vfp_init.c revision 1.61
1/*      $NetBSD: vfp_init.c,v 1.61 2019/03/17 08:41:42 skrll Exp $ */
2
3/*
4 * Copyright (c) 2008 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 *    products derived from this software without specific prior written
17 *    permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include "opt_cputypes.h"
33
34#include <sys/cdefs.h>
35__KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.61 2019/03/17 08:41:42 skrll Exp $");
36
37#include <sys/param.h>
38#include <sys/types.h>
39#include <sys/systm.h>
40#include <sys/device.h>
41#include <sys/proc.h>
42#include <sys/cpu.h>
43
44#include <arm/locore.h>
45#include <arm/pcb.h>
46#include <arm/undefined.h>
47#include <arm/vfpreg.h>
48#include <arm/mcontext.h>
49
50#include <uvm/uvm_extern.h>		/* for pmap.h */
51
52#ifdef FPU_VFP
53
54#ifdef CPU_CORTEX
55#define SETFPU __asm(".fpu\tvfpv4")
56#else
57#define SETFPU __asm(".fpu\tvfp")
58#endif
59SETFPU;
60
61/* FLDMD <X>, {d0-d15} */
62static inline void
63load_vfpregs_lo(const uint64_t *p)
64{
65	SETFPU;
66	__asm __volatile("vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
67}
68
69/* FSTMD <X>, {d0-d15} */
70static inline void
71save_vfpregs_lo(uint64_t *p)
72{
73	SETFPU;
74	__asm __volatile("vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
75}
76
77#ifdef CPU_CORTEX
78/* FLDMD <X>, {d16-d31} */
79static inline void
80load_vfpregs_hi(const uint64_t *p)
81{
82	SETFPU;
83	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
84}
85
86/* FLDMD <X>, {d16-d31} */
87static inline void
88save_vfpregs_hi(uint64_t *p)
89{
90	SETFPU;
91	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
92}
93#endif
94
95static inline void
96load_vfpregs(const struct vfpreg *fregs)
97{
98	load_vfpregs_lo(fregs->vfp_regs);
99#ifdef CPU_CORTEX
100#ifdef CPU_ARM11
101	switch (curcpu()->ci_vfp_id) {
102	case FPU_VFP_CORTEXA5:
103	case FPU_VFP_CORTEXA7:
104	case FPU_VFP_CORTEXA8:
105	case FPU_VFP_CORTEXA9:
106	case FPU_VFP_CORTEXA15:
107	case FPU_VFP_CORTEXA15_QEMU:
108	case FPU_VFP_CORTEXA53:
109	case FPU_VFP_CORTEXA57:
110#endif
111		load_vfpregs_hi(fregs->vfp_regs);
112#ifdef CPU_ARM11
113		break;
114	}
115#endif
116#endif
117}
118
119static inline void
120save_vfpregs(struct vfpreg *fregs)
121{
122	save_vfpregs_lo(fregs->vfp_regs);
123#ifdef CPU_CORTEX
124#ifdef CPU_ARM11
125	switch (curcpu()->ci_vfp_id) {
126	case FPU_VFP_CORTEXA5:
127	case FPU_VFP_CORTEXA7:
128	case FPU_VFP_CORTEXA8:
129	case FPU_VFP_CORTEXA9:
130	case FPU_VFP_CORTEXA15:
131	case FPU_VFP_CORTEXA15_QEMU:
132	case FPU_VFP_CORTEXA53:
133	case FPU_VFP_CORTEXA57:
134#endif
135		save_vfpregs_hi(fregs->vfp_regs);
136#ifdef CPU_ARM11
137		break;
138	}
139#endif
140#endif
141}
142
143/* The real handler for VFP bounces.  */
144static int vfp_handler(u_int, u_int, trapframe_t *, int);
145#ifdef CPU_CORTEX
146static int neon_handler(u_int, u_int, trapframe_t *, int);
147#endif
148
149static void vfp_state_load(lwp_t *, u_int);
150static void vfp_state_save(lwp_t *);
151static void vfp_state_release(lwp_t *);
152
153const pcu_ops_t arm_vfp_ops = {
154	.pcu_id = PCU_FPU,
155	.pcu_state_save = vfp_state_save,
156	.pcu_state_load = vfp_state_load,
157	.pcu_state_release = vfp_state_release,
158};
159
160/* determine what bits can be changed */
161uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
162/* default to run fast */
163uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
164
165/*
166 * Used to test for a VFP. The following function is installed as a coproc10
167 * handler on the undefined instruction vector and then we issue a VFP
168 * instruction. If undefined_test is non zero then the VFP did not handle
169 * the instruction so must be absent, or disabled.
170 */
171
172static int undefined_test;
173
174static int
175vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
176{
177
178	frame->tf_pc += INSN_SIZE;
179	++undefined_test;
180	return 0;
181}
182
183#else
184/* determine what bits can be changed */
185uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
186#endif /* FPU_VFP */
187
188static int
189vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
190{
191	struct lwp * const l = curlwp;
192	const u_int regno = (insn >> 12) & 0xf;
193	/*
194	 * Only match move to/from the FPSCR register and we
195	 * can't be using the SP,LR,PC as a source.
196	 */
197	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
198		return 1;
199
200	struct pcb * const pcb = lwp_getpcb(l);
201
202#ifdef FPU_VFP
203	/*
204	 * If FPU is valid somewhere, let's just reenable VFP and
205	 * retry the instruction (only safe thing to do since the
206	 * pcb has a stale copy).
207	 */
208	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
209		return 1;
210
211	if (__predict_false(!vfp_used_p(l))) {
212		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
213	}
214#endif
215
216	/*
217	 * We now know the pcb has the saved copy.
218	 */
219	register_t * const regp = &frame->tf_r0 + regno;
220	if (insn & 0x00100000) {
221		*regp = pcb->pcb_vfp.vfp_fpscr;
222	} else {
223		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
224		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
225	}
226
227	curcpu()->ci_vfp_evs[0].ev_count++;
228
229	frame->tf_pc += INSN_SIZE;
230	return 0;
231}
232
233#ifndef FPU_VFP
234/*
235 * If we don't want VFP support, we still need to handle emulating VFP FPSCR
236 * instructions.
237 */
238void
239vfp_attach(struct cpu_info *ci)
240{
241	if (CPU_IS_PRIMARY(ci)) {
242		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
243	}
244	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
245	    ci->ci_cpuname, "vfp fpscr traps");
246}
247
248#else
249void
250vfp_attach(struct cpu_info *ci)
251{
252	const char *model = NULL;
253
254	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
255	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
256	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
257#if 0
258		const uint32_t nsacr = armreg_nsacr_read();
259		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
260		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
261			aprint_normal_dev(ci->ci_dev,
262			    "VFP access denied (NSACR=%#x)\n", nsacr);
263			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
264			ci->ci_vfp_id = 0;
265			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
266			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
267			    "vfp fpscr traps");
268			return;
269		}
270#endif
271		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
272		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
273
274		/*
275		 * We first need to enable access to the coprocessors.
276		 */
277		uint32_t cpacr = armreg_cpacr_read();
278		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
279		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
280		armreg_cpacr_write(cpacr);
281
282		arm_isb();
283
284		/*
285		 * If we could enable them, then they exist.
286		 */
287		cpacr = armreg_cpacr_read();
288		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
289		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
290		if (!vfp_p) {
291			aprint_normal_dev(ci->ci_dev,
292			    "VFP access denied (CPACR=%#x)\n", cpacr);
293			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
294			ci->ci_vfp_id = 0;
295			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
296			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
297			    "vfp fpscr traps");
298			return;
299		}
300	}
301
302	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
303
304	undefined_test = 0;
305
306	const uint32_t fpsid = armreg_fpsid_read();
307
308	remove_coproc_handler(uh);
309
310	if (undefined_test != 0) {
311		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
312		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
313		ci->ci_vfp_id = 0;
314		return;
315	}
316
317	ci->ci_vfp_id = fpsid;
318	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
319	case FPU_VFP10_ARM10E:
320		model = "VFP10 R1";
321		break;
322	case FPU_VFP11_ARM11:
323		model = "VFP11";
324		break;
325	case FPU_VFP_MV88SV58XX:
326		model = "VFP3";
327		break;
328	case FPU_VFP_CORTEXA5:
329	case FPU_VFP_CORTEXA7:
330	case FPU_VFP_CORTEXA8:
331	case FPU_VFP_CORTEXA9:
332	case FPU_VFP_CORTEXA15:
333	case FPU_VFP_CORTEXA15_QEMU:
334	case FPU_VFP_CORTEXA53:
335	case FPU_VFP_CORTEXA57:
336		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
337			model = "VFP 4.0+";
338		} else {
339			model = "NEON MPE (VFP 3.0+)";
340			cpu_neon_present = 1;
341		}
342		break;
343	default:
344		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
345		    fpsid);
346		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
347		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
348		    |VFP_FPSCR_RMODE;
349		vfp_fpscr_default = 0;
350		return;
351	}
352
353	cpu_fpu_present = 1;
354	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
355	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
356	if (fpsid != 0) {
357		uint32_t f0 = armreg_mvfr0_read();
358		uint32_t f1 = armreg_mvfr1_read();
359		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
360		    device_unit(ci->ci_dev),
361		    device_xname(ci->ci_dev),
362		    model,
363		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
364		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
365		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
366		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
367		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
368		    device_unit(ci->ci_dev), f0, f1);
369		if (CPU_IS_PRIMARY(ci)) {
370			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
371				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
372			}
373			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
374				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
375			}
376			// If hardware supports propagation of NaNs, select it.
377			if (f1 & ARM_MVFR1_D_NAN_MASK) {
378				vfp_fpscr_default &= ~VFP_FPSCR_DN;
379				vfp_fpscr_changable |= VFP_FPSCR_DN;
380			}
381			// If hardware supports denormalized numbers, use it.
382			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
383				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
384				vfp_fpscr_changable |= VFP_FPSCR_FZ;
385			}
386		}
387	}
388	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
389	    ci->ci_cpuname, "vfp coproc use");
390	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
391	    ci->ci_cpuname, "vfp coproc re-use");
392	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
393	    ci->ci_cpuname, "vfp coproc fault");
394	install_coproc_handler(VFP_COPROC, vfp_handler);
395	install_coproc_handler(VFP_COPROC2, vfp_handler);
396#ifdef CPU_CORTEX
397	if (cpu_neon_present)
398		install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
399#endif
400}
401
402/* The real handler for VFP bounces.  */
403static int
404vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
405{
406	struct cpu_info * const ci = curcpu();
407
408	/* This shouldn't ever happen.  */
409	if (fault_code != FAULT_USER)
410		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
411
412	if (ci->ci_vfp_id == 0) {
413		/* No VFP detected, just fault.  */
414		return 1;
415	}
416
417	/*
418	 * If we already own the FPU and it's enabled (and no exception), raise
419	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
420	 */
421	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
422	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
423		return 1;
424
425	/*
426	 * Make sure we own the FP.
427	 */
428	pcu_load(&arm_vfp_ops);
429
430	uint32_t fpexc = armreg_fpexc_read();
431	if (fpexc & VFP_FPEXC_EX) {
432		ksiginfo_t ksi;
433		KASSERT(fpexc & VFP_FPEXC_EN);
434
435		curcpu()->ci_vfp_evs[2].ev_count++;
436
437		/*
438		 * Need the clear the exception condition so any signal
439		 * and future use can proceed.
440		 */
441		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
442
443		pcu_save(&arm_vfp_ops, curlwp);
444
445		/*
446		 * XXX Need to emulate bounce instructions here to get correct
447		 * XXX exception codes, etc.
448		 */
449		KSI_INIT_TRAP(&ksi);
450		ksi.ksi_signo = SIGFPE;
451		if (fpexc & VFP_FPEXC_IXF)
452			ksi.ksi_code = FPE_FLTRES;
453		else if (fpexc & VFP_FPEXC_UFF)
454			ksi.ksi_code = FPE_FLTUND;
455		else if (fpexc & VFP_FPEXC_OFF)
456			ksi.ksi_code = FPE_FLTOVF;
457		else if (fpexc & VFP_FPEXC_DZF)
458			ksi.ksi_code = FPE_FLTDIV;
459		else if (fpexc & VFP_FPEXC_IOF)
460			ksi.ksi_code = FPE_FLTINV;
461		ksi.ksi_addr = (uint32_t *)address;
462		ksi.ksi_trap = 0;
463		trapsignal(curlwp, &ksi);
464		return 0;
465	}
466
467	/* Need to restart the faulted instruction.  */
468//	frame->tf_pc -= INSN_SIZE;
469	return 0;
470}
471
472#ifdef CPU_CORTEX
473/* The real handler for NEON bounces.  */
474static int
475neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
476{
477	struct cpu_info * const ci = curcpu();
478
479	if (ci->ci_vfp_id == 0)
480		/* No VFP detected, just fault.  */
481		return 1;
482
483	if ((insn & 0xfe000000) != 0xf2000000
484	    && (insn & 0xfe000000) != 0xf4000000)
485		/* Not NEON instruction, just fault.  */
486		return 1;
487
488	/* This shouldn't ever happen.  */
489	if (fault_code != FAULT_USER)
490		panic("NEON fault in non-user mode");
491
492	/* if we already own the FPU and it's enabled, raise SIGILL */
493	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
494	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
495		return 1;
496
497	pcu_load(&arm_vfp_ops);
498
499	/* Need to restart the faulted instruction.  */
500//	frame->tf_pc -= INSN_SIZE;
501	return 0;
502}
503#endif
504
505static void
506vfp_state_load(lwp_t *l, u_int flags)
507{
508	struct pcb * const pcb = lwp_getpcb(l);
509	struct vfpreg * const fregs = &pcb->pcb_vfp;
510
511	/*
512	 * Instrument VFP usage -- if a process has not previously
513	 * used the VFP, mark it as having used VFP for the first time,
514	 * and count this event.
515	 *
516	 * If a process has used the VFP, count a "used VFP, and took
517	 * a trap to use it again" event.
518	 */
519	if (__predict_false((flags & PCU_VALID) == 0)) {
520		curcpu()->ci_vfp_evs[0].ev_count++;
521		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
522	} else {
523		curcpu()->ci_vfp_evs[1].ev_count++;
524	}
525
526	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
527	/*
528	 * If the VFP is already enabled we must be bouncing an instruction.
529	 */
530	if (flags & PCU_REENABLE) {
531		uint32_t fpexc = armreg_fpexc_read();
532		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
533		fregs->vfp_fpexc |= VFP_FPEXC_EN;
534		return;
535	}
536	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
537
538	/*
539	 * Load and Enable the VFP (so that we can write the registers).
540	 */
541	fregs->vfp_fpexc |= VFP_FPEXC_EN;
542	armreg_fpexc_write(fregs->vfp_fpexc);
543	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
544	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
545
546	load_vfpregs(fregs);
547	armreg_fpscr_write(fregs->vfp_fpscr);
548
549	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
550		/* Need to restore the exception handling state.  */
551		armreg_fpinst_write(fregs->vfp_fpinst);
552		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
553			armreg_fpinst2_write(fregs->vfp_fpinst2);
554	}
555}
556
557void
558vfp_state_save(lwp_t *l)
559{
560	struct pcb * const pcb = lwp_getpcb(l);
561	struct vfpreg * const fregs = &pcb->pcb_vfp;
562	uint32_t fpexc = armreg_fpexc_read();
563
564	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
565	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
566	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
567	/*
568	 * Enable the VFP (so we can read the registers).
569	 * Make sure the exception bit is cleared so that we can
570	 * safely dump the registers.
571	 */
572	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
573
574	fregs->vfp_fpexc = fpexc;
575	if (fpexc & VFP_FPEXC_EX) {
576		/* Need to save the exception handling state */
577		fregs->vfp_fpinst = armreg_fpinst_read();
578		if (fpexc & VFP_FPEXC_FP2V)
579			fregs->vfp_fpinst2 = armreg_fpinst2_read();
580	}
581	fregs->vfp_fpscr = armreg_fpscr_read();
582	save_vfpregs(fregs);
583
584	/* Disable the VFP.  */
585	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
586}
587
588void
589vfp_state_release(lwp_t *l)
590{
591	struct pcb * const pcb = lwp_getpcb(l);
592
593	/*
594	 * Now mark the VFP as disabled (and our state
595	 * has been already saved or is being discarded).
596	 */
597	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
598
599	/*
600	 * Turn off the FPU so the next time a VFP instruction is issued
601	 * an exception happens.  We don't know if this LWP's state was
602	 * loaded but if we turned off the FPU for some other LWP, when
603	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
604	 * is still set so it just restore fpexc and return since its
605	 * contents are still sitting in the VFP.
606	 */
607	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
608}
609
610void
611vfp_savecontext(lwp_t *l)
612{
613	pcu_save(&arm_vfp_ops, l);
614}
615
616void
617vfp_discardcontext(lwp_t *l, bool used_p)
618{
619	pcu_discard(&arm_vfp_ops, l, used_p);
620}
621
622bool
623vfp_used_p(const lwp_t *l)
624{
625	return pcu_valid_p(&arm_vfp_ops, l);
626}
627
628void
629vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
630{
631	if (vfp_used_p(l)) {
632		const struct pcb * const pcb = lwp_getpcb(l);
633
634		pcu_save(&arm_vfp_ops, l);
635		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
636		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
637		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
638		*flagsp |= _UC_FPU|_UC_ARM_VFP;
639	}
640}
641
642void
643vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
644{
645	struct pcb * const pcb = lwp_getpcb(l);
646
647	pcu_discard(&arm_vfp_ops, l, true);
648	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
649	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
650	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
651}
652
653#endif /* FPU_VFP */
654