1/* $NetBSD: sun4i_dma.c,v 1.8 2021/01/27 03:10:20 thorpej Exp $ */
2
3/*-
4 * Copyright (c) 2017 Jared McNeill <jmcneill@invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include "opt_ddb.h"
30
31#include <sys/cdefs.h>
32__KERNEL_RCSID(0, "$NetBSD: sun4i_dma.c,v 1.8 2021/01/27 03:10:20 thorpej Exp $");
33
34#include <sys/param.h>
35#include <sys/bus.h>
36#include <sys/device.h>
37#include <sys/intr.h>
38#include <sys/systm.h>
39#include <sys/mutex.h>
40#include <sys/bitops.h>
41#include <sys/kmem.h>
42
43#include <dev/fdt/fdtvar.h>
44
45#define	DMA_MAX_TYPES		2
46#define	 DMA_TYPE_NORMAL	0
47#define	 DMA_TYPE_DEDICATED	1
48#define	DMA_MAX_CHANNELS	8
49#define	DMA_MAX_DRQS		32
50
51#define	DRQ_TYPE_SDRAM		0x16
52
53#define	DMA_IRQ_EN_REG		0x00
54#define	DMA_IRQ_PEND_STAS_REG	0x04
55#define	 DMA_IRQ_PEND_STAS_END_MASK	0xaaaaaaaa
56#define	NDMA_CTRL_REG(n)	(0x100 + (n) * 0x20)
57#define	 NDMA_CTRL_LOAD			__BIT(31)
58#define	 NDMA_CTRL_CONTI_EN		__BIT(30)
59#define	 NDMA_CTRL_WAIT_STATE		__BITS(29,27)
60#define	 NDMA_CTRL_DST_DATA_WIDTH	__BITS(26,25)
61#define	 NDMA_CTRL_DST_BST_LEN		__BITS(24,23)
62#define	 NDMA_CTRL_DST_ADDR_TYPE	__BIT(21)
63#define	 NDMA_CTRL_DST_DRQ_TYPE		__BITS(20,16)
64#define	 NDMA_CTRL_BC_MODE_SEL		__BIT(15)
65#define	 NDMA_CTRL_SRC_DATA_WIDTH	__BITS(10,9)
66#define	 NDMA_CTRL_SRC_BST_LEN		__BITS(8,7)
67#define	 NDMA_CTRL_SRC_ADDR_TYPE	__BIT(5)
68#define	 NDMA_CTRL_SRC_DRQ_TYPE		__BITS(4,0)
69#define	NDMA_SRC_ADDR_REG(n)	(0x100 + (n) * 0x20 + 0x4)
70#define	NDMA_DEST_ADDR_REG(n)	(0x100 + (n) * 0x20 + 0x8)
71#define	NDMA_BC_REG(n)		(0x100 + (n) * 0x20 + 0xc)
72#define	DDMA_CTRL_REG(n)	(0x300 + (n) * 0x20)
73#define	 DDMA_CTRL_LOAD			__BIT(31)
74#define	 DDMA_CTRL_BSY_STA		__BIT(30)
75#define	 DDMA_CTRL_CONTI_EN		__BIT(29)
76#define	 DDMA_CTRL_DST_DATA_WIDTH	__BITS(26,25)
77#define	 DDMA_CTRL_DST_BST_LEN		__BITS(24,23)
78#define	 DDMA_CTRL_DST_ADDR_MODE	__BITS(22,21)
79#define	 DDMA_CTRL_DST_DRQ_TYPE		__BITS(20,16)
80#define	 DDMA_CTRL_BC_MODE_SEL		__BIT(15)
81#define	 DDMA_CTRL_SRC_DATA_WIDTH	__BITS(10,9)
82#define	 DDMA_CTRL_SRC_BST_LEN		__BITS(8,7)
83#define	 DDMA_CTRL_SRC_ADDR_MODE	__BITS(6,5)
84#define	 DDMA_CTRL_SRC_DRQ_TYPE		__BITS(4,0)
85#define	DDMA_SRC_ADDR_REG(n)	(0x300 + (n) * 0x20 + 0x4)
86#define	DDMA_DEST_ADDR_REG(n)	(0x300 + (n) * 0x20 + 0x8)
87#define	DDMA_BC_REG(n)		(0x300 + (n) * 0x20 + 0xc)
88#define	DDMA_PARA_REG(n)	(0x300 + (n) * 0x20 + 0x18)
89#define	 DDMA_PARA_DST_DATA_BLK_SIZE	__BITS(31,24)
90#define	 DDMA_PARA_DST_WAIT_CLK_CYC	__BITS(23,16)
91#define	 DDMA_PARA_SRC_DATA_BLK_SIZE	__BITS(15,8)
92#define	 DDMA_PARA_SRC_WAIT_CLK_CYC	__BITS(7,0)
93#define	 DDMA_PARA_VALUE				\
94	  (__SHIFTIN(1, DDMA_PARA_DST_DATA_BLK_SIZE) |	\
95	   __SHIFTIN(1, DDMA_PARA_SRC_DATA_BLK_SIZE) |	\
96	   __SHIFTIN(2, DDMA_PARA_DST_WAIT_CLK_CYC) |	\
97	   __SHIFTIN(2, DDMA_PARA_SRC_WAIT_CLK_CYC))
98
99static const struct device_compatible_entry compat_data[] = {
100	{ .compat = "allwinner,sun4i-a10-dma" },
101	DEVICE_COMPAT_EOL
102};
103
104struct sun4idma_channel {
105	uint8_t			ch_type;
106	uint8_t			ch_index;
107	uint32_t		ch_irqmask;
108	void			(*ch_callback)(void *);
109	void			*ch_callbackarg;
110	u_int			ch_drq;
111};
112
113struct sun4idma_softc {
114	device_t		sc_dev;
115	bus_space_tag_t		sc_bst;
116	bus_space_handle_t	sc_bsh;
117	bus_dma_tag_t		sc_dmat;
118	int			sc_phandle;
119	void			*sc_ih;
120
121	kmutex_t		sc_lock;
122
123	struct sun4idma_channel	sc_chan[DMA_MAX_TYPES][DMA_MAX_CHANNELS];
124};
125
126#define DMA_READ(sc, reg)		\
127	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
128#define DMA_WRITE(sc, reg, val)		\
129	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
130
131static void *
132sun4idma_acquire(device_t dev, const void *data, size_t len,
133    void (*cb)(void *), void *cbarg)
134{
135	struct sun4idma_softc *sc = device_private(dev);
136	struct sun4idma_channel *ch = NULL;
137	const uint32_t *specifier = data;
138	uint32_t irqen;
139	uint8_t index;
140
141	if (len != 8)
142		return NULL;
143
144	const u_int type = be32toh(specifier[0]);
145	const u_int drq = be32toh(specifier[1]);
146
147	if (type >= DMA_MAX_TYPES || drq >= DMA_MAX_DRQS)
148		return NULL;
149
150	mutex_enter(&sc->sc_lock);
151
152	for (index = 0; index < DMA_MAX_CHANNELS; index++) {
153		if (sc->sc_chan[type][index].ch_callback == NULL) {
154			ch = &sc->sc_chan[type][index];
155			ch->ch_callback = cb;
156			ch->ch_callbackarg = cbarg;
157			ch->ch_drq = drq;
158
159			irqen = DMA_READ(sc, DMA_IRQ_EN_REG);
160			irqen |= ch->ch_irqmask;
161			DMA_WRITE(sc, DMA_IRQ_EN_REG, irqen);
162
163			break;
164		}
165	}
166
167	mutex_exit(&sc->sc_lock);
168
169	return ch;
170}
171
172static void
173sun4idma_release(device_t dev, void *priv)
174{
175	struct sun4idma_softc *sc = device_private(dev);
176	struct sun4idma_channel *ch = priv;
177	uint32_t irqen;
178
179	mutex_enter(&sc->sc_lock);
180
181	irqen = DMA_READ(sc, DMA_IRQ_EN_REG);
182	irqen &= ~ch->ch_irqmask;
183	DMA_WRITE(sc, DMA_IRQ_EN_REG, irqen);
184
185	ch->ch_callback = NULL;
186	ch->ch_callbackarg = NULL;
187
188	mutex_exit(&sc->sc_lock);
189}
190
191static int
192sun4idma_transfer_ndma(struct sun4idma_softc *sc, struct sun4idma_channel *ch,
193   struct fdtbus_dma_req *req)
194{
195	uint32_t cfg, mem_cfg, dev_cfg, src, dst;
196	uint32_t mem_width, dev_width, mem_burst, dev_burst;
197
198	mem_width = req->dreq_mem_opt.opt_bus_width >> 4;
199	dev_width = req->dreq_dev_opt.opt_bus_width >> 4;
200	mem_burst = req->dreq_mem_opt.opt_burst_len == 1 ? 0 :
201		    (req->dreq_mem_opt.opt_burst_len >> 3) + 1;
202	dev_burst = req->dreq_dev_opt.opt_burst_len == 1 ? 0 :
203		    (req->dreq_dev_opt.opt_burst_len >> 3) + 1;
204
205	mem_cfg = __SHIFTIN(mem_width, NDMA_CTRL_SRC_DATA_WIDTH) |
206	    __SHIFTIN(mem_burst, NDMA_CTRL_SRC_BST_LEN) |
207	    __SHIFTIN(DRQ_TYPE_SDRAM, NDMA_CTRL_SRC_DRQ_TYPE);
208	dev_cfg = __SHIFTIN(dev_width, NDMA_CTRL_SRC_DATA_WIDTH) |
209	    __SHIFTIN(dev_burst, NDMA_CTRL_SRC_BST_LEN) |
210	    __SHIFTIN(ch->ch_drq, NDMA_CTRL_SRC_DRQ_TYPE) |
211	    NDMA_CTRL_SRC_ADDR_TYPE;
212
213	if (req->dreq_dir == FDT_DMA_READ) {
214		src = req->dreq_dev_phys;
215		dst = req->dreq_segs[0].ds_addr;
216		cfg = mem_cfg << 16 | dev_cfg;
217	} else {
218		src = req->dreq_segs[0].ds_addr;
219		dst = req->dreq_dev_phys;
220		cfg = dev_cfg << 16 | mem_cfg;
221	}
222
223	DMA_WRITE(sc, NDMA_SRC_ADDR_REG(ch->ch_index), src);
224	DMA_WRITE(sc, NDMA_DEST_ADDR_REG(ch->ch_index), dst);
225	DMA_WRITE(sc, NDMA_BC_REG(ch->ch_index), req->dreq_segs[0].ds_len);
226	DMA_WRITE(sc, NDMA_CTRL_REG(ch->ch_index), cfg | NDMA_CTRL_LOAD);
227
228	return 0;
229}
230
231static int
232sun4idma_transfer_ddma(struct sun4idma_softc *sc, struct sun4idma_channel *ch,
233   struct fdtbus_dma_req *req)
234{
235	uint32_t cfg, mem_cfg, dev_cfg, src, dst;
236	uint32_t mem_width, dev_width, mem_burst, dev_burst;
237
238	mem_width = req->dreq_mem_opt.opt_bus_width >> 4;
239	dev_width = req->dreq_dev_opt.opt_bus_width >> 4;
240	mem_burst = req->dreq_mem_opt.opt_burst_len == 1 ? 0 :
241		    (req->dreq_mem_opt.opt_burst_len >> 3) + 1;
242	dev_burst = req->dreq_dev_opt.opt_burst_len == 1 ? 0 :
243		    (req->dreq_dev_opt.opt_burst_len >> 3) + 1;
244
245	mem_cfg = __SHIFTIN(mem_width, DDMA_CTRL_SRC_DATA_WIDTH) |
246	    __SHIFTIN(mem_burst, DDMA_CTRL_SRC_BST_LEN) |
247	    __SHIFTIN(DRQ_TYPE_SDRAM, DDMA_CTRL_SRC_DRQ_TYPE) |
248	    __SHIFTIN(0, DDMA_CTRL_SRC_ADDR_MODE);
249	dev_cfg = __SHIFTIN(dev_width, DDMA_CTRL_SRC_DATA_WIDTH) |
250	    __SHIFTIN(dev_burst, DDMA_CTRL_SRC_BST_LEN) |
251	    __SHIFTIN(ch->ch_drq, DDMA_CTRL_SRC_DRQ_TYPE) |
252	    __SHIFTIN(1, DDMA_CTRL_SRC_ADDR_MODE);
253
254	if (req->dreq_dir == FDT_DMA_READ) {
255		src = req->dreq_dev_phys;
256		dst = req->dreq_segs[0].ds_addr;
257		cfg = mem_cfg << 16 | dev_cfg;
258	} else {
259		src = req->dreq_segs[0].ds_addr;
260		dst = req->dreq_dev_phys;
261		cfg = dev_cfg << 16 | mem_cfg;
262	}
263
264	DMA_WRITE(sc, DDMA_SRC_ADDR_REG(ch->ch_index), src);
265	DMA_WRITE(sc, DDMA_DEST_ADDR_REG(ch->ch_index), dst);
266	DMA_WRITE(sc, DDMA_BC_REG(ch->ch_index), req->dreq_segs[0].ds_len);
267	DMA_WRITE(sc, DDMA_PARA_REG(ch->ch_index), DDMA_PARA_VALUE);
268	DMA_WRITE(sc, DDMA_CTRL_REG(ch->ch_index), cfg | DDMA_CTRL_LOAD);
269
270	return 0;
271}
272
273static int
274sun4idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
275{
276	struct sun4idma_softc *sc = device_private(dev);
277	struct sun4idma_channel *ch = priv;
278
279	if (req->dreq_nsegs != 1)
280		return EINVAL;
281
282	if (ch->ch_type == DMA_TYPE_NORMAL)
283		return sun4idma_transfer_ndma(sc, ch, req);
284	else
285		return sun4idma_transfer_ddma(sc, ch, req);
286}
287
288static void
289sun4idma_halt(device_t dev, void *priv)
290{
291	struct sun4idma_softc *sc = device_private(dev);
292	struct sun4idma_channel *ch = priv;
293	uint32_t val;
294
295	if (ch->ch_type == DMA_TYPE_NORMAL) {
296		val = DMA_READ(sc, NDMA_CTRL_REG(ch->ch_index));
297		val &= ~NDMA_CTRL_LOAD;
298		DMA_WRITE(sc, NDMA_CTRL_REG(ch->ch_index), val);
299	} else {
300		val = DMA_READ(sc, DDMA_CTRL_REG(ch->ch_index));
301		val &= ~DDMA_CTRL_LOAD;
302		DMA_WRITE(sc, DDMA_CTRL_REG(ch->ch_index), val);
303	}
304}
305
306static const struct fdtbus_dma_controller_func sun4idma_funcs = {
307	.acquire = sun4idma_acquire,
308	.release = sun4idma_release,
309	.transfer = sun4idma_transfer,
310	.halt = sun4idma_halt
311};
312
313static int
314sun4idma_intr(void *priv)
315{
316	struct sun4idma_softc *sc = priv;
317	uint32_t pend, mask, bit;
318	uint8_t type, index;
319
320	pend = DMA_READ(sc, DMA_IRQ_PEND_STAS_REG);
321	if (pend == 0)
322		return 0;
323
324	DMA_WRITE(sc, DMA_IRQ_PEND_STAS_REG, pend);
325
326	pend &= DMA_IRQ_PEND_STAS_END_MASK;
327
328	while ((bit = ffs32(pend)) != 0) {
329		mask = __BIT(bit - 1);
330		pend &= ~mask;
331		type = ((bit - 1) / 2) / 8;
332		index = ((bit - 1) / 2) % 8;
333
334		if (sc->sc_chan[type][index].ch_callback == NULL)
335			continue;
336		sc->sc_chan[type][index].ch_callback(
337		    sc->sc_chan[type][index].ch_callbackarg);
338	}
339
340	return 1;
341}
342
343static int
344sun4idma_match(device_t parent, cfdata_t cf, void *aux)
345{
346	struct fdt_attach_args * const faa = aux;
347
348	return of_compatible_match(faa->faa_phandle, compat_data);
349}
350
351static void
352sun4idma_attach(device_t parent, device_t self, void *aux)
353{
354	struct sun4idma_softc * const sc = device_private(self);
355	struct fdt_attach_args * const faa = aux;
356	const int phandle = faa->faa_phandle;
357	struct clk *clk;
358	char intrstr[128];
359	bus_addr_t addr;
360	bus_size_t size;
361	u_int index, type;
362
363	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
364		aprint_error(": couldn't get registers\n");
365		return;
366	}
367
368	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
369	    clk_enable(clk) != 0) {
370		aprint_error(": couldn't enable clock\n");
371		return;
372	}
373
374	sc->sc_dev = self;
375	sc->sc_phandle = phandle;
376	sc->sc_dmat = faa->faa_dmat;
377	sc->sc_bst = faa->faa_bst;
378	if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
379		aprint_error(": couldn't map registers\n");
380		return;
381	}
382	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
383
384	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
385		aprint_error(": failed to decode interrupt\n");
386		return;
387	}
388
389	aprint_naive("\n");
390	aprint_normal(": DMA controller\n");
391
392	DMA_WRITE(sc, DMA_IRQ_EN_REG, 0);
393	DMA_WRITE(sc, DMA_IRQ_PEND_STAS_REG, ~0);
394
395	for (type = 0; type < DMA_MAX_TYPES; type++) {
396		for (index = 0; index < DMA_MAX_CHANNELS; index++) {
397			struct sun4idma_channel *ch = &sc->sc_chan[type][index];
398			ch->ch_type = type;
399			ch->ch_index = index;
400			ch->ch_irqmask = __BIT((type * 16) + (index * 2) + 1);
401			ch->ch_callback = NULL;
402			ch->ch_callbackarg = NULL;
403
404			if (type == DMA_TYPE_NORMAL)
405				DMA_WRITE(sc, NDMA_CTRL_REG(index), 0);
406			else
407				DMA_WRITE(sc, DDMA_CTRL_REG(index), 0);
408		}
409	}
410
411	sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_SCHED,
412	    FDT_INTR_MPSAFE, sun4idma_intr, sc, device_xname(sc->sc_dev));
413	if (sc->sc_ih == NULL) {
414		aprint_error_dev(sc->sc_dev,
415		    "couldn't establish interrupt on %s\n", intrstr);
416		return;
417	}
418	aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);
419
420	fdtbus_register_dma_controller(self, phandle, &sun4idma_funcs);
421}
422
423CFATTACH_DECL_NEW(sun4i_dma, sizeof(struct sun4idma_softc),
424        sun4idma_match, sun4idma_attach, NULL, NULL);
425