i80321_icu.c revision 1.11
1/*	$NetBSD: i80321_icu.c,v 1.11 2005/12/24 20:06:52 perry Exp $	*/
2
3/*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed for the NetBSD Project by
20 *	Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 *    or promote products derived from this software without specific prior
23 *    written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.11 2005/12/24 20:06:52 perry Exp $");
40
41#ifndef EVBARM_SPL_NOINLINE
42#define	EVBARM_SPL_NOINLINE
43#endif
44
45/*
46 * Interrupt support for the Intel i80321 I/O Processor.
47 */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/malloc.h>
52
53#include <uvm/uvm_extern.h>
54
55#include <machine/bus.h>
56#include <machine/intr.h>
57
58#include <arm/cpufunc.h>
59
60#include <arm/xscale/i80321reg.h>
61#include <arm/xscale/i80321var.h>
62
63/* Interrupt handler queues. */
64struct intrq intrq[NIRQ];
65
66/* Interrupts to mask at each level. */
67int i80321_imask[NIPL];
68
69/* Current interrupt priority level. */
70volatile int current_spl_level;
71
72/* Interrupts pending. */
73volatile int i80321_ipending;
74
75/* Software copy of the IRQs we have enabled. */
76volatile uint32_t intr_enabled;
77
78/* Mask if interrupts steered to FIQs. */
79uint32_t intr_steer;
80
81/*
82 * Map a software interrupt queue index (to the unused bits in the
83 * ICU registers -- XXX will need to revisit this if those bits are
84 * ever used in future steppings).
85 */
86static const uint32_t si_to_irqbit[SI_NQUEUES] = {
87	ICU_INT_bit26,		/* SI_SOFT */
88	ICU_INT_bit22,		/* SI_SOFTCLOCK */
89	ICU_INT_bit5,		/* SI_SOFTNET */
90	ICU_INT_bit4,		/* SI_SOFTSERIAL */
91};
92
93#define	SI_TO_IRQBIT(si)	(1U << si_to_irqbit[(si)])
94
95/*
96 * Map a software interrupt queue to an interrupt priority level.
97 */
98static const int si_to_ipl[SI_NQUEUES] = {
99	IPL_SOFT,		/* SI_SOFT */
100	IPL_SOFTCLOCK,		/* SI_SOFTCLOCK */
101	IPL_SOFTNET,		/* SI_SOFTNET */
102	IPL_SOFTSERIAL,		/* SI_SOFTSERIAL */
103};
104
105/*
106 * Interrupt bit names.
107 */
108const char *i80321_irqnames[] = {
109	"DMA0 EOT",
110	"DMA0 EOC",
111	"DMA1 EOT",
112	"DMA1 EOC",
113	"irq 4",
114	"irq 5",
115	"AAU EOT",
116	"AAU EOC",
117	"core PMU",
118	"TMR0 (hardclock)",
119	"TMR1",
120	"I2C0",
121	"I2C1",
122	"MU",
123	"BIST",
124	"periph PMU",
125	"XScale PMU",
126	"BIU error",
127	"ATU error",
128	"MCU error",
129	"DMA0 error",
130	"DMA1 error",
131	"irq 22",
132	"AAU error",
133	"MU error",
134	"SSP",
135	"irq 26",
136	"irq 27",
137	"irq 28",
138	"irq 29",
139	"irq 30",
140	"irq 31",
141};
142
143void	i80321_intr_dispatch(struct clockframe *frame);
144
145static inline uint32_t
146i80321_iintsrc_read(void)
147{
148	uint32_t iintsrc;
149
150	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
151		: "=r" (iintsrc));
152
153	/*
154	 * The IINTSRC register shows bits that are active even
155	 * if they are masked in INTCTL, so we have to mask them
156	 * off with the interrupts we consider enabled.
157	 */
158	return (iintsrc & intr_enabled);
159}
160
161static inline void
162i80321_set_intrsteer(void)
163{
164
165	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
166		:
167		: "r" (intr_steer & ICU_INT_HWMASK));
168}
169
170static inline void
171i80321_enable_irq(int irq)
172{
173
174	intr_enabled |= (1U << irq);
175	i80321_set_intrmask();
176}
177
178static inline void
179i80321_disable_irq(int irq)
180{
181
182	intr_enabled &= ~(1U << irq);
183	i80321_set_intrmask();
184}
185
186/*
187 * NOTE: This routine must be called with interrupts disabled in the CPSR.
188 */
189static void
190i80321_intr_calculate_masks(void)
191{
192	struct intrq *iq;
193	struct intrhand *ih;
194	int irq, ipl;
195
196	/* First, figure out which IPLs each IRQ has. */
197	for (irq = 0; irq < NIRQ; irq++) {
198		int levels = 0;
199		iq = &intrq[irq];
200		i80321_disable_irq(irq);
201		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202		     ih = TAILQ_NEXT(ih, ih_list))
203			levels |= (1U << ih->ih_ipl);
204		iq->iq_levels = levels;
205	}
206
207	/* Next, figure out which IRQs are used by each IPL. */
208	for (ipl = 0; ipl < NIPL; ipl++) {
209		int irqs = 0;
210		for (irq = 0; irq < NIRQ; irq++) {
211			if (intrq[irq].iq_levels & (1U << ipl))
212				irqs |= (1U << irq);
213		}
214		i80321_imask[ipl] = irqs;
215	}
216
217	i80321_imask[IPL_NONE] = 0;
218
219	/*
220	 * Initialize the soft interrupt masks to block themselves.
221	 */
222	i80321_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
223	i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
224	i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
225	i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
226
227	/*
228	 * splsoftclock() is the only interface that users of the
229	 * generic software interrupt facility have to block their
230	 * soft intrs, so splsoftclock() must also block IPL_SOFT.
231	 */
232	i80321_imask[IPL_SOFTCLOCK] |= i80321_imask[IPL_SOFT];
233
234	/*
235	 * splsoftnet() must also block splsoftclock(), since we don't
236	 * want timer-driven network events to occur while we're
237	 * processing incoming packets.
238	 */
239	i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTCLOCK];
240
241	/*
242	 * Enforce a heirarchy that gives "slow" device (or devices with
243	 * limited input buffer space/"real-time" requirements) a better
244	 * chance at not dropping data.
245	 */
246	i80321_imask[IPL_BIO] |= i80321_imask[IPL_SOFTNET];
247	i80321_imask[IPL_NET] |= i80321_imask[IPL_BIO];
248	i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_NET];
249	i80321_imask[IPL_TTY] |= i80321_imask[IPL_SOFTSERIAL];
250
251	/*
252	 * splvm() blocks all interrupts that use the kernel memory
253	 * allocation facilities.
254	 */
255	i80321_imask[IPL_VM] |= i80321_imask[IPL_TTY];
256
257	/*
258	 * Audio devices are not allowed to perform memory allocation
259	 * in their interrupt routines, and they have fairly "real-time"
260	 * requirements, so give them a high interrupt priority.
261	 */
262	i80321_imask[IPL_AUDIO] |= i80321_imask[IPL_VM];
263
264	/*
265	 * splclock() must block anything that uses the scheduler.
266	 */
267	i80321_imask[IPL_CLOCK] |= i80321_imask[IPL_AUDIO];
268
269	/*
270	 * No separate statclock on the IQ80310.
271	 */
272	i80321_imask[IPL_STATCLOCK] |= i80321_imask[IPL_CLOCK];
273
274	/*
275	 * splhigh() must block "everything".
276	 */
277	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_STATCLOCK];
278
279	/*
280	 * XXX We need serial drivers to run at the absolute highest priority
281	 * in order to avoid overruns, so serial > high.
282	 */
283	i80321_imask[IPL_SERIAL] |= i80321_imask[IPL_HIGH];
284
285	/*
286	 * Now compute which IRQs must be blocked when servicing any
287	 * given IRQ.
288	 */
289	for (irq = 0; irq < NIRQ; irq++) {
290		int irqs = (1U << irq);
291		iq = &intrq[irq];
292		if (TAILQ_FIRST(&iq->iq_list) != NULL)
293			i80321_enable_irq(irq);
294		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
295		     ih = TAILQ_NEXT(ih, ih_list))
296			irqs |= i80321_imask[ih->ih_ipl];
297		iq->iq_mask = irqs;
298	}
299}
300
301inline void
302i80321_do_pending(void)
303{
304	static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
305	int new, oldirqstate;
306
307	if (__cpu_simple_lock_try(&processing) == 0)
308		return;
309
310	new = current_spl_level;
311
312	oldirqstate = disable_interrupts(I32_bit);
313
314#define	DO_SOFTINT(si)							\
315	if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) {		\
316		i80321_ipending &= ~SI_TO_IRQBIT(si);			\
317		current_spl_level |= i80321_imask[si_to_ipl[(si)]];	\
318		restore_interrupts(oldirqstate);			\
319		softintr_dispatch(si);					\
320		oldirqstate = disable_interrupts(I32_bit);		\
321		current_spl_level = new;				\
322	}
323
324	DO_SOFTINT(SI_SOFTSERIAL);
325	DO_SOFTINT(SI_SOFTNET);
326	DO_SOFTINT(SI_SOFTCLOCK);
327	DO_SOFTINT(SI_SOFT);
328
329	__cpu_simple_unlock(&processing);
330
331	restore_interrupts(oldirqstate);
332}
333
334void
335splx(int new)
336{
337
338	i80321_splx(new);
339}
340
341int
342_spllower(int ipl)
343{
344
345	return (i80321_spllower(ipl));
346}
347
348int
349_splraise(int ipl)
350{
351
352	return (i80321_splraise(ipl));
353}
354
355void
356_setsoftintr(int si)
357{
358	int oldirqstate;
359
360	oldirqstate = disable_interrupts(I32_bit);
361	i80321_ipending |= SI_TO_IRQBIT(si);
362	restore_interrupts(oldirqstate);
363
364	/* Process unmasked pending soft interrupts. */
365	if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
366		i80321_do_pending();
367}
368
369/*
370 * i80321_icu_init:
371 *
372 *	Initialize the i80321 ICU.  Called early in bootstrap
373 *	to make sure the ICU is in a pristine state.
374 */
375void
376i80321_icu_init(void)
377{
378
379	intr_enabled = 0;	/* All interrupts disabled */
380	i80321_set_intrmask();
381
382	intr_steer = 0;		/* All interrupts steered to IRQ */
383	i80321_set_intrsteer();
384}
385
386/*
387 * i80321_intr_init:
388 *
389 *	Initialize the rest of the interrupt subsystem, making it
390 *	ready to handle interrupts from devices.
391 */
392void
393i80321_intr_init(void)
394{
395	struct intrq *iq;
396	int i;
397
398	intr_enabled = 0;
399
400	for (i = 0; i < NIRQ; i++) {
401		iq = &intrq[i];
402		TAILQ_INIT(&iq->iq_list);
403
404		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
405		    NULL, "iop321", i80321_irqnames[i]);
406	}
407
408	i80321_intr_calculate_masks();
409
410	/* Enable IRQs (don't yet use FIQs). */
411	enable_interrupts(I32_bit);
412}
413
414void *
415i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
416{
417	struct intrq *iq;
418	struct intrhand *ih;
419	u_int oldirqstate;
420
421	if (irq < 0 || irq > NIRQ)
422		panic("i80321_intr_establish: IRQ %d out of range", irq);
423
424	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
425	if (ih == NULL)
426		return (NULL);
427
428	ih->ih_func = func;
429	ih->ih_arg = arg;
430	ih->ih_ipl = ipl;
431	ih->ih_irq = irq;
432
433	iq = &intrq[irq];
434
435	/* All IOP321 interrupts are level-triggered. */
436	iq->iq_ist = IST_LEVEL;
437
438	oldirqstate = disable_interrupts(I32_bit);
439
440	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
441
442	i80321_intr_calculate_masks();
443
444	restore_interrupts(oldirqstate);
445
446	return (ih);
447}
448
449void
450i80321_intr_disestablish(void *cookie)
451{
452	struct intrhand *ih = cookie;
453	struct intrq *iq = &intrq[ih->ih_irq];
454	int oldirqstate;
455
456	oldirqstate = disable_interrupts(I32_bit);
457
458	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
459
460	i80321_intr_calculate_masks();
461
462	restore_interrupts(oldirqstate);
463}
464
465void
466i80321_intr_dispatch(struct clockframe *frame)
467{
468	struct intrq *iq;
469	struct intrhand *ih;
470	int oldirqstate, pcpl, irq, ibit, hwpend;
471
472	pcpl = current_spl_level;
473
474	hwpend = i80321_iintsrc_read();
475
476	/*
477	 * Disable all the interrupts that are pending.  We will
478	 * reenable them once they are processed and not masked.
479	 */
480	intr_enabled &= ~hwpend;
481	i80321_set_intrmask();
482
483	while (hwpend != 0) {
484		irq = ffs(hwpend) - 1;
485		ibit = (1U << irq);
486
487		hwpend &= ~ibit;
488
489		if (pcpl & ibit) {
490			/*
491			 * IRQ is masked; mark it as pending and check
492			 * the next one.  Note: the IRQ is already disabled.
493			 */
494			i80321_ipending |= ibit;
495			continue;
496		}
497
498		i80321_ipending &= ~ibit;
499
500		iq = &intrq[irq];
501		iq->iq_ev.ev_count++;
502		uvmexp.intrs++;
503		current_spl_level |= iq->iq_mask;
504		oldirqstate = enable_interrupts(I32_bit);
505		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
506		     ih = TAILQ_NEXT(ih, ih_list)) {
507			(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
508		}
509		restore_interrupts(oldirqstate);
510
511		current_spl_level = pcpl;
512
513		/* Re-enable this interrupt now that's it's cleared. */
514		intr_enabled |= ibit;
515		i80321_set_intrmask();
516
517		/*
518		 * Don't forget to include interrupts which may have
519		 * arrived in the meantime.
520		 */
521		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
522	}
523
524	/* Check for pendings soft intrs. */
525	if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
526		oldirqstate = enable_interrupts(I32_bit);
527		i80321_do_pending();
528		restore_interrupts(oldirqstate);
529	}
530}
531