
343 *
344 * If I80321_HPI_ENABLED is defined, this code attempts to deal with
345 * HPI interrupts as best it can.
346 *
347 * The problem is that HPIs cannot be masked at the interrupt controller;
348 * they can only be masked by disabling IRQs in the XScale core.
349 *
350 * So, if an HPI comes in and we determine that it should be masked at
351 * the current IPL then we mark it pending in the usual way and set
352 * I32_bit in the interrupt frame. This ensures that when we return from
353 * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
354 * ensure IRQs are enabled later, i80321_splx() has been modified to do
355 * just that when a pending HPI interrupt is unmasked.) Additionally,
356 * because HPIs are level-triggered, the registered handler for the HPI
357 * interrupt will also be invoked with IRQs disabled. If a masked HPI
358 * occurs at the same time as another unmasked higher priority interrupt,
359 * the higher priority handler will also be invoked with IRQs disabled.
360 * As a result, the system could end up executing a lot of code with IRQs
361 * completely disabled if the HPI's IPL is relatively low.
362 *
363 * At the present time, the only known use of HPI is for the console UART
364 * on a couple of boards. This is probably the least intrusive use of HPI
365 * as IPL_SERIAL is the highest priority IPL in the system anyway. The
366 * code has not been tested with HPI hooked up to a class of device which
367 * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
368 * perform very poorly if at all, even though the following code has been
369 * designed (hopefully) to cope with it.
370 */
371
372void
373i80321_intr_dispatch(struct clockframe *frame)
374{
375	struct intrq *iq;
376	struct intrhand *ih;
377	int oldirqstate, irq, ibit, hwpend;
378#ifdef I80321_HPI_ENABLED
379	int oldpending;
380#endif
381	struct cpu_info * const ci = curcpu();
382	const int ppl = ci->ci_cpl;
383	const uint32_t imask = i80321_imask[ppl];
384
385	hwpend = i80321_iintsrc_read();
386
387	/*
388	 * Disable all the interrupts that are pending.  We will
389	 * reenable them once they are processed and not masked.
390	 */
391	intr_enabled &= ~hwpend;
392	i80321_set_intrmask();
393
394#ifdef I80321_HPI_ENABLED
395	oldirqstate = 0;	/* XXX: quell gcc warning */
396#endif
397
398	while (hwpend != 0) {
399#ifdef I80321_HPI_ENABLED
400		/* Deal with HPI interrupt first */
401		if (__predict_false(hwpend & INT_HPIMASK))
402			irq = ICU_INT_HPI;
403		else
404#endif
405		irq = ffs(hwpend) - 1;
406		ibit = (1U << irq);
407
408		hwpend &= ~ibit;
409
410		if (imask & ibit) {
411			/*
412			 * IRQ is masked; mark it as pending and check
413			 * the next one.  Note: the IRQ is already disabled.
414			 */
415#ifdef I80321_HPI_ENABLED
416			if (__predict_false(irq == ICU_INT_HPI)) {
417				/*
418				 * This is an HPI. We *must* disable
419				 * IRQs in the interrupt frame until
420				 * INT_HPIMASK is cleared by a later
421				 * call to splx(). Otherwise the level-
422				 * triggered interrupt will just keep
423				 * coming back.
424				 */
425				frame->cf_if.if_spsr |= I32_bit;
426			}
427#endif
428			i80321_ipending |= ibit;
429			continue;
430		}
431
432#ifdef I80321_HPI_ENABLED
433		oldpending = i80321_ipending | ibit;
434#endif
435		i80321_ipending &= ~ibit;
436
437		iq = &intrq[irq];
438		iq->iq_ev.ev_count++;
439		uvmexp.intrs++;
440#ifdef I80321_HPI_ENABLED
441		/*
442		 * Re-enable interrupts iff an HPI is not pending
443		 */
444		if (__predict_true((oldpending & INT_HPIMASK) == 0)) {
445#endif
446			TAILQ_FOREACH (ih, &iq->iq_list, ih_list) {
447				ci->ci_cpl = ih->ih_ipl;
448				oldirqstate = enable_interrupts(I32_bit);
449				(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
450				restore_interrupts(oldirqstate);
451			}
452#ifdef I80321_HPI_ENABLED
453		} else if (irq == ICU_INT_HPI) {
454			/*
455			 * We've just handled the HPI. Make sure IRQs
456			 * are enabled in the interrupt frame.
457			 * Here's hoping the handler really did clear
458			 * down the source...
459			 */
460			frame->cf_if.if_spsr &= ~I32_bit;
461		}
462#endif
463		ci->ci_cpl = ppl;
464
465		/* Re-enable this interrupt now that's it's cleared. */
466		intr_enabled |= ibit;
467		i80321_set_intrmask();
468
469		/*
470		 * Don't forget to include interrupts which may have
471		 * arrived in the meantime.
472		 */
473		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~imask);
474	}
475
476#ifdef __HAVE_FAST_SOFTINTS
477	cpu_dosoftints();
478#endif
479}
480