vfp_init.c revision 1.62
1/*      $NetBSD: vfp_init.c,v 1.62 2019/04/06 08:48:53 skrll Exp $ */
2
3/*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 *    products derived from this software without specific prior written
17 *    permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include "opt_cputypes.h"
33
34#include <sys/cdefs.h>
35__KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.62 2019/04/06 08:48:53 skrll Exp $");
36
37#include <sys/param.h>
38#include <sys/types.h>
39#include <sys/systm.h>
40#include <sys/device.h>
41#include <sys/proc.h>
42#include <sys/cpu.h>
43
44#include <arm/locore.h>
45#include <arm/pcb.h>
46#include <arm/undefined.h>
47#include <arm/vfpreg.h>
48#include <arm/mcontext.h>
49
50#include <uvm/uvm_extern.h>		/* for pmap.h */
51
52#ifdef FPU_VFP
53
54#ifdef CPU_CORTEX
55#define SETFPU __asm(".fpu\tvfpv4")
56#else
57#define SETFPU __asm(".fpu\tvfp")
58#endif
59SETFPU;
60
61/* FLDMD <X>, {d0-d15} */
62static inline void
63load_vfpregs_lo(const uint64_t *p)
64{
65	SETFPU;
66	__asm __volatile("vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
67}
68
69/* FSTMD <X>, {d0-d15} */
70static inline void
71save_vfpregs_lo(uint64_t *p)
72{
73	SETFPU;
74	__asm __volatile("vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
75}
76
77#ifdef CPU_CORTEX
78/* FLDMD <X>, {d16-d31} */
79static inline void
80load_vfpregs_hi(const uint64_t *p)
81{
82	SETFPU;
83	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
84}
85
86/* FLDMD <X>, {d16-d31} */
87static inline void
88save_vfpregs_hi(uint64_t *p)
89{
90	SETFPU;
91	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
92}
93#endif
94
95static inline void
96load_vfpregs(const struct vfpreg *fregs)
97{
98	load_vfpregs_lo(fregs->vfp_regs);
99#ifdef CPU_CORTEX
100#ifdef CPU_ARM11
101	switch (curcpu()->ci_vfp_id) {
102	case FPU_VFP_CORTEXA5:
103	case FPU_VFP_CORTEXA7:
104	case FPU_VFP_CORTEXA8:
105	case FPU_VFP_CORTEXA9:
106	case FPU_VFP_CORTEXA15:
107	case FPU_VFP_CORTEXA15_QEMU:
108	case FPU_VFP_CORTEXA53:
109	case FPU_VFP_CORTEXA57:
110#endif
111		load_vfpregs_hi(fregs->vfp_regs);
112#ifdef CPU_ARM11
113		break;
114	}
115#endif
116#endif
117}
118
119static inline void
120save_vfpregs(struct vfpreg *fregs)
121{
122	save_vfpregs_lo(fregs->vfp_regs);
123#ifdef CPU_CORTEX
124#ifdef CPU_ARM11
125	switch (curcpu()->ci_vfp_id) {
126	case FPU_VFP_CORTEXA5:
127	case FPU_VFP_CORTEXA7:
128	case FPU_VFP_CORTEXA8:
129	case FPU_VFP_CORTEXA9:
130	case FPU_VFP_CORTEXA15:
131	case FPU_VFP_CORTEXA15_QEMU:
132	case FPU_VFP_CORTEXA53:
133	case FPU_VFP_CORTEXA57:
134#endif
135		save_vfpregs_hi(fregs->vfp_regs);
136#ifdef CPU_ARM11
137		break;
138	}
139#endif
140#endif
141}
142
143/* The real handler for VFP bounces.  */
144static int vfp_handler(u_int, u_int, trapframe_t *, int);
145#ifdef CPU_CORTEX
146static int neon_handler(u_int, u_int, trapframe_t *, int);
147#endif
148
149static void vfp_state_load(lwp_t *, u_int);
150static void vfp_state_save(lwp_t *);
151static void vfp_state_release(lwp_t *);
152
153const pcu_ops_t arm_vfp_ops = {
154	.pcu_id = PCU_FPU,
155	.pcu_state_save = vfp_state_save,
156	.pcu_state_load = vfp_state_load,
157	.pcu_state_release = vfp_state_release,
158};
159
160/* determine what bits can be changed */
161uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
162/* default to run fast */
163uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
164
165/*
166 * Used to test for a VFP. The following function is installed as a coproc10
167 * handler on the undefined instruction vector and then we issue a VFP
168 * instruction. If undefined_test is non zero then the VFP did not handle
169 * the instruction so must be absent, or disabled.
170 */
171
172static int undefined_test;
173
174static int
175vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
176{
177
178	frame->tf_pc += INSN_SIZE;
179	++undefined_test;
180	return 0;
181}
182
183#else
184/* determine what bits can be changed */
185uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
186#endif /* FPU_VFP */
187
188static int
189vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
190{
191	struct lwp * const l = curlwp;
192	const u_int regno = (insn >> 12) & 0xf;
193	/*
194	 * Only match move to/from the FPSCR register and we
195	 * can't be using the SP,LR,PC as a source.
196	 */
197	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
198		return 1;
199
200	struct pcb * const pcb = lwp_getpcb(l);
201
202#ifdef FPU_VFP
203	/*
204	 * If FPU is valid somewhere, let's just reenable VFP and
205	 * retry the instruction (only safe thing to do since the
206	 * pcb has a stale copy).
207	 */
208	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
209		return 1;
210
211	if (__predict_false(!vfp_used_p(l))) {
212		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
213	}
214#endif
215
216	/*
217	 * We now know the pcb has the saved copy.
218	 */
219	register_t * const regp = &frame->tf_r0 + regno;
220	if (insn & 0x00100000) {
221		*regp = pcb->pcb_vfp.vfp_fpscr;
222	} else {
223		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
224		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
225	}
226
227	curcpu()->ci_vfp_evs[0].ev_count++;
228
229	frame->tf_pc += INSN_SIZE;
230	return 0;
231}
232
233#ifndef FPU_VFP
234/*
235 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
236 * instructions.
237 */
238void
239vfp_attach(struct cpu_info *ci)
240{
241	if (CPU_IS_PRIMARY(ci)) {
242		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
243	}
244	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
245	    ci->ci_cpuname, "vfp fpscr traps");
246}
247
248#else
249void
250vfp_attach(struct cpu_info *ci)
251{
252	const char *model = NULL;
253
254	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
255	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
256	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
257#if 0
258		const uint32_t nsacr = armreg_nsacr_read();
259		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
260		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
261			aprint_normal_dev(ci->ci_dev,
262			    "VFP access denied (NSACR=%#x)\n", nsacr);
263			if (CPU_IS_PRIMARY(ci))
264				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
265			ci->ci_vfp_id = 0;
266			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
267			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
268			    "vfp fpscr traps");
269			return;
270		}
271#endif
272		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
273		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
274
275		/*
276		 * We first need to enable access to the coprocessors.
277		 */
278		uint32_t cpacr = armreg_cpacr_read();
279		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
280		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
281		armreg_cpacr_write(cpacr);
282
283		arm_isb();
284
285		/*
286		 * If we could enable them, then they exist.
287		 */
288		cpacr = armreg_cpacr_read();
289		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
290		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
291		if (!vfp_p) {
292			aprint_normal_dev(ci->ci_dev,
293			    "VFP access denied (CPACR=%#x)\n", cpacr);
294			if (CPU_IS_PRIMARY(ci))
295				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
296			ci->ci_vfp_id = 0;
297			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
298			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
299			    "vfp fpscr traps");
300			return;
301		}
302	}
303
304	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
305
306	undefined_test = 0;
307
308	const uint32_t fpsid = armreg_fpsid_read();
309
310	remove_coproc_handler(uh);
311
312	if (undefined_test != 0) {
313		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
314		if (CPU_IS_PRIMARY(ci))
315			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
316		ci->ci_vfp_id = 0;
317		return;
318	}
319
320	ci->ci_vfp_id = fpsid;
321	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
322	case FPU_VFP10_ARM10E:
323		model = "VFP10 R1";
324		break;
325	case FPU_VFP11_ARM11:
326		model = "VFP11";
327		break;
328	case FPU_VFP_MV88SV58XX:
329		model = "VFP3";
330		break;
331	case FPU_VFP_CORTEXA5:
332	case FPU_VFP_CORTEXA7:
333	case FPU_VFP_CORTEXA8:
334	case FPU_VFP_CORTEXA9:
335	case FPU_VFP_CORTEXA15:
336	case FPU_VFP_CORTEXA15_QEMU:
337	case FPU_VFP_CORTEXA53:
338	case FPU_VFP_CORTEXA57:
339		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
340			model = "VFP 4.0+";
341		} else {
342			model = "NEON MPE (VFP 3.0+)";
343			cpu_neon_present = 1;
344		}
345		break;
346	default:
347		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
348		    fpsid);
349		if (CPU_IS_PRIMARY(ci))
350			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
351		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
352		    |VFP_FPSCR_RMODE;
353		vfp_fpscr_default = 0;
354		return;
355	}
356
357	cpu_fpu_present = 1;
358	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
359	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
360	if (fpsid != 0) {
361		uint32_t f0 = armreg_mvfr0_read();
362		uint32_t f1 = armreg_mvfr1_read();
363		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
364		    device_unit(ci->ci_dev),
365		    device_xname(ci->ci_dev),
366		    model,
367		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
368		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
369		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
370		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
371		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
372		    device_unit(ci->ci_dev), f0, f1);
373		if (CPU_IS_PRIMARY(ci)) {
374			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
375				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
376			}
377			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
378				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
379			}
380			// If hardware supports propagation of NaNs, select it.
381			if (f1 & ARM_MVFR1_D_NAN_MASK) {
382				vfp_fpscr_default &= ~VFP_FPSCR_DN;
383				vfp_fpscr_changable |= VFP_FPSCR_DN;
384			}
385			// If hardware supports denormalized numbers, use it.
386			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
387				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
388				vfp_fpscr_changable |= VFP_FPSCR_FZ;
389			}
390		}
391	}
392	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
393	    ci->ci_cpuname, "vfp coproc use");
394	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
395	    ci->ci_cpuname, "vfp coproc re-use");
396	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
397	    ci->ci_cpuname, "vfp coproc fault");
398	if (CPU_IS_PRIMARY(ci)) {
399		install_coproc_handler(VFP_COPROC, vfp_handler);
400		install_coproc_handler(VFP_COPROC2, vfp_handler);
401#ifdef CPU_CORTEX
402		if (cpu_neon_present)
403			install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
404#endif
405	}
406}
407
408/* The real handler for VFP bounces.  */
409static int
410vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
411{
412	struct cpu_info * const ci = curcpu();
413
414	/* This shouldn't ever happen.  */
415	if (fault_code != FAULT_USER)
416		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
417
418	if (ci->ci_vfp_id == 0) {
419		/* No VFP detected, just fault.  */
420		return 1;
421	}
422
423	/*
424	 * If we already own the FPU and it's enabled (and no exception), raise
425	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
426	 */
427	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
428	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
429		return 1;
430
431	/*
432	 * Make sure we own the FP.
433	 */
434	pcu_load(&arm_vfp_ops);
435
436	uint32_t fpexc = armreg_fpexc_read();
437	if (fpexc & VFP_FPEXC_EX) {
438		ksiginfo_t ksi;
439		KASSERT(fpexc & VFP_FPEXC_EN);
440
441		curcpu()->ci_vfp_evs[2].ev_count++;
442
443		/*
444		 * Need the clear the exception condition so any signal
445		 * and future use can proceed.
446		 */
447		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
448
449		pcu_save(&arm_vfp_ops, curlwp);
450
451		/*
452		 * XXX Need to emulate bounce instructions here to get correct
453		 * XXX exception codes, etc.
454		 */
455		KSI_INIT_TRAP(&ksi);
456		ksi.ksi_signo = SIGFPE;
457		if (fpexc & VFP_FPEXC_IXF)
458			ksi.ksi_code = FPE_FLTRES;
459		else if (fpexc & VFP_FPEXC_UFF)
460			ksi.ksi_code = FPE_FLTUND;
461		else if (fpexc & VFP_FPEXC_OFF)
462			ksi.ksi_code = FPE_FLTOVF;
463		else if (fpexc & VFP_FPEXC_DZF)
464			ksi.ksi_code = FPE_FLTDIV;
465		else if (fpexc & VFP_FPEXC_IOF)
466			ksi.ksi_code = FPE_FLTINV;
467		ksi.ksi_addr = (uint32_t *)address;
468		ksi.ksi_trap = 0;
469		trapsignal(curlwp, &ksi);
470		return 0;
471	}
472
473	/* Need to restart the faulted instruction.  */
474//	frame->tf_pc -= INSN_SIZE;
475	return 0;
476}
477
478#ifdef CPU_CORTEX
479/* The real handler for NEON bounces.  */
480static int
481neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
482{
483	struct cpu_info * const ci = curcpu();
484
485	if (ci->ci_vfp_id == 0)
486		/* No VFP detected, just fault.  */
487		return 1;
488
489	if ((insn & 0xfe000000) != 0xf2000000
490	    && (insn & 0xfe000000) != 0xf4000000)
491		/* Not NEON instruction, just fault.  */
492		return 1;
493
494	/* This shouldn't ever happen.  */
495	if (fault_code != FAULT_USER)
496		panic("NEON fault in non-user mode");
497
498	/* if we already own the FPU and it's enabled, raise SIGILL */
499	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
500	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
501		return 1;
502
503	pcu_load(&arm_vfp_ops);
504
505	/* Need to restart the faulted instruction.  */
506//	frame->tf_pc -= INSN_SIZE;
507	return 0;
508}
509#endif
510
511static void
512vfp_state_load(lwp_t *l, u_int flags)
513{
514	struct pcb * const pcb = lwp_getpcb(l);
515	struct vfpreg * const fregs = &pcb->pcb_vfp;
516
517	/*
518	 * Instrument VFP usage -- if a process has not previously
519	 * used the VFP, mark it as having used VFP for the first time,
520	 * and count this event.
521	 *
522	 * If a process has used the VFP, count a "used VFP, and took
523	 * a trap to use it again" event.
524	 */
525	if (__predict_false((flags & PCU_VALID) == 0)) {
526		curcpu()->ci_vfp_evs[0].ev_count++;
527		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
528	} else {
529		curcpu()->ci_vfp_evs[1].ev_count++;
530	}
531
532	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
533	/*
534	 * If the VFP is already enabled we must be bouncing an instruction.
535	 */
536	if (flags & PCU_REENABLE) {
537		uint32_t fpexc = armreg_fpexc_read();
538		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
539		fregs->vfp_fpexc |= VFP_FPEXC_EN;
540		return;
541	}
542	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
543
544	/*
545	 * Load and Enable the VFP (so that we can write the registers).
546	 */
547	fregs->vfp_fpexc |= VFP_FPEXC_EN;
548	armreg_fpexc_write(fregs->vfp_fpexc);
549	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
550	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
551
552	load_vfpregs(fregs);
553	armreg_fpscr_write(fregs->vfp_fpscr);
554
555	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
556		/* Need to restore the exception handling state.  */
557		armreg_fpinst_write(fregs->vfp_fpinst);
558		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
559			armreg_fpinst2_write(fregs->vfp_fpinst2);
560	}
561}
562
563void
564vfp_state_save(lwp_t *l)
565{
566	struct pcb * const pcb = lwp_getpcb(l);
567	struct vfpreg * const fregs = &pcb->pcb_vfp;
568	uint32_t fpexc = armreg_fpexc_read();
569
570	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
571	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
572	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
573	/*
574	 * Enable the VFP (so we can read the registers).
575	 * Make sure the exception bit is cleared so that we can
576	 * safely dump the registers.
577	 */
578	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
579
580	fregs->vfp_fpexc = fpexc;
581	if (fpexc & VFP_FPEXC_EX) {
582		/* Need to save the exception handling state */
583		fregs->vfp_fpinst = armreg_fpinst_read();
584		if (fpexc & VFP_FPEXC_FP2V)
585			fregs->vfp_fpinst2 = armreg_fpinst2_read();
586	}
587	fregs->vfp_fpscr = armreg_fpscr_read();
588	save_vfpregs(fregs);
589
590	/* Disable the VFP.  */
591	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
592}
593
594void
595vfp_state_release(lwp_t *l)
596{
597	struct pcb * const pcb = lwp_getpcb(l);
598
599	/*
600	 * Now mark the VFP as disabled (and our state
601	 * has been already saved or is being discarded).
602	 */
603	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
604
605	/*
606	 * Turn off the FPU so the next time a VFP instruction is issued
607	 * an exception happens.  We don't know if this LWP's state was
608	 * loaded but if we turned off the FPU for some other LWP, when
609	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
610	 * is still set so it just restore fpexc and return since its
611	 * contents are still sitting in the VFP.
612	 */
613	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
614}
615
616void
617vfp_savecontext(lwp_t *l)
618{
619	pcu_save(&arm_vfp_ops, l);
620}
621
622void
623vfp_discardcontext(lwp_t *l, bool used_p)
624{
625	pcu_discard(&arm_vfp_ops, l, used_p);
626}
627
628bool
629vfp_used_p(const lwp_t *l)
630{
631	return pcu_valid_p(&arm_vfp_ops, l);
632}
633
634void
635vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
636{
637	if (vfp_used_p(l)) {
638		const struct pcb * const pcb = lwp_getpcb(l);
639
640		pcu_save(&arm_vfp_ops, l);
641		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
642		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
643		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
644		*flagsp |= _UC_FPU|_UC_ARM_VFP;
645	}
646}
647
648void
649vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
650{
651	struct pcb * const pcb = lwp_getpcb(l);
652
653	pcu_discard(&arm_vfp_ops, l, true);
654	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
655	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
656	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
657}
658
659#endif /* FPU_VFP */
660