1/*	$NetBSD: rk_spi.c,v 1.7 2021/05/15 08:46:00 mrg Exp $	*/
2
3/*
4 * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tobias Nygren.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33__KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.7 2021/05/15 08:46:00 mrg Exp $");
34
35#include <sys/param.h>
36#include <sys/device.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/intr.h>
40#include <sys/kernel.h>
41#include <sys/bitops.h>
42#include <dev/spi/spivar.h>
43#include <dev/fdt/fdtvar.h>
44#include <arm/fdt/arm_fdtvar.h>
45
46#define SPI_CTRLR0		0x00
47#define SPI_CTRLR0_MTM		__BIT(21)
48#define SPI_CTRLR0_OPM		__BIT(20)
49#define SPI_CTRLR0_XFM		__BITS(19, 18)
50#define SPI_CTRLR0_FRF		__BITS(17, 16)
51#define SPI_CTRLR0_RSD		__BITS(15, 14)
52#define SPI_CTRLR0_BHT		__BIT(13)
53#define SPI_CTRLR0_FBM		__BIT(12)
54#define SPI_CTRLR0_EM		__BIT(11)
55#define SPI_CTRLR0_RW		__BIT(10)
56#define SPI_CTRLR0_CSM		__BITS(9, 8)
57#define SPI_CTRLR0_SCPOL	__BIT(7)
58#define SPI_CTRLR0_SCPH		__BIT(6)
59#define SPI_CTRLR0_CFS		__BITS(5, 2)
60#define SPI_CTRLR0_DFS		__BITS(1, 0)
61#define SPI_CTRLR0_DFS_4BIT	0x0
62#define SPI_CTRLR0_DFS_8BIT	0x1
63#define SPI_CTRLR0_DFS_16BIT	0x2
64
65#define SPI_CTRLR1		0x04
66#define SPI_CTRLR1_NDM		__BITS(15, 0)
67
68#define SPI_ENR			0x08
69#define SPI_ENR_ENR		__BIT(0)
70
71#define SPI_SER			0x0c
72#define SPI_SER_SER1		__BIT(1)
73#define SPI_SER_SER0		__BIT(0)
74
75#define SPI_BAUDR		0x10
76#define SPI_BAUDR_BAUDR		__BITS(15, 0)
77
78#define SPI_TXFTLR		0x14
79#define SPI_TXFTLR_TXFLTR	__BITS(4, 0)
80
81#define SPI_RXFTLR		0x18
82#define SPI_RXFLTR_RXFLTR	__BITS(4, 0)
83
84#define SPI_TXFLR		0x1c
85#define SPI_TXFLR_TXFLR		__BITS(5, 0)
86
87#define SPI_RXFLR		0x20
88#define SPI_RXFLR_RXFLR		__BITS(5, 0)
89
90#define SPI_SR			0x24
91#define SPI_SR_RFF		__BIT(4)
92#define SPI_SR_RFE		__BIT(3)
93#define SPI_SR_TFE		__BIT(2)
94#define SPI_SR_TFF		__BIT(1)
95#define SPI_SR_BSF		__BIT(0)
96
97#define SPI_IPR			0x28
98#define SPI_IPR_IPR		__BIT(0)
99
100#define SPI_IMR			0x2c
101#define SPI_IMR_RFFIM		__BIT(4)
102#define SPI_IMR_RFOIM		__BIT(3)
103#define SPI_IMR_RFUIM		__BIT(2)
104#define SPI_IMR_TFOIM		__BIT(1)
105#define SPI_IMR_TFEIM		__BIT(0)
106
107#define SPI_ISR			0x30
108#define SPI_ISR_RFFIS		__BIT(4)
109#define SPI_ISR_RFOIS		__BIT(3)
110#define SPI_ISR_RFUIS		__BIT(2)
111#define SPI_ISR_TFOIS		__BIT(1)
112#define SPI_ISR_TFEIS		__BIT(0)
113
114#define SPI_RISR		0x34
115#define SPI_RISR_RFFRIS		__BIT(4)
116#define SPI_RISR_RFORIS		__BIT(3)
117#define SPI_RISR_RFURIS		__BIT(2)
118#define SPI_RISR_TFORIS		__BIT(1)
119#define SPI_RISR_TFERIS		__BIT(0)
120
121#define SPI_ICR			0x38
122#define SPI_ICR_CTFOI		__BIT(3)
123#define SPI_ICR_CRFOI		__BIT(2)
124#define SPI_ICR_CRFUI		__BIT(1)
125#define SPI_ICR_CCI		__BIT(0)
126#define SPI_ICR_ALL		__BITS(3, 0)
127
128#define SPI_DMACR		0x3c
129#define SPI_DMACR_TDE		__BIT(1)
130#define SPI_DMACR_RDE		__BIT(0)
131
132#define SPI_DMATDLR		0x40
133#define SPI_DMATDLR_TDL		__BITS(4, 0)
134
135#define SPI_DMARDLR		0x44
136#define SPI_DMARDLR_RDL		__BITS(4, 0)
137
138#define SPI_TXDR		0x400
139#define SPI_TXDR_TXDR		__BITS(15, 0)
140
141#define SPI_RXDR		0x800
142#define SPI_RXDR_RXDR		__BITS(15, 0)
143
144#define SPI_FIFOLEN		32
145
146static const struct device_compatible_entry compat_data[] = {
147	{ .compat = "rockchip,rk3066-spi" },
148	{ .compat = "rockchip,rk3328-spi" },
149	{ .compat = "rockchip,rk3399-spi" },
150	DEVICE_COMPAT_EOL
151};
152
153struct rk_spi_softc {
154	device_t		sc_dev;
155	bus_space_tag_t		sc_bst;
156	bus_space_handle_t	sc_bsh;
157	void			*sc_ih;
158	u_int			sc_spi_freq;
159	struct spi_controller	sc_spi;
160	SIMPLEQ_HEAD(,spi_transfer) sc_q;
161	struct spi_transfer	*sc_transfer;
162	struct spi_chunk	*sc_rchunk, *sc_wchunk;
163	volatile bool		sc_running;
164};
165
166#define SPIREG_READ(sc, reg) \
167    bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
168#define SPIREG_WRITE(sc, reg, val) \
169    bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
170
171static struct spi_controller *rk_spi_get_controller(device_t);
172static int rk_spi_match(device_t, cfdata_t, void *);
173static void rk_spi_attach(device_t, device_t, void *);
174
175static int rk_spi_configure(void *, int, int, int);
176static int rk_spi_transfer(void *, struct spi_transfer *);
177
178static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
179static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
180static void rk_spi_rxtx(struct rk_spi_softc * const);
181static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
182static void rk_spi_start(struct rk_spi_softc * const);
183static int rk_spi_intr(void *);
184
185CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
186    rk_spi_match, rk_spi_attach, NULL, NULL);
187
188static const struct fdtbus_spi_controller_func rk_spi_funcs = {
189	.get_controller = rk_spi_get_controller
190};
191
192static struct spi_controller *
193rk_spi_get_controller(device_t dev)
194{
195	struct rk_spi_softc * const sc = device_private(dev);
196
197	return &sc->sc_spi;
198}
199
200static int
201rk_spi_match(device_t parent, cfdata_t cf, void *aux)
202{
203	struct fdt_attach_args * const faa = aux;
204
205	return of_compatible_match(faa->faa_phandle, compat_data);
206}
207
208static void
209rk_spi_attach(device_t parent, device_t self, void *aux)
210{
211	struct rk_spi_softc * const sc = device_private(self);
212	struct fdt_attach_args * const faa = aux;
213	const int phandle = faa->faa_phandle;
214	bus_addr_t addr;
215	bus_size_t size;
216	struct clk *sclk, *pclk;
217	char intrstr[128];
218
219	sc->sc_dev = self;
220	sc->sc_bst = faa->faa_bst;
221	SIMPLEQ_INIT(&sc->sc_q);
222
223	if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
224	    || clk_enable(sclk) != 0) {
225		aprint_error(": couldn't enable sclk\n");
226		return;
227	}
228
229	if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
230	    || clk_enable(pclk) != 0) {
231		aprint_error(": couldn't enable pclk\n");
232		return;
233	}
234
235	sc->sc_spi_freq = clk_get_rate(sclk);
236
237	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
238	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
239		aprint_error(": couldn't map registers\n");
240		return;
241	}
242
243	SPIREG_WRITE(sc, SPI_ENR, 0);
244	SPIREG_WRITE(sc, SPI_IMR, 0);
245
246	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
247		aprint_error(": failed to decode interrupt\n");
248		return;
249	}
250
251	sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
252	    rk_spi_intr, sc, device_xname(self));
253	if (sc->sc_ih == NULL) {
254		aprint_error(": unable to establish interrupt\n");
255		return;
256	}
257
258	aprint_naive("\n");
259	aprint_normal(": SPI\n");
260	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
261
262	sc->sc_spi.sct_cookie = sc;
263	sc->sc_spi.sct_configure = rk_spi_configure;
264	sc->sc_spi.sct_transfer = rk_spi_transfer;
265	sc->sc_spi.sct_nslaves = 2;
266
267	fdtbus_register_spi_controller(self, phandle, &rk_spi_funcs);
268	(void) fdtbus_attach_spibus(self, phandle, spibus_print);
269}
270
271static int
272rk_spi_configure(void *cookie, int slave, int mode, int speed)
273{
274	struct rk_spi_softc * const sc = cookie;
275	uint32_t ctrlr0;
276	uint16_t divider;
277
278	divider = (sc->sc_spi_freq / speed) & ~1;
279	if (divider < 2) {
280		aprint_error_dev(sc->sc_dev,
281		    "spi_clk %u is too low for speed %u, using speed %u\n",
282		     sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
283		divider = 2;
284	}
285
286	if (slave >= sc->sc_spi.sct_nslaves)
287		return EINVAL;
288
289	ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
290
291	switch (mode) {
292	case SPI_MODE_0:
293		ctrlr0 |= 0;
294		break;
295	case SPI_MODE_1:
296		ctrlr0 |= SPI_CTRLR0_SCPH;
297		break;
298	case SPI_MODE_2:
299		ctrlr0 |= SPI_CTRLR0_SCPOL;
300		break;
301	case SPI_MODE_3:
302		ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
303		break;
304	default:
305		return EINVAL;
306	}
307
308	SPIREG_WRITE(sc, SPI_ENR, 0);
309	SPIREG_WRITE(sc, SPI_SER, 0);
310	SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
311	SPIREG_WRITE(sc, SPI_BAUDR, divider);
312
313	SPIREG_WRITE(sc, SPI_DMACR, 0);
314	SPIREG_WRITE(sc, SPI_DMATDLR, 0);
315	SPIREG_WRITE(sc, SPI_DMARDLR, 0);
316
317	SPIREG_WRITE(sc, SPI_IPR, 0);
318	SPIREG_WRITE(sc, SPI_IMR, 0);
319	SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
320
321	SPIREG_WRITE(sc, SPI_ENR, 1);
322
323	return 0;
324}
325
326static int
327rk_spi_transfer(void *cookie, struct spi_transfer *st)
328{
329	struct rk_spi_softc * const sc = cookie;
330	int s;
331
332	s = splbio();
333	spi_transq_enqueue(&sc->sc_q, st);
334	if (sc->sc_running == false) {
335		rk_spi_start(sc);
336	}
337	splx(s);
338
339	return 0;
340}
341
342static void
343rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
344{
345	struct spi_chunk *chunk = sc->sc_wchunk;
346	size_t len;
347	uint8_t b;
348
349	if (chunk == NULL)
350		return;
351
352	len = MIN(maxlen, chunk->chunk_wresid);
353	chunk->chunk_wresid -= len;
354	while (len--) {
355		if (chunk->chunk_wptr) {
356			b = *chunk->chunk_wptr++;
357		} else {
358			b = 0;
359		}
360		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
361	}
362	if (sc->sc_wchunk->chunk_wresid == 0) {
363		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
364	}
365}
366
367static void
368rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
369{
370	struct spi_chunk *chunk = sc->sc_rchunk;
371	size_t len;
372	uint8_t b;
373
374	if (chunk == NULL)
375		return;
376
377	len = MIN(maxlen, chunk->chunk_rresid);
378	chunk->chunk_rresid -= len;
379
380	while (len--) {
381		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
382		if (chunk->chunk_rptr) {
383			*chunk->chunk_rptr++ = b;
384		}
385	}
386	if (sc->sc_rchunk->chunk_rresid == 0) {
387		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
388	}
389}
390
391static void
392rk_spi_rxtx(struct rk_spi_softc * const sc)
393{
394	bool again;
395	uint32_t reg;
396	size_t avail;
397
398	/* Service both FIFOs until no more progress can be made. */
399	again = true;
400	while (again) {
401		again = false;
402		reg = SPIREG_READ(sc, SPI_RXFLR);
403		avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
404		if (avail > 0) {
405			KASSERT(sc->sc_rchunk != NULL);
406			rk_spi_rxfifo_drain(sc, avail);
407			again = true;
408		}
409		reg = SPIREG_READ(sc, SPI_TXFLR);
410		avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
411		if (avail > 0 && sc->sc_wchunk != NULL) {
412			rk_spi_txfifo_fill(sc, avail);
413			again = true;
414		}
415	}
416}
417
418static void
419rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
420{
421	uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
422	int len;
423
424	/*
425	 * Delay rx interrupts until the FIFO has the # of bytes we'd
426	 * ideally like to receive, or FIFO is half full.
427	 */
428	len = sc->sc_rchunk != NULL
429	    ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
430	if (len > 0) {
431		SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
432		imr |= SPI_IMR_RFFIM;
433	}
434
435	/*
436	 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
437	 * ideally like to transmit, or the FIFO is half empty.
438	 */
439	len = sc->sc_wchunk != NULL
440	    ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
441	if (len > 0) {
442		SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
443		imr |= SPI_IMR_TFEIM;
444	}
445
446	/* If xfer is done, then interrupt as soon as the tx fifo is empty. */
447	if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
448		SPIREG_WRITE(sc, SPI_TXFTLR, 0);
449		imr |= SPI_IMR_TFEIM;
450	}
451
452	SPIREG_WRITE(sc, SPI_IMR, imr);
453}
454
455static void
456rk_spi_start(struct rk_spi_softc * const sc)
457{
458	struct spi_transfer *st;
459
460	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
461		spi_transq_dequeue(&sc->sc_q);
462		KASSERT(sc->sc_transfer == NULL);
463		sc->sc_transfer = st;
464		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
465		sc->sc_running = true;
466
467		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
468		SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
469
470		rk_spi_rxtx(sc);
471		rk_spi_set_interrupt_mask(sc);
472
473		if (!cold)
474			return;
475
476		for (;;) {
477			(void) rk_spi_intr(sc);
478			if (ISSET(st->st_flags, SPI_F_DONE))
479				break;
480		}
481	}
482	sc->sc_running = false;
483}
484
485static int
486rk_spi_intr(void *cookie)
487{
488	struct rk_spi_softc * const sc = cookie;
489	struct spi_transfer *st;
490	uint32_t isr;
491	uint32_t sr;
492	uint32_t icr = SPI_ICR_CCI;
493
494	isr = SPIREG_READ(sc, SPI_ISR);
495	if (!isr)
496		return 0;
497
498	if (ISSET(isr, SPI_ISR_RFOIS)) {
499		device_printf(sc->sc_dev, "RXFIFO overflow\n");
500		icr |= SPI_ICR_CRFOI;
501	}
502	if (ISSET(isr, SPI_ISR_RFUIS)) {
503		device_printf(sc->sc_dev, "RXFIFO underflow\n");
504		icr |= SPI_ICR_CRFUI;
505	}
506	if (ISSET(isr, SPI_ISR_TFOIS)) {
507		device_printf(sc->sc_dev, "TXFIFO overflow\n");
508		icr |= SPI_ICR_CTFOI;
509	}
510
511	rk_spi_rxtx(sc);
512
513	if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
514		do {
515			sr = SPIREG_READ(sc, SPI_SR);
516		} while (ISSET(sr, SPI_SR_BSF));
517		SPIREG_WRITE(sc, SPI_IMR, 0);
518		SPIREG_WRITE(sc, SPI_SER, 0);
519		st = sc->sc_transfer;
520		sc->sc_transfer = NULL;
521		KASSERT(st != NULL);
522		spi_done(st, 0);
523		sc->sc_running = false;
524	} else {
525		rk_spi_set_interrupt_mask(sc);
526	}
527
528	SPIREG_WRITE(sc, SPI_ICR, icr);
529
530	return 1;
531}
532